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LiqState: Liquid Identification and State Monitoring
Using mmWave IoT Sensing

Fahim Niaz, Jian Zhang, Muhammad Khalid, Muhammad Younas, and Abdul Majid,

Abstract—Traditional RF-based liquid identification methods
generally rely on a single characteristic such as refractive index
or permittivity and often assume prior container knowledge,
limiting their versatility. These approaches also face challenges
in scenarios involving gradual state changes in the liquid. We
propose LiqState, a contactless framework for fine-grained liquid
identification and continuous state monitoring, capable of oper-
ating without prior container information. To mitigate container
effects, we developed a LiqState reflection model that analyzes
frequency-dependent changes, leveraging the diverse permittivity
profiles of liquids across the mmWave frequency range. Our
approach introduces a novel feature extraction method, VRCP,
which captures four distinct physical and chemical properties
for robust identification and state monitoring. Using LiqNet, a
service-oriented and customized deep learning model, LiqState
achieves an average classification accuracy of 97.3% across
diverse conditions, accurately distinguishing 12 liquid types. Ad-
ditionally, case studies highlight LiqState’s capability to monitor
complex processes, such as milk fermentation (RMSE: 0.251) and
fruit juice ripening (RMSE: 0.162), and differentiate between
similar liquids with minimal alcohol concentration variations.

Index Terms—mmWave, Liquid Identification, Smart Sensing,
Contactless Sensing, Wireless Sensing.

I. INTRODUCTION

Liquid identification is essential across industries such as se-
curity, environmental monitoring, and healthcare. Applications
like liquid detection [1], security screening, water contamina-
tion detection, and blood analysis [2] benefit from accurate,
non-invasive identification. Unlike humans, who rely on taste
and smell, advanced systems offer precise differentiation, such
as distinguishing Pepsi from Coke or detecting slight variations
in alcohol content. This capability enhances product quality
control and safety.

Traditional liquid identification methods rely on expensive
equipment, limiting accessibility [3], [4]. Recent advance-
ments in ubiquitous sensing technologies [5] have introduced
more practical, cost-effective solutions using RFID, WiFi,
and mmWave radar [6], [7]. Systems such as Tagscan [8],
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Tagtag [9], WiMi [10], and FG-LiquID [11] employ innovative
techniques but are primarily data-driven, limiting their ability
to identify unknown liquids or monitor liquid states. LiquID
[6] and Vi-Liquid [12] improve accuracy by modeling permit-
tivity and viscosity; however, they require prior knowledge
of container material and dimensions, reducing real-world
applicability.

mmWave radar presents a compelling alternative due to
its high-resolution sensing [13], deeper penetration through
non-metallic materials, and robustness in various environ-
ments. Operating across a broad frequency range (24 GHz –
300 GHz), mmWave radar enables fine-grained differentiation
based on dielectric properties and attenuation factors. Studies
demonstrate its ability to achieve over 90% accuracy in liquid
classification [11]. Unlike optical or RFID-based methods,
mmWave radar is unaffected by ambient light and can pen-
etrate various container materials. Compared to UWB and
WiFi-based approaches, which suffer from lower frequency
resolution and environmental interference, mmWave radar
excels in detecting subtle state changes, such as a 1% alcohol
concentration difference or gradual liquid fermentation.

Some models, including LiqDetector [14], LiqRay+ [15],
and WiMi [10], address container dependence by leveraging
refractive index and frequency response. However, LiqDetector
depends on stable temperatures for accuracy, making it un-
suitable for dynamic environments. LiqRay+ identifies liquids
based on frequency response but struggles with subtle state
changes. WiMi lacks the sensitivity to differentiate liquids
with minor concentration variations. Furthermore, none of
these methods incorporate liquid state monitoring, crucial
for tracking transformations such as milk fermentation or
chemical reactions in industrial processes.

These limitations highlight the need for a container-
independent system capable of real-world liquid state mon-
itoring. We introduce LiqState (Fig. 1), addressing these chal-
lenges through advanced sensing and modeling techniques. In
general, the following three challenges need to be addressed:

1) First, fine-grained liquid identification, Differentiating
similar liquids is challenging due to minimal signal vari-
ations and external interferences like multi-path effects
and background noise.

2) Second, in the realm of fine-grained liquid detection, a
major challenge lies in the system’s sensitivity to vari-
ations in temperature and frequency. Liquid properties
fluctuate with environmental changes, necessitating a
detection system that maintains accuracy across varying
conditions and frequency bands.
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TABLE I: Comparison of COTS devices typically used for liquid identification with proposed LiqState

Method Device Container
Independent

Identify
Unknown
Liquids

Liquid State
Monitoring

Distance
Independent

TagScan [8] RFID ✓ % % %

Tagtag [9] RFID % % % ✓

FG-LiquID [11] mmWave % % % ✓

LiquID [6] UWB % ✓ % %

WiMi [10] WiFi % % % %

Vi-liquid [12] UWB % ✓ % %

LiqDetector [14] mmWave ✓ ✓ % ✓

LiqRay [15] USRP ✓ ✓ % %

LiqState mmWave ✓ ✓ ✓ ✓

Fig. 1: An illustration of LiqState, a contactless and ubiquitous
system for liquid detection and state monitoring. The system
can accurately detect changes in liquid state as small as
0.1%, without the need to open the container, and operates
robustly even in scenarios with random radar-target rotations
and displacements.

3) Third, liquid state monitoring is critical in various sce-
narios where the physical or chemical state of a liquid
can change over time due to environmental factors,
processing stages, or expiration. Many liquids undergo
state changes due to time, temperature, or chemical
reactions. Reliable real-time monitoring is essential for
ensuring product integrity and safety.

To address these challenges, we propose a ubiquitous,
contactless liquid identification and state monitoring system
that provides a more effective solution than existing methods,
as shown in Tab. I. First, we introduce a range-FFT-based
noise cancellation technique to mitigate multi-path effects and
background noise, ensuring cleaner signal acquisition. Next,
we present the LiqState reflection model, which eliminates the
influence of container materials by leveraging the frequency-
dependent nature of liquid attenuation. While containers ex-
hibit a consistent attenuation effect across frequencies, liquids
display distinct frequency-dependent attenuation characteris-
tics. This property enables accurate, container-independent
liquid differentiation.

Second, we propose VRCP, a novel feature extraction model
for fine-grained liquid detection. VRCP identifies key physical
and chemical properties, such as viscosity, refractive index,
permittivity, and phase shifts, independent of temperature and
frequency. These intrinsic properties remain stable regardless

of environmental factors, enabling accurate detection across
diverse conditions.

Third, we leverage the mmWave phase component, which
is highly sensitive to minor liquid composition changes. Our
observations show that liquid undergoing physical or chemical
transformations induces a 180-degree phase shift in mmWave
signals. By extracting these phase-related features, our system
continuously tracks liquid state changes, offering real-time
updates without invasive methods.

In summary, The major contributions of LiqState are:
We introduce LiqState, a ubiquitous and contactless sys-
tem capable of precisely distinguishing and monitoring
liquid states, even in scenarios with extremely subtle
content variations, such as a 0.1% v/v difference. LiqS-
tate maintains its accuracy and robustness under various
radar target displacements and rotations, demonstrating
its flexibility and practicality in real-world applications.
We build a LiqState reflection model, which eliminates
the influence of the container material. By using the
fact that the attenuation factor of the container remains
constant across frequencies, while the attenuation of
liquids changes with frequency, we designed a relative
frequency response factor. This factor represents the rela-
tive difference in attenuation across multiple frequencies,
allowing LiqState to identify liquids and monitor their
states independently of the container material. we propose
VRCP, a novel feature extraction model that captures
inherent liquid properties such as viscosity, refractive
index, complex permittivity, and phase shifts, without be-
ing affected by temperature or frequency variations.Prior
studies have demonstrated the effectiveness of individual
features like complex permittivity [16], viscosity [17],
and refractive index [14] for liquid identification. How-
ever, relying on a single feature limits versatility in
diverse scenarios. VRCP overcomes this by combining all
four features, providing complementary, non-redundant
information essential for fine-grained liquid identification
and state monitoring. This model is supported by math-
ematical proof based on physics concepts, ensuring the
accurate extraction of these four primary features for fine-
grained liquid identification and state monitoring. To val-
idate our approach, we implemented a customized deep
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neural network prototype, LiqNet. This prototype can be
deployed as a service-oriented solution, compatible with
smartphones and laptops, making it versatile for both
mobile and desktop applications. We conducted extensive
experiments across multiple use cases, including detect-
ing alcohol concentration, oil purity, milk fat content, and
coffee strength. Several case studies further demonstrate
the system’s accuracy and robustness in various real-
world scenarios, showcasing its potential as a practical
solution for industries requiring precise liquid monitoring
and identification.

Fig. 2: Workflow of the LiqState System. The sensed signals
undergo preprocessing to remove noise and mitigate multipath
effects. Next, Range-FFT is applied, and signals are cropped
to highlight the target zone, capturing discriminative fine-
grained information. The LiqState reflection model is then
used to remove container effects. Finally, four key features
are extracted, enabling accurate liquid identification and state
monitoring.

II. RELATED WORK

Recent advancements in sensor-based material identification
have led to a surge in innovative techniques across various do-
mains, particularly for identifying liquids, which remains both
promising and challenging. Traditional methods for identifying
liquids typically rely on specialized, high-cost equipment to
analyze material properties [18], [19], [20]. These approaches
leverage the fundamental principle that different substances
exhibit distinct absorption and reflection characteristics when
exposed to light waves. However, they often necessitate di-
rect contact with the liquid, such as immersing a probe to
capture signals, followed by spectral analysis using a spec-
trometer. While effective, these techniques are impractical for
widespread, everyday applications such as identifying liquids
within sealed containers due to their complexity, cost, and
lack of non-invasive capabilities Liquid detection research can
broadly be categorized into three approaches: Radio Frequency
(RF)-based, optical and camera-based, and mmWave-based
material identification.

A. RF-Based Material Identification
RF technology has gained significant attention in liquid

identification, producing two primary approaches: data-driven
and model-driven methods.

• Data-Driven Methods: These approaches typically require
pre-trained datasets to classify liquids. TagScan [8] uses
RFID readings, extracting RSSI and phase data to create
a database of 10 liquids. Tagtag [9] attaches RFID tags
directly to targets, detecting adulterants like fake alcohol
and expired milk by comparing the data to pre-trained
samples. FG-LiquID [11] takes this further by using
mmWave radar and neural networks to identify 30 liquids.
However, this method struggles with unknown liquids and
requires extensive database creation.

• Model-Driven Methods: These techniques aim to calcu-
late the physical properties of liquids, like permittivity.
LiquID [6], for instance, computes the complex permit-
tivity by analyzing signal amplitude and phase, enabling
the identification of 33 liquids. Vi-Liquid [12] measures
liquid viscosity through mechanical waves, recognizing
up to 30 different types. While these models are effective,
they often depend on prior knowledge about the con-
tainer’s material and dimensions, which limits versatility.
To address this, we developed a container-independent
system by incorporating dual-antenna technology and
analyzing the relative frequency response.

B. Optical and Camera-Based Systems

Optical systems use thermal infrared sensors, photodiodes,
and visible light cameras to analyze liquid properties through
optical absorption or reflection. This method effectively reveals
characteristics by studying spectral signatures. For example,
Nutrilyzer [21] employs photoacoustic sensing, using light
modulation to generate liquid-specific spectra that identify
nutrients and adulterants. Smart-U [22] uses LEDs and pho-
todiodes to recognize liquids on a spoon by measuring how
various substances affect absorption. Al-light [23] introduces
a smart ice cube that estimates alcohol concentration via near-
infrared spectrometry. Although these systems provide high
accuracy, they require specialized devices, limiting accessibil-
ity to everyday users. To bridge this gap, Vi-Liquid offers a
smartphone-compatible solution, making liquid testing more
accessible and practical.

C. mmWave-Based Sensing

The rapid evolution of 5G technology has highlighted
mmWave radio signals as a powerful tool for liquid identifica-
tion. mmWave’s short wavelength and high directionality make
it ideal for fine-grained sensing applications. This includes
tasks like environment mapping [24], [24], human tracking
[25], [26], counterfeit currency [27], [28] and even vital
sign monitoring [29], [30]. In liquid identification, mmWave’s
precision makes it particularly effective. It has been employed
in various fields, such as gesture recognition [31]. By lever-
aging this technology, mmWave offers unique advantages for
liquid detection, enabling precise identification and phase shift
monitoring, even in challenging environments.

Our study utilized the LiqState system, which monitors the
phase shifts of liquids during state transitions. For example,
during the fermentation of milk to yogurt, LiqState effectively
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Fig. 3: Elimination of multi-path effects using Reference
Channel Impulse Response (CIR) and noise reduction through
Butterworth high-pass filtering.

tracked phase changes as a function of time and chemical re-
actions, providing valuable insights into the liquid’s changing
properties. Such applications highlight the utility of mmWave
sensing in both industrial and consumer-grade liquid testing
systems.

III. SYSTEM OVERVIEW

The LiqState, illustrated in Fig. 2, comprises four key
modules. The first module handles data collection using a
COTS mmWave radar mounted on a tabletop platform. This
setup enables the radar to transmit and receive signals at
multiple angles, maximizing data coverage. The raw data
collected by the radar is initially processed through filtering
and pre-processing techniques to suppress noise, mitigate
hardware-induced disturbances, and remove ambient interfer-
ence from the intermediate frequency (IF) signal. The second
module involves the construction of the LiqState reflection
model, designed to eliminate the container’s effect. This
model compensates for the constant impact of the container
across different frequencies and adjusts for the frequency-
dependent attenuation properties of the liquid being analyzed.
Finally, The system performs fine-grained liquid detection
by extracting four critical liquid properties such as viscosity,
refractive index, complex permittivity, and phase shift of the
signal. These properties are used to derive relative features
that remain stable, independent of environmental factors such
as temperature and frequency fluctuations.

A. Noise Cancellation

In signal preprocessing, the multi-path effect introduces
various signal components beyond the direct reflection from
the target (e.g., a liquid container). These components include
Direct Current (DC) offsets, ambient noise, and reflections
from other surfaces. To address these issues, we utilize a
Channel Impulse Response (CIR) to capture and isolate the
multi-path effects and background noise.

The CIR under the influence of multi-path can be defined
as:

g(λ) =

N∑
i=1

bie
−jϕiλδ(λ− λi) (1)

Fig. 4: Target zone peak detection using Range-FFT

where: N is the total number of signal paths, bi, ϕi, and
λi represent the amplitude, phase, and time delay of the i-
th path, δ(λ) is the Dirac delta function representing the
impulse response. To mitigate noise, we adopt a reference CIR
gr(λ), captured when there is no liquid present in front of
the radar. This reference CIR suppresses the DC component,
ambient reflections, and background noise. Since the detection
environment remains stable, the reference CIR can be reused
without repeated sampling. The CIR is calculated by averaging
multiple samples to suppress unstable noise components:

gr(λ) =
1

M

M∑
k=1

g(λ, tk) (2)

where: M is the total number of sampling instances. To isolate
the signal reflected by the target (i.e., the liquid), we subtract
the reference CIR from the measured CIR at time t:

gt(λ) = g(λ, t)− gr(λ) (3)

Here, gt(λ) represents the signal of interest, free from mul-
tipath distortions and background noise. After eliminating
the multipath effect through the reference CIR, we apply a
Butterworth filter to further suppress high-frequency noise and
refine the signal as shown in Fig. 3. The Butterworth filter is
characterized by a flat frequency response in the passband,
ensuring minimal signal distortion. The transfer function of
an m-th order Butterworth filter [32] is given by:

F (ν) =
1√

1 +
(

ν
νc

)2m
(4)

where: ν is the frequency of the signal, νc is the cutoff
frequency, and m is the filter order. The filtered output
gfiltered(t) is obtained by applying the Butterworth filter to the
signal gt(λ):

gfiltered(t) = F (ν) · gt(λ) (5)

Finally, as shown in Fig./ the noise-free signal can be
expressed as:

goutput(t) = F (ν) · (g(λ, t)− gr(λ)) (6)

B. Range-FFT

In liquid identification using mmWave radar, the range-FFT
plays a crucial role in analyzing reflected radar signals to
determine the distance to various reflective surfaces within the
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liquid and its container. The transmitted FMCW chirp signal
[33] interacts with the liquid, and the received signal carries
information about the liquid’s dielectric properties, such as
permittivity and attenuation, which impact signal propagation.
The beat frequency fb, corresponding to the distance R of the
reflection surface, is calculated using the formula:

fb =
2BR

cTchirp
(7)

Where B = 4GHz is the chirp bandwidth, Tchirp = 40µs is
the chirp duration, c is the speed of light, and R represents the
distance to the reflection surface. By applying the range-FFT
to the received signal, we transform the time-domain signal
into the frequency domain, as illustrated in Fig. 4. In this
transformed spectrum, peaks indicate reflections from different
interfaces, such as the liquid surface or container walls. The
distance R for each peak is then determined by:

R =
cTchirpfb

2B
(8)

The dielectric properties of the liquid influence the prop-
agation speed of the radar signal, with higher permittivity
slowing the signal and resulting in detectable shifts in the beat
frequency.

C. LiqState Reflection Model

Liquid identification using mmWave is complicated by
signal reflections from containers, which can distort mea-
surements. The LiqState reflection model overcomes this by
integrating reflection-based and frequency-dependent attenu-
ation models, ensuring accurate liquid characterization. We
first analyze radar reflections when targeting a liquid-filled
container. Then, the LiqState model isolates the liquid’s re-
flection by calculating the container’s constant effect and the
relative frequency of reflected signals. This works on two
principles: (1) container reflections remain nearly constant
across frequencies, while (2) liquid attenuation varies with
frequency due to molecular interactions, allowing precise
liquid identification.

1) The Constant Nature of Container Reflections Across
Frequencies: The radar signal experiences multiple reflections
when interacting with the container. As shown in Fig. 1, these
reflections include the surface reflection at the container’s
outer surface Router and the liquid surface reflection at the
liquid-container interface Rinner. For most non-metallic con-
tainers, the refractive index remains nearly constant across the
different frequencies (for example, the refractive index of glass
is about 1.5, while the refractive index of water is close to
9). As a result, the container introduces a constant reflection
across frequencies, which can be modeled and separated from
the liquid’s signal by leveraging the stability of the container’s
response. The signal reflection coefficients at the outer and
inner interfaces can be expressed using Fresnel’s equations
as:

Router =

(
nair − nConti

nair + nConti

)2

(9)

Rinner =

(
nConti − nLiq

nConti + nLiq

)2

(10)

Where nair is the refractive index of air (approximately 1),
nConti is the refractive index of the container (constant across
frequencies), and nLiq is the refractive index of the liquid
(frequency-dependent). These coefficients represent the ratio
of reflected to incident wave energy at each interface.

To present the effect of the liquid and the container on the
reflected signal, we express the amplitude of all the reflected
signals. First, we take the external air and the container as a
mixing medium. According to the Friis transmission equation
[34], the amplitudes of signals reflected from Router and Rinner
can be expressed as:

Souter,inner = PtRtRr
λ

4πL

(
Router +Rinnere

−2αd
)

(11)

Where Pt is the amplitude of the transmitted radar signal,
RtRr are the antenna gains for transmission and reflection, λ
is the wavelength of the radar signal, L is the distance from
the radar to the target surface, α is the attenuation factor for
the liquid, and d is the thickness of the container.

(a) Container effect remains constant
for the same liquid type.

(b) Attenuation factors vary across liq-
uids for frequency.

Fig. 5: The container effect remains the same for the same
type of liquid, while the attenuation factors of various liquids
change for frequency.

2) The Frequency-Dependent Attenuation of the Liquid:
The impact of the container on the signal amplitude mainly
comes from two aspects: the refraction of the medium and the
transmission distance of the signal in the liquid, both of which
are related to the refractive index. As a result, the effect of
the container on the signal amplitude is almost invariant with
frequency. This allows us to use ratios of different frequency
signals to remove its effect. In Fig. 5, when the signal
frequency is changed, the effect of the container remains stable
and at the same time, the attenuation factor of different liquids
has different trends [35]. The liquid’s attenuation factor α(f)
varies significantly with frequency. This variation arises due to
the molecular polarization and interactions of the liquid with
the radar signal. By leveraging this frequency dependency,
we can isolate the liquid’s unique signal response from that
of the container. The attenuation factor α(f) describes the
exponential decay of the radar signal as it passes through the
liquid. The relationship between the attenuation and the signal
can be expressed as:

Satt(f) = S0e
−α(f)d (12)
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Where Satt(f) is the attenuated signal at frequency f , S0 is
the initial signal before attenuation, and α(f) is the attenuation
coefficient of the liquid, which depends on frequency. To
eliminate the constant container reflection and isolate the
frequency-dependent liquid response, we use a relative fre-
quency response. This is the ratio of signals at two different
frequencies, f1 and f2, expressed as:

Rf1,f2 =
Satt(f1)

Satt(f2)
= e(α(f2)−α(f1))d (13)

The Eq. 13 allows us to compare how the signal changes
with frequency, eliminating the container’s constant contribu-
tion, and providing a feature that is dependent on the liquid’s
attenuation properties. So, both the constant nature of the
container reflections and the frequency-dependent attenuation
of the liquid are expressed as:

RLiq =
Satt(f1)

Satt(f2)
=

Router +Rinnere
−2α(f1)d

Router +Rinnere−2α(f2)d
(14)

To sum up, with the proposed LiqState-reflection model, we
can obtain the liquid’s properties without needing to know the
container’s material effect. As a result, container-independent
liquid detection is achieved.

IV. VRCP: FINE-GRAINED LIQUID IDENTIFICATION

In liquid identification, selecting physical and chemical
properties is essential for distinguishing liquid types, espe-
cially for fine-grained categorization. This paper introduces
VRCP: viscosity, refractive index, complex permittivity, and
phase shift due to state changes. As shown in Tab. II, these
parameters offer distinct insights into liquid behavior, enabling
a robust feature set for accurate identification of unknown liq-
uids. VRCP achieves identification independent of temperature
and frequency fluctuations. The refractive index, for exam-
ple, can vary with external temperature [14], while complex
permittivity shifts across frequencies [15]. To mitigate these
factors, VRCP combines refractive index, viscosity, complex
permittivity, and phase shift into a unified feature set. Lever-
aging the stability of some properties and the complementary
nature of their variations, VRCP reduces temperature and
frequency impacts on individual measurements. This approach
provides a consistent and accurate method for fine-grained
liquid and state identification across diverse environmental
conditions.

A. Detection of Liquid by Calculating the Liquid Viscosity

Viscosity is a fundamental property of liquids that measures
their internal resistance to flow. It arises due to the interactions
between liquid molecules and is influenced by temperature,
pressure, and molecular composition. When mmWave radar
waves interact with a liquid, the liquid’s viscosity can influence
the attenuation and phase shift of the signal, which can be
measured and used to estimate the viscosity.

Viscosity, denoted by η, is a measure of a fluid’s resistance
to deformation or flow. In the context of radar-based liquid
detection, the viscosity is related to the interaction between
the liquid and the propagating radar waves. To develop a

model, we need to account for both the mechanical properties
of the liquid (viscosity) and the way the electromagnetic waves
propagate through the liquid medium. When radar waves
propagate through a viscous liquid, the wave experiences
attenuation (energy loss) and phase shift. These changes can
be linked to the liquid’s viscosity. The electric field E of the
radar wave passing through a liquid with viscosity η can be
described by the wave equation:

∇2E − 1

c2
∂2E

∂t2
= 0 (15)

However, when a liquid is viscous, energy dissipation occurs
[36], leading to an additional term related to the viscosity of
the medium. This can be expressed as:

∇2E − 1

c2
∂2E

∂t2
= µη

∂E

∂t
(16)

where: c is the speed of light in the medium, µ is the magnetic
permeability of the liquid, η is the dynamic viscosity of the
liquid, and the term µη ∂E

∂t represents the viscous dissipation
of energy in the liquid. The attenuation of the wave as it passes
through the liquid is proportional to the viscosity. The signal’s
amplitude A(t) decays exponentially as it propagates through
the liquid, and the decay can be modeled as:

A(x) = A0e
−αx (17)

where: A0 is the initial amplitude, α is the attenuation coeffi-
cient, and x is the distance traveled by the wave through the
liquid. The attenuation coefficient α is related to the viscosity
[35] of the liquid by:

α =
ηω2

2ρc3
(18)

(a) (b)

Fig. 6: Comparison of viscosity’s effects on attenuation and
phase shifts.

Eq. 18 shows that as the viscosity η increases, the attenua-
tion of the signal also increases as illustrated in Fig.6a Where
ω is the angular frequency of the radar signal, ρ is the density
of the liquid, and c is the speed of the electromagnetic wave
in the liquid. Furthermore, the radar signal also experiences
a phase shift ∆ϕ as it passes through the viscous liquid. The
phase shift is directly related to the liquid’s viscosity and the
distance traveled by the wave. The phase shift can be modeled
as:

∆ϕ =
ωd

c
− ηd

2c2
(19)

The phase shift provides an indirect measure of the liquid’s
viscosity [37], as shown in Fig.6b, higher viscosity leads to
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Fig. 7: Relative refractive index of various liquids across
different frequencies

larger phase shifts for the same signal frequency and liquid
thickness. We combine the attenuation and phase shift effects
to estimate the viscosity η of the liquid. By measuring both
the amplitude decay and phase shift of the radar signal, we
can solve for the viscosity using the following relations:

η =
2ρc3α

ω2
, η =

2c2∆ϕ

d
(20)

Eventually, Eq. 20 gives the viscosity of a liquid based on
the radar signal’s amplitude attenuation and phase shift. By
combining the attenuation and phase shift information, we can
accurately estimate the viscosity of the liquid, independent of
other factors such as temperature or frequency.

B. Liquid Detection Using Refractive Index

Accurate liquid detection and refractive index measurement
are critical in fields like material characterization, quality con-
trol, and environmental sensing. Using mmWave, we can non-
invasively measure these properties by analyzing transmission
and reflection at the air-liquid interface. This method can also
eliminates the effects of the container and focuses on the
physical properties governed by the Fresnel equations.

The Fresnel equations describe how electromagnetic waves
interact at the boundary between two different media, such as
air and liquid [38]. At normal incidence (θi = 0), the reflection
and transmission coefficients are given by:

RLiq =

(
nair − nLiq

nair + nLiq

)2

(21)

The transmission coefficient at normal incidence is:

TLiq =
4nairnLiq

(nair + nLiq)2
(22)

Where: nair ≈ 1 is the refractive index of air and nLiq is
the refractive index of the liquid.

For oblique incidence at an angle θi, we must account for
the polarization of the wave (s-polarized or p-polarized). For
s-polarized waves (electric field perpendicular to the plane of
incidence), the reflection coefficient is:

Rs =

(
nair cos θi − nLiq cos θt
nair cos θi + nLiq cos θt

)2

(23)

Similarly, for p-polarized waves (electric field parallel to the
plane of incidence), the reflection coefficient is:

Rp =

(
nLiq cos θi − nair cos θt
nLiq cos θi + nair cos θt

)2

(24)

Here, θt is the transmission angle, related to the incidence
angle θi by Snell’s Law:

nair sin θi = nLiq sin θt (25)

The transmission coefficients for s-polarized and p-polarized
waves are given by:

Ts =
2nair cos θi

nair cos θi + nLiq cos θt
(26)

Tp =
2nair cos θi

nLiq cos θi + nair cos θt
(27)

Solving the Fresnel equation for the refractive index at
normal incidence gives:

nLiq = 1 +
√
RLiq/(1−

√
RLiq) (28)

For oblique incidence, the refractive index can be calculated
using the measured reflection and transmission coefficients
(Rs, Rp, Ts, and Tp), along with Snell’s Law.

Fig. 7 demonstrates the relative variation of the transmission
coefficient with frequency for seven common liquids, which
is calculated using Eq. 28. This analysis is essential for
understanding how small fluctuations in frequency impact the
refractive index and, consequently, the transmission properties
of these liquids.

C. Detection of Liquid by Calculating the Complex Permittiv-
ity

When mmWave radar signals interact with a liquid, the
real part represents energy storage, while the imaginary part
reflects conductivity and energy loss as heat. Both vary with
frequency and composition, making complex permittivity es-
sential for fine-grained liquid identification. The material’s
electromagnetic response is governed by Maxwell’s equations.
Maxwell’s 4th equation is particularly relevant here as it
describes how the magnetic field (h) interacts with electric
currents (j) and the rate of change of electric displacement
(∂d∂t ):

∇× h = j +
∂d

∂t
(29)

Where h is known as magnetic induction whose value is:

h =
1

µ0
(b−m) (30)

Where b is the magnetic field and m is magnetization, j is the
current density and d is electric displacement, which is given
as:

d = ϵγ (31)

Here ϵ is the permittivity of the material and γ is the electric
field. The above equation can be written as:

∇× h = (σγ + bfϵ)γ (32)
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Fig. 8: The real and imaginary parts of the mmWave signal
enable the identification of different liquids

Fig. 9: Phase change due to the variation in liquid state

Here bf is the phasor operator, b2 = −1. At low frequencies,
the electric field easily aligns with dipole rotations, resulting
in a high ϵ′ (real part of permittivity) and a low ϵ′′ (imaginary
part, or loss factor). As the frequency increases, the dipoles
rotate faster, causing an increase in ϵ′′, indicating higher
energy loss. However, the dipoles can no longer keep up with
the rapidly oscillating electric field at very high frequencies,
decreasing both ϵ′ and ϵ′′. According to the theoretical model,
the imaginary part of the complex permittivity, ϵ′′, is expected
to increase initially with frequency and then decrease at higher
frequencies. As shown in Fig.8, the experimental results align
with the theoretical expectations, though the rate of change
varies for each liquid.

TABLE II: Comparison of selected liquids based on their
physical and electromagnetic properties

Liquid Viscosity Ref. Index Phase Shift ε′ ε′′

(mPa.s) (77-81GHz)
Water 0.980 8.5–9.0 35°–50° 78.5–81.0 0.5–1.0
Milk 1.5–3.4 4.0–6.0 25°–40° 3.5–4.0 0.15–0.25
Fruit Juice 55–75 3.5–5.5 20°–35° 4.0–5.0 0.2–0.4
Green Tea 1.0–1.2 4.0–5.0 15°–25° 3.5–4.5 0.1–0.3
Coca Cola 1.6–1.8 3.5–4.5 30°–45° 3.0–4.0 0.2–0.4
Cooking Oil 1400 1.5–2.0 10°–20° 2.5–3.0 0.05–0.15
Coffee 75–85 3.0–5.0 25°–35° 4.0–5.0 0.15–0.35
Honey 150–225 6.0–8.0 35°–50° 5.0–6.0 0.25–0.5
Fanta 1.5–1.8 3.5–4.5 30°–45° 3.0–4.0 0.2–0.3
Vinegar 1.8–2.0 4.0–5.0 30°–40° 4.0–5.0 0.15–0.25
Sprite 1.0–1.2 3.5–4.5 30°–45° 3.0–4.0 0.15–0.25

D. Detection of Liquid State Using Signal Phase Shift

Detecting liquid state changes, such as freezing, evapora-
tion, or spoilage, using mmWave involves analyzing the phase
shift of reflected electromagnetic waves. The method relies
on observing how the radar signal, operating in the frequency
range of 77-81 GHz, interacts with the liquid’s surface. Varia-
tions in density, dielectric properties, and molecular structure
during state changes alter the propagation of these waves,
making it possible to identify the transition.

When a liquid undergoes a state change, its relative per-
mittivity (ϵr), which is a measure of how it interacts with
electromagnetic fields, varies. This change in permittivity
affects the phase of the reflected mmWave signal, providing
insights into the liquid’s state. The wavelength λ of a mmWave
radar signal propagating through a liquid is defined by the
equation:

λliq =
c

f
√
ϵr

(33)

Where: c is the speed of light in a vacuum, f is the
frequency of the radar wave, and ϵr is the relative permittivity
of the liquid. The phase of the mmWave radar signal is related
to the distance traveled, x, by:

ϕ =
2πx

λ
(34)

The phase shift, ∆ϕ, due to the liquid’s thickness d is given
by:

∆ϕ =
4πfd

√
ϵr

c
(35)

By continuously measuring ∆ϕ, we can monitor changes in
the liquid’s state. For instance, the phase shift varies when a
liquid transitions from one state to another (e.g., from liquid
to solid) because changes in density and molecular structure
directly influence ϵr. The sensitivity of the phase shift to
changes in permittivity is described by the derivative:

∂ϕ

∂ϵr
=

4πfd

c
√
ϵr

(36)

Eq. 36 demonstrates that phase shift measurements can
detect subtle changes in a liquid’s dielectric properties, making
it effective for identifying state changes. Fig. 9 illustrates
the phase and relative phase shifts observed in four liquids
(milk, water, Pepsi, and honey) using mmWave across different
frequency range. Initially, the phase shift was calculated for
each liquid in its stable state. Subsequently, 10% and 20%
sucrose solutions were added to each liquid, resulting in
detectable phase shifts. The observed phase shifts due to
the liquid state changes indicate significant alterations when
adding sucrose, highlighting changes in the liquid’s molecular
composition and viscosity. These results demonstrate that
mmWave radar is highly sensitive to variations in liquid states,
with measurable changes corresponding to their molecular
structure and viscosity. When electromagnetic waves reflect
from a liquid surface, the amplitude of the reflected wave,
WR, is related to the amplitude of the incident wave, WI , by:
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WR =

(
η1 − η2
η1 + η2

)
WI (37)

Where: η1 and η2 are the impedance of the incident and
transmitted medium, respectively. For waves reflecting from a
denser medium, the reflected wave undergoes a phase inversion
of 180°:

WR =

(
v1 − v2
v1 + v2

)
WI (38)

Analyzing the phase and amplitude of the reflected waves
makes it possible to monitor state changes in real time. This
method has wide-ranging applications in industries where
the precise detection of liquid states is critical, such as in
food processing, chemical manufacturing, or environmental
monitoring.

Fig. 10: LiqNet model architecture for liquid identification.

V. LIQNET OVERVIEW

Our approach for fine-grained liquid identification and state
monitoring using LiqNet tackles two main challenges: (i)
Extracting detailed, discriminative features for precise liq-
uid identification, and (ii) Tracking state changes through
mmWave phase signal analysis. We introduce LiqNet (Fig.
10), a neural network architecture designed to automatically
capture these features and monitor liquid states in real time.
LiqNet’s residual layer architecture with linear transformations
enables it to detect subtle changes in liquid properties and
transitions, making it ideal for fine-grained identification tasks.
The network integrates two core components: (i) a feature
extraction module, and (ii) an attention module based on
spatial features. The feature extraction module, using residual
layers, generates both local and global features to capture
variations across different liquid compositions.

A. LiqNet Input

As shown in Fig. 10, LiqNet consists of four key com-
ponents: (i) liquid feature extraction, (ii) liquid state feature
extraction, (iii) attention module, and (iv) prediction layer.
The input data is divided into two categories: liquid features
and liquid state features. Liquid features include essential
properties like viscosity, refractive index, and complex per-
mittivity, while liquid state features are represented by signal
phase shifts to capture state transition information. The liquid

features are fed into the liquid feature extraction module,
where the input dimensions are N × 3 (liquid properties) ×5
(frequencies) +3 additional absolute features. These are flat-
tened to dimensions of N×18 before being processed by a 3-
layer residual CNN. This module utilizes residual connections
to retain critical low-level features, allowing deeper layers to
extract more complex patterns.

Similarly, the liquid state features, composed of phase shift
data with dimensions N × 1 (phase feature) ×5 (frequencies)
+1 absolute feature, are input into the liquid state feature
extraction module. This module, using a 4-layer residual CNN,
captures both local and global signal characteristics. The resid-
ual CNN structure efficiently handles phase shift variations,
ensuring that subtle shifts due to liquid state transitions are
identified. After feature extraction, the data passes through
a multi-head attention module, which enhances LiqNet’s fo-
cus on the most informative features. Using max-pooling
across feature vectors, the attention module calculates attention
weights for each channel. These weights are adaptively learned
through non-linear transformations, incorporating normaliza-
tion, dropout, and activation functions. Finally, LiqNet outputs
the specific liquid category and determines if its state has
changed.

TABLE III: Runtime Complexity and Analysis of LiqNet

Processing Stage Complexity Runtime Analysis (ms)
Feature Extraction O(N * k * f) 12.3

Attention Mechanism O(N²) 18.6
Prediction Layer O(N * d) 8.5
Total Complexity Dominated by O(N²) 39.4

VI. EVALUATION

Implementation setup: To implement LiqState, we utilize
the IWR1443 mmWave radar [39] (77-81 GHz) with the
DCA1000EVM for data acquisition. The radar includes two
transmitting and four receiving antennas, delivering a peak
gain of 7 dBi and providing a 120° horizontal field of view
(FoV). The IWR1443ISK’s antenna has dimensions of 8
mm, which corresponds to a radiated far-field boundary of
approximately 3 cm. It uses an open setup without additional
radome enclosures to minimize signal attenuation and reflec-
tion artifacts also it operates within the FCC/ETSI regulatory
limits for short-range radar applications. We configured the
system with a frequency slope of 65.000 MHz/µs and a sample
rate of 4000 ksps, generating 128 chirps per frame and 256
ADC samples per chirp. This setup results in a range resolution
of 3.55 cm and a velocity resolution of 11.77 cm/s. Notably,
LiqState requires only one pair of transmitting and receiving
antennas for effective liquid detection and state monitoring.

Environment setup: As shown in Fig. 11, the mmWave
radar was positioned 0.2 m away from the liquid contain-
ers. Data collection was conducted by transmitting mmWave
signals at five different frequencies. A container filled with
liquid was placed in front of the radar to ensure consistent
measurement conditions.

Liquids and containers: As illustrated in Fig. 12, we evalu-
ated the performance of LiqState using twelve types of liquids
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Fig. 11: Experimental Setup

Fig. 12: Overall performance of LiqState in identifying 12
types of liquids

and three different containers. The liquids tested include water,
milk, juice, green tea, Pepsi, Coca-Cola, oil, coffee, honey,
Fanta, Vinegar, and Sprite. For containers, we selected three
common materials: PET (Polyethylene-Terephthalate), HDPE
(High-Density Polyethylene), and glass. Additionally, to assess
the impact of container dimensions, PET containers were
tested in three different calibers: 5.5 cm, 7 cm, and 7.5 cm.

Data Collection: To build a comprehensive benchmark and
evaluate LiqState’s fine-grained liquid and state identification
performance, we selected a diverse range of liquids from
a local supermarket. For each liquid, we conducted three
independent data collection sessions over a week. In each
session, 250 ml of liquid was poured into a container placed 20
cm from the radar. The positioning was repeated 10 times per
session, with slight, randomized displacements and orientation
changes ranging from -4 cm to +4 cm in displacement and
0° to 180° in orientation. After each adjustment, the mmWave
radar was activated for 10 seconds to stabilize before recording
signals. All liquids were kept at a room temperature of 30°C.
We collected 20 samples per liquid across five different fre-
quencies and 10 different positions, resulting in 1,000 samples
per liquid. For 12 different types of liquids, we obtained
12,000 training samples and gathered 3,000 samples for the
test dataset.

VII. OVERALL PERFORMANCE

To evaluate the overall performance of LiqState, we con-
ducted two types of assessments. First, we tested LiqState’s
ability to identify different types of liquids accurately. Second,
we evaluated its performance in detecting both minor and
major changes in the state of the liquid, ensuring its robustness
in identifying subtle and significant state transitions.

We first ranked the liquid categories based on their average
absolute feature values. Then, we assessed LiqState’s perfor-
mance using a 5-fold cross-validation method. As depicted

TABLE IV: LiqState Performance Evaluation in Liquid State
Monitoring

Liquid State Change RMSE
Milk to Yogurt 0.294

Adding Sugar in Water 0.265
Adding Water in Honey 0.271
Adding Sugar in Pepsi 0.201

Adding Sugar in Green Tea 0.283

Overall RMSE 0.292

in Fig. 12, the confusion matrix illustrates the identification
results for the 12 liquid categories tested. LiqState achieved
an average accuracy of 97.3% across the different fluid types.
Notably, the system effectively distinguished between similar
liquids, such as Coke and Pepsi. A few misclassified samples
are typically located in adjacent grid spaces, primarily due to
neighboring categories’ close feature value similarities. For
example, some misclassifications occurred because the liq-
uids possess nearly identical properties, making differentiation
more challenging.

Secondly, we designed a series of experiments to thoroughly
evaluate LiqState’s ability to detect changes in liquid states.
In the primary experiment, we monitored the transition of
milk into yogurt, using a pH meter to obtain precise ground
truth measurements. Signal data were collected at 30-minute
intervals to capture the progression of state changes. In addi-
tion to milk, we tested four other liquids: Water, Pepsi, Green
Tea, and Honey. To further assess LiqState’s performance, we
prepared a diluted honey sample by mixing it with water and
a sugar solution by dissolving sugar in water. These liquids
were then altered through solute concentration adjustments,
allowing us to evaluate LiqState’s capability to detect state
changes in solutions with varying compositions. As shown in
Tab. IV, we quantified LiqState’s performance using the Root
Mean Square Error (RMSE), which measures the deviation
between the predicted and actual state changes. The RMSE
values for detecting state transitions across these five liquid
categories averaged 0.262, demonstrating LiqState’s accuracy
and reliability in distinguishing between the initial and altered
states of liquids.

Minor Changes in Liquid State: To evaluate LiqState’s
performance in detecting minor changes, we introduced a
0.1% syrup solution to five different liquids: water, milk,
Pepsi, vinegar, and juice. This small concentration change was
designed to assess the system’s sensitivity to subtle variations
in the composition of each liquid. As shown in Fig. 13a
LiqState demonstrated excellent performance, achieving an
average accuracy of 94.5% in detecting minor liquid state
changes at a concentration of 0.1%. This level of precision is
particularly crucial in applications where even slight changes
in liquid state can significantly impact quality. By effectively
identifying these subtle liquid states.

Major Changes in Liquid State: We evaluated LiqState’s
ability to detect significant liquid state transformations by
monitoring key processes affecting physical and chemical
properties. The first experiment tracked milk fermentation into
yogurt, assessing molecular-level changes. We also examined
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(a) (b)

Fig. 13: Performance evaluation of LiqState in identifying minor and major changes in liquids, A, B, C, D, and E represents
fermentation, gelling, crystallization, curdling, and solidification.

(a) LiqState performance at varying distances
and angles.

(b) Evaluation of LiqState with similar liquids
using containers of different thicknesses.

(c) LiqState’s performance with different con-
tainer materials.

Fig. 14: Performance evaluation of LiqState in detecting liquid states and identifying similar liquids using different container
types and at varying distances.

gelling (jelly formation), crystallization (cooling a saturated
sugar solution), curdling (adding lemon juice to milk), and
solidification (cooling liquid chocolate). These diverse trans-
formations provided a comprehensive assessment of LiqState’s
accuracy in detecting major state changes.

As shown in Fig. 13b, LiqState achieved 97% accuracy in
identifying minor state changes. Its real-time monitoring capa-
bilities make it valuable for food processing, pharmaceuticals,
and chemical manufacturing, ensuring precise control over
processes like fermentation, crystallization, and solidification,
with early detection of spoilage or inconsistencies.

A. Comparison of LiqState with State-of-the-Art Liquid Sens-
ing Methods

We compared LiqState with three advanced liquid identifi-
cation methods: FG-LiquID, LiqDetector, and LiqRay+. FG-
LiquID isolates peak zones and calculates the refractive index
under controlled distances but lacks robustness when radar-
target distance or angle varies. LiqDetector extracts refractive
index values using a dual-reflection model but is sensitive to
temperature fluctuations, limiting its effectiveness in dynamic
environments. LiqRay+ employs a dual-antenna system to
classify liquids based on frequency response variation but
struggles with fine-grained distinctions under varying angles or

displacements. In contrast, LiqState utilizes a single mmWave
receiving antenna to compute VRCP (Viscosity, Refractive
Index, Complex Permittivity, and Phase Shift) feature vectors
for each sample. The LiqNet model then classifies liquids and
monitors state changes with high accuracy. For comparison, we
implemented refractive index as a standalone feature alongside
the comprehensive VRCP features, adhering to each method’s
established protocols.

Fine-grained identification Across Varying Distances:
The results in Fig. 15a shows that FG-LiquID, LiqDetector,
and LiqRay+ struggle with fine-grained identification under
radar-target displacement and angular shifts, achieving 71.3%,
77.2%, and 80.6% accuracy, respectively. In contrast, LiqState
maintains over 93.2% accuracy, demonstrating its strong ca-
pability for precise liquid identification across varying spatial
configurations.

Fine-Grained Identification Using VRCP and Single
Features: To assess VRCP against single-feature methods
(e.g., refractive index), we evaluated six liquids using 3,000
samples per liquid and 5-fold cross-validation (600 samples
per subset). As shown in Fig. 15b, average accuracy across five
experiments was 72.7% for FG-LiquID, 76.5% for LiqDetec-
tor, and 82.8% for LiqRay. LiqState outperformed all, achiev-
ing 93% accuracy by leveraging VRCP features across the
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(a) (b)

Fig. 15: Comparative analysis of LiqState with existing state-of-the-art liquid sensing methods. (a) Accuracy evaluation of
LiqState compared to other models for liquid identification. (b) Performance comparison using VRCP features against single-
feature methods for enhanced liquid identification accuracy.

mmWave spectrum for robust fine-grained identification with-
out requiring environmental stability. These results highlight
LiqState’s advanced feature extraction, ensuring precise liquid
classification and state monitoring across diverse conditions.

B. Micro Benchmark

To thoroughly evaluate the performance of the LiqState sys-
tem, we conducted a series of micro-benchmark experiments
as shown in Fig. 17, designed to assess how various factors
impact liquid identification accuracy. Specifically, we explored
the influence of radar distance, container material, and liquid
temperature on the system’s performance.

Impact of Radar Distance on Liquid Identification: To
evaluate the impact of radar-to-container distance on identi-
fication accuracy, we conducted experiments with containers
placed at five distances: 0.2m, 0.4m, 0.6m, 0.8m, and 1.0m.
We collected 180 samples from three liquids at each distance.
As shown in Fig. 14a, LiqState achieved 93.4% accuracy for
distances up to 0.6m. However, accuracy declined to 89.6%
between 0.8m and 1.0m due to increased signal attenuation,
reducing feature distinction from environmental noise. Future
work could explore higher transmission power radars and
alternative mmWave systems to enhance long-distance perfor-
mance.

Impact of Container Material on Liquid Identification:
To assess the impact of container materials on LiqState’s
accuracy, we conducted experiments using containers of vary-
ing materials and thicknesses. First, we tested its ability to
differentiate four similar liquids, Pepsi, Coca-Cola, Sprite,
and Fanta inside both thick-glass and thin-glass cylindrical
containers. As shown in Fig. 14b, LiqState achieved an average
accuracy of 94.9%, effectively distinguishing similar liquids
even in reflective environments.

Next, we evaluated its performance in identifying sunflower,
coconut, and olive oils in PET, thin glass, and thick glass
containers. We collected 540 samples per container type for ro-
bust testing. As shown in Fig. 14c, LiqState achieved accuracy
rates of 95% for plastic, 95.7% for thin glass, and 94.3% for
thick glass. These results confirm that while container material

Fig. 16: LiqState performance evaluation at different liquid
temperatures

and thickness influence signal behavior, LiqState maintains
high accuracy, demonstrating its practical potential for food
packaging and oil quality control.

Impact of Liquid Temperature on Identification: In
this experiment, we examined the effect of temperature on
liquid identification by using drinking water as the solvent
and varying sugar concentrations between 0% and 20%, in
1% increments.The data was collected at three distinct water
temperatures: 50°C, 70°C, and 90°C, which were selected to
assess how temperature fluctuations influence the identification
process. A glass container with built-in temperature control,
capable of holding 0.5 liters, was used to ensure stable
conditions throughout the experiment. For each combination
of temperature and sugar concentration, 60 independent mea-
surements were taken, providing a robust data set for analysis.
As depicted in Fig. 16, LiqState achieved an average accuracy
exceeding 94.6% across all temperatures, demonstrating its
reliability in detecting liquid variations regardless of thermal
changes.

C. Macro Benchmark

To assess the performance and reliability of LiqState, we
carried out a series of practical experiments under different
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(a) LiqState performance in detecting oil purity
levels.

(b) LiqState’s accuracy in evaluating alcohol
concentration. (c) Detection of milk fat content using LiqState.

Fig. 17: Performance evaluation of LiqState across various liquid properties, including oil purity, alcohol concentration, and
milk fat content detection.

real-world conditions, as presented in Table V. These tests
evaluated the system’s accuracy in detecting and classifying
various liquid properties in practical applications. The results
indicate that LiqState’s effectiveness in identifying alcohol
concentration, oil purity, milk fat content, and coffee strength.
Each experiment underscores the practical utility of LiqState
in maintaining quality control and ensuring product integrity
across diverse use cases.

TABLE V: Macro Benchmark Results in Liquid State Moni-
toring

Liquids Experiments RMSE
Alcohol Concentration Detection 0.316

Oil Purity Detection 0.251
Milk Fat Content Detection 0.279
Coffee Strength Detection 0.314

Average RMSE 0.290

Alcohol Concentration Detection: Precise alcohol mea-
surement is essential for beverage quality and regulatory
compliance. We tested LiqState’s accuracy on liquids such as
water, coke, juice, and lemonade, with alcohol concentrations
from 4% to 20%. Analyzing properties like viscosity, refractive
index, permittivity, and phase shifts, LiqState achieved an
RMSE of 0.316 across 100 samples (see Fig. 17b), show-
casing its capability for high-precision monitoring in alcohol
production industries.

Oil Purity Detection: Oil purity is critical for food safety
and consumer trust. We tested LiqState on cooking oil samples
adulterated with 5% to 10% sunflower and olive oil. Across
the samples (see Fig. 17a), LiqState achieved 93.2% accuracy,
demonstrating strong reliability for detecting adulterated oils,
crucial for food safety and regulatory compliance.

Milk Fat Content Detection: Fat content is a key quality
indicator in milk, impacting nutrition and taste. Using skim
(0% fat) and whole milk (3.5% fat) samples, LiqState analyzed
viscosity and permittivity. As shown in Fig. 17c, the system
achieved 94.8% accuracy in differentiating fat levels, aiding
manufacturers in meeting labeling standards and ensuring
product consistency.

Fig. 18: LiqState experimental setup for the fermentation of
milk into yogurt

D. Case Study

We present two case studies demonstrating the use of LiqS-
tate for monitoring liquid state changes: (i) the fermentation
of milk into yogurt, and (ii) the ripening of fruit juice at room
temperature. These case studies highlight LiqState’s effective-
ness in tracking real-time liquid transformations, making it
valuable for both domestic and industrial applications.

1) Monitoring the Fermentation of Milk into Yogurt: This
case study uses LiqState to monitor the fermentation of milk
into yogurt, demonstrating its potential for both household
and industrial use, where tracking liquid states is essential for
quality control. The experiment was conducted over 4 hours
at a constant temperature of 42°C in a closed box to optimize
fermentation. A testo-206-pH2 meter and mmWave radar were
used to measure acidity and physical properties. The milk
started at a pH of 6.4 (Fig. 18), which decreased to 4.0 as it
turned into yogurt, within the optimal PH range of 4.0 to 4.5
[40]. Data were collected every 30 minutes, with 60 samples
per session. The radar tracked viscosity, permittivity, and phase
shifts, capturing the milk’s transformation. LiqState achieved
an RMSE of 0.251, demonstrating its precision in monitor-
ing fermentation. This study showcases LiqState’s potential
for home yogurt production and industrial scale monitoring,
ensuring consistent quality and process optimization.
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Fig. 19: Orange juice PH-Level decreases with time

E. Monitoring the Ripening Process of Fruit Juice at room
temperature

This case study investigates the ripening of orange juice at
room temperature, tracking subtle biochemical changes such as
pH and flavor during the process. These changes are crucial for
flavor and shelf life, and LiqState provides real-time insights
into the juice’s ripening. The experiment ran for 48 hours at
30°C with freshly squeezed juice stored in sealed containers.
The initial pH was 4.5, decreasing to 2.6 by the end, indicating
natural ripening (Fig. 19). LiqState monitored the juice proper-
ties every 8 hours, with 100 samples per session. The mmWave
radar tracked permittivity, phase shift, and viscosity, revealing
changes in the juice’s composition. Phase shifts correlated
with changes in pH, showing LiqState’s ability to monitor
ripening and fermentation. The LiqNet model was applied to
track changes in permittivity, phase shift, and viscosity, with
an RMSE of 0.162, indicating high accuracy. The radar data,
combined with pH readings, provided a comprehensive view
of the ripening process. This study suggests LiqState could
be used for quality control in the juice industry, monitoring
freshness and avoiding over-ripening. The technology could
also apply to other liquid products like smoothies or wines.

VIII. CONCLUSION

This paper introduced a novel mmWave-based approach
for liquid identification and state monitoring, leveraging the
VRCP feature extraction model, which incorporates viscosity,
refractive index, complex permittivity, and phase shift. Us-
ing our custom deep learning model, LiqNet, we accurately
identified 12 liquids and detected both minor and major
state changes. Extensive experiments confirmed high accuracy
across real-world scenarios, even under varying conditions.
Additionally, two case studies, milk fermentation into yogurt
and juice ripening in cold storage—demonstrated LiqState’s
practical applications for fine-grained liquid monitoring. Its
non-invasive, container-independent design ensures broad ap-
plicability in industries such as food safety, chemical process-
ing, and healthcare, providing a scalable and reliable solution
for liquid identification and monitoring.
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