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Abstract: Objective: Rat sarcoma (Ras) proteins, Kirsten, Harvey, and Neuroblastoma rat
sarcoma viral oncogene homolog (KRAS, HRAS, and NRAS, respectively), are a family of
GTPases, which are key regulators of cellular growth, differentiation, and apoptosis through
signal transduction pathways modulated by growth factors that have been recognized to
be dysregulated in PCOS. This study explores Ras signaling proteins and growth factor-
related proteins in polycystic ovary syndrome (PCOS). Methods: In a well-validated PCOS
database of 147 PCOS and 97 control women, plasma was batch analyzed using Somascan
proteomic analysis for circulating KRas, Ras GTPase-activating protein-1 (RASA1), and
45 growth factor-related proteins. The cohort was subsequently stratified for BMI (body
mass index), testosterone, and insulin resistance (HOMA-IR) for subset analysis. Results:
Circulating KRas, and RASA1 did not differ between PCOS and control women (p > 0.05).
EGF1, EGFR, and EGFRvIII were decreased in PCOS (p = 0.04, p = 0.04 and p < 0.001,
respectively). FGF8, FGF9, and FGF17 were increased in PCOS (p = 0.02, p = 0.03 and
p = 0.04, respectively), and FGFR1 was decreased in PCOS (p < 0.001). VEGF-D (p < 0.001),
IGF1 (p < 0.001), IGF-1sR (p = 0.02), and PDGFRA (p < 0.001) were decreased in PCOS
compared to controls. After stratifying for BMI ≤ 29.9 kg/m2, EGFR FGF8, FGFR1 VEGF-D,
IGF1, and IGF-1sR differed (p < 0.05) though EGF1, EGFRvIII, FGF8, FGFR1, and VEGF-D
no longer differed; after subsequently stratifying for HOMA-IR, only FGFR1, VEGF-D,
IGF1, and IGF-1sR differed between groups (p < 0.05). Conclusions: Several growth factors
that activate Ras differ between women with and without PCOS, and when stratified for
BMI and HOMA-IR, only FGFR1, VEGF-D, IGF1, and IGF-1sR differed; these appear to be
inherent features of the pathophysiology of PCOS.

Keywords: polycystic ovary syndrome (PCOS); cardiovascular risk; biomarkers; pro-
teomics; rat sarcoid proteins; ras

1. Introduction
Menstrual irregularity, anovulatory infertility and hirsutism are classic features of

polycystic ovary syndrome (PCOS) which is a multifactorial endocrine disorder affecting
approximately 5–20% of women of reproductive age worldwide [1]. It is recognized that
there is an increase in the prevalence of metabolic features including type 2 diabetes (T2D),
hypertension, and cardiovascular disease in PCOS (1). However, the inherent mechanism is
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still unclear, insulin resistance (IR) and obesity-related inflammation associated with PCOS
have been implicated [2,3].

Rat sarcoma (Ras) proteins, including Kirsten rat sarcoma viral oncogene homolog
(KRAS), Harvey Rat sarcoma virus (HRAS), and neuroblastoma Ras viral oncogene ho-
molog (NRAS), are a family of small GTPases that are key regulators of a wide array of
cellular processes that involve growth, differentiation, and apoptosis through their actions
in signal transduction pathways [4]. PCOS is often associated with IR, and Ras proteins are
involved in the insulin signaling pathway, particularly through the Ras-MAPK (Mitogen-
Activated Protein Kinase) pathway [5], which regulates cellular responses such as growth
and differentiation [6].

Ras proteins play a role in follicular development and steroidogenesis by mediating
signals from gonadotropins such as luteinizing hormone (LH) [7]. Ras-MAPK signaling is
involved in the pathways that regulate androgen production in the ovaries and thus may
contribute to hyperandrogenism, one of the diagnostic features of PCOS [8].

PCOS is associated with a pro-inflammatory state and Ras proteins are involved in
regulating inflammatory responses, with activation of Ras contributing to the chronic
low-grade inflammation seen in PCOS patients; KRAS is a potential pharmacological target
to treat PCOS [9].

Circulating Ras proteins, whether as fragments, exosome-associated proteins or Ras-
related signaling components, are found in cancer and metabolic disorders [10]; however,
circulatory Ras protein levels have not previously been reported in PCOS. Circulating
growth factors that act through the Ras signaling system do, however, differ in PCOS,
examples of which include Epidermal growth factor (EGF), which binds to the EGF Receptor
(EGFR, also known as ErbB1) [11,12]. Fibroblast growth factors (FGFs), which bind to
FGF Receptors (FGFRs), affect ovarian function in PCOS [13]. Platelet-derived growth
factor (PDGF), binding to the PDGF Receptor (PDGFR), may modulate steroid production
involved in fertility [14] in PCOS. Vascular endothelial growth factor (VEGF), binding to the
VEGF Receptor (VEGFR), plays a critical role in angiogenesis and ovarian folliculogenesis,
with the suggestion that it is associated with increased PCOS risk [15]. Insulin-like growth
Factors (IGFs) activate Ras and play an important role in the pathogenesis of PCOS related
to insulin resistance and inflammatory responses [16]. Other growth factors acting through
Ras include the Hepatocyte growth factor (HGF), binding to the HGF receptor (HGFR),
and Nerve growth factor (NGF), binding to the nerve growth factor receptor (NGFR). The
growth factors and their activation of Ras are shown in Figure 1.

This study explores Ras signaling in PCOS, with a particular focus on the potential
importance of circulatory Ras proteins and growth factors that activate Ras intracellular
signaling pathways in women with and without PCOS from a UK Biobank.
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Figure 1. Illustration of growth factors and their activation of Ras. The downward arrows indicate
the lower plasma levels found in women with polycystic ovary syndrome (PCOS) independent
of BMI, inflammation and insulin resistance (EGF: Epidermal Growth Factor, EFGR: Epidermal
Growth Factor Receptor, FGF: Fibroblast Growth Factor, FGFR: Fibroblast Growth Factor Receptor,
PDGF: Platelet-derived Growth Factor, PDGFR: Platelet-derived Growth Factor Receptor; VEGF:
Vascular Endothelial Growth Factor, VEGFR: Vascular Endothelial Growth Factor Receptor, IGF:
Insulin and Insulin-like Growth Factor; IGFR: Insulin and Insulin-like Growth Factor receptor, HGF:
Hepatocyte Growth Factor, HGFR: Hepatocyte Growth Factor Receptor, C-MET: Mesenchymal-
Epithelial Transition Factor, NGF: Nerve Growth Factor, NGFR: Nerve Growth Factor Receptor,
TrkA: Tropomyosin receptor kinase A, GM-CSF: Granulocyte-Macrophage Colony-Stimulating Factor,
GM-CSFR: Granulocyte-Macrophage Colony-Stimulating Factor Receptor, Ras: Rat Sarcoma Virus,
RAF: Rapidly Accelerated Fibrosarcoma, MEK: Mitogen-activated Protein Kinase Kinase, ERK: Extra-
cellular Signal-regulated Kinase. MAPK: Ras/mitogen-activated Protein Kinase, FRS2: Fibroblast
Growth Factor Receptor Substrate, GRB2: Growth Factor Receptor-bound Protein-2, SOS: Son of
Sevenless, SHC: Src Homology and Collagen, PIP2: Phosphatidylinositol 4,5-bisphosphate, PLCγ:
Phospholipase C Gamma, DAG: Diacylglycerol, PKC: Protein Kinase C, PIK3: Phosphoinositide
3-Kinase, Akt: Protein Kinase B, mTOR: Mammalian Target of Rapamycin, SHP2: Src Homology 2
Domain Containing Phosphatase 2, JAK2: Janus Kinase 2, STAT: Signal Transducer and Activator
of Transcription).

2. Materials and Methods
2.1. Study Design

This study was designed as a cross-sectional analysis, incorporating a total of 234 Cau-
casian women aged between 18 and 36 years. Among them, 147 were diagnosed with
polycystic ovary syndrome (PCOS), while 97 served as healthy controls; all subjects had
been recruited to a PCOS biobank (ISRCTN70196169: 2012–2017) based in the Depart-
ment of Endocrinology, Hull Royal Infirmary, UK, with approval from the Newcastle
and North Tyneside Ethics Committee [17]. Each participant provided written informed
consent. PCOS diagnosis was established using the Rotterdam criteria [18], requiring the
presence of at least two of the following: oligo/anovulation, hyperandrogenism (defined
by a Ferriman-Gallwey score > 8, a free androgen index exceeding 4, or total testosterone
levels above 1.5 nmol/L, based on local laboratory references), or polycystic ovarian mor-
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phology confirmed via transvaginal ultrasound. Secondary conditions such as nonclassical
21-hydroxylase deficiency were excluded through appropriate screening, as previously
outlined [17]. The demographic details of both PCOS and control groups are provided
in Table 1 [17]. Control participants exhibited regular menstrual cycles, unremarkable
physical examinations, and no evidence of polycystic ovaries upon ultrasound assessment.
They were also medication-free.

Table 1. Demographics, baseline hormonal and metabolic parameters of the polycystic ovary syn-
drome (PCOS) subjects and controls.

Baseline Demographics
PCOS (n = 147) Controls (n = 97)

Mean (SD) Mean (SD)

Age (years) 29.1 ± 6.1 29.6 ± 6.5

BMI (kg/m2) 34.1 ± 7.5 26.7 ± 6.6 ***

Insulin (IU/mL) 10.2 ± 6.1 6.2 ± 3.2 ***

HOMA-IR 3.8 ± 0.6 1.6 ± 0.2 ***

Testosterone (nmol/L) 1.6 ± 1.0 1.05 ± 0.48 ***

SHBG (nmol/L) 42.5 ± 39.6 77.5 ± 78.4 ***

Free androgen index (FAI) 4.5 ± 3.9 2.1 ± 1.4 ***

CRP (mg/L) 4.4 ± 4.2 2.4 ± 3.9 ***

Systolic blood pressure (mmHg) 121 ± 14 114 ± 11 ***

Diastolic blood pressure (mmHg) 77 ± 10 73 ± 11 ***

Fasting blood glucose (mmol/L) 4.9 ± 1.1 4.6 ± 0.6 **

Cholesterol (mmol/L) 4.8 ± 1.0 4.6 ± 0.7

High density lipoprotein (mmol/L) 1.22 ± 0.30 1.43 ± 0.31 ***

Low density lipoprotein 9 mmol/L) 2.90 ± 0.86 2.72 ± 0.6

AMH (ng/mL) 40 ± 31 18 ± 18 ***
BMI—Body Mass Index; HOMA-IR—Homeostasis model of assessment-insulin resistance; CRP—C reactive
protein; SHBG—sex hormone binding globulin. ** p < 0.01, *** p < 0.001.

Fasting blood samples were collected at the time of informed consent, centrifuged at
3500× g for 15 min, and stored at −80 ◦C in aliquots. Various biomarkers were analyzed,
including sex hormone-binding globulin (SHBG), insulin (measured using a DPC Immulite
200 analyzer, Euro/DPC, Llanberis UK), lipid measurements, and plasma glucose, which
were utilized to compute the homeostasis model assessment of insulin resistance (HOMA-
IR) (Synchron LX20 analyzer, Beckman-Coulter, High Wycombe, UK). The free androgen
index (FAI) was derived by dividing total testosterone by SHBG and multiplying by 100.
Serum testosterone levels were determined using isotope-dilution liquid chromatography
tandem mass spectrometry (LC-MS/MS) [19] Anti-Müllerian hormone was measured using
a Beckman Coulter Access automated immunoassay.

Plasma protein levels were assessed through the Slow Off-rate Modified Aptamer
(SOMA)-scan platform [20], which facilitated the quantification of multiple proteins, includ-
ing GTPase Kirsten rat sarcoma virus (KRAS), Ras GTPase-activating protein 1 (RASA1),
Heparin-binding epidermal growth factor-like growth factor (HB-EGF), Epidermal growth
factor receptor variant III (EGFRvIII), Epidermal growth factor (EGF), Epidermal growth
factor receptor (EGFR), Fibroblast growth factor 8 isoform A (FGF-8A), Fibroblast growth
factor 8 isoform B (FGF-8B), Fibroblast growth factor receptors 1–4 (FGFR1, FGFR2, FGFR3,
FGFR4), Fibroblast growth factor 2 (FGF2), Fibroblast growth factors 4–7 (FGF4, FGF5,
FGF6, FGF7), Fibroblast growth factors 9–10 (FGF9, FGF10), Fibroblast growth factor 12
(FGF12), Fibroblast growth factors 16–20 (FGF16, FGF17, FGF18, FGF19, FGF20), Fibroblast
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growth factor 23 (FGF23), Platelet-derived growth factor C (PDGFC), Platelet-derived
growth factor subunit A (PDGFA), Platelet-derived growth factor subunit B (PDGFB),
Platelet-derived growth factor receptor beta (PDGFRB), Platelet-derived growth factor
receptor alpha (PDGFRA), Vascular endothelial growth factor A (VEGFA), Vascular en-
dothelial growth factor A isoform 121 (VEGFA-121), Vascular endothelial growth fac-
tor C (VEGF-C), Vascular endothelial growth factor D (VEGF-D), Vascular endothelial
growth factor receptor 2 (VEGF-sR2), Vascular endothelial growth factor receptor 3 (VEGF-
sR3), Insulin (INS), Insulin-like growth factor I (IGF1), Macrophage colony-stimulating
factor 1 (CSF1), Macrophage colony-stimulating factor 1 receptor (CSF1R), Granulocyte-
macrophage colony-stimulating factor 2 (CSF2), Granulocyte colony-stimulating factor
(CSF3), Granulocyte colony-stimulating factor receptor (CSF3R), Insulin-like growth factor
1 receptor (IGF1R), Cation-independent mannose-6-phosphate receptor (IGF2R), Hepato-
cyte growth factor (HGF), and beta-nerve growth factor (NGF). Calibration was based on
standards as previously described [21].

Protein quantification was performed using an aptamer-based approach known as
the SOMAmer protein array [22,23]. Plasma samples collected in EDTA tubes under-
went a structured protocol: (1) SOMAmers bound to analytes using a photocleavable
linker; (2) The complexes were immobilized on a streptavidin-coated surface; (3) Ul-
traviolet (UV) exposure released analyte-SOMAmer complexes into solution; (4) These
complexes were immobilized once more through biotin-streptavidin interactions; (5) Eluted
SOMAmers served as surrogates for analyte quantification; (6) Hybridization to comple-
mentary oligonucleotides enabled final quantification. Normalization and standardization
of raw intensities, hybridization signals, medians, and calibration data followed established
methodologies [20,21].

2.2. Statistics

Continuous variables were presented as means ± standard deviations (SD). To com-
pare circulating levels of KRAS, Ras GTPase-activating protein-1 (RASA1), and 45 growth
factor-related proteins between the PCOS and control groups, independent two-sample
t-tests were employed. A significance threshold of p < 0.05 was applied. The quantile nor-
malized SOMAscan proteomic data was log-transformed for further statistical assessments.
Linear models for microarray (limma) analysis in conjunction with t-tests were used to com-
pare and identify the dysregulated proteins in PCOS versus controls. Any protein changes
with a fold change of 1 and raw p-value < 0.05 were considered significant. Spearman’s
rank correlations were computed to examine associations between growth factor-related
proteins and body mass index (BMI). Statistical analyses were conducted using RStudio
(version 2023.03.0), with all tests performed as two-tailed analyses, considering p-values
below 0.05 as statistically significant.

3. Results
Baseline data for the 147 PCOS subjects and 97 controls are shown in Table 1. The

two cohorts were age-matched, but subjects with PCOS had a greater BMI, increased IR,
hyperandrogenemia, increased C-reactive protein (CRP, an inflammatory marker), and
a raised anti-Mullerian hormone. PCOS subjects had higher systolic and diastolic blood
pressures, a higher fasting blood glucose, and a lower high-density lipoprotein (Table 1,
Supplementary Figure S1).

The results of the Somascan analysis of those proteins that differed between PCOS and
control women are shown in Table 2, and all proteins are shown in Supplemental Table S1.
Circulating KRas and RASA1 did not differ between PCOS and control women (p > 0.05).
EGF1, EGFR, and EGFRvIII were decreased in PCOS (p = 0.04, p = 0.04, and p < 0.001,
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respectively). FGF8, FGF9, and FGF17 were increased in PCOS (p = 0.02, p = 0.03 and
p = 0.04, respectively), and FGFR1 was decreased in PCOS (p < 0.001). VEGF-D (p < 0.001),
IGF1 (p < 0.001), IGF-1sR (p = 0.02), and PDGFRA (p < 0.001) were decreased in PCOS
compared to controls, as shown in Table 2 and Figure 2.

Table 2. Whole set: proteins that differed between PCOS (n = 147) and control (n = 97) women in
entire cohort.

Gene logFC Average Expression t p Value

FGFR1
(bFGF-R) −0.18 9.36 −5.60 <0.001

IGF-1 −0.22 9.58 −4.68 <0.001

VEGF-D −0.16 8.85 −3.79 <0.001

PDGFRA −0.19 9.72 −2.87 <0.001

EGFRvIII −0.09 14.72 −2.86 <0.001

FGF-8 0.07 9.53 2.33 0.02

IGF-I sR −0.09 12.49 −2.14 0.02

FGF9 0.07 8.93 2.10 0.03

EGFR −0.24 8.25 −2.07 0.04

EGF −0.08 9.34 −1.93 0.04

FGF-17 0.05 7.62 1.92 0.04
Figure 2

Figure 2. Volcano plot for differentially regulated genes in whole cohort (the black dots denote the
non-significant genes, pink dots denote the genes with fold change of 1 and raw p-value > 0.05, and
the red dots indicate the genes with fold change of 1 and raw p-value < 0.05.

Fibroblast growth factor receptor 1 (FGFR1; bFGF-R); Insulin-like growth factor I
(IGF-1); Vascular endothelial growth factor D (VEGF-D); Platelet-derived growth factor
receptor alpha (PDGFRA); Epidermal growth factor receptor variant III (EGFRvIII); Fi-
broblast growth factor 8 isoform A (FGF-8A); Insulin-like growth factor 1 receptor (IGF-I
sR); Fibroblast growth factor 9 (FGF9); Epidermal growth factor receptor (EGFR); Epider-
mal growth factor (EGF); Fibroblast growth factor 17 (FGF-17); Fibroblast growth factor
19 (FGF-19).

With stratification of the cohort based on BMI (≤29.9 kg/m2), EGFR was decreased
in PCOS (p < 0.03), FGF8 was increased in PCOS (p < 0.04), and FGFR1 was decreased in
PCOS (p < 0.001). VEGF-D (p < 0.01), IGF1 (p < 0.01), and IGF-1sR (p < 0.03) were decreased
in PCOS compared to controls, as shown in Table 3 and Figure 3.
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Table 3. Stratification of the cohort based on BMI matched (BMI ≤ 29.9 kg/m2): Proteins that differed
between PCOS (n = 36) and control (n = 74) women in this BMI matched cohort.

Gene logFC Average Expression t p Value

FGFR1 (bFGF-R) −0.22 9.39 −4.17 <0.001

IGF-1 −0.19 9.62 −2.77 0.01

VEGF-D −0.20 8.90 −2.70 0.01

IGF-I sR −0.12 12.50 −2.17 0.03

EGFR −0.11 14.74 −2.17 0.03

FGF-8 0.08 9.51 1.99 0.04
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Fibroblast growth factor receptor 1 (FGFR1; bFGF-R); Insulin-like growth factor I (IGF-
1); Vascular endothelial growth factor D (VEGF-D); Insulin-like growth factor 1 receptor
(IGF-I sR); Epidermal growth factor receptor (EGFR); Fibroblast growth factor 8 isoform
B (FGF-8B).

With stratification of the cohort based on BMI (≤29.9 kg/m2) and HOMA-IR, FGFR1
was decreased in PCOS (p < 0.001), and VEGF-D (p < 0.04), IGF1 (p < 0.04), and IGF-1sR
(p < 0.02) were decreased in PCOS compared to controls, as shown in Table 4 and Figure 4.

Table 4. Stratification of the cohort based on BMI ≤ 29.9 kg/m2 and HOMA-IR ≤ 1.9 matched.
Proteins that differed between PCOS (n = 19) and control (n = 47) women for the BMI and IR
matched cohort.

Gene logFC Average Expression t p Value

FGFR1
(bFGF-R) −0.26 9.42 −3.20 <0.001

IGF-I sR −0.18 12.49 −2.48 0.02

IGF-1 −0.22 9.65 −2.08 0.04

VEGF-D −0.20 8.94 −1.95 0.04
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Fibroblast growth factor receptor 1 (FGFR1; bFGF-R); Insulin-like growth factor 1
receptor (IGF-I sR); Insulin-like growth factor I (IGF-1); Vascular endothelial growth factor
D (VEGF-D).

Correlation analysis of the unstratified groups showed that BMI was associated pos-
itively with the altered VEGF-sR3, FGF5, VEGF-sR2, and VEGF-C (r = 0.23, p = 0.0109;
r = 0.19, p = 0.03; r = 0.2, p = 0.02; r = 0.19, p = 0.03, respectively) only in the PCOS subjects
as shown in Figure 5, but there was no correlation with BMI and the growth factor-related
proteins that differed between PCOS and controls. Neither was there any correlation with
inflammation, as adjudged by CRP, or of IR, as adjudged by the Homeostatic Model As-
sessment for IR (HOMA-IR), with the growth factor-related proteins that differed between
PCOS and controls.
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Figure 5. Correlations of body mass index (BMI) with Ras-related proteins. BMI was associated
positively with VEGF-sR3 (A), FGF5 (B), VEGF-sR2 (C), and VEGF-C (D) only in women with
polycystic ovary syndrome (PCOS).
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4. Discussion
Circulatory Ras protein levels have not previously been reported in women with

PCOS, making this study the first to explore their potential role in the pathophysiology
of the condition. Prior investigations into Ras proteins in PCOS have focused on their
expression in specific tissues rather than in the circulation. For instance, Xu et al. analyzed
the gene expression of HRAS, NRAS, and KRAS in subcutaneous adipose tissue and found
no significant differences in the expression of these Ras family genes between 22 women
with PCOS and 13 controls [24]. However, HRAS, NRAS, and KRAS expression showed
positive correlations with testosterone levels, highlighting a potential link to androgenic
activity. Interestingly, these genes also demonstrated inverse correlations with metabolic
traits such as BMI, fasting glucose and IR, linking Ras proteins to the pathogenesis of PCOS.

This study extends the investigation to circulating Ras proteins, providing a broader
perspective on their systemic role in PCOS. Notably, circulating Ras proteins KRas and
RASA1 did not differ significantly between women with PCOS and controls, indicating
that systemic levels of these key Ras proteins may not be altered in the condition. However,
despite the absence of significant differences in circulating Ras protein levels, findings
from a drug-hub gene interaction network suggest that Ras-related genes, such as KRAS,
may still have therapeutic potential [9]. The network identified KRAS, along with other
hub genes like Phosphatase and tensin homolog (PTEN), and MAPK1, as potential targets
for treatment, with metformin specifically interacting with both PTEN and KRAS. These
insights suggest that targeting these pathways, despite their unaltered expression in the
circulation, could open new therapeutic avenues for PCOS management, highlighting
the complexity of the condition and the potential for exploring Ras-mediated signaling
pathways in treatment development.

Of the 45 growth factor-related proteins analyzed for their role in activating Ras
intracellular signaling pathways, only 11 demonstrated significant differences between
the two groups. Interestingly, among these, three proteins were increased and eight were
decreased in PCOS. These results collectively suggest that Ras-activated pathways are not
broadly upregulated in PCOS and, therefore, Ras activation may not play a central role in
mediating the pathogenesis or phenotype of the condition.

Among the 11 growth factor-related proteins—EGF1, EGFR, EGFRvIII, FGF8, FGF9,
FGF17, FGFR1, VEGF-D, IGF1, IGF-1sR, and PDGFRA—that showed significant differences
between women with PCOS and controls, these changes were found to be independent
of BMI, inflammation (indicated by the lack of correlation with CRP), or IR, suggesting
that these differences are intrinsic to PCOS itself. However, when the cohort was stratified
by BMI ≤ 29.9 kg/m2, only EGFR FGF8, FGFR1 VEGF-D, IGF1, and IGF-1sR remained
significant with a loss of significance for EGF1, EGFRvIII, FGF8, FGFR1, and VEGF-D.
This showed that these latter proteins are BMI dependent, and highlights that statistical
adjustment for BMI may give different results compared to when cohorts are matched for
BMI, as the statistical adjustment may result in an over or under estimate given that BMI
and PCOS are so closely linked. When the cohorts were stratified for BMI ≤ 29.9 kg/m2

and normal HOMA-IR (≤1.9), FGFR1, VEGF-D, IGF1, and IGF-1sR differed, suggesting
that these factors are more likely to be inherently different in PCOS rather than an epiphe-
nomenon of an associated PCOS feature such as BMI or IR. Conversely, EGFR and FGF8
were no longer significant indicating that these are dependent on IR, in accord with the
literature for EGFR [25], while FGF8 modulation by insulin resistance is a novel finding.

Our findings show reduced plasma EGF1 and EGFR levels in women with PCOS
and, here, plasma EGF was no longer different when BMI was stratified and plasma EGFR
was no longer different when BMI and IR were stratified, suggesting that EGF1 is BMI
dependent; however, there are no comparable studies looking at serum EGF1 and EGFR
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in PCOS in the literature, and the effect of BMI on EGF1 and EGFR levels from other
studies are discrepant. EGF1 and EGFR were negatively regulated with BMI and IR in
adipose tissue [26], whilst, in patients with bipolar disorder, BMI did not affect EGF1
levels [27]; however, in breast cancer patients, there is a positive correlation between BMI
and EGFR2 [28]. A further study in participants having normal BMI reported higher EGFR
levels in the cumulus granulosa cells of PCOS subjects versus controls, but the serum EGFR
levels were not assessed in that study [12]. Studies report that elevated EGF and EGFR
expression is found in the granulosa cells and follicular fluid of the ovary in PCOS where
EGF may inhibit granulosa cell estrogen synthesis, which is translated into arrest of follicle
growth [11,12]. EGFR signaling has been proposed as a therapeutic target, as its inhibition
improved ovulatory function, estrous cyclicity, and hormone balance [12]. Further studies
are needed to determine the effect of BMI on circulating EGF1 and EGFR levels.

Our study found increased levels of FGF8, FGF9, and FGF17 in PCOS patients, marking
a novel observation as these growth factors have not been extensively explored in this
context; however, as noted above, FGF8 appears to be related to IR. Research on FGF8’s
ovarian functions has demonstrated its critical involvement in folliculogenesis, ovulation,
and granulosa cell proliferation, suggesting that altered levels of FGF8 in PCOS could
impact ovarian function and reproductive outcomes [13]. FGF8’s role has also been studied
in modulating granulosa cell function and its interaction with bone morphogenetic protein
(BMP) signaling, which regulates ovarian steroidogenesis [29]. FGF8 suppresses follicle-
stimulating hormone (FSH)-induced estradiol production while enhancing BMP-Smad
signaling, suggesting it contributes to disrupted oocyte–granulosa cell communication in
PCOS [29]. The increased FGF8 levels observed in our study may play a role in altered
follicular dynamics and impaired estradiol production in PCOS, potentially representing a
target for therapeutic intervention. However, a previous study investigating inflammatory
proteins in non-obese, non-insulin-resistant PCOS women found no significant difference
in FGF8 levels between PCOS and controls, suggesting that the role of FGF8 might vary
depending on population characteristics, particularly IR [30].

Conversely, FGF9 regulates granulosa cell function by inhibiting steroid hormone
production and specific gene expressions, such as FSH receptor (FSHR) and cytochrome
P450 family 11 subfamily A member 1 (CYP11A1), while promoting granulosa cell prolifer-
ation [31]. It may also slow follicle development through pathways like IGF-I and cAMP,
with hormonal factors such as IGF-I and estradiol influencing FGF9 production, highlight-
ing its role in ovarian function and follicular differentiation [31]. In our study, the increased
expression of FGF9 in PCOS participants was lost when stratified for BMI, indicating that
it is reflective of obesity rather than inherent to PCOS. FGF9 has been shown to enhance
progesterone production in granulosa cells and regulate steroidogenic proteins such as
steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme
(P450scc) [32]. Thus, the elevated FGF9 levels in obese PCOS patients could be an attempt
to counteract the dysregulation of steroidogenesis and follicular maturation. However,
this compensatory effect may be insufficient to overcome the broader metabolic and repro-
ductive challenges characteristic of the condition. However, no studies have specifically
investigated FGF9 levels in PCOS compared to control groups, making it challenging to
directly compare our findings with existing literature.

FGF17 is detected mainly in oocytes, but also in granulosa cells [33] and there is no
literature directly addressing its role in PCOS or metabolism; however, in this study, it can
be seen that it appears to be related to BMI as, when BMI was accounted for, it did not
differ between women with and without PCOS.

In our study, we observed decreased FGFR1 expression in PCOS, which aligns with
findings from another study showing reduced FGFR1 levels in granulosa-lutein cells of
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women with PCOS [34]. This reduction in FGFR1 may contribute to impaired angiogenesis
and follicular development, suggesting a link between FGFR1 dysregulation and ovarian
dysfunction in PCOS. Further insights into the role of FGFR1 signaling in reproductive
health come from studies indicating that the loss of FGFR1 disrupts cell cycle progression
and downregulates key genes such as EZH2, which regulates cell proliferation and differ-
entiation [35]. The decreased expression of FGFR1 in PCOS participants may, therefore,
reflect a disruption in cellular pathways that are essential for normal ovarian function and
follicle maturation. Interestingly, a recent study has shown that impaired FGFR1 signaling
is associated with IR and metabolic dysfunction, further supporting the relevance of our
findings [36]; however, after stratification for both BMI and HOMA-IR, it still differed
between the women with and without PCOS suggesting that it is independent of both
BMI and IR. The decreased expression of FGFR1 in our PCOS participants could reflect a
similar disruption in signaling, potentially contributing to the metabolic and reproductive
challenges characteristic of the condition.

Additionally, we found decreased levels of VEGF-D expression in PCOS patients, a
factor primarily described as a lymphangiogenic molecule. Previous studies have reported
significantly elevated concentrations of serum VEGF (also known as VEGF-A) in PCOS
patients in comparison to controls [37–40]. This increase in pro-angiogenic factors like
VEGF can contribute to hyperplasia, hypervascularity, and the gradual development of
endothelial dysfunction, key features of PCOS [41]. Interestingly, however, our study did
not find significant differences in VEGF expression between PCOS patients and controls.
Instead, we identified a significant decrease in VEGF-D expression, a less well-researched
member of the VEGF family in the context of PCOS. The observed decrease in VEGF-D
expression in our study, in contrast to previous findings of elevated VEGF-A levels, may
reflect differences in the roles of these VEGF family members in PCOS pathophysiology.
Similarly, another study investigating adolescent PCOS patients found no significant
differences in VEGF levels between cases and controls, suggesting that VEGF expression
may vary across subpopulations and disease stages [42]. Future research should investigate
the specific regulatory mechanisms governing VEGF-D expression in PCOS and how these
pathways interact with broader angiogenic and lymphangiogenic processes.

We observed decreased levels of IGF1 expression in PCOS patients. This appears to
contrast with previous studies that have reported increased serum levels of IGF1 in PCOS
patients in comparison to controls [43,44]; however, in a meta-analysis of 20 studies, 5
of these showed higher IGF1 levels in the controls and when stratified for BMI less than
or equal to 29 kg/m2, IGF1 levels were significantly higher in the control populations,
suggesting that the serum IGF1 levels between groups depends on the proportion of
subjects with a BMI less than or greater than 29 kg/m2 [45]. These results are therefore
in accord with the literature when stratifying for BMI in our analysis. In addition, PCOS
patients who are obese exhibit reduced growth hormone (GH) secretion, possibly resulting
in diminished downstream effects on the regulation of IGF1 [46]. Our findings suggest that
IGF1 levels in PCOS are not universally elevated and that the relationship between PCOS
and IGF1 dynamics is more complex than previously understood.

PDGFRA was found to decrease in women with PCOS, but after stratifying for BMI,
it no longer differed between groups, indicating that it was a feature of obesity rather
than PCOS per se. PDGFR signaling is thought to be a common mechanism in the control
of multiple steroidogenic lineages involved in fertility [14] and has been suggested as a
potential therapeutic target for PCOS [47].

While our findings on growth factor-related proteins provide new insights into the
complex hormonal interactions in PCOS, they also underscore the inherent challenges in
isolating the effects of PCOS from other confounding factors. Limitations of this study



Cells 2025, 14, 377 12 of 14

include its focus on a predominantly Caucasian population, which may limit the gener-
alizability of the findings to other ethnic groups. Additionally, while our study sought
to examine the role of circulating growth factor-related proteins in PCOS, stratifying for
BMI and IR allowed us to determine which factors may be inherent within PCOS. Both
BMI and IR are highly correlated with PCOS and its metabolic and hormonal features. As
such, regression models adjusting for these factors may show differing results than when
covariate adjustment is made up front by accounting for BMI and IR, for instance. Further
studies with larger sample sizes and refined statistical approaches, such as stratifying by
BMI, insulin sensitivity and systemic inflammation could help address these limitations
and provide more definitive insights into the pathways involved in PCOS pathophysiology.

5. Conclusions
Several growth factors that activate Ras differ between women with and without PCOS

and, when stratified for BMI and HOMA-IR, only FGFR1, VEGF-D, IGF1, and IGF-1sR,
differed and those appear to be inherent features of the pathophysiology of PCOS.
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//www.mdpi.com/article/10.3390/cells14050377/s1, Table S1: Differential gene expression analysis
results for circulatory Ras proteins and growth factors that activate Ras intracellular signaling
pathways in PCOS versus controls; Figure S1: Stratification of Control and PCOS women from the
database on BMI (BMI ≤ 29.9 kg/m2 and >29.9 kg/m2), then stratified by testosterone into non-
hyperandrogenic/hyperandrogenic (testosterone 1.5 nmol/L), then stratified by insulin resistance
(HOMA 1.9).
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