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Abstract: Graduate salaries are a significant concern for graduates, employers, and pol-
icymakers, as various factors influence them. This study investigates determinants of
graduate salaries in the UK, utilising survey data from HESA (Higher Education Statis-
tical Agency) and integrating advanced machine learning (ML) explanatory techniques
with statistical analytical methodologies. By employing multi-stage analyses alongside
machine learning models such as decision trees, random forests and the explainability with
SHAP stands for (Shapley Additive exPanations), this study investigates the influence of
21 socioeconomic and demographic variables on graduate salary outcomes. Key variables,
including institutional reputation, age at graduation, socioeconomic classification, job qual-
ification requirements, and domicile, emerged as critical determinants, with institutional
reputation proving the most significant. Among ML methods, the decision tree achieved a
standout with the highest accuracy through rigorous optimisation techniques, including
oversampling and undersampling. SHAP highlighted the top 12 influential variables,
providing actionable insights into the interplay between individual and systemic factors.
Furthermore, the statistical analysis using ANOVA (Analysis of Variance) validated the
significance of these variables, revealing intricate interactions that shape graduate salary
dynamics. Additionally, domain experts’ opinions are also analysed to authenticate the
findings. This research makes a unique contribution by combining qualitative contextual
analysis with quantitative methodologies, machine learning explainability and domain
experts’ views on addressing gaps in the existing identification of graduate salary predict-
ing components. Additionally, the findings inform policy and educational interventions
to reduce wage inequalities and promote equitable career opportunities. Despite limita-
tions, such as the UK-specific dataset and the focus on socioeconomic and demographic
variables, this study lays a robust foundation for future research in predictive modelling
and graduate outcomes.
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1. Introduction
The expansion of higher education in the past few decades has made baccalaureate

degrees more accessible to students [1]. However, universities have historically perpetuated
social inequality by being elitist institutions that only admit a select few. This began to
change when higher education started to become more democratic and open [2]. In
today’s world, universities are generally expected to train a part of the active population,
continuously review their offers, and adapt them to current market demands and future
professional requirements [3]. Universities are also taking responsibility for integrating
graduates into the labour market [4]. Graduates’ entry into the labour market is a critical
mechanism through which public investment in higher education reveals its returns and
the returns to investment in human capital depend on the use that graduates can make of
their education. It is no surprise that the global higher education sector remains vibrant as
more and more students apply to study at universities, given that graduate incomes are
significantly higher than non-graduates [5], and higher education brings many benefits to
students and society, driving economic growth [6].

However, despite the expansion of higher education, disparities in graduate salaries
persist, influenced by a complex set of factors. Socioeconomic background, institutional
reputation, and demographic variables all contribute to wage differences, yet their com-
bined effects remain unclear. While previous studies have explored some of these factors
individually, there is limited research on their collective impact using advanced data-driven
techniques. Furthermore, the existing literature presents conflicting findings, particularly
regarding the role of the socioeconomic status in salary progression. Some research suggests
that graduates from lower-income backgrounds face long-term pay disadvantages, while
other studies indicate that factors like institutional prestige and job qualifications outweigh
socioeconomic influences. This inconsistency highlights the need for a comprehensive,
data-driven analysis to disentangle the interactions between these factors and their impact
on graduate earnings.

The purpose of this research is to analytically investigate the relationship between
socioeconomic and demographic factors and graduate salaries using machine learning
algorithms. Understanding this relationship is crucial for informing policymaking, opera-
tional planning, and financing in higher education institutions. For instance, by identifying
the factors that significantly impact graduate salaries, universities can tailor their pro-
grammes and support services to better prepare students for the job market. Additionally,
knowledge of these factors can help policymakers design interventions that promote equal
access to education and career opportunities, ultimately contributing to economic and
social development.

This study addresses a critical gap by integrating machine learning with traditional
statistical techniques to provide a more precise, data-driven understanding of salary deter-
minants. Unlike previous works that rely on conventional regression models, this research
leverages advanced ML explainability methods such as SHAP (Shapley Additive Explana-
tions) to uncover complex relationships between graduate salaries and key socioeconomic
variables. By using a large-scale dataset from the Higher Education Statistical Agency
(HESA), this study offers a robust and scalable approach to identifying the most influential
salary determinants, thereby enhancing the predictive power of salary estimation models.
This study further aims to contribute to the existing body of knowledge by providing a
comprehensive analysis of the determinants of graduate salaries, which can serve as a foun-
dation for evidence-based decision-making in the higher education sector. Furthermore,
this study aims to build on existing studies that have identified factors such as class of de-
gree, fields of study, type of university attended, and the age of the graduate as contributing
factors to graduate salaries [7]. However, there are contradictory findings in the literature,
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such as the relationship between the socioeconomic status and pay progression [8], which
require further investigation.

1.1. Global Higher Education (HE) Growth

Higher Education (HE), also known as post-secondary education, third-level, or ter-
tiary education, is an optional final stage of formal learning that occurs after the completion
of secondary education. The globalisation of higher education has presented significant
challenges to traditional concepts of a university, which has historically been viewed as
the citadel of elite liberal education. However, today, universities are seen as accessible
sources of relevant and applicable information across the globe [9]. While this transition
has unwanted and unexpected consequences, there is a growing debate about whether HE
is worthwhile and whether it generates social mobility as more and more money is spent
on it internationally [10].

Between 1962 and 1998, university education in the UK was paid for through taxes, and
enrolment rates increased significantly during that time, rising from 7% of all high school
graduates in 1962 to more than 30% by the late 1990s [11]. Several successive governments,
aware of the economic benefits of further growth in higher education, but alarmed by
increasing costs, began shifting the cost from the government onto students in 1998 when
tuition fees were introduced across the UK at GBP 1000 per year. In summary, the maximum
fee in England for students domiciled in England, Northern Ireland, and Wales increased
dramatically from 2006 to 2012, when it was raised from GBP 3000 to GBP 9000, later
increased to GBP 9250 in 2017/18 and will be GBP 9535 from the year 2025/26. Northern
Irish students at Northern Irish HEIs experienced a much smaller increase with fees capped
at GBP 3805 since 2012. Welsh students were also subject to modest fee increases, capped
at GBP 4045. The only country to offer free university education during this period was
Scotland [12].

The university has indeed undergone a significant revolution, incorporating training
for labour insertion among its objectives for graduates, which, in turn, increases graduate
satisfaction, as identified and measured by the amount of salary earned by a prospective
graduate. Academic accreditation is perceived to improve one’s career prospects and gener-
ate financial profits, which is one of the primary factors attracting students [13]. However,
despite this expectation, the reality appears to be more ambiguous. However, several
determinants play a role in influencing these graduates’ aspirations, including socioeco-
nomic, demographic, and cultural factors. In the realm of academia, where aspirations
are nurtured, a pressing concern lingers—wage inequality among graduates possessing
comparable qualifications within the same country and field of study.

This pervasive imbalance has the potential to impede career progression and limit
earning prospects. Individuals from underprivileged backgrounds may face systemic
barriers in accessing quality education and professional networks, which can hinder their
ability to secure high-paying jobs or advance in their careers [14]. Additionally, unconscious
bias and discriminatory practices in recruitment and promotion processes may further
exacerbate this imbalance, perpetuating disparities in earning potential. Addressing these
systemic issues is crucial for promoting fairness and equity in the labour market, ensuring
that all individuals have equal opportunities to succeed and thrive in their careers regardless
of their socioeconomic backgrounds.

Furthermore, existing studies in this field have provided valuable insights into wage
inequality, shedding light on factors such as cost of living, course specialisation, level of
qualification, employment sector, and demographic dynamics [15]. However, these studies
often lack a comprehensive analysis of the interplay between these factors and may not
account for evolving socioeconomic and cultural contexts. The role of unconscious bias
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and systemic discrimination in wage disparities has been increasingly recognised in recent
studies. For instance, Bertrand and Duflo [16] argue that unconscious bias continues to
influence hiring and pay practices, even in industries striving for equality. They also note
that such biases often intersect with systemic barriers, including unequal access to educa-
tion and career advancement opportunities. Similarly, Blau and Kahn [17] highlight the
persistence of gender and racial wage gaps, which cannot be fully explained by observable
factors like education or experience. Smith et al. [18] explore how microaggressions and
other subtle forms of bias impact workplace dynamics and contribute to wage inequities,
especially for marginalised groups. Additionally, Chetty et al. [19] underscore the influence
of systemic factors, such as geographic segregation and differential access to networks, on
income mobility and wage outcomes.

By incorporating a multifactorial analysis, this study seeks to build on these foun-
dational works. It integrates data-driven insights and interpretability methods SHAP to
untangle the complex interactions between demographic, educational, and systemic vari-
ables in wage inequality, offering a more nuanced understanding of these disparities. This
approach directly addresses limitations noted by previous studies, such as their reliance
on broad aggregates that obscure finer patterns of discrimination [20]. In addition, the
geographical span of this study includes the entire United Kingdom, dissecting the socioe-
conomic and demographic dimensions that intersect with graduate salaries and labour
market assimilation. While the focus of this study is on the UK due to data availability,
the findings and analysis can provide valuable insights for policymakers, educational
institutions, and researchers in other countries/regions.

By understanding the complex relationship between socioeconomic and demographic
factors and graduates’ salaries, this work can inform the development of policies, financing
strategies, and educational programmes aimed at promoting equal access to education
and career opportunities worldwide. With the use of qualitative and quantitative data
analysis at its disposal, sourced from the merged HESA and Jisc, this study unravels the
impact of post-graduation credentials, degree classifications, and the commitment invested
in the chosen course of study upon job attainment and associated compensation. It is
within this landscape that machine learning techniques expand, casting illumination upon
the path towards well-informed employment decisions and seamless integration into the
competitive job market. Also, by scrutinising the socioeconomic and demographic facets
that intricately interlace with graduate salaries in the UK, this study unearths the bedrock
of this disparity. The introduction of rule-based patterns and the pivotal role of SHAP
magnify this study’s significance. The application of ML/AI to graduate survey data adds
an innovative section to the literature on Higher Education Data Analytics, accelerating
knowledge discovery and amplifying the realms of explainable artificial intelligence.

In this illumination, the analytical finding highlights the direction towards rectify-
ing the imbalances, thereby augmenting the prospects of graduates and fostering a more
equitable higher education landscape. In other words, this research embarks on a com-
prehensive exploration of the intricate factors influencing graduate salaries, addressing
key questions to uncover the nuanced dynamics at play. It stands out by focusing on so-
cioeconomic and demographic variables that significantly influence graduate salaries and
evaluating how different modelling techniques comprehend these factors. Furthermore, it
examines potential synergies between these contributors and their cumulative impact, a
relatively underexplored area in the existing literature.

1.2. Paper Organisation

The remainder of this paper is structured as follows: Section 2 presents a compre-
hensive literature review, exploring existing research on graduate salaries, the role of
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socioeconomic and demographic factors, and previous applications of machine learning
in salary prediction. Section 3 outlines the research methodology, detailing the dataset,
pre-processing steps, feature selection, and model evaluation criteria. Section 4 discusses
the results and analysis, including the performance of different machine learning models,
insights from SHAP feature importance analysis, and validation using statistical tests.
Section 5 provides a critical discussion, addressing key findings, the implications of in-
stitutional prestige on salary outcomes, and the potential influence of AI on the future
knowledge economy. Finally, Section 6 concludes this study by summarising key insights,
identifying limitations, and suggesting directions for future research.

2. Literature Review
The landscape of higher education has transformed in recent years, becoming accessi-

ble to a wider population than ever before. However, the concept of student satisfaction
remains elusive, and there is a pressing need to understand this phenomenon better. One
crucial aspect of student satisfaction is the impact of socioeconomic and demographic
factors on graduate salaries, as the dwindling rate of graduate salaries is an alarming trend.
The literature review explores existing studies on graduate salaries and socioeconomic and
demographic factors that influence graduate salaries, and data analytic techniques used in
previous studies. By examining and synthesising the literature, this section aims to provide
a solid foundation for the investigation of the impact of socioeconomic and demographic
factors on graduate salaries in this study.

2.1. Factors Affecting Graduate Salaries
2.1.1. Employability

According to research, graduate employability is a critical factor affecting graduate
salaries. Hogan et al. [21] define employability as one’s ability to gain and maintain a
job. Employability skills, which include knowledge, competencies, experience, personality,
emotional intelligence, and career learning, are essential in determining a graduate’s em-
ployability [22]. Rosenberg et al. [23] identified eight employability skills, including basic
literacy, numeracy, critical thinking, management, leadership, interpersonal, information
technology, systems thinking, and work ethic disposition. Similar other research [24] in-
dicated that employers look for specific employability skills in graduates as these skills
directly affect salaries. However, a limitation of current practices is the lack of a standard-
ised measurement variable for quantifying employability skills, leading to inconsistencies
in evaluating their impact on salaries [25].

Several prior studies have used quantitative econometric models to examine the rela-
tionship between employability skills and graduate salaries. Walker and Zhu [5] applied
longitudinal regression models to track salary progression, demonstrating that gradu-
ates with industry-relevant skills experience faster wage growth. Similarly, Holmes and
Mayhew [6] employed binomial logistic regression to assess how soft skills and career com-
petencies influence early career earnings. These methodologies highlight the increasing role
of skill-based hiring in determining salaries, emphasising the need for better employability
skill assessments in graduate outcomes research.

2.1.2. Discipline and Gender

The ongoing debate about whether discipline and gender have a substantial impact
on graduate salaries has been a topic of discussion for over a decade. Research has shown
that multiple variables influence a graduate’s salary and that merely possessing a degree
is not enough. Light and Strayer [26] developed a taxonomy that identified 11 factors
contributing to wage disparities among university graduates. Their findings revealed that
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degree type, college of origin, and degree level (bachelor’s, master’s, and doctorate) all
impact graduate salaries.

Zhang [27] found that the quality and discipline of a graduate’s college education also
play a role in determining their salary. Their research demonstrated that all disciplines,
except life sciences and history, experienced a steady increase in pay over time among differ-
ent genders. However, fields such as engineering, business management, and mathematics
saw larger pay increases. Furthermore, Taniguchi [28] discovered that the negative effect on
pay is more significant for men than for women, possibly because women tend to benefit
less from their higher education as time passes. From a methodological standpoint, studies
on discipline and gender wage gaps have relied on regression models and econometric
decomposition methods. For example, Quadlin et al. [29] applied Blinder–Oaxaca decom-
position models to quantify gender-based pay disparities across disciplines. Their findings
suggest that while women earn as much as men in STEM fields during their first year, the
pay gap widens over time. Additionally, nearly 100% of graduates in computer sciences,
mathematics, engineering, and architecture earn above the national average salary, though
employment rates among men remain 12% higher than among women [30]. These studies
underscore the need for more nuanced wage gap models that integrate career progression
trends and industry-specific factors.

In conclusion, it has been established in the literature that the discipline and gender
are significant contributors to the graduate salary.

2.1.3. Socioeconomic Background

The influence of the socioeconomic background on the growth of a graduate’s salary
has been a topic of interest for researchers. Macmillan et al. [31] found that less advantaged
young people are less likely to enter high-paying professional careers after graduation com-
pared to their more advantaged peers, and this differential persists even when individual
academic achievement levels are similar. Their study employed regression modelling and
non-parametric analysis to assess how parental occupation and school type impact salary
growth. Despite controlling for various background factors, they concluded that private
school graduates have faster wage progression than those who attended public schools,
suggesting that the educational background contributes to long-term salary disparities [8].
However, Duta et al. [7] challenged these findings, arguing that the socioeconomic status
alone does not fully determine salary growth. Their research utilised decision tree algo-
rithms and machine learning-based classification models to examine the impact of age,
degree classification, and university type on wage trajectories. Their study found that
age at graduation plays a more significant role than parental income in predicting early
career earnings. These findings indicate that advanced machine learning techniques can
provide richer insights than traditional regression models by capturing complex, non-linear
interactions between socioeconomic and demographic factors.

Given the contradictions in existing research, there is a need for further empirical
studies that integrate both econometric and machine learning methodologies to establish
a clearer understanding of the major determinants of graduate salaries. Future research
should consider hybrid modelling approaches, incorporating deep learning frameworks
alongside traditional statistical techniques to improve wage prediction accuracy.

3. Methodology
3.1. Study Design, Data Collection, and Selection Criteria

This study adopts a quantitative, retrospective observational design, utilising sec-
ondary data from the Higher Education Statistical Agency (HESA) to analyse the impact of
socioeconomic and demographic factors on graduate salaries. The dataset spans a three-
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year period (2017/18–2019/20) and includes key variables such as the institution attended,
parental education, employment basis, domicile, and salary classification. To ensure data
quality and relevance, inclusion criteria were applied, restricting the analysis to graduates
with recorded salary information and complete demographic and socioeconomic details.
Conversely, data points with missing salary values, incomplete records or extreme salary
outliers were excluded to prevent skewed results. This study employed machine learning
models (e.g., decision trees, random forests) alongside statistical validation techniques
(ANOVA, SHAP analysis) to uncover salary determinants and assess their significance.

In this work, the following steps were sequentially adopted for analysis.

3.2. Machine Learning Model Selection

Salary prediction has been analysed using different machine learning models. To
identify the best candidate for the study needs, we compared multiple models by evaluating
the performance of these models to determine the most suitable model for predicting
graduate salaries.

3.2.1. Logistic Regression (LR)

LR analysis has increasingly been utilised as a statistical tool in analysing graduate
salaries, particularly over the last two decades [32]. LR is widely recognised as the statistical
method of choice when predicting binary outcomes, such as the likelihood of a graduate’s
salary being above or below a certain threshold, based on one or more independent
variables. In this approach, the model is designed to predict the probability of each possible
outcome category, while controlling for one or more independent variables. This method
is used when the outcome variable is multiclass and is often referred to as multinomial
or polychotomous logistic regression. The LR model is in the form of Equation (1) as it is
expressed as a natural logarithm of the odds ratio:

In
[

P(Y)
1 − P(Y)

]
= β0 + β1X1 + β2X2 + · · ·+ βkXk (1)

and [
P(Y)

1 − P(Y)

]
= eβ0+β1X1+β2X2+···+βkXk (2)

P(Y) = eβ0+β1X1+β2X2+···+βkXk − P(Y)eβ0+β1X1+β2X2+···+βkXk (3)

P(Y) =
eβ0+β1X1+β2X2+···+βkXk

1 + eβ0+β1X1+β2X2+···+βkXk
(4)

where P: probability function, P(Y): the probability of the outcome Y, In
[

P(Y)
1−P(Y)

]
is the log

(odds) of the outcomes, Y is the multinomial output, (X 1, X2, · · · , Xk) are the predictor
variables and (β0, β1, β2, · · · , βk) are the regression model coefficient. LR, however, has
certain limiting factors as it assumes linearity between the independent variables and logs
odds of the dependent variable, requires independent observations, is sensitive to outliers,
and is limited to binary/categorical outcomes. It requires a large sample size and assumes
independence among the independent variables to avoid multicollinearity issues.

3.2.2. K-Nearest Neighbours (KNN)

The KNN algorithm is a popular and simple machine learning technique used for
classification and regression tasks [33]. The basic idea behind KNN is to find the k-nearest
data points to a given input data point and assign a label based on the majority class of
those k-nearest neighbours. The distance metric used to calculate the distance between data
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points can vary, but the Euclidean distance is a commonly used metric. First, the k-nearest
neighbours: calculating the Euclidean distance between two points or tuples.

First data point: X(1, X11, X12, . . . , X1n)

Second data point: X(2, X21, X22, . . . , X2n), using Equation (5)

d(X1, X2) =

√
n

∑
i=1

(xi1 − xi2)2 (5)

However, it is important to note that KNN has some limitations. For instance, the
choice of the k value can impact the accuracy of the model, and selecting the optimal k
value may require experimentation [34]. Additionally, KNN may not perform well in cases
where the dataset has a large number of variables or when the data are skewed [35]. In sum-
mary, while KNN can be a useful modelling technique for predicting the graduate salary,
careful consideration of the data characteristics should be taken into consideration before
selecting this approach. It is also important to assess the performance of the KNN model
using appropriate evaluation metrics, such as the mean squared error or the coefficient
of determination.

3.2.3. Linear Discriminant Analysis (LDA)

LDA is a statistical technique used for classification and dimensionality reduction [36].
LDA aims to find a linear combination of features that best separates the classes in a given
dataset. The technique assumes that the features in the dataset are normally distributed
and that the covariance matrices of each class are equal. To find the linear combination of
features, LDA calculates the mean vectors and scatter matrices for each class. The scatter
matrices represent the variability of the data within each class and are used to calculate the
eigenvectors and eigenvalues of the data. The eigenvectors with the highest eigenvalues are
then used to create a projection matrix that maps the original data onto a lower dimensional
space. The resulting lower dimensional space can then be used for classification tasks.
New data points are projected onto the same lower dimensional space, and their class
membership is determined based on their proximity to the class centroids in this space [37].
LDA has been shown to perform well on a variety of classification tasks, particularly
when the number of classes is small compared to the number of features. However, LDA
assumes that the data are normally distributed and may not perform well if this assumption
is violated.

3.2.4. Decision Tree

A decision tree is a supervised learning algorithm used for classification and regression
tasks. A decision tree is a machine learning model that splits a dataset into smaller subsets
based on feature conditions. Each feature used becomes a parent node and the data that it
splits into are child nodes. This process is repeated until classification is reached. Decision
trees are easy to understand as they can be visualised as flow charts, and they are also
fast to train compared to other classifiers. It works by recursively partitioning the data
into subsets based on the value of an attribute or feature to minimise the impurity of the
subsets [38]. Each partition is represented by a binary decision made at a node of the
tree. The resulting tree can be used for prediction by following the path from the root
to a leaf node that corresponds to a specific set of conditions [39]. Decision trees have
several advantages, including their interpretability, ability to handle both numerical and
categorical data, and resistance to overfitting when properly pruned [40]. They are also
efficient in training and can handle high-dimensional data.

One of the most popular decision tree algorithms is CART (Classification and Regres-
sion Trees) which builds a binary tree by recursively splitting the data into two subsets
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based on the value of a single feature, such that the resulting subsets are as pure as possible
concerning the target variable. The splitting criterion used by CART is typically the Gini
impurity or the entropy, which measures the degree of impurity or randomness in a set
of labels.

3.2.5. Random Forest (RF) Algorithm

The random forest is an ensemble method that combines multiple decision trees, each
trained on a random subset of the data and a random subset of the features. The output of
the random forest is the average or majority vote of the predictions made by the individual
trees. Recent research has focused on improving the performance and interpretability of
decision trees. For example, some studies have proposed new splitting criteria based on
information theory, such as the Minimum Description Length (MDL) principle [41] or the
Information Gain Ratio (IGR). Other studies have investigated ways to incorporate domain
knowledge or expert rules into the decision tree learning process [30]. Still, others have
explored methods to generate more compact and interpretable decision trees, such as rule-
based pruning [42] or decision tree compression [39]. Furthermore, RF is an ensemble of
machine learning models that are composed of many decision trees (without pruning) [43].
These trees are created by randomly sampling from the training data and using random
subsets of features to determine the splits at each node. The final prediction of a random
forest is made by aggregating the predictions of the individual decision trees.

The RF model is often less sensitive to changes in parameter settings compared to other
predictors. The optimisation of an RF is usually based on two parameters: the number of
variables used in splitting a node (mtry) and the number of trees in the model (ntrees). The
optimal value of mtry is determined by testing all possible values. According to research
by Breiman, the RF model’s generalisation error decreases as the number of trees increases,
a property that is not present in most other classifiers [44]. In other words, the model
becomes more accurate as the value of ntrees increases. The optimisation of ntrees involves
finding a balance between classification accuracy and computational efficiency.

3.2.6. Gaussian Naïve Bayes (GNB)

GNB is a classification algorithm that is based on the Bayes Theorem, it is one of
the widely used algorithms in data mining, which states that the probability of an event
occurring is equal to the prior probability of the event multiplied by the likelihood of
the event given some observations. Naïve Bayes is a useful classifier that is used widely
in many applications such as text categorisation [45] and data stream classification [46].
Bayesian classifier works based on the Bayesian rule and probability theorem. The Bayesian
classifier operates under two assumptions. The first assumption is that, given the class
label, the attributes are conditionally independent. The second assumption is that no
latent attribute influences the prediction process for the label. A given vector (x1, . . . , xn)

represents the n attributes of the instance x. Let c represent the class label of the instance x.
The probability of x given C can be computed in Equation (6), where C is a class label:

p(C) =
n

∏
i=1

p(x1|C) (6)

The conditional independence assumption of attributes in naïve Bayes is often incor-
rect for real-world problems, except in situations where the attributes are derived from
independent processes. To address this, methods have been proposed to improve the
assumption in naïve Bayes. In the case of GNB, the likelihood of the event is assumed
to be a Gaussian distribution. This means that for each class, the classifier assumes that
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the feature values are normally distributed in Equation (7) with a mean (µ) and standard
deviation (σ).

p(x1|C) =
1√

2πσ2
c,i

e
(−

(xi−µc,i)
2

2σ2
c,i

)

(7)

One of the limitations of the model is that it is sensitive to missing data, it has the
possibility of struggling with data with high-dimension and the assumption of independent
attributes is often unrealistic in real-world data. This can lead to poor performance of
the model.

3.2.7. Gradient Boosting Algorithm

Gradient boosting is one of the most popular and effective machine learning algorithms
for a wide range of tasks [47]. The basic idea behind gradient boosting is to minimise a loss
function by adding weak learners in a greedy, forward stage-wise manner. At each stage, a
new learner is fit to the residual errors of the previous learners, intending to reduce the
error of the overall model. The gradient of the loss function concerning the output of the
previous learners is used to guide the construction of the new learner. According to Chen
and Guestrin [48], gradient boosting can be applied to both regression and classification
problems and is particularly effective for tasks such as ranking, recommendation, and text
classification. It has also been used in a variety of fields, including finance, biology, and
astronomy. GBDT’s drawback is its single-tree approach for enhancing models, rather
than foresting.

3.2.8. Support Vector Machine (SVM) Algorithm

SVMs are a type of supervised learning algorithm that can be used for classification
tasks. The goal of SVMs is to find the hyperplane in a high-dimensional space that separates
different classes of data points. The hyperplane is defined by the support vectors, which
are the data points closest to it, and is known as the separating hyperplane. They are
particularly useful for handling high-dimensional spaces and dealing with non-linearly
separable data using the kernel trick. A given separating hyperplane is defined based on
the most significant minimum distance that a group of data frame observations has from
that hyperplane [49]. A function, f(x), to define the sigmoid support vector classifier can be
written as the following Equation (8):

f (x) =
1

1 + e−(α+∑n
i=1 βi .∑k

j=1 XijXi′ j)
(8)

where
i, i′: Represent indices of observation in the dataset;
Xij: The j-th feature of the i-th sample;
Xi

′
j: The j-th feature of a transformed or alternative representation of i-th sample;

Xi
′: A modified representation of the feature vector Xi;

e: Represents the mathematical constant, approximately equal to 2.718.
There are n parameters, βi being one for each observation i = 1, . . . , n. The term

∑k
j=1 XijXi′j is the inner product between two observations i and î, whose nomenclature can

also be given by
〈

Xi, X′
i
〉
. To estimate the parameters α and βi, . . . , βn, the researcher has

to define the n(n−1)
2 for inner products

〈
Xi, X′

i
〉

between all pairs of observations present in
the data frame. (n − 1)/2 represent the number of unique pairwise inner products 〈Xi, Xi

′〉
that need to be computed when analysing feature interactions.
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One of the limitations associated with SVMs is sensitivity to the choice of the kernel
and hyperparameters, and finding the right combination can be difficult as they are not
robust to noise and can overfit the data of the model [50].

3.2.9. Neural Networks

Deep learning is a subfield of ML that has been applied to various tasks, including
image classification [51], segmentation [52], object detection [53], remote sensing [54],
speech recognition, natural language processing [55], among others. It has been shown to
achieve good performance in these tasks. A neural network is a type of ML algorithm that
is inspired by the structure and function of the human brain. It is composed of a network
of interconnected nodes, called artificial neurons, which receive input through synapses
connected to axons; it then processes and transmits the information. In a neural network,
signals passing through artificial neurons are mathematically represented as a combination
of inputs and weights that are multiplied together to form a weighted sum. This sum is
then passed through an activation function to generate an output. The activation function
determines the output of the neuron based on the weighted sum and allows the network to
model complex relationships between the inputs and the output (see Figure 1).
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Neural networks have several limitations that can affect their performance. Neural
networks can be sensitive to noise and outliers in the data, which can negatively impact
their performance. This can be mitigated by pre-processing the data to remove noise and
outliers or by using more robust algorithms. And it is prone to overfitting.

3.2.10. Adaptive Boosting Classifier Algorithm (AdaBoost)

The AdaBoost algorithm is an iterative approach that involves training multiple
weak classifiers on the same dataset, which are then combined to form a stronger final
classifier [56]. Throughout the process, the weights of the classifiers are adjusted to increase
their accuracy and reduce their number for better specificity. The resulting model can then
be used for classification. The Haar feature-based AdaBoost algorithm can be summarised
as follows: The sample to be entered (x1, y1), . . . , (xi, yi), where xi is the input ith sample,
and yi represents the corresponding attribute value. The number of positive and negative
samples are a, b, n = a + b. This algorithm is particularly effective in situations where there
are complex interactions between features, and it can reduce the risk of overfitting [57].
However, it can be sensitive to noisy data and outliers, and it requires careful tuning of its
parameters to achieve optimal performance.

3.3. Analysis of Variance (ANOVA)

ANOVA is a statistical technique used to test the hypothesis that the mean of a
dependent variable is equal across different levels of an independent variable. It is used
to determine whether there is a significant difference between the means of two or more
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groups. ANOVA is based on the concept of variance, which is a measure of the dispersion
of a set of data around its mean. ANOVA tests the null hypothesis that the means of the
groups are equal against the alternative hypothesis that at least one of the means is different.
There are several types of ANOVA, including one-way ANOVA, two-way ANOVA, and
repeated measures ANOVA. The choice of ANOVA type depends on the characteristics of
the data and the research question. The equation for the one-way model is in Equation (9):

yij = µi + ϵij{i = 1, 2, . . . , pj = 1, 2, . . . , n} (9)

where yij is the ijth observation, µi is the mean of the i-th factor level or treatment, and ϵij

are a random error. and Table 1 shows the ANOVA table while Table 2 gives a summary of
all the selected models and reason for inclusion.

Table 1. One-way ANOVA, where SSB is the sum of squares between groups, MSB is mean squares
within groups, SSW is the sum of squares within groups, MSW is the mean square within groups, N
is total number of observations and p is the number of groups.

Source of Variation Sum of Squares df Mean Square F

Between groups SSB (p-1) MSB = SSB
(p−1) MSB

MSWError (within groups) SSW (N-p) MSB = SSW
N−p

Total SST (N-1) s2 = SST
N−1

Table 2. Graduate salary prediction model summary.

Model Type Key Characteristics Strengths in Graduate
Salary Prediction Limitations Reason for Selection

in This Study

Logistic
Regression (LR) Classification

Assumes a linear
relationship between
independent variables (de-
mographic/socioeconomic
factors) and salary groups.

Simple and
interpretable; useful for
understanding
relationships between
predictors and salary
categories.

Assumes linearity; may
not capture complex
relationships between
factors like institutional
prestige and salaries.

Used as a baseline
model to compare
performance with
more complex ML
methods.

K-Nearest
Neighbours
(KNN)

Classification
Classifies salaries based on
the most similar historical
cases; uses distance metrics.

Effective for detecting
local salary patterns
(e.g., institution-based
salary clusters).

Computationally
expensive for large
datasets (1.87 M+
records); sensitive to
irrelevant features.

Tested for its ability
to capture salary
variations based on
demographic
similarities.

Linear
Discriminant
Analysis (LDA)

Classification

Reduces dimensionality
while maintaining class
separability; assumes
normal distribution.

Useful for analysing
how multiple
socioeconomic factors
interact to classify
salaries.

Assumes normality;
may not perform well
with non-Gaussian
salary distributions.

Applied for
dimensionality
reduction and
exploratory analysis
of salary
classifications.

Decision Tree
(DT) Classification

Recursive partitioning
method; identifies key
decision rules (e.g., “Did
graduate attend a top-tier
university?”).

Highly interpretable;
detects hierarchical
salary determinants
(institution > job
qualification > parental
education).

Prone to overfitting
without pruning; splits
may be biased towards
dominant features.

Identified as the
best-performing
model due to its
ability to classify
salary groups with
high accuracy.

Random Forest
(RF) Classification

Ensemble of decision trees;
aggregates multiple models
to improve accuracy and
reduce overfitting.

Handles large datasets
effectively; identifies
the most influential
salary determinants
across multiple trees.

Less interpretable than
a single decision tree;
computationally
intensive.

Provided the highest
accuracy and robust
feature importance
ranking (validated by
SHAP analysis).

Gaussian Naïve
Bayes (GNB) Classification

Probabilistic model
assuming feature
independence; calculates
salary probabilities per
demographic group.

Works well on
high-dimensional
categorical data (e.g.,
ethnicity, institution
type).

Assumes feature
independence, which
may not hold (e.g.,
parental education and
socioeconomic status
are correlated).

Included as a
benchmark for
probabilistic
classification of
graduate salary
categories.
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Table 2. Cont.

Model Type Key Characteristics Strengths in Graduate
Salary Prediction Limitations Reason for Selection

in This Study

Gradient
Boosting (GB) Classification

Boosting technique that
sequentially improves
salary classification by
correcting previous errors.

Strong predictive
performance; handles
interactions between
features like “field of
study × institution
reputation”.

Prone to overfitting;
requires extensive
tuning.

Applied to test
boosting-based
performance
improvement
techniques.

Support Vector
Machine (SVM) Classification

Maximises margin between
salary classes; effective in
high-dimensional spaces.

Can model non-linear
salary patterns using
kernel trick (e.g.,
interaction of job
qualification and
domicile).

Computationally
expensive on large
datasets; sensitive to
hyperparameter
tuning.

Evaluated for its
ability to classify
salaries in complex
feature spaces.

Neural Network
(NN) Classification

Learns hierarchical patterns
in salary determinants;
captures non-linear
relationships.

Can detect deep salary
trends (e.g., how
combinations of
ethnicity, institution,
and job type influence
pay).

Requires extensive data;
hard to interpret; high
computational cost.

Included to compare
deep learning
techniques with
traditional ML
models.

AdaBoost (ADA) Classification

Assigns more weight to
misclassified salary
instances; iteratively
improves model accuracy.

Improves weak
learners; enhances
salary predictions for
minority groups.

Sensitive to noisy data;
requires many
iterations.

Used to assess the
performance of
boosting-based
classifiers in handling
salary disparities.

ANOVA
(Analysis of
Variance)

Statistical
Analysis

Tests whether salary
differences across
demographic groups (e.g.,
gender, ethnicity) are
statistically significant.

Validates machine
learning findings;
confirms whether
socioeconomic factors
significantly impact
salaries.

Assumes homogeneity
of variance; outliers can
impact results.

Used to confirm
statistical significance
of identified salary
determinants before
ML modeling.

3.4. The Data Science Pipeline

Analysing the influence of socioeconomic and demographic factors on graduate
salaries demands a systematic data science approach. Leveraging HESA data, this process
starts with comprehensive data collection and Exploratory Data Analysis (EDA) to uncover
underlying patterns. Subsequent data preparation and cleaning ensure integrity, followed
by feature engineering to enhance insights. Model training employs machine learning
algorithms, iteratively refined through validation and hyperparameter tuning for optimal
performance. Interpretation unveils model workings using techniques like SHAP, while
feature selection distils crucial variables. This journey transforms raw data into actionable
insights, empowering decision-makers as presented in Figure 2. Through this approach, the
intricate impact of socioeconomic and demographic factors on graduate salaries is revealed,
aiding informed decision-making in academia and beyond.

Explanation of the Machine Learning Pipeline (Figure 2)
The machine learning pipeline in this study follows a structured approach to analysing

the impact of socioeconomic and demographic factors on graduate salaries. The first stage
involves data collection and pre-processing (Table 3), where secondary data from the
Higher Education Statistical Agency (HESA: 2017/18–2019/20, https://www.hesa.ac.uk/
data-and-analysis/students, accessed on 4 February 2025) are utilised. This stage includes
handling missing data through imputation or removal, encoding categorical variables
such as gender and institution type, and applying normalisation and outlier detection to
maintain data integrity.

https://www.hesa.ac.uk/data-and-analysis/students
https://www.hesa.ac.uk/data-and-analysis/students
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Table 3. Pre-processed categorical variables and their encodings.

Category Specific Variables Pre-Processed

Personal Characteristics Sex
Disability

Male = 1, Female = 0, Others = 2
No known disability = 1, Known disability = 0

Socioeconomic

Socio economic classification

Parental education

Higher managerial and professional occupations = 0,
Not classified = 5, Intermediate occupations = 1,
Lower managerial and professional occupations = 2,
Routine occupations = 6, Lower supervisory and technical occupations = 3,
Semi-routine occupations = 7, Small employers and own account
workers = 8, Never worked and long-term unemployed = 4
Yes = 4, No = 2, Information refused = 1, No response given = 3,
Do not know = 0

Demographic

Domicile

Ethnicity

England = 0, Non-European Union = 1, Other European Union = 4,
Scotland = 6, Wales = 7, Northern Ireland = 2, Other UK = 5, Not known = 3
White = 6, non-UK = 3, Asian = 0, Black = 1, Mixed = 2, Other = 5,
Not known = 4

Academic level/Qualification

Level of study

Class of first-degree

Mode of study
Academic Year

Interim study

First degree = 0, Postgraduate (taught) = 1, Other undergraduate = 2,
Postgraduate (research) = 3
Classification not applicable = 0, Upper second-class honours = 6, First class
honours = 2, Lower second class honours = 3, Unclassified third class
honours/Pass = 4, FE level qualification = 1
Full time = 0, Part time = 1
2017/18 = 0, 2018/19 = 1, 2019/20 = 2
No significant interim study = 0, Unknown interim study = 2, Significant
interim study = 1

Employment type/location

Location of work
Employment basis

Employment mode
Most important activity

Publication main activity

Salary groups

England = 0, Northern Ireland = 1, Overseas = 4, Wales = 6, Scotland = 5,
Not known = 2, Other UK = 6
On a permanent/open-ended contract = 3, On a fixed-term contract lasting
12 months or longer = 1, On a fixed-term contract lasting less than
12 months = 2, On a zero-hour contract = 4, On an internship = 5, Temping
(including supply teaching) = 7, Other = 6, Volunteering = 8, Not known = 0
Full time = 0, Part time = 1
Paid work for an employer = 4, Engaged in a course of study, training or
research = 3, Running my own business = 6, Self-employment/
freelancing = 7, Developing a creative, artistic, or professional portfolio = 1,
Unemployed and looking for work = 9, Retired = 5, Doing something else =
2, Caring for someone (unpaid) = 0, Voluntary/unpaid work for an
employer = 10,
Taking time out to travel—this does not include short-term holidays = 8
Full-time employment = 1, Part-time employment = 4,
Employment and further study = 0, Full-time further study = 2, Part-time
further study = 5, Unemployed = 6,
Other including travel, caring for someone, or retired = 3,
Voluntary or unpaid work = 11, Unemployed and due to start work = 8,
Unknown pattern of employment = 9, Unemployed and due to start further
study = 7, Unknown pattern of further study = 10
Minimum wage = 2, Living wage = 0, Median wage = 1, Top wage = 3

Markers Subject type marker
State school marker

Non-science = 1, Science = 0
State-funded school or college = 1, Unknown or not applicable school
type = 2, Privately funded school = 0
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Following pre-processing, Exploratory Data Analysis (EDA) is conducted to identify
trends in salary distribution across demographic factors. EDA techniques help detect
potential biases or anomalies in the dataset and visualise salary group classifications, such
as minimum wage, living wage, median wage, and top wage.

The next stage, model training and evaluation, involves comparing ten machine
learning models, including decision trees, random forests, logistic regression, and neural
networks. Due to class imbalance in salary groups, oversampling and undersampling tech-
niques are employed to improve predictive performance. The models are evaluated based
on accuracy, precision, recall, and F1-score, with the decision tree model demonstrating the
best performance in terms of accuracy and interpretability. To ensure reliability, this study
incorporates interpretability and validation techniques, including SHAP analysis to explain
feature contributions, ANOVA to validate the statistical significance of key socioeconomic
factors, and expert validation from industry professionals to confirm practical relevance.

The final stage, policy recommendations and insights, translates the research findings
into actionable strategies for universities, policymakers, and employers. These recommen-
dations highlight interventions to address wage disparities based on socioeconomic back-
ground and inform decisions that promote equitable career opportunities for graduates.

While this pipeline offers several strengths, including data-driven insights, robust
statistical validation, and expert feedback, it also has limitations. Machine learning models
provide complex, automated predictions, but some, like neural networks, are difficult
to interpret. The large HESA dataset (1.87 M+ records) strengthens statistical power but
introduces challenges such as potential biases, missing values, and inconsistencies in
definitions. Feature selection using SHAP enhances transparency but is dependent on
the completeness of the available data. Addressing class imbalances through resampling
improves model performance, though oversampling may introduce synthetic noise, and
undersampling can result in data loss. Lastly, ANOVA and expert validation ensure both
statistical and real-world credibility, but expert opinions remain subjective and may not
fully account for statistical nuances.

Enhancing the discussion around Figure 2 (machine learning pipeline) strengthens the
clarity, methodological rigour, and overall impact of this research. This expanded expla-
nation ensures that readers, reviewers, and policymakers fully understand the analytical
process, its strengths, and its limitations, allowing for informed decision-making in higher
education and labour market policies.

3.4.1. Data Overview

The data used for this research work are survey data conducted, monitored, and
collected by HESA and ranges from 2017/18 to 2019/20. The data include approximately
28 variables and 1,871,245 data points, covering various factors that may influence graduate
salaries, such as socioeconomic and demographic variables.

3.4.2. Data Types and Outcome Variables

The outcome variable in this study is the graduate salary, which is categorised into
four distinct groups: minimum wage, living wage, median wage, and top wage. These
categories represent different salary ranges that graduates fall into, based on their earnings
after completing their education. While the salary itself is a continuous variable, for this
study, it has been discretised into these four groups, turning the problem into a multi-class
classification task. The four salary categories allow for a more nuanced analysis of the
factors influencing salary distribution. Instead of predicting a single continuous value,
the machine learning algorithms aim to classify graduates into one of the four predefined
salary groups.
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3.4.3. Limitations and Constraints of Secondary Data

Secondary data refer to data that have been collected, processed, and made avail-
able by an external organisation or researcher than being gathered firsthand for a specific
study. In this research, the dataset is sourced from the Higher Education Statistical Agency
(HESA), covering graduate salary records from 2017/18 to 2019/20. The use of secondary
data provides a cost-effective and large-scale means of analysing socioeconomic and de-
mographic influences on graduate salaries. However, it also introduces several limitations
and constraints that can impact this study’s reliability and interpretability. This study’s
reliance on secondary data introduces limitations like potential biases, missing information,
and limited control over variable definitions. Enhancing secondary data with primary
collection or advanced imputation techniques can mitigate these issues [58]. Additionally,
cross-validation with external datasets can ensure generalisability.

3.4.4. Missing Data and Outliers

The presence of missing data and outliers was carefully addressed to ensure the
robustness of the analysis. Rows containing blank or NA values were entirely dropped.
The number of data removed during this process was minimal and did not significantly
impact the final results. Outliers, a common issue in survey data, were also examined.
In this study, some respondents provided unrealistically low or excessively high salary
figures, potentially skewing the results. To address this, data transformation techniques
were applied, ensuring that no salary group among the four predefined categories held an
unfair advantage during the modelling process. This approach minimises the distortion
caused by outliers while preserving the integrity of the data.

4. Results Analysis
This study employed ML/AI to examine how socioeconomic and demographic factors

impact graduate salaries in the UK. Using survey data from HESA, this research focused
on both qualitative and quantitative measures. The data underwent rigorous processing,
including feature engineering for salary groups, and were used to train 10 machine learning
classifiers. This study evaluated model performance, considering accuracy, precision, F1-
score, and recall, while also assessing variable contributions using SHAP and examining
interactions with ANOVA. The aim was to provide guidance for graduates and inform
government policy decisions.

4.1. Model Training Results

The result presented in Table 4 highlights the performance metrics of different machine
learning models applied to a graduate salary dataset. The models considered are LR (logistic
regression), KNN (k-nearest neighbours), LDA (linear discriminant analysis), DT (decision
tree), GNB (Gaussian naïve Bayes), GB (gradient boosting), SVM (support vector machine),
NN (neural network), ADA (AdaBoost), and RF (random forest). The metrics used to
evaluate the models’ performance are precision, F1-score, recall, and accuracy.

In this case, Random Forest has achieved the highest accuracy of (0.72) as seen in
Table 4; however, accuracy alone does not necessarily indicate the best-performing model,
as it may be biased towards the majority class. Given the imbalance in the dataset, a
more comprehensive evaluation is required. This has been analysed using a confusion
matrix shown in Figure 3, which highlights the distribution of prediction across four salary
categories: minimum wage = 0, living wage = 1, median wage = 2, and top wage = 3. The
confusion matrix provides deeper performance by showing how many instances of each
salary group were correctly classified and where misclassification occurred.
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Table 4. Preliminary training results.

Original Classification Data
Model Evaluation Index

Model Precision F1-Score Recall Accuracy
Logistic Regression 0.49 0.45 0.46 0.54
K-Nearest Neighbours 0.62 0.61 0.61 0.66
Linear Discriminant
Analysis 0.49 0.46 0.46 0.54
Decision Tree 0.66 0.61 0.62 0.69
Gaussian Naïve Bayes 0.48 0.47 0.47 0.52
Gradient Boosting 0.64 0.59 0.59 0.67
Support Vector Machine 0.47 0.45 0.45 0.54
Neural Network 0.09 0.13 0.25 0.37
AdaBoost 0.56 0.51 0.52 0.6
Random Forest 0.68 0.67 0.67 0.72
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A weighted selection approach is applied to determine the most suitable model,
considering multiple performance indicators. Accuracy (30%) measures overall correctness
but does not account for class imbalances, making it insufficient as a standalone criterion.
F1-Score (30%) balances Precision and Recall, ensuring that both false positives and false
negatives are minimised. Recall (20%) is crucial for correctly identifying all salary categories,
especially under-represented ones, while Precision (20%) enhances the reliability of positive
classifications, reducing incorrect high-salary predictions. Based on this approach, Random
Forest emerges as the best-performing model, achieving the highest overall F1-Score (0.67),
maintaining strong Precision and Recall, and offering high interpretability through feature
importance analysis.

The matrix shows the number of predictions for each true class that were correctly
classified (on the diagonal) and the number of predictions that were incorrectly classified
(off the diagonal). Overall, the model has relatively high accuracy for class 0 and class 3, as
indicated by the high numbers on the diagonal for these classes. However, the model has
lower accuracy for class 1 and class 2, as indicated by the relatively high numbers of the
diagonal for these classes. The model’s performance is impacted by relatively high numbers
of incorrect predictions between classes 1 and 3, leading to challenges in distinguishing
between them and ultimately lowering the precision and accuracy of the model.

Resampling is performed to solve the sample imbalance and incorrect prediction
between the true classes. The sampling method is divided into undersampling, oversam-
pling, and combined sampling. For the sake of this work, we shall be interested in only
undersampling and oversampling. Undersampling and oversampling techniques play
pivotal roles in mitigating the challenges posed by imbalanced datasets, where one class
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significantly outnumbers the others. These methods are not only of interest but are essential
strategies for improving model performance and addressing biases inherent in imbalanced
data distributions. Undersampling involves randomly removing instances from the ma-
jority class to match the size of the minority class, thereby reducing the dominance of the
majority class. This process ensures a more balanced representation of classes in the dataset,
facilitating better model learning and discrimination between classes. On the other hand,
oversampling techniques increase the representation of the minority class by replicating
or synthesising instances. By amplifying the presence of the minority class, oversampling
prevents the model from being overshadowed by the majority class and improves its ability
to generalise to unseen instances [59].

Furthermore, undersampling and oversampling help in enhancing model generalisa-
tion by preventing overfitting and underfitting. Undersampling prevents the model from
being overly biased towards the majority class, leading to better generalisation performance
on unseen data [60]. Similarly, oversampling ensures that the model adequately learns the
characteristics of the minority class, thereby improving its ability to generalise across both
classes. Moreover, these techniques also offer computational advantages. Undersampling
reduces the computational burden by decreasing the dataset size, while oversampling,
although increasing the dataset size, can still be computationally efficient compared to
alternative methods of expanding the minority class representation [58].

By addressing issues related to data skewness, enhancing model generalisation, and
mitigating computational costs, undersampling and oversampling techniques ensure fair,
reliable, and effective model performance across various applications. Thus, their sig-
nificance extends beyond mere interest, underscoring their essential role in the realm of
imbalanced data analysis.

Table 5 provides an improvement model training result for the ten classifiers used to
predict the impact of the various considered variables on the graduate salary in the UK. For
both sampling techniques used, the evaluation metrics used are precision, recall, F1-score,
and accuracy. For oversampling, the highest performing models based on F1-score are
Decision Tree, Random Forest, and Gradient Boosting, with F1-scores of 0.85, 0.67, and
0.62, respectively. Decision Tree has the highest precision and recall scores, indicating it has
correctly classified all positive cases. Decision Tree has the highest accuracy of 0.85.

For undersampling, the highest performing models based on F1-scores are Decision
Tree, Random Forest, and K-Nearest Neighbours, with F1-scores of 1, 0.67, and 0.61,
respectively. Decision Tree has the highest precision, recall, and accuracy scores, indicating
it has correctly classified all positive cases. Comparing the results of the two-sampling
technique, the models trained on undersampled data outperform the models trained on
oversampled data or the preliminary training result, with Decision Tree and Random Forest
performing best in both cases. This suggests that undersampling the majority class could
be a better approach to this problem.

Overall, the evaluation tables suggest that Decision Tree and Random Forest are
the best models for predicting the impact of socioeconomic and demographic factors on
the graduate salary in the UK, with Decision Tree performing slightly better than the
Random Forest in both oversampled and undersampled datasets, Figure 4 collaborate the
study findings.
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Table 5. Improved model training result.

Model Evaluation Index
Model Precision Recall F1-Score Accuracy

Oversampling

Logistic Regression 0.5 0.5 0.49 0.5
K-Nearest Neighbours 0.61 0.61 0.6 0.62
Linear Discriminant
Ana. 0.51 0.5 0.48 0.5
Decision Tree 0.86 0.85 0.85 0.85
Gaussian Naïve Bayes 0.48 0.48 0.46 0.47
Gradient Boosting 0.64 0.63 0.62 0.63
Support Vector Machine 0.64 0.65 0.64 0.65
Neural Network 0.25 0.27 0.18 0.39
AdaBoost 0.54 0.55 0.54 0.56
Random Forest 0.67 0.67 0.67 0.71

Undersampling

Logistic Regression 0.5 0.5 0.49 0.5
K-Nearest Neighbours 0.61 0.62 0.61 0.63
Linear Discriminant. 0.52 0.5 0.47 0.47
Decision Tree 1 1 1 0.99
Gaussian Naïve Bayes 0.48 0.47 0.46 0.47
Gradient Boosting 0.65 0.63 0.6 0.6
Support Vector Machine 0.63 0.63 0.65 0.64
Neural Network 0.27 0.3 0.23 0.42
AdaBoost 0.54 0.55 0.54 0.56
Random Forest 0.68 0.67 0.67 0.72
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The confusion matrix presented in Figure 5 highlights the performance of a classifica-
tion model that has made predictions for four classes (0, 1, 2, and 3) on the graduate salary
dataset using a random undersampling technique. Specifically, the confusion matrix can be
interpreted as follows:

Class 0: There were 99,345 true instances of Class 0, and the model correctly predicted
Class 0 for 99,345 of these instances. However, the model incorrectly predicted Class 1 for
nine instances of Class 0, predicted Class 2 for seven instances of Class 0, and predicted
Class 3 for 10 instances of Class 0.

Class 1: There were 99,347 true instances of Class 1, and the model correctly predicted
Class 1 for 99,086 of these instances. However, the model incorrectly predicted Class 0 for
194 instances of Class 1, predicted Class 2 for 59 instances of Class 1, and predicted Class 3
for eight instances of Class 1.
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Class 2: There were 99,416 true instances of Class 2, and the model correctly predicted
Class 2 for 98,806 of these instances. However, the model incorrectly predicted Class 0 for
112 instances of Class 2, predicted Class 1 for 474 instances of Class 2, and predicted Class
3 for 24 instances of Class 2.
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Class 3: There were 99,155 true instances of Class 3, and the model correctly predicted
Class 3 for 98,628 of these instances. However, the model incorrectly predicted Class 0 for
71 instances of Class 3, predicted Class 1 for 113 instances of Class 3, and predicted Class 2
for 343 instances of Class 3.

Overall, the model has high accuracy for all four classes, as indicated by the high
numbers on the diagonal for these classes. However, the model seems to have the most
difficulty distinguishing between Classes 1 and 2, as there are relatively high numbers of
incorrect predictions between these two classes. This can be seen in the confusion matrix,
where the number of misclassified instances between Classes 1 and 2 is higher compared to
other classes. The weighted average precision, recall, and F1-score for all classes are 1.00,
indicating that Decision Tree has performed well.

4.2. Feature Importance Analysis Using Shapley Additive Explanations (SHAP)

In this next stage, feature importance has been analysed using the SHAP method
(Table 6), which has been widely acknowledged for its consistency and interpretability in
machine learning research [61]. SHAP provides an intuitive approach to understanding
model predictions by attributing each feature’s contribution to the outcome. These values
indicate the relative contribution of each feature to the overall prediction made by the
model. In the context of graduate salary data in the UK, this information can be useful in
understanding which factors have the most significant impact on graduate salaries.

Table 6. Variable Importance.

Features Importance
Provider 0.1450 (14.50%)
Age of qualifier 0.0941 (9.41%)
Academic year 0.0805 (8.05%)
Most important activity 0.0765 (7.65%)
Interim study 0.0677 (6.77%)
Employment basis 0.0665 (6.65%)
Socio economic classification 0.0634 (6.34%)
Domicile 0.0596 (5.96%)
Location of work 0.0437 (4.37%)
Publication main activity 0.0409 (4.09%)
Parental education 0.0363 (3.63%)
Qualification required for the job 0.0362 (3.62%)
Class of first degree 0.0343 (3.43%)
Ethnicity 0.0319 (3.19%)
Subject type marker 0.0214 (2.14%)
Sex 0.0204 (2.04%)
Level of study 0.0180 (1.80%)
Employment mode 0.0174 (1.74%)
State school marker 0.0170 (1.70%)
Disability 0.0162 (1.62%)
Mode of study 0.0099 (0.99%)

In the context of graduate salary data in the UK, feature importance appeared in
the order listed in Table 6 where the “Provider” feature (institution attended) emerged
as the most influential predictor, accounting for 14.50% of the model’s predictive power.
The second most important feature, “Age of qualifier”, mirrors findings from studies
on workforce demographics, which suggest that age impacts earning potential through
experience and networking advantages. Furthermore, socioeconomic classification and
parental education, though less impactful, contribute significantly to the prediction model.
Other significant features include “Academic year”, “Most important activity”, “Interim
study”, and “Employment basis”, all of which have importance values above 6%. These
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factors could also impact a graduate’s salary by influencing their skills, experience, and
qualifications (see Figure 6 for the SHAP summary plot).
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Overall, this analysis highlights the complexity of graduate salary data in the UK
and the importance of considering multiple factors when predicting or explaining salary
outcomes. While the university attended is a critical factor, other characteristics such as age,
employment status, and academic performance also have a significant impact. Parental
education, qualification required for the job, ethnicity, and the class of first degree are less
important as revealed by the survey data but still contribute significantly to the model’s
prediction. Understanding these factors and investigating possible interactions and their
relative importance can help graduates and employers make more informed decisions
about education, training, and job opportunities.

4.3. Interaction of Significant Factors: An Analysis of Variance (ANOVA) Approach

Although the variable importance measured by the SHAP model is informative, it
does not provide conclusive evidence about the statistical significance of the identified
factors on graduate salaries. To determine whether these factors have a significant impact
on graduate salaries and whether there are any interaction effects between them, we will
use ANOVA with a significance level (α) of 0.05.

From Table 7, all independent variables (factors) imputed in the analysis of the variance
model include Provider, Academic_year, Age_of_qualifier, Socio_economic_classification,
Most_important_activity, Location_of_work, Employment_basis, Publication_main_activity,
Domicile, Interim_study, Qualification_required_for_the_job, and Parental_education.
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Table 7. The ANOVA table.

sum_sq df F PR (>F)

Provider 5.78 × 1010 1 30.095345 4.11 × 10−8

Academic_year 1.43 × 1013 1 7427.0483 0.00 × 100

Age_of_qualifier 9.65 × 1012 1 5023.6164 0.00 × 100

Socio_economic_classification 4.81 × 1011 1 250.31424 2.24 × 10−56

Most_important_activity 5.85 × 1012 1 3048.1864 0.00 × 100

Location_of_work 2.71 × 1013 1 14,116.678 0.00 × 100

Employment_basis 6.06 × 1011 1 315.54089 1.37 × 10−70

Publication_main_activity 3.00 × 1013 1 15,602.032 0.00 × 100

Domicile 9.05 × 1013 1 47,135.846 0.00 × 100

Interim_study 3.94 × 1013 1 20,514.903 0.00 × 100

Qualification_required_for_the_job 6.10 × 1012 1 3173.9941 0.00 × 100

Parental_education 1.55 × 1012 1 809.56141 4.91 × 10−178

Based on the ANOVA table, all of the variables have a p-value less than 0.05, indicating
that they have a statistically significant impact on the graduate salary. This suggests that all
of these variables should be considered when examining the impact on the graduate salary.
It is also worth noting that some variables, such as Domicile and Publication_main_activity,
have much larger F-statistics than others, indicating that they may have a greater impact on
the graduate salary than other variables in the model. The results of the analysis indicate
that most of the interactions are significant at the p < 0.05 level.

5. Discussion
This study aims to predict the graduate salary and identify the major factors that

impact it using ten different machine learning methods. The importance of higher education
is subject to an ongoing debate, with concerns about its ability to generate social mobility
despite increasing investments by both the government and graduates. As a result, there
is a growing demand for educational policies and guidance for prospective graduates to
navigate the education system effectively.

This study employed survey data from HESA, consisting of 27 independent variables
and one response variable (Salary). Ten machine learning models: logistic regression (LR), k-
nearest neighbours (KNN), linear discriminant analysis (LDA), decision tree (DT), Gaussian
naïve Bayes (GNB), gradient boosting (GB), support vector machine (SVM), neural network
(NN), adaptive boosting (ADA), and random forest (RF) are evaluated for salary prediction.
The successful implementation of the ten different models on the graduate salary data
justifies the assumption that machine learning is suitable for modelling graduate salaries.
After running the initial model using the original data, which was unbalanced, it was
observed that the random forest classifier rendered the highest accuracy of about 72%, with
a lot of false positive predictions about the graduate salary. It was clear that overfitting of
the data on the model was visible hence requiring model improvement. To improve the
precision, accuracy, and F1-score of the study model, we relied on a sampling method that
comprised oversampling and undersampling.

In the oversampled data, it was observed that Decision Tree performed the best with
an accuracy score of 85%. Random Forest also performed well with an accuracy score of
71%. Support Vector Machine and K-Nearest Neighbours had moderate accuracy scores of
65% and 62%, respectively. However, Gaussian Naïve Bayes had a relatively low accuracy
score of 47%, indicating its poor performance on this particular dataset. Neural Network
had the lowest accuracy score of 39%, indicating a need for further optimisation or tuning
to improve its performance. In the undersampled data, Decision Tree also performed the
best with a very high accuracy score of 99%. Random Forest also performed well with an
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accuracy score of 72%. Support Vector Machine and K-Nearest Neighbours had moderate
accuracy scores of 64% and 63%, respectively. Linear Discriminate Analysis and Gaussian
Naïve Bayes, along with Neural Network, had relatively low accuracy scores.

By comparing the model evaluation with the original data, oversampled data, and
undersampled data, we observed that the undersampled data provided the best improve-
ment in the study model, leading to accurate predictions of graduate salaries as seen in
the confusion matrix in Figure 6. Based on the findings, we can categorically state that
the decision tree algorithm is the best machine learning algorithm for predicting graduate
salaries in the UK, as it achieved the highest precision, F1-score, recall, and accuracy scores.

5.1. The Variable Impacts

Having established the decision tree to be this study’s best-performing model, the
input variables’ (listed in Table 8) impact is further investigated to analyse how these
variables impacted the model performance and also contributed to predicting the graduate
salary. The SHAP variable importance technique was employed to achieve these.

Table 8. Input variables.

Input Variables
Academic_year

Publication_main_activity
Most_important_activity

Employment_mode
Interim_study

Sex
Domicile

Parental_education
State_school_marker

Socio_economic_classification
Age_of_qualifier

Disability
Ethnicity

Subject_type_marker
Level_of_study

Class_of_first_degree
Provider

Mode_of_study
Employment_basis
Location_of_work

Qualification_required_for_the_job

The analytical results highlight that the most important variable impacting the grad-
uate salary is the provider, which accounts for 14.50% of the total impact. This suggests
that the reputation and quality of the institution from which a graduate earns their degree
can have a significant impact on their earning potential. This is supported by previous
research, which has found that graduates from prestigious universities tend to earn higher
salaries [62]. The age of the qualifier is the second most important variable as identified in
this research, accounting for 9.41% of the total impact. This suggests that the age at which
a graduate enters the workforce can have a significant impact on their earning potential.
Older graduates tend to earn higher salaries than younger ones. This may be due to a
range of factors, including greater work experience and a higher level of seniority in the
workplace [63].

The academic year is the third most important variable, accounting for 8.05% of the
total impact. Suggesting that the timing of graduation can have an absolute impact on a
graduate’s earning potential. This may be due to factors such as changes in the labour
market, shifts in demand for certain skills, and changes in government policy. The most
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important activity is the fourth most important variable, with a feature importance score of
7.65%. This refers to the main activity that a graduate engages in after completing their
degree, such as starting a job, further study, or unemployment. This suggests that the
transition from education to work is a critical determinant of graduate salaries. Socioeco-
nomic classification is among one of the most important factors impacting graduate salaries
in the UK, accounting for 6.34%. The analysis indicates that graduates who come from
higher socioeconomic classes, such as higher managerial and professional occupations,
tend to have higher salaries than those from lower socioeconomic classes, such as routine
and semi-routine occupations. This is aligned with the findings that the socioeconomic
status is a significant predictor of educational attainment and subsequent labour market
outcomes, including salaries [64]. Individuals from higher socioeconomic classes have more
access to resources such as high-quality schools, networks, and mentors that can facilitate
educational and career success. In other words, graduates from higher managerial and
professional occupations tend to have higher salaries due to their higher levels of education
and their access to high-paying jobs and networks. On the other hand, graduates from
lower managerial and professional occupations and routine and semi-routine occupations
tend to have lower salaries due to the limited opportunities for career advancement and
their lower levels of education. Overall, the impact of socioeconomic classification on
the graduate salary in the UK is a complex and multifaceted issue that requires further
investigation. However, individuals from higher socioeconomic classes tend to have higher
salaries than those from lower socioeconomic classes, highlighting the need for policies
and interventions that promote equal access to education and career opportunities.

From the analytical result, location of work and domicile are both important variables
impacting the graduate salary, accounting for 4.37% and 5.96% respectively. Regarding
the impact of location of work, studies have shown that there are significant regional
variations in graduate salaries across the UK, which is aligned with the report by the Sutton
Trust [65], which found that graduates who work in London tend to earn significantly more
than those who work in other regions of the UK. Additionally, a study by the Institute for
Fiscal Studies [66] found that graduates who work in London tend to have higher earning
trajectories over time compared to those who work in other regions. In terms of domicile,
research has found that there are significant differences in graduate earnings depending on
where the graduate is from. It is worth noting that some variables, such as ethnicity and
disability, were found to have a relatively low impact on the graduate salary. This does not
mean that these factors are not important or relevant to the earning potential of graduates,
but rather that they may be less significant than other factors in the model.

In inference, the SHAP feature importance model provides valuable insights into the
factors that impact graduate salaries in the UK. The results suggest that the reputation
and quality of the institution, age of the qualifier, academic year, most important activity,
interim study, employment basis, socioeconomic classification, domicile, location of work,
publication main activity, and parental education are significant determinants of graduate
starting salaries. These findings are supported by previous research and can help inform
policy decisions aimed at improving graduate outcomes in the UK.

5.2. Challenges and Limitations of This Study

While machine learning models provide a powerful framework for analysing graduate
salary determinants, they have inherent limitations, particularly regarding overfitting and
generalisability. Decision trees, despite their interpretability, are prone to memorising
training data, making them less reliable when applied to new datasets. Additionally,
the resampling techniques used to address class imbalance, such as undersampling and
oversampling, may remove valuable data or introduce synthetic noise, affecting model
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predictions. Future research should explore more advanced resampling techniques like
SMOTE or generative adversarial networks (GANs) to enhance model robustness. Future
research should evaluate whether decision tree-based predictions remain consistent across
various socioeconomic and geographic contexts.

Beyond model-specific limitations, this study does not account for emerging labour
markets trends, such as the rise of online education and AI-driven hiring. Online learning
platforms are becoming a viable pathway to career advancement, particularly for working
professionals, yet their impact on graduate salaries remains underexplored. Furthermore,
with AI-driven automation reshaping job qualifications, many industries are shifting toward
skill-based hiring, reducing reliance on traditional degree credentials. Future research
should investigate how AI will influence salary determinants and whether degree-based
wage advantages will persist in an evolving job market.

5.3. Statistical Significant Interactions Between Contributors and Graduate Salaries

In this study, the variable importance identified by the SHAP model consisting of the
top 12 variables that impact the graduate salary in the UK was further investigated. These
variables include the provider, academic year, age of qualifier, socioeconomic classification,
most important activity, location of work, employment basis, publication main activity,
domicile, interim study, qualification required for the job, and parental education. The
SHAP model highlighted the percentages by which these variables account for their in-
dependent impact on the graduate salary. However, it is not sufficient to stop there. The
need to ascertain and investigate if these variables were statistically significant using a
well-defined statistical technique was imperative.

Employing the analysis of variance (ANOVA), the variables presented in Table 7 were
statistically significant (p < 0.05). This result suggests that all the top 12 variables bear
significant impacts on the graduate salary. Considering they were all significant, it is
evident that both SHAP and ANOVA have individually demonstrated a significant impact
on the graduate salary. However, the multi-comparison analysis has revealed statistically
significant interactions among the top twelve variables. For instance, it is noteworthy
that the provider has the highest percentage impact on the graduate salary; however, it is
insufficient to merely attend a prestigious institution without considering the location of
work, which has a positive interaction impact with a provider on the salary.

Furthermore, the findings from ANOVA (Table 7) confirm the statistical significance
of multiple socioeconomic and demographic factors in determining graduate salaries.
However, these results also reveal larger structural patterns in the labour market. The dom-
inance of the institution attended (Provider) as the most significant predictor suggests that
graduates from elite universities enjoy a considerable salary advantage, reinforcing existing
concerns about higher education elitism and accessibility. While this study identifies a
strong link between work location and the salary, particularly favouring London graduates,
it does not account for regional living costs, which could diminish real income advantages.
Additionally, while the socioeconomic background significantly influences initial salaries,
this study does not track whether these disparities persist, decrease, or widen over time.
Future research should examine longitudinal earnings data to determine the long-term
effects of these factors on career progression.

5.4. Validation of Results by Industry Experts

The validation of results by industry experts is a critical step in research that aims to
provide actionable insights and inform evidence-based decision-making [67]. Engaging
industry professionals ensures that study findings are reliable, unbiased, and applicable to
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real-world scenarios. Additionally, expert validation helps identify variances in findings,
contributing to a more comprehensive understanding of the results.

This study administered a structured questionnaire using Google form to industry
experts, including seven senior executives from the higher education sector, four top man-
agement professionals, six HR representatives, and five other domain-specific specialists.
The questionnaire was based on a five-point Likert scale ranging from “strongly disagree”
to “strongly agree”. This approach enabled a detailed analysis of expert perspectives.
The analysis of expert responses, presented in Figure 7, showed that most variables ex-
amined in this study were perceived as having a significant impact on graduate salaries,
though to varying degrees in the increasing order of agreeing on the factors from top
to bottom. Some of the highlights of experts’ opinions are presented in Figure 8a,b; the
variable “Qualification required for the job” received the highest level of agreement, with
approximately 95.24% of experts indicating either “agree” or “strongly agree”. The variable
“Provider” followed closely, with 90.47% agreement. A pie chart is included to represent
these findings visually. The explainability of the machine learning model independently
identified “Provider” as the variable with the greatest influence on graduate salaries, align-
ing closely with expert opinions. Experts also strongly agreed on the importance of “Most
important activity” and “Level of study”, further supporting the model’s findings. This
alignment between expert validation and machine learning results reinforces the reliability
of this study.
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6. Conclusions and Recommendations
This study bridges the gap between theoretical and practical applications by combining

them. This study employed a multi-stage analytical process by integrating ML explanatory
and statistical analytical methods with expert responses. The involvement of industry
experts, alongside advanced analytical techniques, has produced findings that are credible
and applicable to the field of education. This comprehensive validation process enhances
this study’s relevance and reliability, providing valuable insights for both academic and
professional audiences. In conclusion, the analysis of factors influencing graduate salaries
in the UK underscores the complex and multifaceted nature of this issue. This study
highlights that undersampling is the preferred sampling technique, while decision trees
prove to be the most suitable machine learning method for modelling graduate salaries.
Additionally, a plethora of factors including the reputation of the institution, age of qualifier,
academic year, most important activity, socioeconomic classification, domicile, location of
work, parental education, interim study, qualification required for the job, and parental
education significantly impact the starting salaries of graduates.

It is noteworthy that this research also reveals binary interaction effects among these
variables, further complicating the understanding of graduate salary determinants. These
findings are corroborated by unbiased validations from sector experts and previous research.
However, it is essential to reflect on the limitations of existing studies, which may have been
addressed by this work. Previous research may have lacked comprehensive exploration of
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certain factors or failed to consider interaction effects among variables. By addressing these
limitations, this study contributes to a more nuanced understanding of graduate salary
dynamics in the UK. These insights hold significant implications for policy decisions aimed
at enhancing graduate outcomes in the UK. By recognising the intricate interplay of various
factors affecting graduate salaries, policymakers can tailor interventions more effectively
to support graduates in securing better employment opportunities and higher salaries.
Ultimately, this research contributes to the ongoing discourse on improving graduate
outcomes and informs evidence-based policy formulation in the UK context.

Based on the analysis findings, it is evident that graduates from higher socioeconomic
classes tend to command higher salaries compared to their counterparts from lower so-
cioeconomic backgrounds. For instance, this study revealed that graduates from higher
socioeconomic classes had on average, salaries approximately 25.03% higher than those
from lower socioeconomic classes. This disparity underscores the need for policies and
interventions aimed at promoting equal access to education and career opportunities, par-
ticularly for individuals from disadvantaged socioeconomic backgrounds. Furthermore,
the analysis highlighted the significant impact of the location of work on graduate salaries
with England at 52.64%, Northern Ireland at 14.23%, Scotland at 8.90%, and Wales at 9.45%.
Graduates employed in more prosperous areas tend to earn higher salaries compared to
those in less prosperous regions. This emphasises the importance of policies promoting
regional development and job opportunities in economically disadvantaged areas. By
addressing disparities in job availability across regions, such policies could help mitigate
the impact of location on graduate salaries, thereby fostering more equitable outcomes for
all graduates.

This study’s findings have several practical implications for various stakeholders.
Higher education institutions should focus on bridging socioeconomic gaps by expanding
mentorship programmes, financial aid, and career support services for students from
disadvantaged backgrounds. Policymakers must recognise that regional salary disparities
and elitism in higher education continue to shape graduate earnings, necessitating targeted
economic and educational reforms. Employers, meanwhile, should reassess recruitment
strategies to ensure hiring processes emphasise competencies over institutional prestige.
Furthermore, the rise of AI and automation could reshape the job market need, meaning
continuous evaluation of education strategies covering the need for learning, digital skills,
and professional certifications in the near future.

Moreover, while this study identified factors such as parental education as influential
determinants of graduate salaries, further research is warranted to explore these factors in
greater depth. Despite their importance, parental education was found to have a relatively
low impact on graduate salaries in the study model. Therefore, additional research could
provide deeper insights into the mechanisms through which parental education influences
graduate earnings, informing the design of targeted interventions to support graduates
from diverse educational backgrounds. Additionally, there is a need for more comprehen-
sive research into the impact of factors such as ethnicity and disability on graduate salaries.
These factors are likely to play significant roles in determining earning potential, yet their
influence was not fully explored in the current analysis. By conducting further research
in these areas, policymakers can gain a better understanding of the challenges faced by
graduates from an ethnic minority or disabled backgrounds and develop tailored strategies
to address disparities in salary outcomes.

Overall, the analysis of the factors influencing graduate salaries in the UK provides
valuable insights into the complex and multifaceted nature of the issue. The study findings
suggest that policies and interventions aimed at promoting equal access to education and
career opportunities, as well as regional development, could help to improve graduate
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outcomes in the UK. Additionally, further research is needed to investigate the impact
of other factors such as parental impacts, location of work, ethnicity and disability on
graduate salaries.
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