
i 

 

 

 

 

Progression of risk in heart failure using dynamic risk 

modelling 

 

being a Thesis submitted in partial fulfilment of the requirements  

for the Degree of Doctor of Philosophy in Department of Computer Sciences  

at the University of Hull 

 

by 

Syed Mohsin S. Kazmi  
BSc, MCS & IT, MSc Network Centred Computing 

 

Principal Supervisor: 

Dr. Chandrasekhar Kambhampati 
 

Clinical Supervisor 

Prof. Andrew L. Clark 
 

 

May 2024 



ii 

Dedication 

 

 

 

 

 

 

 

To my beloved family, especially to my brother who was taken 

from us too soon by heart failure 

 



iii 

Acknowledgements 

My journey through my PhD has been a whirlwind, particularly over the last few years, 

which have been a critical and extremely challenging. During this time, I experienced the loss 

several beloved individuals, making it incredibly difficult to concentrate and maintain focus on 

my studies. Their absence deeply affected me adding an emotional strain to an already 

challenging academic journey. 

My background in IT and diverse clinical research experience has empowered me to 

apply novel yet intricate concepts into practical solutions. I am forever grateful for the 

opportunity presented to me, and I am determined to continue on this path with success. When 

I first began working on my PhD proposal, I initially grappled with uncertainty regarding how 

to achieve my aims and objectives I set for research. However, collaboration with talented 

professionals from various fields has enriched my perspective and helped me stay in the right 

direction. Their support and insights were invaluable, helping me stay on track even with I 

doubted myself. Embracing this challenge brings me immense joy and fulfilment. 

With deep appreciation, I extend my heartfelt gratitude to Dr. Chandrasekhar 

Kambhampati whose patience, encouragement, and unwavering guidance have been 

instrumental throughout my journey. Without his invaluable support, completing this thesis 

would not have been possible. I am profoundly grateful to Professor Andrew Clark for his 

immense support during my PhD. His expertise provided me with confidence and tools needed 

to negate the complexities of my research. Mentorship I received from Dr. Kambhampati and 

Prof Clark has not only shaped my academic growth but also profoundly influenced my 

personal development. They helped me in every stage of PhD, and I am particularly grateful 

for their support when I was at my lowest around the time of the loss of my loved ones. I also 



iv 

want to express my sincere thanks to Prof. John GF Cleland for his support whenever I sought 

his help. His willingness to assist and his valuable insights have been crucial in helping me 

overcome various challenges during my research. I am particularly thankful to be constantly 

surrounded by amazing people. I’d like to thank Prof Alyn Morice, Wayne Sheedy, Rachel 

Thompson and other members of Cardiology and Respiratory research teams for helping me 

along this journey. I am grateful to Professor Morice for allowing me the time to finish my PhD. 

I dedicate my PhD to my loving parents, Abbu Ji (Syed Abdul Hussain Shah Kazmi 

and Ammi Ji (Syeda Zakia Kazmi) and brother Bhaiya (Syed Zahid Hussain Kazmi). Though 

they are no longer with me physically, their unwavering belief in me and my aspirations 

throughout my life has been a source of great strength. If they were alive today, I know they 

would be incredibly proud and overjoyed by this achievement. I take comfort in the thought 

that they are watching over me from the heavens, sharing in my happiness and success. 

I am also grateful to my dear sisters, Syeda Tasneem Kazmi, Syeda Fozia Kazmi, and my 

brothers, Eng. Syed Shahid Hussain Kazmi and Dr. Syed Khurran Kazmi. Their continuous 

support and encouragement have been invaluable, without which I could not have reached this 

significant milestone. Their presence and reassurance during challenging times reminded me 

of the importance of balance beyond academia. Words cannot fully express how much their 

support has meant to me, and I am deeply thankful to have such wonderful siblings by my side. 

I want to express my heartfelt gratitude to my beloved wife, Syeda Saleha. From the last few 

years journey, when everything was so tough for me you've been there for me every step of the 

way. Your unwavering support has been my greatest strength during these years. You've 

brought me immense happiness and peace, even during the most stressful times.  

With you all by my side, I feel like I can achieve anything. Thank you for everything, my dears.  



v 

Publications and Conferences 

I hereby confirm that the material in this thesis is the result of my original work. 

Portions of this research have been presented at various conferences and published in 

academic journals. During the period of my PhD, I have more than 40 publications including 

abstracts.  The list of publication can be seen on 

https://scholar.google.co.uk/citations?user=5lIT1m8AAAAJ&hl=en  

The following are directly relevant to my PhD 

 

Publications 

Kazmi S, Kambhampati C, Cleland JGF, Cuthbert J, Kazmi KS, Pellicori P, Rigby AS, Clark 

AL. Dynamic risk stratification using Markov chain modelling in patients with chronic 

heart failure. ESC Heart Fail. 2022 Oct;9(5):3009-3018. doi: 10.1002/ehf2.14028. Epub 

2022 Jun 23. PMID: 35736536; PMCID: PMC9715820.  

 

Kazmi S, Kambhampati C, Cleland JGF, Cuthbert J, Kazmi KS, Pellicori P, Rigby AS, Clark 

AL. Disease progression in chronic heart failure is linear. Insights from multistate 

modelling. EURJHF. European Journal of Heart Failure. 

 

Conference Abstracts 

Absorbing Markov Chains for modelling progress of patients with heart failure: a case study of 

Hull Life Lab Authors: S Kazmi (Hull,GB), J G Cleland (Glasgow,GB), C Kambhampati (Hull,GB), P 

Pellicori (Glasgow,GB), A Rigby (Hull,GB), A L Clark (Hull,GB) ESC - European Society of 

Cardiology, 2020 

 

 

 

https://scholar.google.co.uk/citations?user=5lIT1m8AAAAJ&hl=en


vi 

Tracking disease progression in patients with heart failure using a Markov chain 

Model Authors: S Kazmi (Hull,GB), J G F Cleland (Glasgow,GB), C Kambhampati (Hull,GB), P 

Pellicori (Glasgow,GB), A S Rigby (Hull,GB), A L Clark (Hull,GB) ESC - European Society of 

Cardiology, 2021 

 

 

Dynamic risk prediction in heart failure using absorbing Markov chains 

Model Authors: S Kazmi (Hull,GB), J G F Cleland (Glasgow,GB), C Kambhampati (Hull,GB), P 

Pellicori (Glasgow,GB), A S Rigby (Hull,GB), A L Clark (Hull,GB) BSH British society of Heart 

Failure, 2020 

  



vii 

List of Abbreviations 

ACE Angiotensin-converting enzyme inhibitor 

6 Min 6 Minutes’ walk test 

AI Artificial Intellegence 

AMC Absorbing Markov chains 

ARB Angiotensin receptor blocker  

Bb Beta-blocker 

BL Baseline 

BMI Body mass index  

BP Blood pressure 

bpm Beats per minute 

BSE British Society for Echocardiography  

CHF Chronic heart failure 

CUR Current 

CV Cardiovascular 

Demo Demography 

E.g. , For example 

ECG Electrocardiogram 

Echo Echocardiogram 

EF Ejection fraction 

eGFR Estimated glomerular filtration rate 

ESC European Society for Cardiology 

FU Follow up 

HeFNEF HF with a normal (or “preserved”) ejection fraction 

HeFPEF HF with preserved left ventricular ejection fraction  

HeFREF HF with reserved ejection fraction 

HES Hospital episode statistics 

HEY Hull East Yorkshire 

HF Heart failure 

HLL Hull LifeLab 



viii 

HR Hazard ratio 

i.e., For that 

IQR Interquartile range 

kNN k-nearest neighbour algorithm 

LOCF Last Observation Carried Forward 

LVI Left ventricular impairment 

LVSD Left ventricular systolic dysfunction 

MAR Missing at random 

MC Markov chain 

MCAR Missing completely at random 

ML Machine learning  

MNAR Missing not at random  

MRA Mineralocorticoid antagonist 

MRI Magnetic resonance imaging 

NHS National Health Service 

NICE National Institute for Health and Clinical Excellence  

NT-proBNP N-terminal pro–B-type natriuretic peptide 

NYHA New York Heart Association class 

ONS Office for National Statistic  

OPD Out-patient department 

PDM Patient data models 

PH Cox proportional hazards (PH) regression 

PPS Palliative performance scales 

QoL Quality of Life 

RMC Regular Markov chains 

SBP Systolic blood pressure (SBP) 

SD Standard deviation  

SVM Support Vector Machine 

TI Transition intensities 

TP Database table 

 



ix 

Abstract 

Heart failure (HF) is a prevalent condition affecting a significant number of individuals 

in the UK, leading to substantial healthcare utilisation and adverse outcomes. Despite 

advancements in treatment and management, the prognosis for hospitalised HF patients 

remains poor, with a one-year mortality rate of 40%. Improving risk modelling and predictive 

assessment is crucial for enhancing patient outcomes and reducing healthcare burden. 

  This thesis aims to analyse HF progression, improve data handling for risk analysis, 

and develop machine learning (ML) models for tracking health status changes and predicting 

risks over the course of the disease. To do this a dynamic risk modelling approach was 

developed and used. This started with the use of a Naïve modelling process with standard ML 

methodology to the use of Markov chains (MC) and multistate modelling (MCM) with 

modified MC. The models incorporated dual temporal perspective to investigate the 

progression of risk which comprises of both short-term and long-term prediction, enabling 

more accurate forecasting of patient outcomes across varying timeframes. 

It was found that  the MSM methods can predict a) hospitalisation and mortality both at 

population level and individual level b) can also determine the number of time visit are made 

to both [Hosp] and [OPD] before patient died. An expected finding of this thesis is that the 

progression of HF is linear and not non-linear as it has been assumed.  At the same, the 

modelling in this thesis contributed valuable insights into the progression of risk in HF and 

underscored the importance of dynamic risk modelling for prognostic assessment. 

Recommendations for future research include further validation and refinement of the model 

to enhance predictive accuracy and clinical utility. 
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 Introduction 

 

 Motivation and research problems 

Chronic heart failure (CHF) is widespread and consumes a lot of healthcare resource 

(Colombo et al., 2008; Ketchum & Levy, 2011; Hutchinson et al., 2014; National Heart Failure 

Audit Report UK, 2019; Taylor et al., 2019; Abel et al., 2024). Patients with CHF have a high 

mortality and are admitted to hospital frequently (Roger, 2013; Shiraishi et al., 2018). The most 

significant contributor to the cost of treatment for CHF is hospitalisation (Shoaib et al., 2016; 

Cuthbert et al., 2024). However, it can be challenging to interpret the epidemiological data on 

heart failure (HF) and its exact scale since there is lack of a definitive gold standard for 

diagnosing HF (Futoma et al., 2015).  Currently, most modelling efforts are focused on 

applying scoring systems to assess the risk of death for individual patients, which might be 

helpful for that patient but it does not capture the patterns of disease behaviour at a population 

level (Ieva et al., 2017; Levin et al., 2018).  

HF is a complex clinical syndrome that results from any structural or functional 

impairment of ventricular filling or ejection of blood (NICE, 2010; Cleland et al., 2012-13). 

Patients with HF can experience breathlessness and fatigue on exertion, together with ankle 

swelling (with generalised swelling due to fluid retention being the most typical reason for 

hospitalisation) (Ingle et al., 2014; Shoaib et al., 2019). Patients frequently experience poor 

quality of life and also mental health problems such as depression (Chang et al., 2006; Cleland 

et al., 2012-13; Cohen et al., 2015).   
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Around 900,000 people in the UK suffer from HF (Cleland et al., 2012-13). More than 

250,000 hospital discharges and deaths were recorded in England and Wales in 2006/2007 

(Cleland et al., 2011). This number is set to rise due to an ageing population, improved survival 

rate and more effective treatment (NICE, 2010; Cleland et al., 2012-13). Unplanned 

readmissions are the main contributing factor to the financial burden on the NHS (Zhang et al., 

2013). 

The overall prognosis of patients with HF who require hospital admission is poor. One-

year mortality of newly diagnosed patients is around 40%  (NICE, 2010; Cleland et al., 2012-

13). According to the National Heart Failure audit, there is much room for improvement in HF 

risk modelling (National Heart Failure Audit Team for, 2010; Allen et al., 2012). Increasing 

the number of HF medications alone may not be enough to reduce both the hospitalisations and 

annual mortality rates. (Cleland et al., 2011). However, many strategies to improve the outcome 

of patients with HF have been developed, and some are still in the process of development. 

Many research studies, including randomised controlled trials, suggest that intensified long-

term management, together, where appropriate, with better patient education and effective 

monitoring of treatment, might substantially improve outcomes (Cleland et al., 2011; Cohen et 

al., 2015; Frohlich et al., 2019).  

At present, when “risk” is estimated for individual patients, the risk being assessed is that 

of death or hospitalisation. These two are commonly used as end-points in clinical trials (Inglis 

et al., 2010). Electronic data offer a way of describing the trajectory of the disease course in 

groups of patients and individuals (Sutradhar et al., 2011; Poolsawad et al., 2014; Jiang et al., 

2019). A model which describes how a group of patients might progress after an assessment 

for possible HF would be helpful to allow healthcare economies to understand how a whole 
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population of patients might behave (Braunwald, 2015; Krajewska et al., 2017; Zhang et al., 

2018b; Kazmi et al., 2022).  

 

 Research Aims and Objectives 

The overall aim of the study is to enhance our understanding of the dynamic nature of 

HF, which will, in turn, help us to develop risk models to predict and then manage risk better. 

The data source used in this thesis is the Hull LifeLab (HLL) (Masini et al., 2022), a large, 

epidemiologically representative population of patients with HF (see chapter 4). The thesis 

explores the potential methodology with a focus on HF, but is generic for chronic diseases, 

such as chronic lung or kidney disease. The study adopts a dual temporal perspective, focusing 

on both short term (immediate) and long term (extended) prediction. This allows for a 

comprehensive analysis of the disease’s progression and improve risk prediction, thereby 

allowing the development of management strategies tailored to the needs of both patient groups 

and individuals. This may lead to the development more effective and timely interventions to 

improve patient outcomes.  

The aims and objectives of the thesis are:  

1. To explore the progression of HF using data. 

Investigate various methods for analysing and modelling changes in patients’ health 

over time. This will allow for the development of a comprehensive understanding of 

how HF disease progresses in patients. Particularly the distinct phases of HF (such as, 

acute, unstable, and stable periods) 
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2. Investigate and explore the practical challenges present in clinical data for dynamic risk 

analysis of patient(s). 

There is need for both exploring and understanding the nature of data, and also 

structuring appropriately for any form of risk analysis. This will allow the development 

of appropriate strategies to improve handling of data, and thus make the construction 

of methodologies for assessing the risk of adverse events in HF patients in the long term. 

This will also allow for a better understanding of the definitions of HF health states and 

thus make modelling of risk at various stages more efficient. 

3. Develop dynamic risk models and trajectories for both groups of patients and individual 

patients.  

Create advanced predictive models using machine learning techniques, based on Multi-

state data. Identify the nature of the distinct phases of HF (such as, acute, unstable, and 

stable periods) from both the models and data. Thus allowing the demonstration of 

accurately tracking of health status changes and risk prediction for death or 

hospitalisation.  

 

 Thesis Structure  

This thesis describes the various methodologies and algorithms for understanding the 

trajectories of HF. In order to do this, the thesis has 8 further chapters. These are as follows: 

Chapter two: This chapter describes the nature of HF, and provides the context for 

understanding the progression of CHF (clinical perspective). There needs to be a better 
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understanding of difference between progressive and non-progressive chronic disease. Such an 

understanding will allow for the structuring of data for progressive risk analysis. This 

information is vital for implementing dynamic risk modelling, which incorporates current 

health states to predict future shifts in a patient's condition. 

Chapter three: This chapter provides (methodological perspective) an overview of the 

dynamic risk methodologies. It explains the concepts of "trajectory" and "dynamic risk” 

analysis, and highlighting the key differences between the two approaches of risk modelling. 

The chapter also covers various methodologies and mathematical definitions used to represent 

changes in health status over time, highlighting the diverse approaches to modelling health 

trajectories.  

Chapter four: This is where the data is described. It gives a detailed overview of HLL, 

outlining its structure and the clinical information it contains. For dynamic risk analysis and 

modelling, longitudinal data is required. However, the data in HLL consists of variables of 

patients at each visit to the clinics or hospitals; in other words, it is neither longitudinal nor 

episodic. Thus the data needs to be structured and reorganised into longitudinal health events. 

This will naturally involve all the challenges associated with the handling of clinical data, for 

example, misaligned samples; missing values, and non-normal distributions. As a result, the 

chapter offers detailed processes and recommendations for overcoming these issues, using 

specific examples that are generic across the board for these kinds of problems. Individual 

patient case examples are also used to both illustrate and enhance the understanding of disease 

progression in patients with HF. This chapter covers both clinical and methodological interplay. 
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In Chapter five machine learning techniques are applied to classify the HLL population. 

Two strategies are used to define the data, (a) Binary classification where the two classes are 

alive or dead and, b) where the alive patients are further divided. Thus the three classes are out-

patient visit or hospitalisation and dead (multiclass classification). Three different machine 

learning methods are applied to the data to show how the models perform under different 

conditions. The chapter helps to identify data imbalances and extract other meaningful 

knowledge from a large dataset. It also illustrates the standard approach to dynamic risk 

modelling is naïve and perhaps insufficient for accurate predictions.  

The development of dynamic risk models is carried out in Chapter six. Here the model 

is based on Absorbing Markov chains to model the progression of CHF. These models, require 

that the patients can be described using a finite number of mutually exclusive and exhaustive 

distinct states.  The models allow us to see if events at an early stage can predict what is the 

likely eventual outcome during a subsequent follow-up. The data is then divided further using 

demographics of Age and Sex in order to better understand the differences in the progression 

of CHF and its dependencies on the demographics.  

Chapter seven builds on the work in Chapter six by including clinical covariates (such 

as demography, aetiology, vital signs, blood test results, and treatment) to examine their 

influence on transitions between mutually exclusive clinical states. The scale of prediction also 

broadens, covering both short-term and long-term behaviours of the model. It also facilitates 

model validation over a five-year span based on yearly cycles. This allows us to derive the risk 

of transition between states, which in turn allows a greater understanding of the course of 

disease progression.  
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The results derived from the multistate risk model (developed in Chapter 7) are presented 

in Chapter eight. 

The thesis is concluded in Chapter nine. In this chapter, the key findings are associated 

with the objectives, and they are discussed. Based on this the chapter also recommendations 

for future work, suggesting areas for further investigation and potential improvements to the 

methodologies developed in this study.  
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 Background    

 

 

This chapter aims to build a foundation of understanding regarding the progression of 

CHF. This provides the essential background information and context form the clinical 

perspective needed for this thesis. The primary goal of this study is to predict risks in heart 

failure patients using a dynamic approach. By analysing patterns over time, I aim to enhance 

these patients' risk assessments' accuracy and timeliness. Understanding the dynamic nature of 

chronic diseases is crucial to illustrating how these conditions evolve and impact patients over 

time. It highlights the need for detailed approaches for effective management and intervention.  

I started by exploring the complex nature of CHF, highlighting the challenges of managing 

long-term health conditions. The chapter also discusses the difference between progressive 

and non-progressive nature of chronic diseases to understand how their courses differ. Based 

on the foundational knowledge, I will explore various trajectories of heart failure can take in 

later chapters. 

 

 Dynamic nature of chronic diseases 

Chronic diseases are long lasting health conditions that remain over a prolonged period, 

often spanning years or even a lifetime. (Megari, 2013; Diaz et al., 2015; Benkel et al., 2020). 

Chronic illness can be complex and usually have different stages, evolving due to various 

internal and external factors. Internal factors in the context of chronic diseases could include 

genetic predispositions, immune system function, hormonal imbalances, and overall health 
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status. External factors might encompass environmental exposures, lifestyle choices (such as 

diet, exercise, and stress levels), access to healthcare, socioeconomic factors, and exposure to 

infectious agents or toxins. These factors collectively contribute to the development and 

progression of chronic diseases. 

Over the last decade, significant transformations have occurred in disease and health 

trend investigation. In traditional epidemiology the exploration of the association between 

exposure and outcome is often simplified into two states: having the disease or not having it 

(Shih et al., 2009). This approach limits the understanding of disease progression, especially 

for chronic ones (Pearce, 1996). Effective management of chronic diseases usually involves 

long-term treatment plans, including medication, lifestyle modifications (such as diet and 

exercise), and regular monitoring by healthcare professionals.  

 

 Progressive and non-progressive chronic diseases  

Many chronic illnesses are progressive, meaning they worsen over time. Example 

includes certain types of cancer, Type II diabetes and Alzheimer’s disease. Management 

focuses on slowing disease progression, controlling symptoms and improving quality of life. 

Chronic diseases with non-progressive nature may follow different trajectories, remaining 

stable or improving with treatment, and patients may experience periods of remission where 

symptoms are minimal or absent. Example include heart failure, asthma, rheumatoid arthritis 

and certain types of diabetes, all of which may exhibit different trajectories. There is a need for 

a comprehensive framework that helps to deal with the dynamic nature of non-progressive 

chronic diseases and addresses specific patterns observed during distinct phases, including 

acute, unstable, and stable periods (Corbin, 1998; Salonen et al., 2019; Naumzik et al., 2023).   
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 The trajectory perspective in chronic disease 

 

Implementing chronic illness trajectories in practice presents challenges (Hupcey et al., 

2009), which often leads healthcare practitioners to prioritise symptom-focused care, perceived 

best practice over addressing the underlying patterns or courses of disease (Lubkin & Larsen, 

2013). The practical application of chronic disease management requires longitudinal 

monitoring due to the recurrent and prolonged nature of trajectory phases, which can span 

weeks, months, or even years. A systematic framework (which encompasses the strategies, 

tools, or models) is needed to identify the shifts in the trajectory, providing valuable insights 

to health care professionals to adapt better and update treatment plans to address the evolving 

nature of the disease for more effective patient care (Moshkovich et al., 2020; Naumzik et al., 

2023). This includes identifying recurrent phases and their relationship with symptoms and 

knowing when to update the treatment plan, among other considerations.  

 

2.3.1 Key elements of health trajectories research 

The concept of health trajectories refers to the patterns over time. The understanding the 

dynamics and reasons behind these changes is crucial for identifying those at greatest risk of 

adverse events (Henly et al., 2011; Salonen et al., 2019).  Health trajectory research focuses on 

understanding changes in individuals, groups, or communities. This contrasts with cross-

sectional research which examines differences among individuals at a single time point. While 

findings from typical cross-sectional designs are focused on variable-centred and remain static 

(Salonen et al., 2019). Health trajectory research includes various approaches (Henly et al., 

2011):  
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• Observational studies examine natural health progression over time. 

• Experimental studies use trajectories to understand intervention effects. 

• Clinical course investigations analyse individuals' clinical journey, considering self-care 

and professional interventions. 

 

2.3.2 Longitudinal data 

Longitudinal data involves collecting information from individuals or groups over time. 

This type of data is essential for studying dynamic nature of chronic diseases (Sutradhar et al., 

2011; Poolsawad et al., 2014; Sutradhar & Barbera, 2014; Jiang et al., 2019). Statistical 

analysis using longitudinal data provides insights into the natural progression of health over 

time, facilitates the identification of patterns and trends (Roger, 2013; Braunwald, 2015; 

Krajewska et al., 2017; Zhang et al., 2018a). This allow researchers to investigate adverse 

events, enables them to development of predicted models for different patient groups or at 

population levels. Also, help design personalised interventions to address patients' unique 

needs effectively. 

In longitudinal data analysis, trajectories are characterised by several key components: 

an initial point (the value at a specified time zero), a form or shape defined by a mathematical 

function, the rate of change over time (speed), and any changes in the rate (acceleration) (Henly 

et al., 2011). 

To simplify the above statement, I can say that trajectories are like paths that show how 

things change over time. They start from a certain point, follow a particular shape or pattern, 

and can speed up or slow down (rate of change) as time passes. Sometimes, they might even 

change how fast they change (acceleration). These descriptions help us understand the 
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dynamics of changes (how things develop or evolve throughout a study). In trajectory analysis, 

considering the timing (“time”) and circumstances (“context”) surrounding changes in health 

status or outcomes become more crucial for accurately capturing and interpreting patterns of 

development or decline (Henly et al., 2011; Neale, 2015). Incorporating these two dimensions 

into research methodologies enhances the depth and applicability of findings, providing a more 

comprehensive understanding of how chronic diseases evolve and how individuals' health 

trajectories are influenced by their life circumstances. 

 

2.3.3 Classification of patients into subgroups 

The health trajectory modelling aims to classify individuals into distinct subgroups who 

share similar response patterns. These patterns can vary significantly depending on the nature 

of the study and the variables being measured. For example, patients may be grouped based on 

different trajectories of symptom severity, such as variations in pain intensity scores over time 

(Busch, 2002). In a study tracking the effectiveness of a new medication for pain management, 

the response pattern might show how pain levels fluctuate over time in participants receiving 

the medication compared to those receiving a placebo.  

After identifying subgroups the trajectory classes can serve as either a dependent 

variable, helping to identify predictors of health trajectories, or an explanatory variable, 

allowing exploration of their effect on future health outcomes (Nguena Nguefack et al., 2020). 

Trajectory membership refers to categorising individuals into specific groups or subgroups 

based on their patterns of change over time about certain variables or outcomes. Figure 2.1 

illustrates the trajectory of rectal temperature for the first patient who underwent direct 

visualisation of their open-heart surgery. The procedure performed at the University of 
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Minnesota in 1952. This was honoured on the Wall of Discovery along the campus Scholars 

Walk.  (Bolman & Black, 2003).  
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Figure 2.1: Direct visualisation of first open-heart surgery. 

This figure is taken from the study (Henly et al., 2011). The surgery employed a simple hypothermia method, using refrigerated blankets to decrease the 

temperature and stop the heart, creating a bloodless surgical field. The temperature was expected to follow curvilinear path: starting from normal, it decreased 

to and was maintained at 28°C (82.4°F) during the operation, and then re-warmed in a water bath until reaching 36°C (96.8°F). (Photo courtesy of LA ink) 
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Figure 2.2 provides a more detailed understanding of how health outcomes change over time 

compared to methods solely based on average values from a sample. The example illustrates 

the method for modelling pain intensity: population average models (top) and trajectory 

modelling approach (bottom). Both models utilize longitudinal data from the same patients 

collected at four occasions (T0, T1, T2, T3 (equally time spaced between each point)). In the 

top graph, the mean score was calculated at each time point for the entire population. In the 

bottom graph, researchers characterized subgroups based on pain intensity levels and 

calculated mean scores based on trajectory membership levels.  

This approach enhances understanding of intra- and inter-individual variability and 

patterns of health outcomes over time. It is valuable for examining the diversity of health 

profiles, identifying vulnerable subgroups needing improved healthcare, and pinpointing 

trajectories leading to the best health outcomes.  

• Intra-individual variability refers to the variations or fluctuations in health outcomes 

observed within the same individual over time. For example, a person's blood pressure may 

fluctuate throughout the day or over a week. 

• Inter-individual variability: This refers to the differences in health outcomes observed 

between individuals within a population at any given time. For example, one person may 

have higher blood pressure than another person at the same age and with similar lifestyle 

factors. 
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Figure 2.2: Methods for modelling pain intensity taken from the (Nguena Nguefack et al., 2020).Illustrated as population average models (top) 
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Figure 2.3 depicts two sets of trajectories: pre-test and potential outcome trajectories after an 

intervention, with time represented as "T".  The study (Campbell & Stanley, 1963) highlights 

the significance of observing changes over time to understand the effects of a treatment or 

intervention. By comparing the trajectories before and after the intervention, researchers can 

draw meaningful conclusions about how the treatment affects the outcomes of interest. This 

before-and-after comparison is crucial for evaluating the effectiveness of interventions and 

drawing insights into their impact on the studied variables. 

 

 

Figure 2.3: Pre-test and post-test trajectories. 

This diagram illustrates individual changes before and after an intervention, as shown in the shaded 

area. The idea is taken from Campbell’s “Experimental and Quasi-Experimental Designs for 

research”, 1st edition, ©1966 Wadsworth, a part of Cengage Learning, Inc. credit to author. 
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2.3.4 Time-dependent data 

In health services, understanding patterns in health status during acute illness relies 

heavily on time-dependent data (Lyons et al., 2023). This includes health history obtained 

through interviews or written self-reports, stored in either paper format or electronic databases 

within medical records. Such data serves as a critical mechanism for diagnosing various 

illnesses and developing effective treatment plans aimed at optimizing health over time 

(Nguena Nguefack et al., 2020). This emphasizes the importance of considering time-

dependent factors in healthcare to provide timely and appropriate interventions tailored to 

individual needs. 

 

2.3.5 Change and Time 

Change, defined as the alteration of a state or experience, is a fundamental aspect 

observed naturally and intentionally in research and clinical settings (Collins & Horn, 1991). 

Traditional methods of describing change, such as subtracting scores from different occasions, 

have known limitations (Harris & Youth, 1967), prompting the need for newer approaches 

focusing on modelling data over multiple occasions (Singer & Willett, 2003; Fairclough, 2010). 

Using modern statistical techniques enable researchers to capture and describe the patterns of 

change within each person’s (intra-individual) health outcomes and clinical variables over time 

(Nesselroade & Ram, 2004; Nguena Nguefack et al., 2020). (Kazmi et al., 2022) suggests that 

in heart failure disease research, the trajectory analysis (baseline, rate and direction of change) 

offers better predictive value for functional outcomes than simply comparing the mean 

difference between two groups.  
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The term 'parameters' in the study refers to the coefficients, constants, equations or 

functions used in Markov and multi-state modelling to represent relationships between 

variables. These parameters are estimated from the data and can provide insight into the nature 

and strength of relationships between variables. 

 Time is crucial in understanding the evolution and interaction of health-related 

variables. Accurately defining and conceptualizing time intervals for trajectory analysis 

presents challenges (McGrath & Tschan, 2004). The relationship between time, individual 

health and illness can exhibit both discontinuous and continuous patterns. Continuous change 

may follow smooth and predictable trajectories, described by simple mathematical functions, 

or fluctuate in complex ways with multiple fluctuations over time. Such variability adds 

complexity to understanding how individuals' health changes.  

Time can moderate the relationship between covariates and changing health status, such 

as age. This process requires a well-designed measurement plan and a thoughtful approach to 

measuring and representing time by the specific research question (Singer & Willett, 2003). 

Researchers should carefully select the type of time measurement, whether using clock time 

(seconds, minutes, hours), calendar time (days, weeks, months, years), biological time (natural 

internal rhythms that regulate physiological processes), or social time (Henly et al., 2003).   
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2.3.6 Design 

Issues as follows: 

• Developing a measurement protocol: This involves creating a systematic plan for collecting 

data to uncover trajectories of change in health indicators over time. 

• Establishing a time measurement and coding scheme: This step involves defining how time 

will be measured and coded in the study, ensuring consistency and accuracy in tracking the 

progression of health trajectories. 

• Utilising appropriate instrumentation: Researchers must select suitable tools and methods 

for effectively collecting and analysing longitudinal data. 

• Cautious selection of the scale and coding of time: The choice of scale (metric) and coding 

method for time measurement is crucial for accurately depicting the nature of the health 

trajectory (continuous or discontinuous) and interpreting its progression. 

Since there is no standard starting point for time, researchers must decide when it begins 

(initial time points or baseline (T0)) for a trajectory, typically selecting theoretically significant 

time-points like the child’s birth, hospital admission or discharge, or the diagnosis of a chronic 

or terminal illnesses. When conducting a study or research, it's important to carefully determine 

how long the observations will take place (the observation period) and how often these 

observations will occur (the frequency of observations). More complex change models may 

require more timed observations to capture key features accurately. Individuals may undergo 

observations at varying schedules, or time-points, and on different occasions within the 

designated trajectory timeframe (described in later chapters) (Singer & Willett, 2003). 
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 Conclusion 

 

This chapter has provided the necessary background and context to understand the progression 

of chronic illness, especially chronic heart failure. It also highlighted the need for detailed 

management strategies and interventions, further explored in the next chapter. The chapter 

differentiated between progressive and non-progressive diseases, setting the stage for 

subsequent discussions on the varied trajectories heart failure can take, which will be further 

explored in later chapters. The importance of longitudinal data in tracking disease progression 

and distinguishing between patients’ current and previous health states is also highlighted. This 

understanding is vital for implementing dynamic risk modelling, incorporating current health 

states to predict future patient conditions shifts. 
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 CHF: Trajectory analysis and Risk modelling 

 

To uncover the underlining progression pattern of the CHF requires more advanced 

predictive models (Braunwald, 2015; Krajewska et al., 2017; Zhang et al., 2018a). Standard 

statistical tools often lack the dynamic adaptability and precision that artificial intelligence (AI) 

and machine learning (ML) can provide. Given the poor overall prognosis for patients with 

heart failure who require hospital admission (Shoaib et al., 2019; Abel et al., 2024) and the 

high mortality rate (NICE, 2010; Cleland et al., 2012-13; Sokoreli et al., 2016; Shiraishi et al., 

2018), there is significant room for improvement in HF risk modelling, as highlighted in 

chapter 2.  

The chapter highlights the diverse approaches used to achieve the thesis's aim of 

dynamically predicting risk in patients with HF. This requires a deep understanding of the 

concepts of "trajectory" and "dynamic risk” analysis. The concepts for these two methods are 

related yet different from each other. Understanding both concept is essential for developing 

risk prediction models that aid in patient care and healthcare planning for CHF. Various 

methodologies and mathematical definitions used to represent changes in health status over 

time are discussed in later sections.  

 

 Statistical models for change 

As discussed above, for patients with CHF, the clinical interest encompasses the 

dynamics of disease progression, not just the final outcome (Khand et al., 2001; Ieva et al., 

2017; Jiang et al., 2019; Kazmi et al., 2022). Longitudinal data with time-dependent capability 
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offer ways to describe the change in the trajectory of the disease course across various groups 

of patients (Sutradhar et al., 2011; Poolsawad et al., 2014; Jiang et al., 2019). Constructing a 

model to describe how a group of patients might progress following an assessment for potential 

heart failure could be beneficial. (Braunwald, 2015; Krajewska et al., 2017; Zhang et al., 

2018a). 

I aim to model the progression of CHF through its acute, unstable, and stable phases by 

translating the trajectory framework into a data-driven dynamic model. Changes in health 

trajectories can manifest in various ways, including stability (no change), gradual improvement 

or deterioration, acceleration or deceleration of progression, or complex fluctuations across 

different phases. Capturing these details requires sophisticated statistical techniques. 

Addressing these challenges allow researchers can gain deeper insights into the progression of 

chronic conditions like heart failure and develop more tailored interventions to improve patient 

outcomes (Cudeck & Klebe, 2002; Collins, 2006).  

 

 Approaches used for analysis and modelling change   

 

Three main methods are used to study change patterns or sample subgroups. 

Nonparametric methods, such as clustering algorithms like k-means and hierarchical 

clustering, do not assume any specific data distribution. These techniques rely on dissimilarity 

measures to assign individuals to subgroups, making them valuable for grouping individuals 

based on similarity without preconceived assumptions about data generation. Here’s an 

example to illustrate the concept: let's say I have a dataset containing information about the 

health status of individuals over time, including variables like blood pressure, cholesterol levels, 
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and body mass index (BMI). Based on these variables, I want to identify subgroups of 

individuals with similar health trajectories. k-means clustering, the algorithm groups 

individuals into clusters based on their similarity in health status over time. It does this without 

assuming any specific distribution of the data. The algorithm iteratively assigns each individual 

to the cluster whose mean health status is closest to their observed values. Hierarchical 

clustering groups individuals based on the similarity of their health status trajectories, forming 

clusters hierarchically. At each step, the algorithm merges the two most similar clusters until 

all individuals are grouped into one large cluster. These nonparametric methods allow us to 

identify meaningful subgroups of individuals with similar health trajectories without imposing 

any assumptions about how the data were distributed.   

Parametric approaches, like Gaussian Mixture Models (GMMs) and Hidden Markov 

Models (HMMs), presuppose that data arise from finite mixtures of distributions, assigning 

subgroups based on conditional probabilities. Let's consider an example in a clinical setting 

where I am analysing trajectories of depression severity over time among patients undergoing 

treatment. Gaussian Mixture Model - GMM: In this approach, I assume that the distribution of 

depression severity scores among patients follows a mixture of Gaussian distributions. Each 

Gaussian component represents a subgroup of patients with distinct trajectories of depression 

severity. For instance, one component might represent patients who experience a rapid 

reduction in depression severity after starting treatment. In contrast, another component might 

represent patients whose severity remains relatively stable over time. The assignment of 

patients to these subgroups is determined based on the conditional probabilities of their 

observed depression severity scores given the parameters of the Gaussian mixture model. 

Hidden Markov Model - HMM: Here, I assume that patients transition between different states 

of depression severity, with each state corresponding to a different trajectory pattern. A set of 

hidden transition probabilities governs the transitions between states. These transitions are not 
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directly observable but are inferred based on the observed depression severity scores. Patients' 

subgroup assignments are determined based on the sequence of observed depression severity 

scores and the estimated parameters of the HMM. 

Semi-parametric approaches combine features of both nonparametric and parametric 

methods. Doing so offers a versatile modelling approach while still integrating certain 

parametric assumptions. This balance enables researchers to capture complexity in trajectory 

analysis while benefiting from the structure provided by parametric models. Examples of semi-

parametric methods include Local Polynomial Fitting and Kernel Density Estimation. This 

categorization offers a structured overview of available methods for analysing trajectory 

patterns and identifying sample subgroups, aiding researchers in selecting the most suitable 

approach for their studies. Let's consider a clinical study investigating the trajectories of pain 

intensity following a surgical procedure. In this scenario, semi-parametric approaches could be 

applied to analyse the trajectories of pain intensity over time. For instance, researchers may 

use: Local Polynomial Fitting to model the trajectory of pain intensity, allowing for flexibility 

in capturing complex patterns of change while still incorporating some parametric assumptions. 

This method could help identify subtle variations in pain intensity trajectories among different 

patient subgroups, such as those with varying preoperative pain levels or different surgical 

interventions. Kernel Density Estimation could be employed to estimate the probability density 

function of pain intensity at different time points post-surgery. This approach would provide a 

smooth representation of the distribution of pain intensity over time, allowing for identifying 

distinct peaks or clusters in the trajectory data. 
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By utilising semi-parametric methods like Local Polynomial Fitting and Kernel Density 

Estimation, researchers can effectively analyse the trajectories of pain intensity while striking 

a balance between flexibility and structure in their modelling approach. This enables them to 

uncover nuanced patterns in pain intensity trajectories and identify subgroups of patients with 

differing experiences of post-surgical pain. 

 

 Functions 

 

Figure 3.11  displays various mathematical functions used to represent changes in 

health status over time (Cudeck & Klebe, 2002). Each function has a unique set of rules, 

known as parameters, which create distinct graph patterns. 

• Constant functions maintain the same value over time, but they can be distinguished by a 

parameter called κ, which determines their starting level when time is 0. 

• Linear functions represent steady changes and are defined by two parameters: π0 

represents the initial level at time 0, and π1 represents the rate of change (often referred as 

the slope) per unit time.  

• Quadratic and higher-order polynomial functions effectively illustrate changes that 

accelerate or decelerate over time. 

 
 

1 H(t) denotes health over time, with constant, linear, and quadratic functions being types of 

polynomials. The exponential function uses the constant 𝑒, approximately 2.718, which is serve as 

base of natural logarithms. A piecewise function changes its form at a specific point in time 𝑡j, where 

𝑗 indicates the change point; usually, graphs of piecewise functions are linear on either side of 𝑡j. 

. 
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• Exponential functions exhibit extreme values at the beginning (ξ), eventually levelling off 

(α, the asymptote), and vary in the time it takes to transition from the extreme value to the 

levelled-off value (ρ, the rate). 

• Piecewise functions represent different types of changes during distinct periods. 

These mathematical functions offer valuable tools for visualizing and understanding the 

dynamics of health status changes over time. 
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Figure 3.1: Mathematical function used to model change (Henly et al., 2011) 
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3.3.1 Complementary techniques and extensions 

The advancements in statistical modelling over the past three decades have led to the 

development of more flexible versions of the basic model for studying changes (Skrondal & 

Rabe-Hesketh, 2004). These extensions, as summarised in Figure 3.2, serve various purposes 

and offer researchers various options depending on their research questions and the data 

available. For modelling changes in health outcomes measured in longitudinal studies, 

researchers can choose from various approaches categorized into three main groups: 

nonparametric, parametric, and semi-parametric methods and algorithms (described above). 

Each of these approaches has its strengths and limitations. (Nguena Nguefack et al., 2020).  
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Figure 3.2: Enhancements of the standard random-effect model for change. Supplementary methods and case studies (Henly et al., 2011) 
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 Illness trajectory vs dynamic risk analysis for heart failure 

As explained earlier, the concepts of "trajectory" and "dynamic risk" modelling are 

related but distinct in terms of definition and purpose.  However, in this thesis, I used trajectory 

to understand the patterns in disease and based on these changing patterns I then developed the 

dynamic risk models. 

 

3.4.1 Trajectory analyses  

• Definition: A trajectory in healthcare refers to the path or progression of a disease or 

health condition over time. This can include the rate at which a disease progresses, its 

stages, and any potential outcomes. 

• Purpose: The concept of trajectory is used to categorize and predict the course of a 

disease in an individual or group. Understanding these trajectories helps healthcare 

providers anticipate patients' needs, manage expectations, and plan interventions.  

• Focus: Trajectories are primarily concerned with the pattern of a disease's progression 

or stability. They provide a longitudinal view of how a condition evolves, highlighting 

improvement, stability, or decline. 

 

3.4.2 Dynamic Risk analysis 

• Definition: Dynamic risk modelling involves using statistical techniques and data 

analysis to predict future health outcomes based on current and historical patient data.  
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• Purpose: The main goal of dynamic risk modelling is to identify individuals at high 

risk of developing a disease or experiencing a worsening of their health condition. 

These models enable targeted interventions, efficient allocation of resources, and 

personalised care plans to mitigate risks. 

• Focus: Unlike trajectories, which describe the course of a disease, dynamic risk models 

are focused on quantifying the likelihood of future events or outcomes. They integrate 

various risk factors and patient data to provide a probabilistic assessment of what might 

happen to a patient's health status in the future. 

 

3.4.3 Key differences 

• Application: Trajectory analysis is used to understand and describe the course of a 

disease, while dynamic risk modelling is used to predict future health outcomes and 

inform intervention strategies. 

• Data Use: Trajectories are mapped based on longitudinal observations of disease 

progression. Dynamic risk models utilize these observations along with a broader range 

of data inputs (e.g., demographic information, lifestyle factors, genetic information) to 

generate predictions. 

• Outcome: The outcome of trajectory analysis is a descriptive understanding of how a 

disease progresses. In contrast, the outcome of dynamic risk modelling is a predictive 

insight into individual or population-level risks. 
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 Dynamic process models 

My main focus is dynamic process modelling, which will offer a comprehensive 

approach to a) capture changing needs of patients with heart failure, b) foster more nuanced 

and effective management strategies and c) improve patient quality of life (QoL), decrease the 

burden of hospitalizations, and extend survival. 

Patient will be categorised according to identified patterns and stages of the HF disease. 

These stages can be categorised broadly into: 

• Stable: Patients may have periods where symptoms are controlled, and the disease 

progresses slowly. 

• Acute Decompensation: Episodes where symptoms suddenly worsen, often requiring 

hospitalization. 

• Gradual Decline: A steady worsening of the condition with increasing symptoms, 

frequent hospitalizations, and reduced quality of life. 

• Terminal: These are the final stages of heart failure, when treatments become less 

effective, and palliative care may be considered. 

These categories of HF patients will be used to forecast the likelihood of future  adverse 

events, such as hospital readmission, period of stability or deterioration in health status, or 

mortality. Key components of dynamic risk modelling include:  

• Data integration: Incorporating a wide range of data, including clinical measurements, 

patient-reported outcomes, laboratory results, and more. 
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• Risk Stratification: Classifying patients based on their risk of future adverse events, 

which can guide the intensity of monitoring, treatment decisions, and resource 

allocation. 

• Predictive modelling: Employing statistical and machine learning techniques to 

analyse patterns in the data and predict future outcomes. 

 

Trajectory analysis is typically performed with discrete-time data (Salonen et al., 2019) 

and dynamic process models are more versatile in handling discrete and continuous data and 

use differential equations. Based on the nature of the underlying processes, dynamic process 

models can be categorized into two main types. 

1. Discrete Stochastic Processes: In this dynamic process model, the state variables 

change in discrete steps or intervals. 

2. Continuous Stochastic Processes: These models involve systems where changes 

occur continuously over time.  

The choice between discrete and continuous stochastic processes depends on the 

modelled system's nature and research objectives. It's important to note that growth functions 

are more commonly associated with continuous processes, while Markov chains are typically 

used to model discrete-time processes. The use of growth functions within the context of 

Markov chains may require additional considerations and adaptations to fit the discrete-time 

nature of the model (implementation of such format is discussed in chapter 6). 
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3.5.1 Markov chains models 

 

Markov chains offer valuable insights into the progression of CHF, but the effectiveness 

of these methods is hindered by challenges in organising and analysing longitudinal data. 

Longitudinal data, obtained by following individuals over extended periods, often lack proper 

organisation, making it difficult to extract meaningful insights into disease progression. 

Additionally, there is a notable absence of comprehensive guides that cover the basics, data 

types, procedural steps, and suitable statistical tools for analysing CHF progression. 

Furthermore, the lack of clear instructions for reporting the results of such modelling 

exacerbates the problem, hindering the dissemination of findings and limiting their utility in 

clinical practice. 

 

Markov chains model a wide range of dynamic processes in healthcare research by 

providing a flexible framework for analysing and simulating transitions between different 

health states over time (Andersen & Keiding, 2002). These models are valuable tools for 

understanding disease progression, treatment effectiveness, and predicting future health 

outcomes. Many chronic diseases, such as diabetes, cancer, and cardiovascular (CV) diseases, 

involve a progression through different health states over time. Markov chain models can 

represent these transitions probabilistically, where each health state represents a specific stage 

of the disease (e.g., asymptomatic, symptomatic, severe complications) and transitions occur 

between these states based on probabilities. 
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In the context of Markov chains, the differential equation typically used is the Chapman-

Kolmogorov equation, which describes the evolution of the transition probabilities over time. 

Mathematically, it can be expressed as:  

𝑃𝑖𝑗
(𝑛+𝑚)

= ∑ 𝑃𝑖𝑘
(𝑛)

𝑃𝑘𝑗
(𝑚)

𝑘
 

Where:  

• 𝑃𝑖𝑗
(𝑛+𝑚)

 represents the probability of transitions from state 𝑖 to state 𝑗 in 𝑛 + 𝑚 steps. 

•  𝑃𝑖𝑘
(𝑛)

 represents the probability of transitioning from state 𝑖 to state 𝑗 in 𝑛 steps. 

• 𝑃𝑘𝑗
(𝑚)

 represents the probability of transitioning from state 𝑘 to state 𝑗 in 𝑚 steps. 

 

This equation essentially indicates that the likelihood of transitioning from state 𝑖 to state 𝑗 in 𝑛 +

𝑚 steps is obtained by summing the probabilities of transitioning from state 𝑖 to any intermediate state 

𝑘 in 𝑛 steps, and then from state 𝑘 to state 𝑗 in 𝑚 steps. Chapters 6 and 7 cover further details of Markov 

chains in the development phases of the dynamic risk model for HF.  

  

 Conclusion   

The chapter has provided an overview of dynamic risk methodologies, focusing on the 

key concepts of  "trajectory" and "dynamic risk" analysis. By explaining these concepts, I have 

highlighted the fundamental differences between the two approaches and illustrated how each 

can be applied to understand and predict changes in health status over time. The chapter 

detailed various approaches used to model the changes, emphasising the importance of 

capturing the dynamic nature of disease progression.  
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Insight gained from chapter 2 and 3 sets the stage for the subsequent chapters where I 

translates the concepts of change into multistate models that provide meaningful insights and 

model the changes in health status of patients with heart failure. Next chapter will explore 

different 'risk states'— that describe the levels of severity or stability at any given time of 

patients with heart failure. These risk states help us understand where a person is in their 

journey with the disease. The time intervals between clinical examination and other health 

events is also important (whether it is days, months, or years) to reveal the rate at which the 

heart failure progresses.  

In summary, while disease trajectories provide a framework for understanding the 

progression of health conditions over time, dynamic process models aim to capture the dynamic 

variability of chronic conditions by considering individual differences and temporal evolution 

perspectives. This means considering the changes in a patient's health status from a time-based 

viewpoint, taking into account how these changes occur over short and long periods. Markov 

chains will be utilised in the upcoming chapters to forecast the future shifts in a patient’s 

condition based on their current health state. I also highlighted the importance of longitudinal 

data which is key in tracking disease progression. It helps distinguish between patients’ current 

and previous health states. 
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 Data and methods 

 

This chapter builds on previous discussions in chapters 1, 2 and 3 about CHF and risk 

modelling. The following sections of this chapter will provide a detailed overview of HLL, 

outlining its structure and the clinical information it contains. It will also discuss the challenges 

associated with the handling of clinical data and offers detailed processes and 

recommendations for overcoming these issues, using specific examples that are generic across 

the board for these kinds of problems. Individual patient case examples are also used to both 

illustrate and enhance the understanding of disease progression in patients with HF. 

It has been explained in the chapter 1 that much of the understanding of the natural history 

of HF comes from clinical trials and epidemiological studies. However, clinical trials recruit 

highly selected populations, followed for a short period, to answer specific limited questions 

only. Epidemiological studies do not usually describe detailed patient information and are often 

not longitudinal. Partly to understand the apparent discrepancies, the HLL was designed to help 

understand the modern epidemiology of HF. The purpose is to recruit a large, 

epidemiologically representative population of patients with HF that bridges the gap between 

clinical trials and clinical practice. Utilising longitudinal data obtained from HF patients, I aim 

to enhance my understanding of the dynamic nature of heart failure, which will help use 

develop risk models to predict and manage the risk trajectory better.  
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 Data collection method 

 

4.1.1 Hull and East Riding of Yorkshire 

Hull is unusual in the United Kingdom in being relatively geographically isolated. The 

population is stable with little emigration or immigration. The single Hospital Trust provides 

secondary care to a population of around 500,000 patients. Very few patients are admitted to 

hospitals elsewhere as there are no others within easy travelling distance for the majority of 

people. Hull is deprived but also provides care to the East Riding of Yorkshire population, a 

much more affluent area. 

 

4.1.2 Referral of patients 

A single community heart failure clinic was established by the academic department of 

cardiology in 1998. Referrals are accepted into the service from primary care, as well as from 

cardiologists and other secondary care physicians. Case-finding of in-patients allows referral 

of all recently hospitalised patients to the service. The service aims to see patients within two 

weeks of referral to comply with National Institute for Health and Clinical Excellence (NICE) 

guidance. With each appointment sent out, the patient receives information about the service, 

which also describes the purpose of HLL, together with a quality of life questionnaire.  

Some patients have not been previously diagnosed with heart failure, require the 

initiation of guideline-recommended therapy. Others with pre-existing diagnosis are already 

on treatment that may need optimisation. 
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4.1.3 Structure of service 

 

When first seen in the service, regardless of eventual diagnosis, patients are asked to sign 

a consent form which allows their data to be used in the study. Only those patients who consent 

to inclusion in HLL are included in reports. I cannot know (by definition) how many patients 

have declined to be included. 

Each patient is then seen by a doctor who is either a trainee or a consultant cardiologist, 

with a heart failure specialisation. The patient is systematically reviewed and examined; then 

has a 12 lead electrocardiogram; chest x-ray, and detailed echocardiogram by an echo 

cardiographer with accreditation from the British Society for Echocardiography (BSE) 

following BSE guidelines; spirometry, and standard blood tests, including N-terminal pro-B-

type natriuretic peptide. Blood is also taken and immediately centrifuged for storage as plasma 

and serum in a dedicated -80º C freezer.  

At the initial visit (baseline (BL)), a diagnosis is made, and a treatment plan is initiated. 

The service is designed principally for patients with HF due to reduced left ventricular ejection 

fraction. Still, there are established pathways for patients thought to have valvular heart disease, 

a primary arrhythmia, or symptomatic coronary heart disease. Patients with HF and normal 

ejection fraction are also followed. Patients who have no cardiac diagnosis are discharged to 

their primary care physician.  

Initially, the service was structured that patients were seen four months after their initial 

diagnosis, but as demand has grown, most patients are now seen at six-month intervals. A 

nurse-led service in the community allows up-titration of guideline-directed therapies between 

visits and provides an early review for more vulnerable patients. 
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4.1.4 Data collection 

 

Data are collected using an Access® database. Data entry is as far as possible digital with 

minimal use of text fields. It features a relational database structure, containing a main (central) 

table with unique identifier for each patient, ensuring consistent data recording across other 

tables. There are tables related to past medical history, including co-morbidities. There are 

linked tables collecting separate data on the core modules: physical examination, drug history, 

electrocardiogram, echocardiogram, quality of life, spirometry, and blood tests. At each visit 

for each patient, an entry is made into each of the core tables. There are also tables collecting 

information as required on device implantation, cardiac MRI and angiography results and 6 

minute walk test distance. This information is not need to be collected for all patients. A 

particular effort is made to ensure that each patient in the database has a minimum baseline 

dataset consisting of history, physical examination, medication, NTproBNP, ECG and 

echocardiogram. However, routine clinical testing for NTproBNP only became available from 

around mid-2003. The database also has a decision support tool: advice based on blood pressure, 

heart rate and rhythm, ECG, and current medication prompts the treating physician to consider 

the next therapies. A concise report is generated for the primary care physician and hospital 

records for each clinic visit. The report summarises diagnosis and treatment recommendations 

made by the physician seeing the patient. 

The data are linked to the Office for National Statistic (ONS) mortality data to get the 

date and cause of death. I used the hospital episode statistics (HES) to determine hospital 

admissions at each 4-month interval, using data from 2000 to 2017.  
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A significant portion of clinical research focuses on developing clinical risk models 

using logistic regression or Cox proportional hazards (PH) regression.  These models typically 

don't need long-term data; instead, they often use just the baseline clinical data or maximum 

data of two time-points (baseline and 1 follow-up) to analyse outcomes like death or hospital 

readmission. When developing a dynamic model for predicting the progression of heart failure 

disease, the longitudinal data is needed. HLL presents valuable opportunities of identification 

of risk factors and diseases progression over time. Individual patient case vignettes are 

presented to better understand the complexities involved. Figure 4.1 graphically represents 

each patient's healthcare journey, capturing key events such as OPD follow-ups, admissions, 

and death over time. This visual demonstrates how the data is organized using different 

methods and tools (as described in later sections of this chapter).  
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Figure 4.1: Shows graphically represents 9 cases of patient's healthcare journeyCapturing key interactions such as OPD follow-ups (O), admissions (H), 

neither (N) and Death event (D) over time. BL; baseline OPD, FU; follow up – interval (1, 2, 3, 4 and 5) 
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Figure 4.2 outlines a workflow for development of risk modelling. It outlines a 

sequential process beginning with 'Data exploration', where categorical and continuous 

variables are identified, moving onto 'Data handling', which includes steps for dealing with 

missing data through imputation. The workflow then progresses to 'Classification algorithms', 

featuring various methods such as Decision Trees, Bayesian (i.e., Naïve Bayes classifier), k-

Nearest Neighbors (kNN), and Support Vector Machine (SVM). The final stage is 

development of risk prediction models and then 'Evaluation against', where static models and 

patient data models (PDM) are used for assessment. 

 

 

 

 

 

 

 

 

 Hull LifeLab database 

 

The HLL database is organised into various clinical modules focusing on HF. These 

modules are interconnected via a central table called 'tpMain'. Each patient is assigned a unique 

Hull  
LifeLab 

Data  
exploration 

Data  
handling 

Classification 
algorithms 

Evaluation 
against 

Catagorical 

Continuous 

Missing data 

Imputation 

Bayesian 

DecisionTree 

Static models 

PDM 

K - nearest 

SVM 

Figure 4.2: Data analysis workflow, from initial exploration to naïve Bayes classification & 

model development 
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identifier (Link_ID) and each clinical event is associated with a specific date (Reference_Date), 

which enable precise navigation and aggregation of individual patient data across various 

clinical modules. The events are recorded in a time-series format, meaning that each event is 

logged with a timestamp that allows for tracking the sequence and timing of events. This 

enables the analysis of how patients' conditions and treatments evolve, which is particularly 

important for longitudinal studies and developing predictive models for clinical outcomes. The 

described structure includes only the clinical modules that are relevant to the objectives of this 

study being discussed. The database is designed with robust security measures and access 

control mechanisms to safeguard patient confidentiality. These provisions ensure that sensitive 

patient information is protected, aligning with high privacy and data protection standards. The 

structure (Figure 4.3) is categorised in out-patient (OPD) clinical modules and risk events 

(hospital admissions and mortality data). 
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Figure 4.3: Structure of the HLL Clinical Modules for Analysis. The data presented in the HLL clinical modules is fully anonymised, ensuring patient privacy. Each 

individual in the dataset is uniquely identified by a "Link_ID". Together, the "Link_ID" and the "Reference_Date" correspond to unique entries within the dataset. 

Endpoints such as hospital admissions are linked with the patients' anonymized records by matching through an encrypted NHS/Hey Number. All events in the 

database are logged in a chronological time-series manner, capturing the temporal sequence of healthcare events and interventions for each patient. 
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Table 4.1 shows the table name, description and number of covariates of each clinical 

module. The number included the table joining keys.  

 

Module 

Type 
Table name Table description 

Number 

of 

variables 

OPD 

tables 

tpMain Patient detail 28 

tpDemo Socio-demographical 17 

tpAge Age at each visit 3 

tpExam Medical examination 57 

tpHistoryBL Baseline medical history 66 

tpHistoryCUR Current medical history 66 

tp6min 6 minutes’ walk test 13 

tpBlood Blood tests results 67 

tpECG ECG readings 40 

tpEcho Echo results 98 

tpDrug Medication 138 

tpQoL Quality of life questionnaire  165 

Event 

data 

All hospitalisation (end-point) Hospital admission 42 

All cause deaths (end-point) Mortality 90 

Table 4.1: HLL tables, description of clinical module and number of covariates. 

The number includes table-joining keys. 
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Between January 1st, 2000, and January 1st, 2017, 7,639 patients were referred to HLL 

services. Unless death occurs, a follow-up period of at least 24 months will be considered for 

all patients. The study will end on January 1st, 2019. The end of follow-up will be at the earliest 

of either the end of the study period or the mortality date. 

Table 4.2 outlines the total patients and total records counts in each table. Variations in 

record counts across these tables indicate that not all modules are required for every patient at 

every visit. tpMain, tpAge, tpDemo, tpHistoryBL, and tpHistoryCUR contain a single record 

per patient. Each table contains a larger number of variables, proving a comprehensive dataset 

for developing risk models tailored to the research objective.    

 

Module 

Type 
Table name 

Total 

population 

Number of 

records  

OPD 

modules 

tpMain 7,639 7,639 

tpDemo 7,639 7,639 

tpAge 7,639 29,637 

tpExam 7,610 31,125 

tpHistoryBL 7,628 7,628 

tpHistoryCUR 7,628 7,628 

tp6min 3,311 8,962 

tpBlood 7,166 27,938 

tpECG 7,521 25,933 

tpEcho 7,570 20,198 

tpDrug 7,487 28,912 

tpQoL 6,024 19,262 

Risk Event 
All hospitalisation (end-point) 7,385 77,172 

All cause deaths (end-point)   
Table 4.2: Total population and number of records in each HLL table 
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Blood test results are extensive, with 27,938 records for 7,166 patients (Table 4.2).  

Regarding risk events, there are 77,172 hospital admissions recorded for 7,385 patients, 

suggesting that some patients were admitted multiple times. Considerable effort is required to 

align patient time series data across tables — a challenge that is tackled in a subsequent section. 

Table 4.3 depicts the timing and total number of hospital admissions relative to the BL 

OPD visit. It categorizes admissions into three timing groups: 'Pre', 'Index', and 'Post', 

representing admissions before, on the day of, and after the BL OPD visit, respectively. 

Specifically, there were 32,286 'Pre' admissions before the BL visit, 543 'Index' admissions on 

the day of the visit, and 44,346 'Post' admissions following the BL visit.  

 

Hospitalization  

Timing 

Total 

readmissions 

Pre 32,286 

Index 543 

Post 
44,346 

Total 
77,175 

Table 4.3: Total admissions of HLL population 

'Pre' represents patients’ admissions before the HLL baseline (BL) visit. 'Index' illustrates the day of 

the BL visit. 'Post' represents hospitalisation after the BL. 
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My study primarily focuses on post-baseline OPD cardiovascular (CV) readmissions. Table 

4.4 outlines 44,346 (post) admissions, differentiating CV from non-CV caused of readmissions. 

Of the 6,732 readmitted patients, 25,699 admissions were cardiovascular (CV) events. These 

were subdivided into 7,667 heart failure (HF) and 118,032 other CV admissions. Non-CV 

causes accounted for 18,647 admissions, indicating that some patients experienced multiple 

admissions within the specified time window. 

  

Admission type  (post-  BL OPD ) Total number of admissions  

Cardiovascular 25,699 

- HF Related 7,667 

- Other CV 18,032 

Non-Cardiovascular 18,647 

Table 4.4: Breakdown of post admissions 

Based on whether they are related to cardiovascular issues and non-cardiovascular. Cardiovascular 

admissions are further divided into HF related and other cardiovascular related issues 

 

Table 4.5 displays the distribution of the patients who had post-CV admissions. Out of 

5,948 patients with post-CV admissions, 774 had exclusively HF admissions, 2862 had other 

than HF admissions, and 2,312 had a mix of both HF and other-CV admissions. This data 

provides insights on the prevalence of hospital events, particularly highlighting the incidence 

of cardiovascular-related readmissions.   

 

 

 



51 

 

Patient with  

HF admission only 

Patients with  

other CV only 

Patients with Both HF 

and Other Admissions 

Total 

Patients 

774 2862 2312 5948 

Table 4.5: Distribution of patients based on their (post) admissions 

 

 

 Clinical data and its challenges 

 

Compiling comprehensive medical histories into time series data from real-world 

clinical systems poses significant challenges. The dispersion of data across various tables (as 

shown in Table 4.2), for example, ECG, Echo, and Blood tests with HES and ONS, complicates 

the linking process in HLL's data. It requires extensive validation to ensure accurate data 

linking, clear definitions, appropriate labelling, and precise coding practices. The complexity 

of these tasks increases with the growing volume of data over time. 

OPD visits and admissions occur at varying intervals, resulting in data entries that do 

not follow a uniform timeline. This complicates the data management and integration. The lack 

of uniformity is further complicated due to varying types of events such as cardiovascular (CV) 

versus non-CV admissions. If these issues are not effectively managed, they can undermine the 

reliability and validity of research outcomes. Understanding this, HLL has established 

systematic methods and protocols across all phases of data handling to ensure effective 

management of these complexities. This enhances the accuracy and reliability of research 

outcomes.  Please refer Figure 4.1 for better understanding. 



52 

 

4.3.1 Misaligned sample data 

 

Time series health-care data are considered misaligned when different types of clinical 

information were not recorded at the same time points or intervals. This misalignment can 

occur in two ways:  

• In the first scenario (Figure 4.4), there is intra-individual misalignment when clinical data 

from different tables (like ECG readings, echo results, and blood tests) for the same patient 

are not collected at the same time points. For instance, ECG readings might be taken at 

regular intervals, whereas echo results and blood tests might not, resulting in uneven data 

distribution over the patient's timeline. Additionally, not all clinical information must be 

collected or completed during each patient visit, which can lead to incomplete datasets for 

certain time points. 

• In the second scenario (Figure 4.5), inter-individual misalignment is illustrated, where 

clinical assessment timing is inconsistent across different patients within the research 

population. This indicating a lack of uniformity in scheduling and conducting follow-up 

events. For example, while one patient might have a follow-up after 4 months, another 

might only have theirs after a year. A practical demonstration of misalignment can be given 

during my viva.  
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Figure 4.4: Misaligned sampled data – Time orientated 

 

 

 

Figure 4.5: Misaligned sampled data – Follow up events 

 

 

 

HLL exhibits similar misaligned patterns as described above. To address these 

challenges specialised data management tools were developed to align, and integrate 

information from different tables and time points.  

A visit audit tool, as illustrated in Figure 4.6, is designed to tackle the issue of 

misaligned patient level data (intra-individual) from various OPD visits.  This tool aligns clinic 

records and assigns a visit numbers based on criteria set by heart failure experts to address 

different research questions. As an example, the figure shows the first two years of patient’s 

(link_ID: 68) clinic visits, displaying each visit date in the left column and the number of 

months since their first visit beside.  

Patient A 

Patient B 

ECG 

Echo 



54 

 

 

Figure 4.6: Visit Audit tool. The tool is designed to address the first scenario (misaligned sample data 

– time oriented), when patient (intra-individual) level data from different OPD visits don’t line up 

properly. 

 

This tool is designed to number each clinic visit according to predefined rules. If a 

module is missing for a specific date, the tool searches for the nearest date with available data 

and assigns the visit number accordingly. For instance, the figure demonstrates that an echo 

occurring within ±4 months of the baseline visit is labelled as the BL echo. This method 

streamlines the process by creating a series of visits, each represented in a single row. 

 

 

 



55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To address inter-individual misalignment in research populations three tools streamline 

the dataset for analysis. First, a visit audit tool organizes all OPD visits and associated data for 

each patient in chronological order as closely as possible. Next, the proximity engine (Figure 

4.7) is used to select various patient cohort based on criteria aligned with the research objective. 

For instance, the figure demonstrates how the tool identifies patients’ IDs (link_ID) and dates 

of Echo (Echo_Dates). It then cross-reference other HLL tables and searching for dates within 

Figure 4.7: Proximity Engine 

The tool select a study cohort based on criteria aligned with the research goals. It then conducts a 

targeted search within the modules, using time windows tailored to study requirement. 
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specific ranges (e.g., ± 60 days for ecg, medication, examination;  ± 21 days for blood; ± 120 

for echo). This crucial step consolidates all visit dates from various tables into a unified record 

per line, illustrated by Figure 4.6.  IDs (Link_ID) and dates (Reference_Date). Echo_Dates are 

considered as Reference_Date in this example. 

 

 

Figure 4.8: Duplicate records- obtained through the proximity of Data Engine. 

 

The list is then processed through the Data Engine (Figure 4.9), which retrieves data 

from all selected tables, resulting in a comprehensive list of the study population's data. The 

data is organised to display each patient's records for every visit in a single row. 
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Figure 4.9: Data Engine. The tool is designed to pulls together all necessary clinical variables from 

the respective modules for the selected cohort obtained through proximity engine. 

 

The final step involve gathering events data (e.g. for end-points analysis – all CV 

admissions and all-cause mortality) of selected cohort. This is achieved through End-Point 

Engine (depicted in Figure 4.10).  
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Figure 4.10: End-Point Engine. Tool designed to extracts events (end-points – all hospital admissions 

and mortality). 

 

With complete data including all OPD visits, hospital readmissions, and mortality 

information, researchers can analyse HF progression over time. They explore patient health 

trajectories, observe if conditions worsen, improve, or remain stable, and identify factors 

influencing these outcomes. 

 

4.3.2 Repetitive records and missing values 

 

The data from the final three columns of Table 4.2 reveal two key insights: 
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• Not every clinical test (e.g., tpBlood or tpEcho) are performed at every OPD visit 

for each and; 

•  Within each table there's a risk of repetitive records if not carefully aligned, such 

as one record containing maximum information and another with only one clinical 

variable noted.  

Records appearing as repetitive may not be true repetitive:  

• Visits might have dates very close to one another, giving the impression of 

repetition when they are separate visits within a brief period.  

• Sometimes within the same clinical table different variables may be recorded on 

different dates, resulting in entries close together that represent various aspects of 

one clinical information over multiple visits.   

o These closely time spaced records, reflecting partial completion of clinical 

tables across different dates, could mistakenly be considered repetitive 

without careful examination of the timing and context of each entry.  

However, whether dealing with repetitive records or missing values, both scenarios 

substantially impact the accuracy and effectiveness of predictive risk modelling. This can 

impact the model's ability to forecast outcomes accurately (Cismondi et al., 2013).  

The two most commonly employed strategies for handling missing data involve 

imputing (filling in) the missing values or deleting the records with missing information (Li 

Peng et al, 2015). Each strategy has its own set of pros and cons. The choice between these 

methods often depends on the specific circumstances of the study, but the guidelines for 

preference are not always clear (Brock et al., 2008). Imputation can cause bias, and deletion 

can cause bias and statistical power loss (Cismondi et al., 2013; Li Peng et al, 2015). When 
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using longitudinal data, the direct deletion method can eliminate all the other clinical variable 

collected at a particular time. This can impact the completeness of the patient's health record 

and potentially affect the accuracy of disease trend predictions (Li Peng et al, 2015). 

The simplest methods for handling missing values are Mean or Median substitution, 

which replace the missing values by the mean or median of all the observational values.  Other 

common imputation methods for longitudinal clinical data include: Last Observation Carried 

Forward (LOCF), Linear Interpolation, Predictive Mean Matching, Growth Curve Modelling 

and Multiple Imputation (Poolsawad et al., 2012; Zhang et al., 2012). 

HLL has set up robust procedures and system, as outlined in section 4.3.1, to manage 

missing and repetitive records. In this study, I chose not to use imputation methods. Instead, 

with advice from HF disease experts, I applied specific criteria via the visit audit and proximity 

engines. For example, I filled gaps by identifying and using the nearest available record to the 

reference date. As shown in Table 4.2, out of the 19,019 echocardiogram (tpEcho) records, 669 

were re-selected because they fell within a ±120 days window of the reference date. This 

method allowed us to use actual patient data to address gaps in the dataset. 
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4.3.3 Non-normal distribution 

 

In clinical data analysis, the assumption of a symmetric bell-shaped (normal) 

distribution is rarely met.  Clinical datasets frequently exhibit significant skewness, which can 

lead to erroneous conclusions of statistical analysis. Various techniques exist to check for 

normality. Before moving to detailed analyses, understanding fundamental concepts and 

recognizing different data shapes seen in initial exploration is important. This understanding is 

essential for selecting appropriate methods to address non-normality. 

Observing the shape of the data distribution and plotting (visual representation) is a better way 

to describe uncertainties in the dataset (David, 2011; Anderson & Druker, 2013; Anderson, 

2014). Data distribution is typically categorized into three main shapes: symmetric, left-

skewed, and right-skewed, as shown below.  

 

Figure 4.11: Distribution shapes and Skewness 

 

Clinical variables assessing health status often show asymmetric, long-tailed 

distributions, skewing right (Counsell et al., 2011). This means that most individuals have low 

values, while only a few have large values, often indicating a specific illness. To analyse non-

normal distributions, transforming the data might be needed. Transformations like logarithmic, 

square root, Box-Cox, and reciprocal help make skewed data resemble a normal distribution. 

Statistical analyses often use distributions like Binomial, Poisson, Uniform, Normal 

Mean = Median = Mode Mode < Median < Mean Mean < Median < Mode 
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(Gaussian), and Negative Exponential (Glasgow Caledonian University, 2012). The Normal 

distribution, vital for continuous variables, shows data trends through its bell-shaped curve, 

which extends infinitely in both directions, as shown in Figure 4.11. 

As illustrated in Figure 4.12, the curve of a normal distribution approaches but never 

touches the horizontal axis, extending beyond about 3 standard deviations from the mean. The 

probability density function's equation (4.1) involves parameters µ (mean) and σ (standard 

deviation), where approximately 68% of values lie within one standard deviation (SD) of the 

mean. The SD measures the average distance of values from the mean, squared and then square-

rooted. 

 

Figure 4.12: Standard normal distribution.  

 

We meet standard normal distributions (SDs) later in the thesis represented as Z-scores; chapter 8. 

 

 

   

 

(4.1) 

Equation 4.1: Probability density function's equation 

 

 
68% of all values will lie within µ ± σ 

95% of all values will lie within µ ± 2σ 
99% of all values will lie within µ ± 3σ 
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When data doesn't follow a normal distribution, two steps are necessary: i) identify the cause 

of the non-normality, and ii) dealing it by transforming the data to normalize it or using non-

parametric statistical methods. Causes of non-normality include: 

• Outliers, which are extreme data points that can distort the distribution. 

• Overlap of two or more processes, where data from different sources or factors mix, often 

seen in medical settings with inputs from multiple sources. 

• Data values near zero or a natural limit, leading to skewed distributions due to clustering at 

the lower or upper bounds.  

 

 

 Study dataset 

 

I conducted three distinct analyses in the study, focusing on patients' state-to-state 

transitions. Each using datasets tailored to transition state diagram showing different 

trajectories to address specific research questions. I organised and streamlined patient states 

to display disease progression (detailed in later chapters). Each approach is visually 

represented through individual patient case vignettes, highlighting state transitions of each 

model. 

Given the vast amount of data in the HLL database, focusing on relevant clinical 

variables can reduce missing data and incomplete records. Careful selection of variables is 

essential for dynamic risk modelling. I presented baseline characteristics and demographics 

for the dataset, offering insights into the patient population and setting the stage for deeper 
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analyses. Data on events were collected for an additional two to five years beyond the initial 

study period, enabling verification of the model outcome. 

• Selection of patients 

A cohort of 7,639 patients, referred to the OPD clinic between January 2000 and January 

2017 was enrolled. Each patient had a baseline visit documented, with subsequent follow-up 

visits, admissions, and mortality data recorded if applicable. The specific timeframes and the 

characteristics of the patient groups for each analysis are explained in the corresponding 

chapters of the analysis. 

 

Figure 4.13: Enrolment and follow-up period 
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• Covariate selection 

HLL contains a mixture of continuous and categorical data (nominal and ordinal). 

Explanatory covariates were selected for each analysis, which was chosen with input of heart 

failure disease experts and also based on research papers that were associated with outcome. 

(Bohacik et al., 2013; Pocock et al., 2013; Nikolaidou et al., 2018; Sokoreli et al., 2018; 

Zhang et al., 2018a; Koulaouzidis et al., 2019). 

Covariates selected are: age, gender, body mass index (calculated as the weight in 

kilograms divided by height in meters squared (BMI), New York Heart Association (NYHA) 

class, systolic blood pressure (SBP), oedema, Left ventricular systolic dysfunction (Left 

ventricular (LV) impairment, EF Simpsons), electrocardiogram (heart rate (bpm), heart rhythm 

(sinus), Auricle diastole Auricular repolarization Ventricular depolarization Cardiac cycle 

(QRS)) blood tests (haemoglobin, sodium, potassium, urea, creatinine, albumin, , N-terminal 

pro–brain natriuretic peptide (NTproBNP)), HF medication (loop diuretic, furosemide 

equivalent daily doses, thiazide, beta-blocker (Bb), angiotensin-converting enzyme inhibitor 

(ACE), angiotensin receptor blocker (ARB), mineralocorticoid antagonist (MRA)).   

 

4.4.1 Baseline demographic and clinical characteristics  

 

Baseline (BL) means the first visit to out-patient (OPD) clinical from the time-based 

series data. A total of 7,639 patients referred to the clinic between January 2001 and January 

2017 were enrolled in the study. 4,131 individuals attended follow-up (FU) out-patient clinics, 

while 3,508 have only BL visits. This indicates that approximately 54% of the participants 

returned for follow-up at some point, whereas the remaining 46% never did (Figure 4.14).  
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Table 4.6 provides patients' baseline characteristics, highlighting the differences 

between patients with OPD follow-up visits and those without OPD follow-up. This 

comparison aims to identify any unique baseline traits between the two groups.  

Overall, people with one or more event had proportionately higher levels of oedema, 

NYHA class> III, worsening LVI, a greater proportion male. There were higher levels of NT-

proBNP in those with at least one event. There were corresponding increases in ACE/ARBs, 

loop diuretics and beta-blockers. Age, heart rate, and sodium and potassium levels were similar 

in both groups. Both EH and SBP were lower.  

 

 

 

Baseline  
n=7,639 (100%) 

With FUs 
n = 4,131 (54%) 

No FUs  
n = 3,508 (46%) 

Figure 4.14: Study population 
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All baseline With follow-up 

 

 

No follow-up 

Variable 
Missing  

(n (%)) 
Total 

Missing  

(n (%)) 
Total 

Missing  

(n (%)) 
Total 

Total number 

 of patients N (%) 
  

7639 (100) 
  4131 (100)   3508 (100) 

Demographics 

Age (years)   73.5 [66.6, 79.9]   73.4 [65.5, 79.8]   73.6 [65.7, 80.0] 

≥75   3386 (44)   1815 (44)   1571 (45) 

Men (%)   4492 (59)   2698 (65)   1794 (51) 

BMI (kg/m2) 61 28.1 [24.7, 32.1]   28.2 [24.8, 32.2] 61 27.9 [24.7, 32] 

NYHA class (%) 189       189 
 

I-II  5315 (70) 
  

2784 (67) 
  

2532 (72) 

III-IV   2135 (28)   1347 (33)   789 (22) 

Oedema (%) 681   311   370 
 

None  4087 (54) 
  

2021 (49) 
  

2066 (59) 

Trace   944 (12)   600 (15)   346 (10) 

Ankles  1398 (18) 
  

927 (22) 
  

471 (13) 

Above ankles   529 (7)   272 (7)   255 (7) 
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Systolic BP (mmHg) 19 139.0 [122, 158] 4 135 [119, 154] 15 144 [127, 162] 

Left ventricular systolic dysfunction 

LV Impairment 143   47   97  

None   3327 (44)   905 (22)   2422 (69) 

Trivial   574 (8)   279 (7)   295 (8) 

Mild   975 (13)   720 (17)   255 (7) 

Worse   2620 (43.7)   2180 (53)   439 (13) 

EF Simpson (%) 3506 47 [35, 58] 1764 39 [30, 50] 1742 56 [49, 62] 

Findings on electrocardiogram 

Heart rate (bpm) 204 72 [62, 84] 47 72 [62, 85] 157 72 [60, 83] 

Heart rhythm (Sinus %)   4976 (65)   2461 (60)   2515 (72) 

QRS (ms) 351 98 [86, 118.0] 99 104 [90, 130] 252 92 [84, 106] 

Blood test 

Haemoglobin (g/dL) 1370 13.4 [12.2, 14.5] 436 12.2 [11.2, 14.5] 934 12.2 [11.0, 13.3] 

Sodium (mmol/L) 1224 139.0 [137, 140.0] 390 139.0 [137.0, 140.0] 834 139.0 [136.0, 140.0] 

Potassium (mmol/L) 1265 4.3 [4.0, 4.6] 406 4.4 [4.1, 4.7] 859 4.3 [4.0, 4.6] 

Urea (mmol/L) 1224 6.5 [5.0, 8.9] 390 6.9 [5.2, 9.3] 834 6.1 [4.7, 8.3] 

Creatinine (umol/L 1232 97.0 [80.0, 121.0] 396 101.0 [83.0, 127.0] 836 91.0 [75.0, 115.0] 

Albumin (g/L) 1326 38.0 [35.0, 40.0] 452 38.0 [36.0, 40.0] 874 38.0 [35.0, 40.0] 

NT-proBNP (ng/L) 1166 815 [234, 2195] 271 1149 [468, 2689] 895 321 [315, 1336] 

Heart failure medication 

Beta-blocker (%)   4333 (57)   3023 (73)   1310 (37) 
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Loop diuretic (%)   4858 (66)  
3050 (74)   1518 (44) 

ACE/ARB (%)   5166 (68)   3504 (85)   1662 (47)  

Table 4.6: Baseline demographic and clinical characteristics of (N=7639) patients. 

 

 

 

 

a) patients with follow-up (N = 4131)  

b) patients with no follow-up (N = 3508).  

*Continuous variables are presented as median (interquartile range), whereas categorical variables are expressed as numbers and percentage.  

Abbreviations: CHF, Chronic heart failure; BMI, body mass index (calculated as the weight in kilograms divided by height in meters squared); NYHA, New 

York Heart Association. BP, blood pressure; LV, left ventricular; EF, ejection fraction; LVSD, left ventricular systolic dysfunction; NT-proBNP, N-terminal 

pro–brain natriuretic peptide; ACE, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; MRA, mineralocorticoid antagonist; ECG, 

electrocardiography; eGFR, estimated glomerular filtration rate; HF, heart failure;  IQR, interquartile range; N, total number; %, percentage. 

*NT-proBNP only became a clinical service during the data collection. 
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• All cause mortality 

Table 4.7 presents the cumulative mortality rates for a cohort of 7,639 patients over 

various time intervals up to 60 months. The patients are categorised into two groups: those with 

follow-ups (FUs) and those without follow-ups (No FUs). At 30 days, the total mortality rate 

was 2% (177 patients), with only 4 (less than 1%) of these deaths occurring in the group with 

follow-ups and 173 (5%) in the group without follow-ups. Mortality is all-cause, otherwise 

specified.  

 

 

All-cause deaths 
Total patients  

(n=7639) 

Patient with FUs 

(n=4131) 

Patient with No FUs 

(n=3508) 

30 days 177 (2%) 4 (0%) 173 (5%) 

12 months 894 (12%) 283 (7%) 611 (17%) 

24 months 1414 (19%) 612 (15%) 802 (23) 

36 months 1852 (24%) 899 (22%) 953 (27) 

48 months 2240 (29 %) 1144 (28%) 1096 (31) 

60 months 2555 (33%) 1341 (32%) 1214 (35) 

Table 4.7: Cumulative mortality rates for a cohort of 7,639 patients 

over various time intervals up to 60 months. The patients are categorized into two groups: those who 

had follow-ups (FUs) and those with no follow-ups (No FUs). 
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4.4.2 Data distribution 

 

The dataset includes many continuous and categorical variables. Figure 4.15 illustrates 

the distribution of values of variables show in table 4.6. Majority of variables are right skewed 

as discussed section 4.3.3. For example, NT-proBNP is significantly skewed.  A widely used 

method for handing skewed continuous data is logarithmic translation (Bland & Altman, 1996). 

This is further supported by (Olivier et al., 2008) which states that logarithmic transformation 

enables standard statistical methods to be applied to skewed data. The transformation is 

commonly uses the natural Log e or log10.  
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Figure 4.15: Distribution of baseline characteristics 

 

 

4.4.3 Organisation of data 

 

Within the framework of dynamic risk modelling, the study aims to track how patients’ 

health evolves as they experience various risk phases—acute, unstable, and stable. Integrating 

OPDs, post CV admissions and mortality data introduces an added layer of complexity to the 

data analysis process. Which require sophisticated analytical techniques to interpret the data 

and uncover patterns, assess risk factors, and predict the probability of subsequent events. In 

this section, I initiate the organisation of the dataset into a structured format that sets the stage 

for dynamic risk analysis in later chapters. 
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• OPDs, admission (hospitalisation) and mortality  

Table 4.8 summarizes the distribution of data up-to 24 months. Patient can have more than one 

event per interval. Table 4.9 refines the dataset by selecting one event within 4 monthly 

intervals.  
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No Interval 
4 monthly window 

after BL  

OPD Admissions (post - CV) 
Death 

Total FUs Total patients Total FUs Total patients 

1 1M <= 2 757 752 1050 900 177 

2 4M >2 to <=6 2983 2970 1747 1326 268 

3 8M >6 to <=10 1175 1168 1427 1124 235 

4 12M >10 to <=14 2330 2320 1313 1005 214 

5 16M >14 to <=18 1408 1400 1126 877 166 

6 20M >18 to <=22 723 719 1132 887 195 

7 24M >22 to <=26 1772 1763 1024 808 159 

    Total 11148 11092 8819 6927 1414 

Table 4.8: Total OPD FUs, admissions (post - CV) and death 

Based on intervals adjusted for time windows after the BL OPD visit. Table description is as follow: The first column (No) shows sequence of interval 

(second column). The third columns (4 monthly window) shows monthly window after BL to assign the interval. E.g.,: second row show that within (>2 to 

<=6) widow total 2983 OPD FUs for 2970 patients, 1747 admissions for 1326 patients and 268 deaths were observed. The time intervals are used in later 

sections and chapters. 

 

No Interval 
4 monthly window 

after BL  

OPD Admissions (post - CV) 
Death 

Total FUs Total patients Total FUs Total patients 

1 1M <= 2 752 752 860 860 177 

2 4M >2 to <=6 2970 2970 1234 1234 268 

3 8M >6 to <=10 1168 1168 1032 1032 235 

4 12M >10 to <=14 2320 2320 938 938 214 

5 16M >14 to <=18 1400 1400 816 816 166 

6 20M >18 to <=22 719 719 836 836 195 

7 24M >22 to <=26 1763 1763 738 738 159 

    Total 11092 11092 6454 6454 1414 

Table 4.9: 1 event (OPD, admission and death) per 4 monthly intervalSee Table 4.8 for a table description. 
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 Conclusion 

 

This chapter has introduced the HLL. It is outlining its structure and the clinical 

information it provides for analysis. I have discussed the challenges of managing clinical data 

and offered strategies and examples to address these issues. It is including visually represented 

through individual patient case vignettes, highlighting state transitions, showing the case 

studies to clarify my methods. The chapter aims to develop basis for new predictive risk models 

that accurately reflect patient outcomes and predict future events in those with CHF, employing 

a dynamic approach. This involves a data-driven method aligned with a risk trajectory 

framework, categorizing health states as acute, unstable, or stable. I can track the patient's risk 

trajectory over time by assigning health risk states —like OPD visits, hospitalizations, and 

mortality. In conclusion, the research within this chapter sets the stage for a nuanced 

exploration of chronic heart failure, providing the groundwork for innovative risk assessment 

and predictive modelling that could significantly impact patient care. 
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 Naïve modelling process 

 

As discussed in the previous chapters the HF illness trajectory is complex and 

dependent on several crucial aspects that need to be understood. For example, uncovering the 

underlying progression pattern, predicting the total number of events in a particular state before 

transitioning to another state, and estimating the duration of individuals’ lives (length of life) 

for those with HF. Machine learning techniques have received considerable attention for 

making predictions with regards to time to event  especially when clinical datasets contained 

repeated observations as highlighted in (Zupan et al., 2000; Wolfson et al., 2015). For deeper 

exploration of how these methods have been especially within my context, see chapters 2 and 

3.  

This chapter aims to predict the first event not the subsequent events and to investigate 

the traditional machine learning techniques to analyse disease trajectories in patients with CHF. 

For this purpose I used classification methods to map the progression of patient conditions over 

time. As will be discussed in the later sections of this chapter, these methods alone are often 

insufficient to capture a complete picture of HF disease progression. Clinical decision-making 

is not a one-time event, it is an ongoing process that may require adjustments based on evolving 

patient conditions, new information, or changes in treatment guidelines. It is important to know 

that how patient’s health state changes or the duration of different disease phases (acute, 

unstable and stable). Such insights are important for determining each patient's most 

appropriate course of action. Such adjustments are necessary to accommodate as these directly 

impact patient outcomes, quality of life and even survival.  
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 Classification 

 

Data mining is a machine learning (ML) process that involve extracting and uncovering 

valuable knowledge from vast resources of data. The main components for data mining are: 

Classification, Sequence Analysis, Clustering and Association rule learning (Kesavaraj & 

Sukumaran, 2013). Classification technique that is used to identify the risk factors that lead to 

classifying each record into a predefined set of classes and groups (Kesavaraj & Sukumaran, 

2013). These models use learned patterned from the training data to assign instances to the 

most appropriate class.  

Many studies (Kheirbek et al., 2013; Comstock Barker & Scherer, 2017; Maheswari & 

Pitchai, 2019; Gupta et al., 2020; Sai Krishna Reddy et al., 2022) on HF rely on classification 

methods like Naïve Bayes and decision trees. Some of them are considered prognostic models 

or diagnostic models. Figure 5.1 is taken from the study (Ohu et al., 2020) to represents a broad 

classification types of learning, methods utilised in ML and category of algorithm.  
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Figure 5.1: Categorisation of ML models.SVR (support vector regression); GPR (Gaussian process 

regression)  (Ohu et al., 2020) 

 

The principle of ML techniques is to train a model on different subsets of data. This 

process involves dividing the labelled dataset into two main subsets: the training and the test 

datasets. Classification in ML divided into binary, multi-class, multi-labelled and hierarchical 

tasks. Naïve Bayes, Bayes Net and RBF Network classifier are applied to the HLL dataset to 

classify relationships into two different predefined risks: a) Alive or dead (binary value) and, 

b) out-patient visit or hospitalisation or dead.  Classification methods like Naïve Bayes rely on 

conditional independence assumptions that the presence of a specific feature is assumed to be 

independent of the presence of other features, given the class label being predicted. Similar 

kind of assumptions can be made with Markov Chains as can be seen in Chapter 6.  Naïve 

classifier is briefly described as follows: 

 

 

5.1.1 Naïve Bayes:  
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Naïve Bayes is an effective classifier when the outcome is known and the risk factors are 

conditionally independent. Key advantage is that the independence assumptions enables parameters for 

each variable to be learned separately, which is especially beneficial when dealing with large number 

of variables. It also gives the probability to determine a likelihood of the risk and to quantify the degree 

of uncertainty. (Wolfson et al., 2015) suggests that the Bayes classifier is reliable and maintains its 

effectiveness even when some data is missing or when dealing with datasets that have a large number 

of variables (high dimensionality). 

• Naïve Bayes algorithm for binary outcomes: Let’s consider the task to estimate the likelihood 

of an event E occurring within a fixed time period (0, 𝜏). This estimation is based on individual 

characteristics X = (X1,…., Xp), measured at a defined BL time t = 0. For n subjects who have 

their characteristics X  measured at t = 0 are followed for 𝜏 time units to observe the occurrence 

of event E (E = 1 ⇒ indicate event occurrence). The estimation is P (E = 1 | X) (Wolfson et 

al., 2015). 

 
 

(5.1) 

 

• Naïve Bayes for Multiple outcomes: The equation is rewritten as  

 
 

(5.2) 

 

5.1.2 Confusion Matrix 

 

A confusion matrix is used to evaluate the performance of classification algorithms. From the 

matrix the True Positive, False Positive, True Negative and False Negative can be determine. For 

example, see Figure 5.1. Section 1.2 provides a better understanding with numbers.  
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Figure 5.2: Structure of confusion matrix 

 

With heart failure: 

• True Positive (TP): When a patient is correctly classified as an out-patient when they 

are indeed an out-patient, this result is termed as a true positive. 

• False Negative (FN): When a patient is incorrectly classified as dead when they are 

actually an out-patient, this outcome is termed as a false negative, also known as “Type 

II error”.  

• False Positive (FP): When a patient is incorrectly classified as an out-patient when they 

are actually dead, this classification is termed as a false positive, also known as “Type 

I error/p-value”.  

• True Negative (TN): Finally, if all remaining patients are correctly classified as not alive 

(dead), then this classification is termed as true negative.  

More advanced version of performance measures are:   

• Accuracy: Accuracy assessment aims to quantify the effectiveness of the classifier's 

performance. An overall measure of classification accuracy can be derived from the 

confusion matrix by dividing by the total number of observations. In the context of heart 

failure, where timely and accurate diagnosis is critical for patient management and 

treatment decisions, accuracy ensures that the diagnostic results or predictions align 

closely with the actual clinical outcomes (Writing Group et al.). However, there is a 
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drawback of this measure which is that it does not provide insight into how well 

individual classes are classified.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁)
 (5.3) 

 

• Sensitivity or true positive rate (TPR): Sensitivity is determined by dividing the number 

of true positive instances by the total number of actual positive cases. It represents the 

percentage of actual positive observations that were correctly predicted  (Alejandro & 

Banco, 2012). For example, in the context of heart failure diagnosis, high sensitivity 

ensures that individuals who truly have the condition are not missed during screening 

or diagnostic processes. This is crucial for timely intervention, treatment, and 

management of the disease, ultimately resulting in improved patient outcome and lower 

morbidity and mortality rates. Sensitivity statistic is computed as follows:   

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (5.4) 

 

 

• Specificity or True negative rate (TRN):  Heart failure diagnosis involves distinguishing 

between patients who have the condition and those who do not. Specificity measures 

the proportion of individuals without heart failure correctly identified as such. In other 

words, it quantifies the ability of a diagnostic test or predictive model to classify healthy 

individuals as negative for heart failure correctly. High specificity indicates a low rate 

of false positives, which is crucial for ensuring that healthy individuals are not 

misdiagnosed or unnecessarily subjected to further tests or treatments:  
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 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5.5) 

 

where TN denotes the true negatives and FP denotes false positives. 

 

• Strength: Strength refers to the total number of examples that are correctly classified 

by the rule during the training process. Strength is essential for heart failure clinical 

applications because it ensures the reliability of risk stratification, optimizes patient 

care, facilitates efficient resource allocation and provides valuable prognostic 

information. 

• Balanced Accuracy: Balanced accuracy provides a balanced assessment of the 

classifier's performance across different classes, particularly in situations where there 

is class imbalance in the dataset (Wasikowski & Chen, 2010; Saito & Rehmsmeier, 

2015; Buda et al., 2018). In heart failure datasets, the number of patients in different 

risk categories (e.g., alive, hospitalized, deceased) may not be evenly distributed, 

leading to class imbalance. Balanced accuracy takes into account the sensitivity and 

specificity of the classifier for each class, ensuring that the performance metrics are not 

biased towards the majority class. This is particularly important because 

misclassification of minority classes (e.g., deceased patients) can have significant 

clinical implications. 

 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐵𝐴) =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

2
 (5.6) 

 

  

 Evaluation  

 



83 

Naïve Bayes, Bayes Net and RBF Network classifier are applied to the HLL dataset to develop 

a model to classify patients into two different predefined risks. 

 

5.2.1 Experimental setting 

 

From the dataset described in chapter 4, I used following patient selection criteria for 

this analysis: All patients included in the study with an NT-proBNP measurement recorded at 

the baseline and remained alive for at least 8 months after the baseline visit OPD. This duration 

was chosen to ensure that sufficient time was allowed to observe the progression of their 

condition and to determine their survival status accurately. To be included in the analysis, 

patients must have had complete records for at least three of the following key clinical 

variables: Sodium (mmol/L), Potassium (mmol/L), Urea (mmol/L), Creatinine (mmol/L), 

Albumin (g/L), NT-proBNP.  Weka tool is used for analysis.  

This criteria resulted in a smaller dataset containing 1867 baseline records. From this 

dataset 204 records were randomly selected (using random number tables method) for the 

purpose of model training (test data). The test data has total 1663 records, consists 1645 alive 

and 14 deaths within between 8 to 12 months. Two different classifications schemes were used:  

• Two classes - Dead and alive 

• Three classes - Dead, hospitalization and out-patient visits. 

 

5.2.2 Results 

 



84 

Let's start by examining a simpler classification scenario - 2×2 confusion matrix where 

risk is classified into two binary classes:  dead and alive. This results in four sub-metrics 

namely: True Positive, False Positive, True Negative and False Negative, as shown in Table 

5.1. Three different classifier (Naïve Bayes, Bayes Net and RBF Network) are employed for 

initial classification. 

Baseline (n = 1663) – Alive/Dead 

Naïve 

Bayes 

Real 
Predicted 

Total 
Performance % 

Alive Dead SEN 98.9 

Alive 1631 18 1649 SPEC 42.9 

Dead 8 6 14 ACC 98 

    

Balance 

Accuracy 
70.9 

    F1-Score 99.2 

Bayes 

Net 

Real 
Predicted 

Total 
Performance % 

Alive Dead SEN 99.6 

Alive 1643 6 1649 SPEC 71.4 

Dead 4 10 14 ACC 99.4 

    

Balance 

Accuracy 
85.5 

    F1-Score 99.7 

RBF 

Network 

Real 
Predicted 

Total 
Performance % 

Alive Dead SEN 99.9 

Alive 1648 1 1649 SPEC 14.3 

Dead 12 2 14 ACC 99.2 

    Balance 

Accuracy 
85.5 

    F1-Score 99.6 

Table 5.1: Binary Performance of the three classifiers using HLL dataset 

 

From Table 5.1, it can be seen that Naive Bayes classifier demonstrates a high ability 

to correctly identify individuals who are truly alive with a sensitivity of 99% (i.e., correctly 

identifies 1631 out of 1649 alive patients and predicts only 18 alive patients as dead). The low 

error rates demonstrate strong performance in classifying positive observations. The specificity 

is lower at 43% which shows higher rate of false positives where individuals are classified as 

alive (8 out of 14) when they are actually dead.  
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The higher accuracy (98%) compared to the balanced accuracy (70.9%) indicates and 

imbalance in the dataset, Balanced accuracy is calculated as the arithmetic mean of sensitivity 

and specificity. It is particularly useful when dealing with imbalanced data, where one target 

class is significantly more frequent than the other. 

The reasons for above are: 

• Imbalanced dataset: The dataset might have unequal distributions among the classes. 

For example, in medical diagnostics, the number of healthy patients might vastly 

outnumber the number of patients with a particular disease. In this case, accuracy alone 

might be misleading because a classifier could attain high accuracy by consistently 

predicting the majority class for every instance. 

• Impact of imbalance: When the dataset is imbalanced, accuracy can be inflated because 

the classifier might predominantly predict the majority class, which results in a high 

number of true negatives. However, this doesn't necessarily reflect the classifier's 

ability to correctly identify instances of the minority class. 

• Feature imbalance: The features used for classification may not be equally informative 

for predicting both alive and dead classes. Certain features may be more strongly 

associated with one class than the other, leading to disparities in sensitivity and 

specificity. 

• Importance of Balanced Accuracy: Balanced accuracy considers the sensitivity (recall) 

across all classes, giving equal weight to each class. This metric provides a more 

nuanced estimate of the classifier's performance, particularly in situations where class 

imbalance exists. A lower balanced accuracy suggests that the classifier struggles to 

identify instances from minority classes correctly. 



86 

You might be wondering about the distinction between Balanced Accuracy and the F1-

Score, especially when dealing with imbalanced classification tasks. Both Balanced Accuracy 

and the F1-Score are valuable for evaluating models on imbalanced datasets, their suitability 

depends on the specific goals and priorities of the classification task. Balanced Accuracy excels 

in scenarios where equal attention is needed for both positive and negative outcomes, whereas 

the F1-Score is preferred when the emphasis is on correctly identifying positive instances while 

controlling false positives.  

Bayes Net and RBF Network classifiers may exhibit similar patterns in sensitivity, 

specificity, accuracy, balanced accuracy and F1-score. However, the actual values may vary 

based on the characteristics of the classifiers and the dataset. 

After analysing the BL to 12 months classification, I now look at 4 to 12 months 

classification. For this a subset of the dataset (used above) comprising 986 individuals who 

have had a 4-month’s OPD follow-up visit. My objective is to classify these individuals at the 

12-month mark. This approach allows us to assess the performance of the model using a new 

set of feature (different covariate values). This allows us to evaluate how the model adapts to 

and performs with this evolving dataset. For example, if certain health conditions become more 

prevalent in the dataset over time or if new treatment methods are introduced, these changes 

can shift the distribution and relationships of the features within the data. This enables us to 

understand the dynamic nature of patient health trajectories in a way. This insight is particularly 

valuable for chronic conditions where the disease progression can vary significantly among 

patients and over time. 

Baseline (n = 986) – Alive/Dead 

Real Predicted Total Performance % 
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Naïve  

Bayes 

Alive Dead SEN 98.9 

Alive 961 11 972 SPEC 35.7 

Dead 9 5 14 ACC 98 

     Balance Accuracy 67.3 

        F1-Score 99 

Table 5.2: Naïve Bayes performance of the patients at 1st event 

 

In summary, Naïve Bayes (in Table 5.1) has higher specificity (43%) a slightly better 

ability to correctly classify individuals as 'Dead' when they are actually 'Dead', compared to 

(Table 5.2) Naïve Bayes (36%). Similarly, Naïve Bayes (Table 5.1) also demonstrates a higher 

balanced accuracy (70.9%) than (Table 5.2) Naïve Bayes (67.3%). This indicates that Naïve 

Bayes with bigger dataset and less missing features achieves better overall accuracy across 

both the 'Alive' and 'Dead' classes compared to Naïve Bayes smaller dataset.  This also shows 

that there is imbalance in the binary classes.  

To investigate the discrepancies further which are observed in Table 5.1 and Table 5.2, 

I have introduced another class to mitigate the impact of class imbalance on the binary 

classification. The aim was to determine whether making adjustments to the model could 

improve its performance by achieving a more balanced representation across the different 

categories of patient outcomes. 

Table 5.3 illustrate the 3×3 confusion matrix.  I used the same dataset as for binary 

classification, but 'Alive' patients were further categorized into more informative groups: 

'Hospitalization' (patients who had been admitted to the hospital in the last 12 months) and 

'Out-patient' (patients who had visited the heart failure (HLL) clinic but were not admitted to 

the hospital in the last 24 months).  
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Table 5.3 presents the model performance. Out of 1663 individuals, there were 663 

hospitalizations, 14 deaths, and 986 OPD instances. The classification model was retrained 

using the same 204 patients, but with consideration of three classes. In the matrix below, the 

predicted classes are displayed in the columns, while the actual classes are in the rows.  

 

Baseline (n = 1663) 

Classifier Real 
Prediction 

Total 
Hospitalisation Dead Out-patient 

Naïve Bayes 

Hospitalisation 422 5 236 663 

Dead 3 6 5 14 

Out-patient 85 8 893 986 

Bayes Net 

Hospitalisation 478 2 183 663 

Dead 1 11 2 14 

Out-patient 102 4 880 986 

RBF  

Network 

Hospitalisation 502 1 160 663 

Dead 6 3 5 14 

Out-patient 89 0 897 986 

Table 5.3: Multi-class risk classification for the patients with HF 

 

The first matrix is for Naïve Bayes classifier, shows 422 events of hospitalisation, 5 

event of death and 893 out-patient individuals were correctly classified (diagonal row).  For 

actual hospitalisation (n = 663), 422 instances were correctly classified as hospitalisation, while 

5 were misclassified as Dead and 236 as Out-patient. Similarly, Dead and Out-patient can be 

interpreted.  

The table also provides the performance of other classifiers Bayes Net and RBF Net. 

This shows accuracy and reliability in classification of patient s across three classifier.  
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As discussed earlier, observing the performance of multi-class classification model - 

four matrices namely; TR, FP, TN and FN for each class are need to be assessed. Example is 

given for Naïve Bayes classifier. Using table 5.3 data I calculate the following: 

• True Positive (TP): The number of instances correctly classified as positive. I.e., 

(Hospitalisation (n = 422), Dead (n = 6) and Out-patient (n = 893)). 

• False Negative (FN): The number of instances incorrectly classified as negative (sum 

of values in the corresponding row, excluding the TP). I.e., Hospitalisation (5 + 236 = 

241), Dead (3 + 5 =8) and OPD (85 + 8 = 93). 

• False positive (FP): The number of instances incorrectly classified as positive when 

they are actually negative (sum of values in the corresponding column, excluding the 

TP). I.e., Hospitalisation (3 + 85 = 88), Dead (5 + 8 = 13) and OPD (5 + 236 = 241), 

• True Negative (TN): The number of instances correctly classified as negative (sum of 

all columns and rows, excluding that class’s column and row). I.e., Hospitalisation (6 

+ 5 + 8 + 893 = 912), Dead (422 + 85 + 236 + 893 = 1636) and (422 + 5 + 3 + 6 = 436). 
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Baseline (n=1658) 

Classifier Classes/Outcome TP TN FP FN 
Sensitivity 

(TRP) 

Specificity  

(SPEC) 

Accuracy 

per class 

Accuracy 

classifier 

Balanced 

Accuracy 

F1 

Score 

Naïve 

Bayes 

Hospitalisation 422 912 88 241 63.7 91.2 80.2 

79.43 66 

72.0 

Dead 6 1636 13 8 42.9 99.2 98.7 36.4 

Out-patient 893 436 241 93 90.6 64.4 79.9 84.2 

Bayes 

Net 

Hospitalisation 478 897 103 185 72.1 89.7 82.6 

82.3 80 

76.8 

Dead 11 1643 6 3 78.6 99.6 99.5 71.0 

Out-patient 880 492 185 106 89.3 72.7 82.4 85.8 

RBF 

Network 

Hospitalisation 502 905 95 161 75.7 90.5 84.6 

84.31 63 

79.7 

Dead 3 1648 1 11 21.4 99.9 99.3 33.3 

Out-patient 897 512 165 89 91.0 75.6 84.7 87.6 

Table 5.4: Performance of multi-class risk classification for the patients with HF 
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Based on the calculated metrics, the performance comparison of the three classifiers: 

• Naïve Bayes: 

Sensitivity (Recall) and specificity values for Naïve Bayes are moderate across all classes. 

Accuracy varies across classes, with the highest accuracy observed for the Dead class (98.7%) 

and the lowest for the Out-patient class (79.9%). 

• Bayes Net: 

Bayes Net exhibits higher sensitivity and specificity values compared to Naïve Bayes across 

all classes. Accuracy per class is generally higher for Bayes Net compared to Naïve Bayes, 

with the highest accuracy observed for the Dead class (99.5%). 

• RBF Network: 

RBF Network shows comparable sensitivity and specificity values to Bayes Net, with slightly 

lower performance in some cases. Accuracy per class for RBF Network is generally similar to 

Bayes Net, with high accuracy observed for the Dead class (99.3%). 

Comparing performance of binary (Table 5.1) and multiclass (Table 5.4) classification, 

I looked the results of Naïve Bayes classifier in both model. It can be seen that binary classifier 

has a high accuracy of about 98% while the multiclass classifier shows a lower overall accuracy 

79%. The prediction of Dead in multiclass model is considerably low. This suggest challenges 

in identifying this class possibly due to fewer samples or overlapping features with other 
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classes. Table 5.4 shows for Naïve Bayes achieving higher accuracy - (79%) than balanced 

accuracy (66%) indicating residual imbalance in the dataset despite adding another class.  

Similarly, as mentioned earlier in binary classification section where I have looked on 

4 months to 12 months classification using the same model but here with 3 classes. Table 5.6 

compared to Table 5.2 shows the accuracy has decreased in the multiclass model. Balanced 

accuracy shows that imbalance is still exists in the data and missing data affect the results.   

 

OPD (986) 

Classifier Real 

Prediction 

Total 

Hospitalisation Dead 
Out-

patient 

Naïve 

Bayes 

Hospitalisation 131 1 113 245 

Dead 2 6 6 14 

Out-patient 33 2 692 727 

Table 5.5: Classification (OPD) within the 12 months of BL event 
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Those who were classified as OPD (986) 

Classifier 
Classes / 

Outcome 
TP TN FP FN 

Sensitivity 

(TRP) 

Specificity  

(SPEC) 

Accuracy 

per class 

Accuracy 

classifier 

Balanced 

Accuracy 

F1 

Score 

Naïve 

Bayes 

Hospitalisation 131 706 35 114 53.5 95.3 84.9 

84.1 64 

63.7 

Dead 6 969 3 8 42.9 99.7 98.9 52.2 

Out-patient 692 140 119 35 95.2 54.1 84.4 90.0 

Table 5.6: Naïve Bayes performance – for table 5.5 
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5.2.3 Performance measure  

 

As discussed in 5.2.2 section, identifying fatal cases consistently poses a challenge for 

both models. The risk classes within the dataset exhibit imbalance, with notably smaller 

number of deaths in the first 12 months compared to the number of patients who remain alive 

(those in hospital or OPD state). This imbalance poses challenges to a classifier's capability to 

learn to identify the dead class effectively. As the result, the confusion matrices that report the 

average precision and recall across risk classes likely to overestimate the true performance. 

Classifiers such as Naïve Bayes typically operate under the assumption that the training data is 

sufficiently large and that the continuous values associated with each class follow a Gaussian 

distribution. These assumptions are not met by the HLL dataset. 

 

 Conclusion  

 

Data is from the single centre Researchers must interpret their results with caution, 

considering the implications of class imbalance and model assumptions. Notwithstanding, this 

chapter provides basic insights into supervised machine learning risk classification methods. 

As shown in the results that one of the main challenges facing the development of machine 

learning-based classifiers for clinical datasets is the large dimensionality and skewness of the 

data (which is shown in the chapter 4). This underscores the importance of considering 

balanced accuracy and other metrics to provide a detailed evaluation of classifier performance, 

particularly in the presence of class imbalance. Even though the introduction of another class 

into the dataset did not help to alleviate the imbalance. It's essential to recognise the potential 
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limitations stemming from dataset characteristics. For instance, in the context of heart failure 

studies where the number of deceased patients may be significantly lower compared to those 

who are alive or hospitalized. Introducing a balanced class for deceased patients can help 

mitigate this imbalance, but it's crucial to do so carefully to ensure the new class accurately 

reflects the data distribution without introducing bias or noise. Researchers should also validate 

the classifier's performance on the augmented dataset to ensure it effectively addresses the 

imbalance issue without compromising the model's ability to generalize. Exploring dynamic 

risk models may further improve the model's performance and overcome challenges posed by 

dataset characteristics. 

Classification is useful for organizing and categorizing data into discrete classes based 

on predefined features. It has limitations when it comes to dynamic risk analysis, which 

involves predicting future events or outcomes based on changing variables and conditions. 

There are number of reasons why these methods may not be giving as good predictions. Some 

of these are: 

Assumption of independence: Naïve Bayes, for example, assumes that features are 

independent of each other given the class label. This simplifying assumption may not hold true 

in real-world scenarios (Rigby, 1991) where variables are interconnected and influence each 

other's behaviour over time. Dynamic risk analysis can capture these dependencies and provide 

more accurate predictions. 

Inability to adapt: Classification models are trained on historical data and may not 

adapt well to changing conditions or new information. They do not have the capability to update 

their predictions in real-time as new data becomes available. Dynamic risk analysis, on the 

other hand, can incorporate new data and adjust risk assessments accordingly. 
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Risk Assessment vs. Prediction: While classification methods are effective for 

predicting class labels based on input features, they may not provide insights into the 

underlying risk factors or mechanisms driving those predictions. Dynamic risk analysis goes 

beyond prediction to assess the probability and impact of different risk factors over time, 

helping stakeholders make more informed decisions. 

It's important to note that classification alone doesn't provide insights into the individual 

prognosis of each patient. To truly understand the prognosis for HF patients, I may need more 

advanced predictive methods especially machine learning techniques that typically falls under 

the domain of clustering or unsupervised learning. Given these drawbacks and disadvantages, 

as will be seen in the following chapters using time dependency dynamic risk modelling is 

more suitable for predicting the progression of patients.  
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 Dynamic risk modelling using Absorbing Markov 

chains: Short and long term prediction 

 

In this chapter, I look at dynamic risk modelling and how to apply it to the HLL. The 

HLL is detailed in chapter 4. The aim is to understand the progression patterns and probabilities 

of different health outcomes in patients with HF. This help them make informed decisions and 

manage their care effectively. Figure 6.1 illustrates the various domains that are related to a 

patient’s prognosis, focusing on both the quantity and quality of life.   

 

 

Figure 6.1: Domains that are related to a patient’s prognosis 

- focusing on both the quantity and quality of life.  (Allen et al., 2012) 

 

As discussed in the introduction chapter, for patients with CHF, the clinical interest 

focuses not only in the final outcome but also on the dynamics of disease progression, mainly 

concerning the requirement for hospitalisation (Khand et al., 2001; Ieva et al., 2017; Jiang et 

al., 2019). A robust model might support prediction at the individual patient level while also 

providing estimates of the health care resources required to meet patient needs.  
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In managing health care needs, current models focus on the flow of patients between 

available resources (such as staff and departments along a pathway of care). Models do not 

focus on when and how often the care provision is required using the current and previous 

condition of the patients. Changes in the patient’s condition will lead to a change in the 

clinician’s judgement of prognosis. The care of patients requires frequent reappraisal of their 

clinical trajectory, which helps to calibrate risk in a dynamic fashion. In the case of HF, the 

assessment of prognosis is not straightforward and is in contrast to the more linear decline of a 

patient with advanced cancer (Uhry et al., 2010). The dramatic variation in disease severity and 

its unpredictability makes decision-making extremely difficult.  

Markov Models, incorporating the rate of change in multiple indices2, can potentially 

forecast adverse events (hospitalisation and death) (Ieva et al., 2017). These are particularly 

useful in studying of chronic illness, as they categorise a patient's condition into a finite number 

of distinct states at any given point in their clinical trajectory. In this chapter, I use Markov 

models to predict disease progression in heart failure and thus allow for a better understanding 

of the flow of patients between different states of health.  

To model the progression of HF, I therefore used Markov chains in a well-

characterised3  cohort of patients referred for investigation of potential HF. This approach is 

based on a finite number of mutually exclusive and exhaustive distinct states. The following 

analysis is carried out to see if I could use events early in a patient’s career to predict their 

 
 

2 Multiple indices refers to a variety of measures or indicators that are used to assess different aspects of a 
condition or situation. 
3 A well-characterized cohort means patients are fully documented with clinical signs, symptoms, and all 
relevant data for heart failure diagnosis. 
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likely outcomes to them during subsequent FU. This could enhance insight of the patient 

pathways through HF and facilitating more effective service planning and resource distribution. 

Further details and an in-depth discussion of the Markov model are provided in the 

subsequent section of this chapter. The UK's National Institute for Health and Care Excellence 

(NICE) uses various methods and models for health economic evaluations. One of the 

commonly used methods is the Markov model (NICE, 2018a).  

 

 Heart failure risk assessment 

 

Over time, the changes in the patient’s condition can cause a change in the prediction 

of risk, which results in a revision of the care and treatment strategy. As suggested earlier, I am 

interested in determining the timing (when) and frequency (how often) of required patient care.  

This results in a number of features that are to do with the cost associated, survival and quality 

of life.  

Figure 6.2 presents the components influenced by risk assessment in clinical practice, 

connecting it to actions like effective triage4 and specialist referrals, while also steering the 

allocation of resources and informing patients. This process is integral to tailoring healthcare 

interventions, as depicted in Figure 6.1, which resulted in a number of features that have to do 

with the cost associated, survival and quality of life. 

 
 

4 Effective triage is a critical process in healthcare settings used to prioritize patients based on the urgency of 
their need for care. It involves assessing the severity of patients' conditions to determine who requires 
immediate attention and who can wait for care. 
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Figure 6.2: Goals of risk assessment in patients with CV disease 

 

 

 Markov Models and Chains 

In chapter 3, section 3.5.1, some elements of Markov chains have already been introduced. 

In this section, I will discuss about it in more detail.  A stochastic process refers to any process 

that that evolve with uncertainty and models based on these processes are referred to as 

stochastic or probabilistic models (Sonnenberg & Beck, 1993; Mhoon et al., 2010; Sato & 

Zouain, 2010). Especially, the event-based progression (and other complexities of a disease) 

can be represented using multistate models (Andersen & Keiding, 2002). These are often based 

on the use of first-order Markov processes (chain and hidden) and allow the risk to evolve 

dynamically.  
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In multi-state models for intermittently observed processes5 , the times at which state 

changes occur are usually known to be within bounded or fixed time intervals, making them 

interval-censored. Markov models represent stochastic processes that evolve over time and 

consist of a finite number of states, states which change based on transition probabilities. If the 

process is stochastic and the state or behavior of model at any given time period (i.e., cycle) 

does not depend on its state or behavior in previous time period then the  process is Markovian. 

The future state depends only by the present state independent of events that occurred in 

previous states. Hence: 

• The process has “lack of memory” (Singer et al., 2014; Wu & Chu, 2017; Schröger et 

al., 2023). That is current state of the model determines what state the model can change 

to next time point. The trajectory on how current state emerged does not matter; in this 

sense it is memoryless. 

• Even processes where the previous state is relevant can be converted to Markovian by 

defining temporary states, known as tunnel states. 

A Markov process in which the transition between states is based on constant probabilities is 

called a Markov chain (Sonnenberg & Beck, 1993). The major advantage of Markov Chain 

Modelling (MCM) is its flexibility to model complicated events and related situations for which 

algebraic solutions are not possible. Such modelling is more applicable when interest lies in 

estimating either the likelihood of transitioning from one state to another within a specified 

time period, or the average time spent in a state (mean sojourn time).  When applied to illness, 

 
 

5 Intermittently observed processes" refer to processes or events that are not continuously monitored or 
recorded but are instead observed at discrete and irregular intervals. In this analysis, we used the underlying 
disease progression as continuous, with clinical events captured at discrete time points. This approach enables 
us to approximate the continuous nature of disease dynamics within the framework of discrete observations, 
facilitating a comprehensive analysis of patient outcomes. 
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the Markov model assumes that a patient can be in any one of the many states referred to as 

‘Markov states’ and that there are ‘events’ which allow the transition from one state to another 

within a specified time period, the process known as a “Markov cycle” (Sonnenberg & Beck, 

1993). The memory-less property enable model to be represented using a single-cycle transition 

matrix. A regular Markov chains (RMC) are governed by definition, where:  

A stochastic process is a MC if for all times 𝑛 ≥ 0 and all states 𝑖0, ⋯ , 𝑖, 𝑗 ∈ 𝑆, 

 𝒫(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1,, … , 𝑋0 = 𝑖0) =  𝒫(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, )   

= 𝑝𝑖𝑗    ∀ 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑛     

(6.1) 

𝑋 represent the stochastic process, specifically the sequence of random variable that denote the 

state of the process at each time step. For example, 𝑋𝑛 is the state of the process at time 𝑛. 𝑆 

denote the state space of the MC. It is set of all possible states that the process can take. For 

instance, if 𝑆 = {0, 1, 2}, the process can only be in one of these three states at any given time.  

𝒫𝑖𝑗 is donating the probability that the chain when in state 𝑖, moves to the next state 𝑗 one unit 

of time, and is often called to as a “one-step transition probability”.  The square matrix  

 𝑃 = (𝒫𝑖𝑗), 𝑖, 𝑗 ∈ 𝑆    (6.2) 

is referred as a one-step transition matrix. Since the chain must transition from state 𝑖,  to one 

of the state 𝑗, each row must sum to 1, i.e., 

∑𝒫𝑖𝑗

𝑗∈𝑆

= 1 
(6.3) 
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If I make an assumption that the transition probabilities do not depend on “𝑛” (the time), then 

using n=0 in (6.1) gives 

 𝒫𝑖𝑗 =  𝑃(𝑋1 = 𝑗|𝑋0 = 𝑖)  (6.4) 

The key property of the chain is, that the next future state is dependent given the present state 

irrespective of past state. Therefore if 𝑛  is the present time, then the future is given by 

{𝑋𝑛+1, 𝑋𝑛+2,  𝑋𝑛+3 … .𝑋𝑛+𝑚} while the past of the chain is given by {𝑋0 , 𝑋1 … .𝑋𝑛−1 } and 

current state is {𝑋𝑛}. The matrix containing 𝒫𝑖𝑗, the transition probabilities of 𝑛 states, can be 

represented as a 𝑛 × 𝑛 matrix (𝑃) as shown below.  

 

[

𝑝1,1 𝑝1,2 ⋯ 𝑝1,𝑛

𝑝2,1 𝑝2,2 ⋯ 𝑝2,𝑛

⋮ ⋮ ⋱ ⋮
𝑝𝑛,1 𝑝𝑛,2 ⋯ 𝑝𝑛,𝑛

] = 𝒫                     

 

(6.5) 

 

where 𝑝𝑖,𝑗 represent the probability (𝑝) of transition from 𝑖 (starting state) to 𝑗 (next 

state of immediate transition). Eg.,, in equation (a) 𝑝1,2 denotes the probability of 

transitioning from state 𝑠1 to state 𝑠2. Likewise, the probability of transitioning from 𝑠2 to 𝑠1 

is given by 𝑝2,1. Note that 𝑝1,2 is not necessarily the same as 𝑝2,1.  

Regular Markov Chain models have two important properties: irreducibility and 

aperiodicity. Looking at the 2 states’ (i.e., 𝑖 and 𝑗) model, if state 𝑗 is 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 from state 𝑖, 

𝑖 → 𝑗 then if 𝑃𝑖𝑗
𝑛 > 0 for some 𝑛 ≥ 0, implies that 𝑗  can be  reached from 𝑖 in finite number 

of steps. If 𝑗 is not 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 from 𝑖 then 𝑃𝑖𝑗
𝑛 = 0 for all 𝑛 ≥ 0, and thus the chain started 

from  𝑖 never visits 𝑗. Whereas, if 𝑖 is accessible from 𝑗, and 𝑗 is accessible from 𝑖 then this 
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means 𝑖  and 𝑗  communicate with each other and can be represented by 𝑖 ↔ 𝑗 . The 

accessibility relation groups states into distinct 𝑐𝑙𝑎𝑠𝑠 . Within each class, every state can 

transition to every other state within the same class (they "communicate" with each other). 

However, states in different classes cannot transition to each other (they do not 

"communicate"). Essentially, there is full connectivity within each class, but no connectivity 

between states in different classes. A regular Markov chain is considered irreducible if all states 

are part of a one class, meaning that every state can communicate with each other. For example, 

if the chain has 𝑛  states, irreducibility implies that the entries of matrix sum  𝐼 +  𝑃 +

 𝑃2  … + 𝑃𝑛 are nonzero. This matrix sum represents the cumulative probabilities of 

transitioning from any state to any other state within n steps, including staying in the same state 

(where 𝐼 is the identity matrix and 𝑃 is the transition matrix. Since the element 𝑃𝑖𝑗
𝑛 are between 

0 and 1 (i.e., 0 < 𝑃𝑖𝑗
𝑛 < 1), for irreducible states the equation (1) can also be expressed as:  

Also, 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 property of the chain force either all of the states are 𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 or all are 

𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡. A state 𝑖 is said to be 𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 if,  

• Once the process enters state 𝑖, there is a positive probability that it may never return to 

state 𝑖 again. 

• there is another state 𝑗  (distinct from 𝑖) that can be reached from 𝑖  but 𝑖  cannot be 

reached from 𝑗. 

• In a finite-state Markov chain, transient state can be visited only a finite number of 

times.  

A state 𝑖 is considered 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 if, 

 ∀𝑖, 𝑗 ∈ 𝑆, ∃𝑚 < ∞:𝑃(𝑋𝑛 + 𝑚 = 𝑗 ∣ 𝑋𝑛 = 𝑖) > 0 (6.6) 



105 

• Once the process enters state 𝑖, it is certain to return to state 𝑖  eventually.  

• Because a 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 state is guaranteed to be revisited after each visit, it needs to be 

visited an infinite number of times.  

In the case of aperiodicity, there is no return to the state 𝑖 after entering to state 𝑗, so at this 

point, the state 𝑗 has started keeping communication to itself only. Secondly, to check the 

behaviour of the Markov chain until absorption. For example the average time spent in any 

other state  𝑗 ≠ 𝑖 before being stuck in state 𝑖. Such a limitation of a regular Markov chain can 

be handled by a special type of state, one which when the process enters it, it never leaves it. 

Such states are referred to as 𝑎𝑏𝑠𝑜𝑟𝑏𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒𝑠.  

 

 Absorbing Markov chain 

In absorbing chain modelling (ACM), the terminal or censored states are fixed points or 

steady states: once a patient enters one of these states, there is no exit from it. Death is the 

primary example of such a state. However, there are also not-terminal states where individuals 

may reside without reaching an absorbing states for the duration of the study. This happens 

when a subject is alive and the study is ongoing, or the individual has withdrawn or been lost 

to follow-up. In the context of AMC is, an absorbing state is defined as follows:  

When a chain enters a state 𝑋𝐴  and remains in that state indefinitely, the probability of 

transitioning from this state to any other is zero, and the probability of remaining in the same 

state is one:  

 



106 

 𝑃(𝑋𝐴) =   𝒫00 = 1 (6.7) 

 

Thus 𝑋𝐴  is called an absorbing state. 

If a Markov chain reaches a steady state, the probabilities in every cycle remain same. This 

means that regardless of the number transitions n, the transition matrix raised to the power of 

n will produce the same probabilities. Therefore, if 𝑃1 is the transition matrix after one cycle, 

then for any number of cycles n, the transition matrix 𝑃𝑛 can be represented as:    

 𝑃𝑛 = 𝑃1
𝑛 (6.8) 

However it is crucial to understand that: 

• Steady-state predictions are never achieved in reality due to a  

o errors in estimating the transition matrix P 

o variation in 𝑃 over time 

o shifts in how the states depend on each other - nature of dependency in 

relationships among the states.  

• Steady-state probabilities may only exist if Markov chain is ergodic6. 

 
 

6 Steady-state probabilities represent the long-term behaviour of the Markov chain, may not be defined or 
achievable unless the Markov chain is ergodic. An ergodic Markov chain is one where it is possible to reach any 
state from any other state in a finite number of steps, and all states are recurrent and aperiodic. Essentially, 
ergodicity ensures that the system will eventually explore all states sufficiently, allowing steady-state 
probabilities to exist. 
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The system can be modelled as an AMC by modifying the transition matrix (𝑃) of RMC 

into a canonical form with four block matrices 𝐼 (identity matrix for absorbing states), 0 (zero 

matrix indicating no return to transient states from absorbing states), 𝑅  (transitions from 

transient states to absorbing states) and 𝑄  (transitions among transient states only) This 

structure is further detailed in section 6.5.2 (equation 6.9) where study data is used to 

demonstrate these concepts. It explains how these submatrices help to determine the 

fundamental matrix (equation 6.14) and the limiting matrix (equation 6.19).   

 

 Model structure and specification 

The figure (6.3) presents a graphic representation of the study's methodology. It 

illustrate the number of patients with suspected heart failure referred to HLL clinic from 2000 

to 2017 plus exclusion criteria. The detail of the HLL patients was provided in the chapter 4 

section 4.4. Patients are categorised based on ESC guidelines, then transformation of patient 

data into distinct states for analysis, and the subsequent steps of AMC to predict the patient 

outcomes over short and long terms.  
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Consecutive referrals to Hull LifeLab 
clinic (N = 7639)

Absorbing Markov chains model 
applied to predict:

Baseline (BL) categorisation based on 
series of ESC guidelines

Data transformation into states

[Dead]:Death 

all cause

[Left]: Patients who left the 

system and had no further 
interaction with the service for 
remaining period of study

[Hosp]: Any hospitalisation 

(HF) during the 4 month cycle 
(with or without clinic visit)

[OPD]: Attendance for a HF 

outpatient visit during the cycle 
(without either admission or 
death

[No event]: A patient did 

not attend the service during 
that 4 month period, but did 
have subsequent event

• Short-term behaviour

HeFREF: LVEF  <40% HeFNEF: LVEF   40% with NT-
proBNP i)   400 ng/L or ii) = 125-399 

ng/L)

Controls: LVEF   40% with NT-

proBNP <125ng/L

No NT-proBNP: LVEF  40% 
and no measurement of NT-
proBNP

• Long-term behaviour

LVSD missing excluded n= 143

 

Figure 6.3: Graphical representation of the study's methodology 

 

6.4.1 Selection of patients (their diagnostic categories and definitions)  

Patients were categorised into different cohorts at baseline using definitions of heart 

failure based on a series of ESC guidelines (published between 2008 and 2016). Left 

ventricular systolic function (LVEF) assessed by echocardiography with different cut-offs for 

NT-proBNP (as defined by the NICE (NICE, 2010; 2018b) and European Society for 

Cardiology (McMurray et al., 2012; Ponikowski et al., 2016) were used to classify the 

population into different cohorts as follows:   
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1) HeFREF – those with LVEF < 40%.  

2) HeFNEF – those with LVEF ≥ 40% and NT-proBNP:  

i) ≥400 ng/L (NICE, 2018b) 

ii) 125-399 ng/L (Ponikowski et al., 2016) 

3) Controls – individuals who did not meet the criteria for cardiac dysfunction (i.e., criteria 

is defined as LVEF ≥ 40% and NT-proBNP < 125 ng/L).  

4) No NT-proBNP – This group of patients had an uncertain diagnosis of HF 

(characterised by an LVEF ≥ 40% and no record of NT-proBNP). 

NT-proBNP was introduced during the course of the study, this is not available for all 

patients. “Controls” are referred to in inverted commas patients because despite having normal 

cardiac investigations were not considered normal as a referring clinician suspected HF was a 

possible diagnosis. Patients without baseline LVEF were excluded from this analysis because 

their heart failure phenotype could not be classified (n=143; Figure 6.4).  
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7,639
Patients refferred between 

2000 and 2017

143 patient with 
no LVEF or LVSD

7,496
Overall eligible 

patients

2,620 
HeFREF 

2,163 
HeFNEF

1,065 
HeFNEF

861
Controls

787 
No NT-proBNP

 

Figure 6.4: Consort diagram illustrated the flow of patients Patients with suspected heart failure 

referred to the HLL clinic from 2000 to 2017 their classification into different cohorts at BL.143 

patients with no LVEF or LVSD recorded at baseline were excluded from the study 

  

 

6.4.2 Data transformation and state definition 

First, the data must be transformed into appropriate heath states after the diagnostic 

categorisation of the population. This allows to represent changes in the patient's health status 

over different risk phases (e.g. acute, unstable and stable) by a Markovian transition process. 

The patient's states were assessed at consecutive four-month intervals (cycles) from BL up to 

24 months;  

(1) [𝐷𝑒𝑎𝑑] – death from any cause.  



111 

(2) [𝐿𝑒𝑓𝑡] – patients who exited the system and had no further interaction with the 

service, neither died nor used the service for the rest of the study period. 

 (3) [𝐻𝑜𝑠𝑝] – any HF hospitalisation during the 4 month cycle regardless of a clinic 

visit; 

 (4) [𝑂𝑃𝐷]  – attendance for a HF out-patient visit during the interval - without 

admission or death. 

 (5) [𝑁𝑜 𝑒𝑣𝑒𝑛𝑡] – a patient did not attend the service during that 4 month period, but 

did have a subsequent event, thus not classified as [𝐿𝑒𝑓𝑡].  

[𝐿𝑒𝑓𝑡] and [𝑁𝑜 𝑒𝑣𝑒𝑛𝑡] were considered as non-clinical Markovian states, indicating 

periods when the HF service was not utilised. This also help to complete the patient’s history 

with no gap between any consecutive cycles. Patients were not excluded simply because no 

transition was seen during a particular time frame: it is possible for a patient to return from 

[𝑁𝑜 𝑒𝑣𝑒𝑛𝑡] state to any of the states other than[𝐿𝑒𝑓𝑡].  

The model allows the transition to [Dead] to occur at any time within a 4 monthly cycle. 

My approach was hierarchical: if a patient was both admitted and died within a single cycle, 

only the death is considered in the model. For instance, if a hospitalisation or death occurs 

within a cycle, the patient is assigned to that health state throughout that 4 monthly cycle. If 

patient have more than one OPD visit within the 4 monthly interval, the latest OPD visit is 

selected. Similarly the latest admission were considered. The underlying disease process is 

continuous, and clinical events are represented at discrete time points (Gruger et al., 1991; 

Jackson, 2019).  
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Figure 6.5 illustrates some possible transitions that patients with HF might follow in 

the 5 state model. It is extended form of Figure 4.1, where there were only 3 states.  
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Figure 6.5: 9 cases of patient's healthcare journey for 5 states model.Figure illustrates potential 

transitions for patients up to 5 cycles after baseline. Abbreviations: D: [𝐷𝑒𝑎𝑑],; L: [𝐿𝑒𝑓𝑡],; H: 

[𝐻𝑜𝑠𝑝],; O: [𝑂𝑃𝐷],  & N: [𝑁𝑜 𝑒𝑣𝑒𝑛𝑡],. 4M: 4 month; 8M: 8 month; 12M: 12month; 16M: 16 month; 

and 20M: 20 month. An oval shape is used to indicate that individual transited to either [Dead] or 

[Left] state will stay in these states for the remaining cycles or until a process finished. 

 

6.4.3 State transitions in the model 

Given the 5 states, {[𝐷𝑒𝑎𝑑], [𝐿𝑒𝑓𝑡], [𝐻𝑜𝑠𝑝], [𝑂𝑃𝐷], [𝑁𝑜 𝑒𝑣𝑒𝑛𝑡]}, the Markov model 

forecast the probability of individual being in specific states over time. E.g., if a patient is in 

the hospitalised state, what is the likelihood of either repeated hospitalisation or transitioning 

to another state subsequent intervals?  
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Transition matrices were created for each of the initial two transitions: (a) between BL 

to the end of 4 months (1st cycle) and (b) from 4 months (1st cycle to end of the 8months (2nd 

cycle) respectively). Since all patients starts in the [𝑂𝑃𝐷] state, the 1st transition is represented 

as a single line only (see Table 6.2). The study used these two matrices to capture and 

understand the dual temporal prospects, the immediate and extended risk patterns in patients 

with HF. The focus is on both short term (one-step probabilities through the sixth cycle (i.e., 

24 months)) and long term (up to a maximum of 4 years) prediction. Figure 6.6 shows the 

follow of patients through different states tracked over two cycles. There are percentages 

showing the overall distributions of at the end of the follow-up cycle.  

 

Figure 6.6: First two transitions among states as per diagnostic categories 
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Figure 6.7 illustrates the underlying five-state model used to examine disease 

progression. The directions of instantaneous transitions are indicated by the arrow. The 

transitions between transient states ([𝐻𝑜𝑠𝑝], [𝑂𝑃𝐷] and[𝑁𝑜 𝐸𝑣𝑒𝑛𝑡]) are both direction but no 

further transition take place once the absorbing state is reached, no further transitions are 

possible. In this analysis there are two absorbing states ([𝐷𝑒𝑎𝑑] and [𝐿𝑒𝑓𝑡]). This figure is 

compact form of figure 6.5. 

No event

Hosp

OPD DeadLeft

 

Figure 6.7: Underlying 5 state model for examining the HF disease progression 

 

 Results   

The model was developed using the observed frequencies of state transitions from the 

first two cycles. I subsequently applied this model to the original dataset to predict future 

outcomes. To evaluate the model's accuracy, I compared the predicted transition probabilities 

with the observed transitions up to sixth cycle. For examining the model's long-term behaviour, 

I computed a fundamental matrix (6.14) and a limiting matrix (6.19) based on modelled data. 
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By incorporating dual temporal prospects, I analysed both the immediate and extended 

risk patterns in patients with HF. For examining the model’s long-term behaviour, I computed 

two key matrices: the fundamental matrix (equation 6.14) and the limiting matrix (equation 

6.19). The fundamental matrix provides information on how long an individual is likely to 

remain in each transient state and estimates how many cycles it will take before the individual 

reaches a permanent (absorbing) state within the model's duration. The limiting matrix shows 

the expected probabilities or proportions of individuals eventually reaching one of the 

permanent (absorbing) states. More detailed information is available in section 6.5.1. 

 

6.5.1 Baseline demographics 

6.5.1.1 Diagnostic categorisation  

The study includes 7,496 patients. Patients are categorised as: 34%(N=2620) patients 

had HeFREF, 28%(N=2163) patients had HeFNEF with NT-proBNP ≥400 (ng/L), 

14%(N=1065) pateints had HeFNEF with NT-proBNP between 125 & 399 (ng/L), 11%(861)  

referred as (“controls”) because they did not meet the criteria for HF, 10%(N=787) patients 

had uncertainty when diagnostic categorisation, due to normal LV systolic function but no NT-

proBNP result, referred to as  “No NT-proBNP”) (Figures 6.3). Table 6.1 provides a detailed 

overview of the demographic and clinical characteristics of patients in each diagnostic category. 

Continuous variables are reported as median and interquartile range (IQR), while 

categorical variables are displayed as count and percentages. The independent t-test was used 

to evaluate differences in continuous data between the diagnostic groups. After transforming 

the data into health states, the distribution of patients across each state is presented in tables. P 



116 

values, calculated from analysis of variance, represent the differences between patients in 

diagnostic categories. 

Various packages were used for analyses, including R (version 2022.02.1), Stata 

software, and Excel. Statistical significance was determined by a two-sided p-value of less than 

0.05.  
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Variable 

Missing 

(n) 
Total HeFREF 

HePNEF 
Control No NT-proBNP P value   

>=400 125-399 

Demographics 

Age (years)  73.5 (65.6, 79.9) 72.6 (64.4, 78.9) 77.3 (71.3, 82.8) 

72.8 (65.8, 

79.1) 65.9 (57.7, 72.5) 74 (66.8, 80.2) <.001 

Men (%)  4493 (58) 1837 (74) 933 (53) 420 (48) 442 (54) 596 (47) <.001 

BMI (kg/m2) 62 28.1 (24.7, 32.1) 27.2 (24, 30.9) 28.2(24.7, 32.4) 29.6 (26, 33.5) 29.2 (26.1, 33.7) 28.6 (25.1, 32.5) <.001 

Underweight (<20) (%)  281 (4) 118 (5) 73 (4) 14 (2) 11 (1) 31 (3) 

<.001 

Lean (20-24.9) (%)  1723 (23) 677 (27) 379 (22) 135 (16) 132 (16) 267 (22) 

Overweight (25-29.9) (%)  2751 (36) 914 (37) 635 (37) 304 (35) 301 (37) 436 (35) 

Obese (30-39.9) (%)  2401 (32) 691(28) 531 (31) 339(39) 304(37) 428 (35) 

Morbidly Obese (>=40) (%)  421 (6) 71 (3) 119 (7) 74 (9) 63 (8) 72 (6) 

NYHA class (%) 189        

I  1936 (26) 346 (14) 362 (21) 311 (37) 378 (50) 425 (35) 

<0.001 
II  3379 (45) 1174 (47) 835 (48) 398 (47) 277(36) 542 (45) 

III  1986 (27) 886 (36) 513 (29) 130 (15) 101 (13) 230 (19) 

IV  149 (2) 75 (3) 31 (2) 6 (1) 5 (1) 13 (1) 

Systolic BP (mmHg) 24 139 (122, 158) 129 (113, 145) 142 (126, 162) 150 (133, 166) 143 (129, 158) 148 (130, 165) <0.001 

Oedema 686        

None  4087 (59) 1244 (55) 753 (46) 528 (65) 578 (78) 736 (65) 

<0.001 
Trace  944 (14) 343 (15) 241 (15) 120 (15) 62 (8) 135 (12) 

Ankles  1398 (20) 472 (21) 471 (29) 126 (15) 79 (11) 170 (15) 

Above ankles  524(8) 185(8) 160(10) 41(5) 21(3) 84(7) 

Left ventricular systolic dysfunction 

LV Impairment 1        
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None  3194(45) 0(0) 969(56) 626(72) 697(86) 902(72) 

 Trivial  560(8) 0(0) 265(15) 94(11) 60(7) 141(11) 

Mild  931(13) 0(0) 512(29) 147(17) 58(7) 214(17) 

Worse  2485(35) 2485(100) 0(0) 0(0) 0(0) 0(0) 

EF Simpsons (%) 3506 47(37,58) 33(26,38) 53(47,60) 57(50,62) 59(54,64) 55(48,61)  

Findings on electrocardiogram 

Heart rate (bpm) 209 72(62,84) 75(64,88) 72(62,85) 67(58,78) 71(62,81) 71(62,82) <0.001 

Heart rhythm (Sinus) (%) 190 4976(67) 1517(62) 785(45) 783(91) 778(97) 869(72) <0.001 

QRS (ms) 356 98(86,118) 114(98,144) 96(86,112) 92(82,100) 90(82,98) 92(84,114) <0.001 

Blood test 

Haemoglobin (g/dL) 1397 13.4(12.2,14.5) 13.5(12.2,14.6) 12.9(11.7,14.1) 13.5(12.6,14.4) 14(13.2,15) 13.3(12.1,14.4) <0.001 

Sodium (mmol/L) 1229 139(137,140) 139(136,140) 139(137,140) 139(137,141) 139(138,141) 139(137,140) <0.001 

Potassium (mmol/L) 1270 4.3(4,4.6) 4.4(4.1,4.7) 4.3(4,4.7) 4.3(4.1,4.6) 4.3(4,4.5) 4.3(4,4.6) 0.39 

Urea (mmol/L) 1229 6.5(5,8.9) 7.2(5.4,10.1) 7.1(5.4,9.8) 5.9(4.7,7.3) 5.2(4.2,60.3) 6.2(4.8,8.2) <0.001 

Creatinine (umol/L 1237 97(80,121) 106(88,135) 100(82,129) 87(74,103) 82(71,96) 92(77,114) <0.001 

Albumin (g/L) 1331 38(35,40) 38(35,40) 37(35,39) 39(37,41) 40(38,42) 38(35,40) <0.001 

NT-proBNP (ng/L) 1116 792(219,2165) 1752(745,3900) 1269(727,2364) 225(165,296) 60(37,91)   

Heart failure medication 

Loop Diuretic (%)  4568(60) 1975(79) 1204(69) 337(39) 209(26) 554(44) <0.001 

Furosemide EquivDailyDose 

(mg)  40(40,80) 40(40,80) 40(40,80) 40(40,40) 40(40,40) 40(40,80) <0.001 

Thiazide (%)  561(7) 107(4) 136(8) 104(12) 94(12) 102(8) <0.001 

Beta-blocker (%)  4333(57) 1875(75) 1077(62) 407(47) 211(26) 499(40) <0.001 

ACE/ARB (%)  5166(68) 2185(88) 1200(69) 501(58) 352(43) 650(52) <0.001 

MRA (%)  1584(21) 981(39) 302(17) 65(8) 27(3) 89(7) <0.001 

Table 6.1: Figure 6.8: Baseline demographic and clinical characteristics. See Table 4.6 for abbreviations: HeFREF, HF with reserved ejection fraction, 

HeFPEF, HF with preserved left ventricular ejection fraction (type 1 is defined as echocardiographic abnormalities that could account for symptoms and NT-
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proBNP concentration >400 ng/L, and type 2 is defined as no LVSD but NT-proBNP concentration between 400 - =125 ng/L. Bold text indicates statistical 

significance at the 0.05 level (two-tailed). *NT-proBNP testing was introduced and became a routine part of clinical services while the data for the study was 

being collected. Initially, this test was not available, but it was implemented during the ongoing data collection period. 
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6.5.1.2 Patient follow-ups (OPD), admissions and deaths 

Every patient had an initial outpatient department (OPD) visit from where the transition 

started. Out of 7,496 patients, 3,485 had subsequent OPD follow-ups. A total of 11,103 OPD 

follow-ups were noted over 24 months. On average, there were 3.18 follow-ups per patient. 

When selecting only the latest OPD follow-up within a period, 8,241 follow-ups were counted, 

averaging 2.36 per patient. Cardiovascular (CV) hospital admissions were noted for 3,302 

patients, with the latest admission per cycle bringing the count to 5,386, averaging 1.63 

admissions per individual. The overall admission count was 6,369, with an average of 1.92 per 

patient. Within the 24-month period, 1,372 deaths occurred, representing 18% of the total 

patient population. 

 

6.5.2 Probabilistic estimation of patients’ risk using AMC  

  An AMC allows for estimating how many cycles (time intervals) a patient will stay in 

transient states before eventually moving to one of the absorbing states. It also estimates the 

likelihood and proportions of patients ending up in each of these absorbing states. As stated 

above, the transition matrix for any absorbing chain to have a canonical form with four block 

matrices, 𝐼, 0, 𝑅 and 𝑄, as shown in equation (6.9). The partition of transition probability matrix 

is such that the first rows and columns represent the absorbing states, while the partition 𝑄 

represents the 𝑁 non-absorbing (i.e., transient) states. 
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(6.9) 

 

Where, 𝐼 is an identity matrix, and 0 is 𝑧𝑒𝑟𝑜𝑠 materix, R is a non-zero N-by-A matrix 

(non-absorbing to absorbing states) and Q is a N-by-N matrix (non-absorbing to non-

absorbing). The states are ordered such that the absorbing states come first followed by the 

transient states. The risk states of this study are ordered as  [𝐷𝑒𝑎𝑑(𝐷), 𝐿𝑒𝑓𝑡 (𝐿), 𝐻𝑜𝑠𝑝(𝐻),

𝑂𝑃𝐷(𝑂), 𝑁𝑜 𝑒𝑣𝑒𝑛𝑡 (𝑁𝐸)]  and representing 𝑃𝑜𝑏𝑠
1  into a canonical form with four block 

matrices (𝑃) is as described with example in Table 6.4. 

 

6.5.3 Distribution and proportion at initial two transitions  

Table 6.2 presents the distribution and proportion of patients after the first transition 

from BL to the end of 1st cycle. Initially, all subjects were in the [𝑂𝑃𝐷] state. Over the next 

four months, they transitioned into one of five possible states with the following proportion: 

6% (N =427) had died, 25% (N = 1842) had left the service, 21% (N = 1559) were admitted to 

hospital, 30% (N = 2254) had attended the OPD clinic again and 19% (N = 1414) did not access 

the service. N is total number of patients. 

 

 

 

= 𝒫 
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1st cycle  

(N at baseline 7,496) 

Absorbing states Transient states 

[Dead] [Left] [Hosp] [OPD] [No_Event] 

Initial 
D/P 427(0.06) 1842(0.25) 1559(0.21) 2254(0.3) 1414(0.19) 

       

Table 6.2: Distribution and probability observed (from data) at 1st transition 

Abbreviation D = Distribution and P = Probability 

 

Table 6.3 displays the observed frequencies from 1st cycle to the end of 2nd cycle. 

Patients in [Dead] (n=427) and [Left] (n=1842) states at the end of 1st cycle remain in these 

states at the next follow-up. Of 1,559 hospitalised patients, 104 patients died, 266 left the 

service, 376 were hospitalised again, 233 were seen in out-patients and 328 did not attend the 

service. 

 

6.5.4 Long-term behaviour  

Table 6.4 shows the probabilities of 2nd transition in four block matrices as explained 

in the equation 6.9. Patients who died or left the system in the 1st cycle remain in those states 

with probability 1. As examples of transitions between transient states, patients in the [Hosp] 

state had a probability of being [Dead] of 0.07; and patients in the [OPD] state had a probability 

of being [Hosp] of 0.12. 

 

States To 
Total 

[Dead] [Left] [Hosp] [OPD] [No Event] 

From 

[Dead] 427     427 

[Left]  1842    1842 

[Hosp] 104 266 376 223 590 1559 

[OPD] 54 188 273 493 1246 2254 

[No Event] 66   269 190 889 1414 

Table 6.3: Frequencies observed from the data at 2nd transition 
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The corresponding transition probabilities ( Table 6.4 can be represented 

with four block matrices, I, 0, R and Q: 

 

 

𝐼 = [
1 0 0
0 1 0
0 0 1

],  0 = [
0 0 0
0 0 0
0 0 0

], 𝑅 = [
0.07 0.17
0.02 0.08
0.05 0

] and  𝑄 =[
0.24 0.14 0.38
0.12 0.22 0.55
0.19 0.13 0.63

] 

 

 

(6.10) 

The standard form of (𝑃𝑜𝑏𝑠) is very useful in determining the limiting matrix (�̅�) for 

an absorbing Markov chain, where 𝑃𝑘 approaches a limiting matrix �̅� as 𝑘 increase: 

 

        

         

         

 

 

 

 

  
To   

[Dead] 
 

[Left] [Hosp] [OPD] [No Event]  

From 

[Dead] 1 0 0 0 0 
 

[Left] 0 1 0 0 0  
[Hosp] 0.07 0.17 0.24 0.14 0.38  
[OPD] 0.02 0.08 0.12 0.22 0.55  
[No Event] 0.05 0 0.19 0.13 0.63          

         

         

         

 

 
 

 

Table 6.4: Transition probabilities during the 2nd cycle 

A 5×5 matrix, represents the observed probabilities ( 𝑷𝒐𝒃𝒔). The states are ordered such that absorbing 

states (ABS) come first and then the transient states (TR). The different colours represent the 

canonical form of the Absorbing Markov chains with four block I, O, R and Q matrices. 

𝐼 0 

𝑷𝒐𝒃𝒔 = 

𝑅 𝑄 
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[

𝐼 0
𝐹𝑅 𝑄

] = �̅� 
(6.11) 

The rows of both 𝑅 and 𝐹𝑅 corresponding to the transient (non-absorbing) states. To 

determine the sub-matrix FR of limiting matrix �̅�, the fundamental matrix 𝐹 (Yashinski, 

2021; Sargent et al., 2024) has to be determined and is given by: 

 𝐹 = (𝐼 − 𝑄)−1
 (6.12) 

 

Where 𝐼 and 𝑄 are as before with the appropriate dimensions, thus using the submatrices 

given above, it can be seen that:     

 

𝐹 = ([
1 0 0
0 1 0
0 0 1

] − [
0.24 0.14 0.38
0.12 0.22 0.55
0.19 0.13 0.63

])

−1 

 

(6.13) 

 

 
𝐹 = [

2.65 1.24 4.56
1.82 2.55 5.66
2 1.53 7.03

] 
(6.14) 

 

Matrix 𝐹 represents square matrix where both rows and columns represent the transient states, 

i.e., [𝐻𝑜𝑠𝑝, 𝑂𝑃𝐷, 𝑁𝑜 𝐸𝑣𝑒𝑛𝑡]. This means that row 𝑖 corresponds to the 𝑖th transient state, not 

just the 𝑖th state in general. Consequently,  𝐹(𝑖, 𝑗) represent the expected number of cycles that 

the chain spends in the 𝑗th transient state given that the chain started in the 𝑖th transient states. 

The sum of entries in 𝐹 determined by: 
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 𝐹(𝑖, 𝑗) = 𝑄0(𝑖, 𝑗) + 𝑄1(𝑖, 𝑗) + 𝑄2(𝑖, 𝑗) + ⋯   (6.15) 

 

where 𝑄𝑡(𝑖, 𝑗) represent the probability that the process which started in the 𝑖th non-absorbing 

state will be in 𝑗 th non-absorbing state in period 𝑡 . 𝑄𝑡(𝑖, 𝑗) can also be explained as the 

expected 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 of period 𝑡 spent in the 𝑗th state. Summing over all time period 𝑡 gives 

average number of cycles that it take to go from a given non-absorbing states to an absorbing 

state, given that the chain started in the 𝑖𝑡ℎ non-absorbing state. The equation can also be 

written as:  

 

 

% 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 =  ∑(𝐼 − 𝑄)−1

3

𝑗=1

= 
𝐻𝑜𝑠𝑝
𝑂𝑃𝐷

𝑁𝑜 𝐸𝑣𝑒𝑛𝑡
[
8.45
10.03
10.55

] 

 

 

(6.16) 

 

The 𝐹 matrix (equation 6.14) provide the expected number of visits to each transient 

states until it entered in to one of the absorbing state. For instance, the first row shows that if 

the patient is in the [𝐻𝑜𝑠𝑝] state after their initial transition, they will on average spend 

approximately 3 cycles in this state, 1 cycle in the [𝑂𝑃𝐷] state and 5 cycles without requiring 

HF services before reaching an absorbing state. Similarly, the second row indicates that if the 

patient begin in the [𝑂𝑃𝐷] state after their initial transition, they are expected to spend an  

average 2, 3 and 6 cycles in the [𝐻𝑜𝑠𝑝], [𝑂𝑃𝐷]  and [𝑁𝑜 𝐸𝑣𝑒𝑛𝑡] states, respectively. The 𝐹 

matrix provides an estimate of the number of cycles until a subject enterred an absorbing 

state, obtained by summing each row of 𝐹, shown in equation (6.16).  
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The limiting nature of AMC is like a cumulative utility where Markov cohort is 

completely absorbed in non-transient states. The long term behaviour of a Markovian model 

can be shown by the limiting matrix equation 6.11. Thus the limiting matrix, FR is  

 
𝐹 ∙ 𝑅 =   [

2.65 1.24 4.56
1.82 2.55 5.66
2 1.53 7.03

] ∙  [
0.07 0.17
0.02 0.08
0.05 0

]  
(6.17) 

 

 

 
𝐹𝑅 =  [

0.44 0.55
0.46 0.51
0.52 0.46

] 
(6.18) 

 

 

By putting FR value into equation (6.11), the Limiting matrix (�̅�) of this analysis is as 

shown in equation 6.18.  

 

The limiting distribution for an absorbing chain generally relies on the initial state of the 

process as shown in the Table 6.2, which refers to the cohort of patients at initial transition. In 

contrast, the limiting distribution for a regular chain does not depend on the initials state. 

   

 

(6.19) 

 

The limiting matrix (�̅�) (equation (6.19)) displays the probabilities of patients reaching 

either of the two absorbing states, based on the state they are in after the first cycle. To fully 

understand equations (6.16) and (6.19) requires to interpret together. An illustration of 

[
 
 
 
 

 1  0    0 0 0
  0   1    0 0 0
0.44 0.55 0 0 0
0.46 0.51 0 0 0
 0.52 0.46 0 0 0]

 
 
 
 

  �̅� =

[𝐷𝑒𝑎𝑑]

[𝐿𝑒𝑓𝑡]

[𝐻𝑜𝑠𝑝]

[𝑂𝑃𝐷]

[𝑁𝐸]

[𝐷𝑒𝑎𝑑] [𝐿𝑒𝑓𝑡] [𝐻𝑜𝑠𝑝]   [𝑂𝑃𝐷] [𝑁𝐸]     
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interpreting the results suggested that the model predicts that a patient who was hospitalised 

after the first cycle has a 0.44 probability of dying within (approximately) 8 cycles. Here 8 

cycles equates to further 6 cycles beyond the initial two cycles which were used the derived 

the model. It is important to note that, according to the model’s description, every individual 

will inevitably reach an absorbing state within the specified timeframe (death or the end of the 

model. 

 

6.5.5 Short term behaviour 

Transition probabilities observed from the data and predicted by the model for all 

patients up to the 6th cycle (24 months) presented in Table 6.5. it is worth mentioning again 

that the probabilities predicted by a model solely based on the observed data from initial two 

transitions. The table also indicates the extent to which the prediction differ from the observed 

data.  

The predicted probabilities of the model shown in the left-hand columns, the centre 

columns represented the observed probabilities, and the error (E) between two shown in right-

hand columns. E.g.,, at the 4th cycle, the model predicted the following, 14% of individuals 

will be deceased, 37% will have discharged, 10%  will be hospitalised, 8% will be attended 

OPD clinic and 31% will not require any HF service. A heat map of colour coding from green 

to red indicates the increasing difference. Negative signs show underestimation while positive 

signs show overestimation. It can be seen from the data for cycle 3 to 6 (after the initial 

assessment), there is high level of agreement regarding important clinical states, death and 

hospitalisation. 
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From  Prediction (model)  Observed (from data) Error (E) between prediction 

Cycle [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE] 
                 

BL 

1 - - - - - 0.06 0.25 0.21 0.30 0.19 - - - - - 

2 - - - - - 0.09 0.31 0.12 0.12 0.36 - - - - - 

3 0.12 0.34 0.11 0.09 0.34 0.11 0.34 0.11 0.26 0.18 0.00 0.00 0.00 -0.17 0.16 

4 0.14 0.37 0.10 0.08 0.31 0.14 0.41 0.10 0.15 0.21 0.01 -0.04 0.01 -0.07 0.10 

5 0.16 0.39 0.09 0.07 0.28 0.16 0.47 0.10 0.07 0.20 0.00 -0.08 0.00 0.00 0.07 

6 0.19 0.41 0.08 0.07 0.25 0.18 0.54 0.08 0.19 0.00 0.00 -0.13 0.00 -0.13 0.25 

                                  

Table 6.5: Predicted vs observed probabilities for overall population 

Probabilities are shown (up to 6 cycles) and are rounded to 2 decimal points 
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6.5.6 Long-term survival analysis  

Equations 6.16 and 6.19 shows the long-term prediction until the probabilities of 

patients transitioning to one of the two absorbing states. The probability of survival over 9 

cycles is illustrated in Figures 6.8 and 6.9.  

Figure 6.8 is a graph that show the Kaplan-Meier survival curves (Goel et al., 2010) 

for three groups of patients in transient states ([Hosp], [OPD] and [No Event] at 4 month’s 

interval. The probability at each cycle represents survival probability at that point. For 

example, the model predicts the survival probability 0.57, 0.55 and 0.50 at cycle 9th, 10th and 

11th for patients in ([Hosp], [OPD] and [No Event], respectively.  

 

 

 

Figure 6.8: Survival curves for three groups of patients in transient states (i.e.,[Hosp], [OPD] and [No 

Event] at 4 month’s interval. 
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I analysed the observed the probabilities of patients other than controls. As seen in 

Table 6.6, of the patients who were in the [Hosp] state at 4 month’s interval, 39% had died 

within the period of 48 months. Similarly, for those who had an outpatient follow-up at 4 

month’s interval 32 % were dead within 52 months.  

  

Starting state at 4 months’ cycle  Death all cause Cycle No (months) 

[Hosp] 39% 12 (48 M) 

[OPD] 32%  13 (52 M) 

[NE] 40% 14 (56 M) 

Table 6.6: Mortality rate absorbed in HLL based on 4moths' transitionThis includes everyone other 

than controls. Patients were stratified by their starting states. 

  

Generally, long-term predictions are made based on the treatments that patients receive. 

The treatment is not applied in the current analysis. In subsequent analyses (chapters 7 and 8), 

treatments and other covariates will be incorporated into model to examine the long-term 

effects of treatment. The other reason for this is that as the number of patients in the cycles 

come down, the errors in the predictions increase, thus the difference between the predictions 

and the true numbers. These differences can be explained by the presence of control patients 

in the data. 
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6.5.7 Prediction based on demographics  

 

AMC was developed for each sub-group for each sub-group to assess differences in the 

progression of patients by sex and age-groups (those aged 75 and above years old and those 

under 75 years old)). The model accurately predicted both death and hospitalisation. The 

fundamental (𝐹) and limiting matrices (�̅�) showing the long-term prediction for the subgroups 

(sex and age-groups): for male (𝑚) it is equation 6.20, for female (𝑓) it is equation 6.21, for 

age-group ≥ 75 it is equation 6.22 and < 75 it is equation 6.23: females spend a lesser number 

of cycles in the transient states compared to males and have lower likelihood of death. Likewise, 

patients under 75 years old had a better expected outcome. Table 6.7 – 6.10 displays the 

observed and predicted probabilities of transition for sub-groups up to the 6th cycle (24 months). 

E.g.,, Table 6.7 illustrate that at cycle 4, the model predicted the following, 16% individuals 

deceased, 31% discharged, 11% hospitalised, 10% attending OPD clinic and 31% not requiring 

heart failure service. A heat map of colour coding from green to red indicates the increasing 

difference. Negative signs show underestimation while positive signs show overestimation. 

Tables 6.8 – 6.10 can be interpreted similarly. 
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[
2.76 1.49 4.77
1.92 2.8 5.76
2.03 1.78 6.89

] =   [
9.02

10.48

10.70

] 

[
 
 
 
 

1 0 0 0 0
0 1 0 0 0

0.50 0.50 0 0 0
0.54 0.46 0 0 0
0.59 0.41 0 0 0]

 
 
 
 

 

[
2.56 1.1 4.33
1.75 2.45 5.58
2.06 1.45 7.39

] =   [
7.99

9.78

10.90

] 

[
 
 
 
 

1 0 0 0 0
0 1 0 0 0

0.33 0.67 0 0 0
0.34 0.66 0 0 0
0.39 0.61 0 0 0]

 
 
 
 

 

[
2.57 1.21 4.49
1.75 2.54 5.86
1.92 1.52 7.07

] =   [
8.27

10.15

10.51

] 

[
 
 
 
 

1 0 0 0 0
0 1 0 0 0

0.47 0.53 0 0 0
0.50 0.50 0 0 0
0.56 0.44 0 0 0]

 
 
 
 

 

[
3.35 1.94 5.87
2.53 3.25 6.83
2.85 2.39 8.42

] =   [
11.16

12.61

13.66

] 

[
 
 
 
 

1 0 0 0 0
0 1 0 0 0

0.22 0.78 0 0 0
0.25 0.75 0 0 0
0.28 0.72 0 0 0]

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

(6.20) 

  
 

 

 

(6.21) 

  
 

 

 

(6.22) 

  
 

 

 

(6.23) 

�̅�𝑚 =

[𝐷𝑒𝑎𝑑]
[𝐿𝑒𝑓𝑡]

[𝐻𝑜𝑠𝑝]
[𝑂𝑃𝐷]

[𝑁𝐸]

[𝐻𝑜𝑠𝑝]    [𝑂𝑃𝐷]    [𝑁𝐸]     

𝐹𝑚 =

[𝐻𝑜𝑠𝑝]
[𝑂𝑃𝐷]

[𝑁𝐸]

[𝐷𝑒𝑎𝑑] [𝐿𝑒𝑓𝑡] [𝐻𝑜𝑠𝑝] [𝑂𝑃𝐷] [𝑁𝐸]     
𝑇𝑜𝑡𝑎𝑙 𝑐𝑦𝑐𝑙𝑒𝑠     

�̅�𝑓 =

[𝐷𝑒𝑎𝑑]
[𝐿𝑒𝑓𝑡]

[𝐻𝑜𝑠𝑝]
[𝑂𝑃𝐷]

[𝑁𝐸]

[𝐻𝑜𝑠𝑝]    [𝑂𝑃𝐷]    [𝑁𝐸]     

𝐹𝑓 =

[𝐻𝑜𝑠𝑝]
[𝑂𝑃𝐷]

[𝑁𝐸]

[𝐷𝑒𝑎𝑑] [𝐿𝑒𝑓𝑡] [𝐻𝑜𝑠𝑝] [𝑂𝑃𝐷] [𝑁𝐸]     
𝑇𝑜𝑡𝑎𝑙 𝑐𝑦𝑐𝑙𝑒𝑠     

�̅�≥75 =

[𝐷𝑒𝑎𝑑]
[𝐿𝑒𝑓𝑡]

[𝐻𝑜𝑠𝑝]
[𝑂𝑃𝐷]

[𝑁𝐸]

[𝐻𝑜𝑠𝑝]    [𝑂𝑃𝐷]    [𝑁𝐸]     

𝐹≥75 =

[𝐻𝑜𝑠𝑝]
[𝑂𝑃𝐷]

[𝑁𝐸]

[𝐷𝑒𝑎𝑑] [𝐿𝑒𝑓𝑡] [𝐻𝑜𝑠𝑝] [𝑂𝑃𝐷] [𝑁𝐸]     
𝑇𝑜𝑡𝑎𝑙 𝑐𝑦𝑐𝑙𝑒𝑠     

�̅�<75 =

[𝐷𝑒𝑎𝑑]
[𝐿𝑒𝑓𝑡]

[𝐻𝑜𝑠𝑝]
[𝑂𝑃𝐷]

[𝑁𝐸]

[𝐻𝑜𝑠𝑝]    [𝑂𝑃𝐷]    [𝑁𝐸]     

𝐹<75 =

[𝐻𝑜𝑠𝑝]
[𝑂𝑃𝐷]

[𝑁𝐸]

[𝐷𝑒𝑎𝑑] [𝐿𝑒𝑓𝑡] [𝐻𝑜𝑠𝑝] [𝑂𝑃𝐷] [𝑁𝐸]     
𝑇𝑜𝑡𝑎𝑙 𝑐𝑦𝑐𝑙𝑒𝑠     
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From 
To Prediction Observed Error 

Cycle [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE] 
                 

BL 

1 - - - - - 0.06 0.20 0.22 0.34 0.18 - - - - - 

2 - - - - - 0.09 0.26 0.13 0.13 0.39 - - - - - 

3 0.13 0.28 0.12 0.11 0.36 0.12 0.29 0.11 0.30 0.18 0.01 0.00 0.01 -0.20 0.18 

4 0.16 0.31 0.11 0.10 0.32 0.15 0.35 0.10 0.18 0.22 0.01 -0.04 0.01 -0.09 0.10 

5 0.19 0.33 0.10 0.09 0.29 0.17 0.41 0.11 0.08 0.23 0.02 -0.08 0.00 0.00 0.07 

6 0.22 0.35 0.09 0.08 0.26 0.19 0.49 0.09 0.23 0.00 0.02 -0.13 0.00 -0.15 0.26 

                                 

Table 6.7: Predicted vs observed probabilities for male population (up to 6 cycles) 

 

 

 

 

From 
To Prediction Observed Error 

Cycle [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE] 
 

                

BL 

1 - - - - - 0.05 0.31 0.19 0.24 0.21 - - - - - 

2 - - - - - 0.08 0.38 0.11 0.11 0.33 - - - - - 

3 0.09 0.42 0.10 0.08 0.31 0.11 0.41 0.11 0.19 0.17 -0.01 0.00 -0.01 -0.12 0.14 

4 0.11 0.45 0.09 0.07 0.28 0.12 0.49 0.09 0.11 0.19 -0.01 -0.04 0.00 -0.04 0.10 

5 0.13 0.47 0.08 0.06 0.26 0.15 0.55 0.08 0.05 0.17 -0.02 -0.07 0.00 0.01 0.09 

6 0.14 0.50 0.08 0.05 0.23 0.17 0.61 0.07 0.14 0.00 -0.02 -0.12 0.00 -0.09 0.23 

                                  

Table 6.8: Predicted vs observed probabilities for female population (up to 6 cycles) 
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From 
To Prediction Observed Error 

Cycle [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE] 
                 

BL 

1 - - - - - 0.07 0.22 0.21 0.30 0.20 - - - - - 

2 - -- - - - 0.10 0.28 0.12 0.12 0.37 - - - - - 

3 0.14 0.31 0.11 0.09 0.35 0.13 0.32 0.11 0.25 0.18 0.00 -0.01 0.00 -0.16 0.17 

4 0.17 0.34 0.10 0.08 0.32 0.16 0.39 0.10 0.15 0.21 0.01 -0.05 0.00 -0.07 0.11 

5 0.19 0.36 0.09 0.07 0.28 0.19 0.45 0.10 0.07 0.20 0.00 -0.09 -0.01 0.01 0.09 

6 0.22 0.38 0.08 0.07 0.26 0.22 0.52 0.08 0.18 0.00 0.00 -0.14 0.00 -0.12 0.26 

                                  

Table 6.9: Predicted vs observed probabilities for ≥ 75 (y) population (up to 6 cycles) 

 

 

 

 

From 
To Prediction Observed Error 

Cycle [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE] 
 

                

BL 

1 - - - - - 0.02 0.31 0.20 0.32 0.15 - - - - - 

2 - - - - - 0.04 0.38 0.12 0.12 0.34 - - - - - 

3 0.05 0.41 0.12 0.10 0.32 0.05 0.41 0.11 0.28 0.15 0.00 -0.01 0.02 -0.18 0.17 

4 0.06 0.44 0.11 0.10 0.30 0.06 0.47 0.09 0.18 0.20 0.00 -0.03 0.02 -0.08 0.09 

5 0.07 0.47 0.10 0.09 0.27 0.07 0.54 0.09 0.08 0.22 0.00 -0.07 0.02 0.00 0.05 

6 0.08 0.50 0.10 0.08 0.25 0.08 0.61 0.08 0.24 0.00 0.00 -0.11 0.01 -0.15 0.25 

                                  

Table 6.10: Predicted vs observed probabilities for > 75 (y) population (up to 6 cycles)
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Figure 6.9 Kaplan-Meier curves shown below is the probability of survival over 9 

cycles. This displays overall survival rates as well as survival rates within different sub-

groups without stratifying based on transition at 4 months’ cycle. Notably, younger patients 

and female consistently demonstrate higher survival rates across cycles. This confirms the 

findings of the previous results. 

 

 

 

 

 

The Figures 6.10 – 6.13 offer a longitudinal perspective, giving insights into the relative 

severity of each state with respect to survival. Graphs shown for male, female, patients aged ≥ 65 and 

patient aged <65, stratified further based on the starting transitional states at 4 months. The trend 

indicates that patients hospitalised at 4 month cycle have a better survival probability than those who 

have been to OPD visits or had no events. Similarly, as shown above the young and women had better 

survival rates across all cycles.   

 

BL 1 2 3 4 5 6 7 8 9

Overall 1 0.94 0.83 0.76 0.71 0.67 0.65 0.64 0.63 0.62

Age >=75 1 0.93 0.81 0.73 0.67 0.64 0.61 0.60 0.59 0.58

Age <75 1 0.98 0.93 0.90 0.88 0.86 0.85 0.84 0.83 0.83

Male 1 0.94 0.81 0.71 0.65 0.61 0.59 0.57 0.56 0.55

Female 1 0.95 0.87 0.82 0.79 0.77 0.75 0.74 0.74 0.73
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Figure 6.9 show the Kaplan-Meier curves for overall patients and different subgroups. 
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Figure 6.9: Survival curves for male population based on their initial transient states  

        

 

Figure 6.10: Survival curves for female population based on their initial transient states 



138 

 

 

Figure 6.11: Survival curves for ≥ 65 (y) population based on their initial transient states 

 

 

Figure 6.12: Survival curves for < 75 (y) population based on their initial transient states 
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 Trajectory analysis  

In the context of trajectory analysis the progression of HF disease is shown using the 

phylogenetic tree structure in this section. Figure 6.13 summarises the course of HF disease in 

HLL patients across five cycles. This model build on the first-order Markov framework, which 

groups patients based on their current state without considering the different paths they took to 

get there. From this state the model then examine their next transition. Same 5 distinct states 

are used which were described for AMC model (described in section 6.4.2). The purpose and 

utility of trajectory analysis is provided in chapter 3, section 3.5. Implicit treatment response 

and any other state-dependence is reflected in the rate of changes. 

 It can be observed that the transition probabilities to the [Dead] state from transient 

states are somewhat consistent and overlapping. From the [Hosp] state, the probability of 

transitioning to [Dead] ranges from 0.05 to 0.07 across all four cycles. Transitions from [OPD] 

to [Dead] ranges between 0.02 to 0.03 and from [NE] to [Dead] they vary from 0.03 to 0.05.   

When examining transitions to the [Hosp] states the probabilities differ slightly. The 

probability of readmission (meaning going from [Hosp] to [Hosp]) falls between 0.21 to 0.26, 

which is higher than transitioning from [OPD] to [Hosp] (0.09 to 0.30) and from [NE] to [Hosp] 

(0.15 to 0.26). This indicates that patients who are hospitalized are more likely to be readmitted 

than those transitioning from outpatient from a state where no event occurred. These figures 

highlight a clear trend of higher readmission probabilities for patients already in the hospital 

compared to other transitions.  
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Figure 6.13: Progression of CHF among HLL patients using phylogenetic tree structure. This visual representation helps to trace the various pathways of 

disease progression within the patient population. 
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 Discussion 

In this section I am going to summarise this chapter that what I have done so far and 

looked at dynamic risk modelling and whole population in general. I have developed models 

that illustrate both short-term and long-term progression. The survival graphs, along with 

fundamental and limiting matrices, display the respective percentages, providing quantitative 

insights into patient outcomes. Additionally, the phylogenetic tree diagrams depict the 

transitions within the HLL patient population, visually representing the various pathways and 

states that patients experience over time. These combined approaches offer a comprehensive 

view of disease dynamics and patient trajectories. My dynamic risk models have shown high 

level of accuracy for critical states, such as death and hospitalisation. The strong agreement 

predicted and observed outcomes highlights the models’ reliability and effectiveness in 

forecasting important health events in patients.   

This method predicts individual survival and also treats the clinical trajectory of 

patients as a group.  For example current palliative performance scales (PPS) assess the risk of 

death for individual patients within a specific timeframe, which is useful for those patients. 

However, they fail to capture disease behaviour patterns at the population level.  

The management of CHF disease typically prioritise high risk patients, because 

targeting intervention at those who are most at risk can help to reduce the number of 

hospitalisations and mortality. However, it is unclear how effective these management 

programs over time for patients who are considered to be at lower risk (Chan et al., 2008). 
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To achieve better long-term results in healthcare management, it is important to address 

the needs of CHF patient at varying levels of risk by monitoring their risk trajectories and 

health events over time. This approach allows for a more nuanced and dynamic management 

of CHF, ensuring that even lower-risk patients receive appropriate care as their condition 

evolves. My finding align with (Krajewska et al., 2017)  and  (Zhang et al., 2018a), both stress 

the importance of regular reassessing patients’ risk levels because these risks can change over 

time. Models developed in this study provided dual temporal perspective on both short-term 

and long-term predictions underscores it comprehensive utility in patients’ health management.  

Dynamic risk stratification using AMC to broad group of patients (without selecting 

specific subgroups) who visited a community HF clinic is complex and ambitious due to 

several factors. This approach is technically complex because it requires precisely categorising 

patients’ disease progression into a finite number of distinct and comprehensive states. Each 

state must be mutually exclusive (no overlap between states) and exhaustive (covering all 

possible conditions that patients might experience). Ambitious because it aims to address two 

major changelings. The lack of a definitive gold standard for diagnosing HF. The inability of 

current HF scoring systems to describe disease progression patterns at the population level.   

One of the most significant findings of this study was that the event which occurred 

within the first two cycles (up to 8 months) provided sufficient information to develop a model 

that could predict events over time with great accuracy, particularly effective in forecasting 

key clinical outcomes (hospitalisation and mortality). 

My Markov model offers a simpler and less computationally intensive method for 

estimating the probabilities of transitioning between different health states compared to 

complex scoring models. However, like all data-driven approaches, it requires careful data pre-
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processing. This involves understanding the expected clinical progression of the patients and 

defining the states which clearly represent events during the course of disease. Proper data 

preparation is crucial for the model to produce meaningful results, which can help improve the 

management of patients. The study shows that the pattern observed in the first two transition 

can be reliably applied to predict future outcomes even the risk continuously evolving.  

From the result it can be seen that the level of risk can vary depending on the patient’s 

current condition or state, the impact of being in that specific state remains constant. Though 

the system has no memory – but the present state hold all the information of preceding cycles 

to predict the future state. I have highlighted the potential advantages of a model that can 

predict complex problems with minimal computational effort. This model could be beneficial 

not only for forecasting patient risk levels but also for effectively allocating resources. 

I examined patients spanning the entire range of risk, making my study more 

epidemiologically representative compared to many multicentre studies that enrol patients 

selectively and not longitudinal. The next step is that I need to check if the same model can be 

applied to other datasets without additional training. If successful, the model could be further 

developed to provide personalized predictions. 

 

6.7.1 Limitations 

The data for this study was sourced from a single centre, specifically involving patients 

who were referred for potential HF assessment. While my results indicate that AMC modelling 

is effective for patients at HLL, it remains uncertain whether these findings can be generalised 

to other populations or settings. Nevertheless, applying the same methodology to different HF 
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populations can help evaluate its broader applicability. There might be errors in how the data 

was coded. Despite this, the predictive model have shown very few errors. The study analysed 

subgroups based on age and sex, and did not include other clinical variables, such as NT-

proBNP. In the following chapter, I incorporate additional variables in the model to improve 

its accuracy and also enhance its ability to predict events at an individual level.  

 

 Conclusion 

 

My finding, that early events in follow up (FU) in heart failure (HF) can strongly predict 

subsequent outcomes has significant implications for understanding HF progression. HF is 

typically viewed as a disease with a steady decline, unpredictable hospitalisations, and a 

constant risk of sudden death (McIlvennan & Allen, 2016). However, the findings indicate that 

the progression of HF is actually more linear and predictable than previously thought. 

Understanding this linearity in heart failure progression can lead to improved patient care and 

outcomes. 
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 Disease progression in Chronic HF with multistate 

models  

 

Building on the information provided in previous analysis where I described CHF 

disease progression using Markov chain model, this chapter employs Multistate models (MSM) 

to model longitudinal data with dependency between observations. Here, I include clinical 

covariates (such as demography, aetiology, vital signs, blood test results and treatment) to 

examine their influence on transitions between mutually exclusive clinical states. This allows 

us to derive the risk of transition (also referred as hazard for transition) between states, which 

in turn allows a greater understanding of the time course of disease progression. In turn, such 

information might lead to better patient management. These models are efficient because they 

assume that the state at some arbitrary future time is dependent upon the state during previous 

time intervals (Castaneda & Gerritse, 2010; Upshaw et al., 2016), thus simplifying statistical 

analysis (Ma et al., 2015). 

I used the ‘msm’ package for modelling. The tool operates under the assumption that 

there is continuous underlying process in the data. I designed the model to reflect this by 

considering heart failure (HF) disease process as continuous, while clinical events are captured 

at discrete intervals.  I tailored this model to the Markovian structure detailed in chapters 4 and 

6.  

 Multistate Markov models 

A MSM provides a convenient way of modelling prognosis for clinical problems with 

ongoing risk. In the study of CHF, the changes in a patient’s health condition can be described 

through a finite number of distinct states (i.e. 𝑆 = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛}) and maximum of 𝑛2 
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transition between them. Each state must be mutually exclusive (no overlap between states) 

and exhaustive (covering all possible conditions that patients might experience). The factor 

“time” (𝑡) is explicitly associated with the probability of a patient being in certain states (𝑆) in 

over a sequence of discrete time intervals (are called “cycles”). The underlying disease process 

is continuous, and clinical events are represented at discrete time points (Gruger et al., 1991; 

Jackson, 2019). These models are often based on Markovian assumption (i.e., first-order 

Markov processes). It claims that future progression of the disease process is depends only on 

the current state (known as “memoryless” property). In other words, the history of the process 

is summarised by the state occupied at time (t). For more detail see chapter 6. 

 

7.1.1 Basic frame for multi-state model 

 

In multi-state models (MSM), the fundamental principle is simple: a subject 

transitioning out of one state must be transitioning into another. Unlike in classic Competing 

risks (CR) models where the subjects are often dropped after the initial transition. Classic 

Competing risks (CR) models are usually extended form of standard Cox survival models. In 

MSM when a subject transitions to a new state, the analysis focuses on identifying and 

understanding the possible subsequent transitions the subject may encounter from this new 

state onward. This involves considering the risks associated with moving from the current state 

to other potential states in the model (Sutradhar et al., 2011; Sutradhar & Barbera, 2014; 

Upshaw et al., 2016; Le-Rademacher et al., 2022). Multi-state modelling framework has 

extended the desirable qualities of standard Cox regression models or other expansions and 

enhancements. These models has introduced three innovations to researchers’ use of survival 

models: transition-specific baseline hazards (also known as transition intensities), transition-
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specific covariates effects, and transition probabilities. These innovations collectively provide 

flexibility and variability to adopt to unfolding of causally complex process over time. To 

define the basis framework, the following two assumptions have been made about the 

dependence of the transition rates: 

1. Time homogeneous: the intensities remain constant and don’t change over time, 

they are unaffected by the passage of time (𝑡). 

2. Markov model: the transition intensities only depend on the current state and 

the history of the process encapsulated within the current state. 

 

7.1.2 Transition-specific baseline hazards  

In a multi-state modelling approach, researchers can adjust or categorize the BL hazard 

rate for each transition in the model, facilitating a more detailed examination of the data. For 

each potential transition 𝑞, a distinct baseline hazard rate (represented as α_𝛼0(𝑡)) is calculated, 

with the parameter 𝑡 refer to the duration of cycle. This stratification enables the baseline 

hazard estimates to adapt to complex event sequences, allowing for variations in the estimation 

process. Quite apposite to standard Cox models, in which only one baseline hazard, denoted as 

𝛼0(𝑡) ; is estimated, without specific distinctions for different transitions 𝑞  (subscripts) or 

events. 

As depicted in Figure (7.3), the multi-state model permitted unique baseline hazard to 

each transition. This capability facilitated differentiation among the diverse types of events 

observed in the data. For instance, my model permitted the rate at which one type of event 

happens (like transitioning from state 1 to state 2) to differ from the rate at which a different 
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type of event occurs (such as transitioning from state 1 to state 3), as well as from the rate of 

recurrence of the same type of event (remaining in state 2). The mathematical formulation 

(described in later section) enable us to conduct an analysis based on of transition-specific 

baseline hazards (also known as transition intensities) and transition probabilities. 

 

7.1.3 Transition intensities of HF models 

For the purpose of this thesis, I performed statistical analysis of the data using an 

extended illness-death model. I described the model as stochastic process(𝑆(𝑡), 1 ≤ 𝑡 ≤ 𝜏), 

where the value of process at (cycle) time 𝑡 denotes the state being occupied during that cycle 

and 𝜏  denotes the end of study time (as describe (Putter et al., 2007)). The process is 

characterized by paths that are continuous from the right and operates within a finite set of 

states, defined as 𝑆 = {1, 2, 3, 4}, representing [𝑂𝑃𝐷], [𝑁𝑒𝑖𝑡ℎ𝑒𝑟], [𝐻𝑜𝑠𝑝] 𝑎𝑛𝑑 [𝐷𝑒𝑎𝑑] states 

respectively. The transition from one state to another, as well as the timing of these transitions, 

is determined by a set of transition intensities denoted as 𝑞𝑗,𝑘(𝑡, 𝑧(𝑡)) where j and k represent 

pair of states.  In other words, the intensities represents the instantaneous risk (incidence rate) 

of moving of patients from state j to state k: 

 

 
𝑞𝑗,𝑘(𝑡, 𝑧(𝑡)) =  lim

∆𝑡→0

𝑃{𝑆(𝑡 + ∆𝑡) = 𝑘|𝑆(𝑡) = 𝑗}

∆𝑡
, 𝑗 ≠ 𝑘,

𝑤ℎ𝑒𝑟𝑒 1 𝑜𝑟 0 ≤ 𝑡 ≤ 𝜏  𝑗, 𝑘 𝜖 𝑆),  

(7.1) 

 

This implies that the intensities might rely on either the time of entry (𝑡)  into the process 

or, more broadly, on a range of individual-specific or time-varying explanatory factors 
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represented as 𝑧(𝑡). 𝑆(𝑡) is the state occupied at time 𝑡.  The model of study is based on first-

order Markov processes. That is, the state occupied at time 𝑡 + Δt is conditional on the state 

occupied at time 𝑡. The transition intensity (𝑞) represent the entry situated at the intersection 

of row j and column k within the transition intensity matrix 𝑄 (as indicated in equation 3). The 

rows of this matrix, the sum up to 0, and conventionally, the diagonal entries of 𝑄 matrix are 

defined as:  

 𝑞𝑗,𝑗(𝑡) =  − ∑ 𝑞𝑗,𝑘(𝑡)
𝑗≠𝑘

 
(7.2) 

 

Where 𝑞𝑗,𝑘  = 0 if a transition from state 𝑗 to state 𝑘 is not allowed. My model was 

developed on Markov assumption, claiming that future evaluation only depends on the current 

state. This shows that, 𝑞𝑗,𝑘(𝑡, 𝑧(𝑡), 𝐹𝑡) is not influenced by the observation history 𝐹𝑡  of the 

process up to time just before t.  

For the model illustrated in Figure 7.3, the intensities obtained (using the equations described 

above) are summarised in a transition intensity matrix (𝑄) as:  

 

 

𝑄 = [

−(𝑞1,2 + 𝑞1,3 + 𝑞1,4) 𝑞1,2 𝑞1,3 𝑞1,4

0 −(𝑞2,3 + 𝑞2,4) 𝑞2,3 𝑞2,4

0 𝑞3,2 −(𝑞3,2 + 𝑞3,4) 𝑞3,4

0 0 0 0

] 

(7.3) 

 

Those specific instantaneous state-to-state transitions, which are not permitted in the 

underlying multi-state model, then the corresponding transition intensities, has a value of 0. 

The intensities are constant over time when model is time homogeneous, that is, independent 

of time t. The structure defined above allowed us to estimate specific coefficient impacts for 

each transition identified in the model. It also allowed us to examine whether the influence of 
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the same covariate differs across various states within a broader process. In the time 

homogenous model, I have 𝑞𝑗,𝑘(𝑡) =  𝑞𝑗,𝑘. Covariate of interest can be incorporated into the 

transition intensities using Cox proportional hazards regression model, using the following 

formation. 

 

 𝑞𝑗,𝑘(𝑍) =  𝑞(𝑗,𝑘),0 𝑒𝑥𝑝(𝛽𝑗,𝑘
𝑇 𝑍) = exp (𝛽(𝑗 ,𝑘),0

𝑇 + 𝛽𝑗,𝑘
𝑇 𝑍) (7.4) 

 

Here, 𝑞(𝑗,𝑘),0 =  exp (𝛽(𝑗 ,𝑘),0
𝑇  is called baseline intensity from state j to state k. The first-order 

Markov assumption suggests that the future development of the disease is solely determined 

by its present state, without regard to its past history. This characteristic is referred to as 

"memoryless" because future changes are independent of previous occurrences, provided the 

current state is known. 

 

 Model structure and model specification 

 

Patients referred to the HLL out-patient clinic between January 2001 and August 2015 

were enrolled in this study. Patients are followed up at regular intervals. Detailed information 

about the HLL population and out-patient service was provided in the chapter 4 section 4.4.  In 

the previous chapter I developed a dynamic risk model with five distinct states to illustrate both 

short-term and long-term progression in patients with HF. Patient states were determined at 

consecutive 4-monthly intervals (cycles) and were followed-up for 24 months. Here my focus 

shifts to an annual cycle and the follow-up period is extended to five years. This expansion not 

only broadens the scope of prediction covering both short and long-term behaviour of the 
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model but also expended model validation through yearly cycles over a span of five years.  For 

this enhanced model, I are considering four risk states and merging the previously separate 

[Left] and [NE] states into single risk state.  

 

7.2.1 Diagnostic categories and definitions 

For diagnostic categorisation, I followed the same criteria and definition outlined in 

chapter 6, section 6.4.1. classifying the population into:  

1. HeFREF – those with LVEF ≤ 40%. 

2. HeFPEF – those with LVEF > 40% and NT-proBNP level: 

a. ≥400 ng/L   

b. 125-399 ng/L 

3. No NT-proBNP (only for the cohort with incomplete data) – the diagnosis of 

HF in this group of patients was uncertain (i.e., those with LVEF > 40% and 

no NT-proBNP). 

Patients with LVEF > 40% & NT-proBNP <125 (ng/L) (referred to as “Controls”), and 

those with no LVEF information available were excluded as shown in Figure 7.1. This 

exclusion helped to focus the study to more specific cases of heart failure. 
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Figure 7.1: Consort diagram illustrated the flow of patients with HFassessed between 2000 and 2015. 

1037 patients whose LVEF or LVSD were not available at baseline and patients with LVEF > 40% 

and Patients with LVEF > 40% & NT-proBNP <125 (ng/L) have been excluded. 

 

Patients who met the study’s inclusion criteria are grouped into two cohorts: (a) the 

cohort with complete cases (i.e., NT-proBNP, haemoglobin, sodium, potassium, urea, 

creatinine and albumin) b) cohort of patients with incomplete data (where any of the above 

mentioned variables were missing). The initial model was developed on cohort (a) and I then 

validated the model on cohort (b).  The demographics of these two cohorts are presented in 

section 8.1. Pictorial representation of study is given in Figure 7.2.  

 

7,856
Patients refferred between 

2000 and 2015

• 138 patient LVEF not recorded
• 899 patient with LVEF > 40% & NT-

proBNP <125 ng/L

Unadjusted 
model

Multivariable
model

Excluded

b) Patients with incomplete 
data (N = 1830)

a) Patients with complete 
data (N = 4989)

Model validation
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7.2.2 Selection of covariates 

I selected common variables to assess their effect on the probability of transitions from 

one clinical state to another, along with demographic and baseline characteristics (listed in 

Table 8.1). I chose readily available clinical features known to be related to outcome (Pocock 

et al., 2013; Nikolaidou et al., 2018; Sokoreli et al., 2018; Koulaouzidis et al., 2019).  

 

7.2.3 Risk states and definition  

The patients when first seen for assessment were defined as being in the baseline state 

[BL]. Thereafter, patients could transition into one of the following possible states (S) at annual 

intervals (referred to as successive “cycles”):  

• [Hosp] – any heart failure hospitalisation during that 1 year cycle;  

• [Dead] – death (all-cause) during that one year cycle;  

• [Neither] – patients with no event (heart failure hospitalisation or death) during 

that one year period.  

The model allows the transition to [Dead] to occur at any time within an annual cycle. 

My approach was hierarchical: if a patient was both admitted and died within a single cycle, 

only the death is considered in the model. The underlying disease process is continuous, and 

clinical events are represented at discrete time points as described by (Gruger et al., 1991; 

Jackson, 2019).  
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Figure 7.2: Study flow chart for the MSM analyse 

.  

7.2.4 Disease-driven observation process:  

Figure 7.3 shows the four-state model used for describing disease progression. It is an 

example of a bi-directional non-progressive illness-death model (in other words, patients can 

transition repeatedly between [Neither] and [Hosp], but can only transition to [Dead] once). 

The model is based on a first-order Markov process where the state at some arbitrary future 

time is dependent only upon the immediately preceding state.  
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Figure 7.3: A 4 state multistate model. 

 

The arrows in the model indicate the directions in which instantaneous transitions are 

permitted. From the baseline state [BL] transition was unidirectional to any of the three other 

states. Transitions between [Neither] and [Hosp] were potentially bidirectional. Once [Dead] 

has been reached, no further transitions were possible (death is an “absorbing state”). The 

transition intensities (𝑞) are denoted by 𝑞𝑗,𝑘. State j (= 1, 2 or 3) to state k (= 2, 3 or 4). [BL], 

[Neither], [Hosp] and [Dead] states are also represented by 1, 2, 3 and 4 respectively. 

Remaining in the same sate in the next cycle is represented by a minus sign (e.g., 1 −

(𝑞1,2 +  𝑞1,3 +  𝑞1,4)). The transition intensity for remaining in the same state is obtained by 

subtracting the total of all other probabilities in the same row from 1. This model allows for 

the analysis of transitions in a simplified yet dynamic manner, capturing the essential features 

of patient progression through different health states.  

 

Neither (2)BL (1)

Dead (4)

Hosp (3)
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7.2.5 Model construction 

To allow a multistate model to be fitted to data, figure 7.2 was translated into a square 

matrix (Q matrix) using equation 7.3, taking a value between 0 to 1 for the permitted transitions 

and 0 for the forbidden ones (Figure 7.4). The matrix has a dual purpose: it specifies allowed 

transitions and provides initial values of transition intensities. Equations 7.1 – 7.4 provides the 

mathematical formulations and detailed description of processes that are used to fit a model to 

the data.  

 

 

Figure 7.4: Q matrixTo allow a multistate model to be fitted to data, figure 7.3 was translated into a 

square matrix (known as the Q matrix), taking a value between 0 to 1 for the permitted transitions and 

0 for the forbidden ones. The matrix is denoted by Q and intensities for the corresponding transitions 

are denoted by 𝑞𝑗,𝑘. Here, BL, Neither, Hosp and Dead states are represented by 1,2,3 and 4 

respectively. 

 

As an example, the entry 𝑞1,2 represents the intensity for the transition from BL to Neither. 

Remaining in the same sate in the next cycle is represented by a minus sign (e.g.,  

1−(𝑞1,2 +  𝑞1,3 +  𝑞1,4)). The transition intensity for remaining in the same state is obtained by 

subtracting the total of all other probabilities in the same row from 1. For abbreviations see figure 7.3.  
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7.2.6 Study outcomes  

Multi-state models (MSM) analyse situations where individuals in a population can 

transition between a number of states depending upon continuing risk (the intensities for 

transition being assumed to be constant with time) 7  (Meira-Machado et al., 2009; Kazmi et 

al., 2022). MSMs provide a general and flexible framework that extends beyond the Kaplan-

Meier estimator and Cox models (Le-Rademacher et al., 2022). Unlike these models which 

typically assume a one-directional progression towards an event, my model allow subjects to 

move continuously between states including both “backwards” (from [Hosp] to [Neither]) and  

“forwards” transitions (from [Neither] to [Hosp] or [Death]).  

I used features of multistate modelling to derive summary information from the model 

(Figure 7.2). I used the model to estimate the transition intensities8 (equivalent to relative risk 

in Cox modelling) between states with 95% confidence intervals (CI). The CI represent the 

precision (error) of the predicted intensities.  

The multistate models can be used to simulate the progression of individuals through 

various health states until they reach the endpoint of death, which is often the final absorbing 

 
 

7 This refers to a key assumption often used in the modelling of processes with MSMs. Assuming these intensities 

are constant over time means that these rates are not expected to change throughout the period of observation. 

8 The transition intensities are the instantaneous hazards of transition, representing the instantaneous risk of 

moving from a current state (j) to a subsequent state (k). The summary information was calculated with and 

without adjusting for covariates.  
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state (often  [Death]) in this model. I derived the time spent in a given state in total before 

death as predicted by the model (referred as total length of stay in MSM modelling).  

 

7.2.7 Model validation 

The analysis was conducted in stages: first, an unadjusted model was constructed using 

all patients with complete data at baseline (cohort a). The model was developed from the 

observed transitions in the first two cycles (Figure 7.5); and the predictions of the model for 

the following three years (3rd to 5th cycles) was compared with the observed data. This 

unadjusted model was independent of any possible covariates.  

I then validated the model's performance using a second cohort of patients, cohort b. 

The second cohort consisted of patients in whom one or more of the potential clinical covariates 

were missing (see below) and hence could not be included in the multivariable model. Similar 

to the approach used for cohort (a), the model’s predictions were compared with observed data 

(transitions) of cohort (b) across the first five yearly transitions.   

Finally, I introduced clinical covariates to develop a second model. Fitting an MSM 

with covariates can be complex and computationally intensive due to a potentially large number 

of parameters9 (Jackson, 2019). To get a parsimonious model and to avoid the risk of over-

 
 

9 In the study, the term 'parameters' refers to the coefficients, constants, equations or functions used 

in Markov and multi-state modelling to represent relationships between variables. These parameters are 

estimated from the data and can provide insight into the nature and strength of relationships between 

variables. 
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fitting, I followed a step-by-step procedure. I started with univariable analysis using all the 

variables in Table 8.1. The models were reduced by backward selection, eliminating those with 

no impact on transition intensities: the final model contained only: age, sex, NT-proBNP, 

NYHA class, haemoglobin, urea, albumin, a loop diuretic (yes/no). Because most of the 

covariates in the model (other than age and sex) are related to severity of cardiovascular disease, 

I also compared the performance of the two models against the end-point of cardiovascular 

mortality.  

 

7.2.8 Model diagnostics and assessment of goodness-to-fit 

The likelihood is the probability that a given set of parameters defining a model are 

correct, given the observed data. I used the likelihood ratio test (defined as −2ln (𝐿𝑠(𝜃) −

𝐿𝑔(𝜃)), where  𝐿𝑠(𝜃) is the likelihood of the unadjusted model and 𝐿𝑔(𝜃) is the likelihood of 

the covariate-adjusted model) to show which of the two models better fitted the observed data. 

The lower the likelihood ratio, the better the fit of the multivariable model. Significance was 

set at an arbitrary level of 5% (two − tailed). The aim was to get a parsimonious model that 

accurately describes real events.  

A formal test of goodness-of-fit was performed by plotting observed and expected 

percentages against time (t) (Meira-Machado et al., 2009; Jackson, 2019). A Z-score was used 

to standardise variables to a distribution with a mean of zero and a standard deviation of 1. 
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Confidence intervals were estimated on 1000 bootstraps (bootstrapping is sampling with 

replacement).  

Preliminary analyses used Stata software. The multistate model was determined using 

R (4.2.2) running the MSM and tdc.msm packages (Meira-Machado et al., 2007; Jackson, 2019). 

NT-proBNP value was log-10 transformed.   

 

 Discussion 

In this chapter, I developed a multistate risk model to describe the progression of 

chronic heart failure (CHF). It included detailed mathematical formulations and a 

comprehensive description of the processes for fitting the model to the data. Various clinical 

covariates are incorporated to examine their influence on transitions between mutually 

exclusive clinical states. The model provided the valuable insights into disease progression 

which are detailed in next chapter.  
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 Insights from multistate model of chronic HF 

 

The results derived from the multistate risk model (developed in Chapter 7) are presented. 

I analyse the key findings and discuss their significance. 

 

 Descriptive characteristics 

Table 8.1 shows the demographic and clinical characteristics of the patients with (a) 

complete data (n = 4989) and (b) incomplete data (n =1830). The patients in (a) were slightly 

older and were more likely to be men compared to cohort (b). Cohort (a) was classified into 

different diagnostic categories as outlined in section 8.1.1. Their baseline demographic and 

clinical characteristics are also detailed in the table. The distribution and proportion of patients 

following the first two transitions (between baseline to 12 months and 12 months to 24 months) 

is shown in Table 8.2. Mortality is low in the HeFPEF 125-399 diagnostic category, with only 

4% and 10 % of patients in this group having died by the end of the first and second cycles 

respectively. Transitions from the first two cycles (used to develop the model) in Markovian 

structure are shown in Figure 8.1. 

There were 20313 transitions during the five year follow up in cohort (a), of which 10% 

(n = 2051; 41% of the patients) were deaths, and 27% (n = 5544) were hospitalisations. (In all 

the other "transitions", a patient neither died nor was hospitalised).  
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  Cohort a   

(complete data) 
Cohort b  

(incomplete data) 
  

Variable 
Missing  

(n (%)) 
Total HeFREF 

HeFPEF Missing  

(n (%)) 
Total 

P >=400 125-399 

Total number 

 of patients N (%) 
  

4989 (100) 2180 (44) 1909 (38) 900 (18) 
  1830 (100) 

Demographics 

Age (years)   74.6 [67.1, 80.6] 72.5 [64.2, 78.6] 77.6 [71.5, 82.8] 72.6 [65.7, 79.0]   73.6 [65.7, 80.0] <0.001 

<75   2464 (49.3) 1274 (58.4) 678 (35.5) 512 (56.9)   989 (54.0) 0.001 

≥75   2525 (50.6) 906 (41.6) 1231 (64.5) 388 (43.1)   841 (46.0) 0.001 

Men (%)   3060 (61.3) 1619 (74.3) 1008 (52.8) 433 (48.1)   1000 (54.6) <0.001 

BMI (kg/m2)   28.0 [24.6, 31.9] 27.3 [24.0, 30.9] 28.1 [24.7, 32.2] 29.6 [26.1, 33.5] 67 (4) 27.5 [24.3, 31.8] 0.07 

NYHA class (%)              

I-II   3443 (69.0) 1365 (62.6) 1316 (68.9) 762 (84.7)   1365 (74.6) <0.001 

III-IV   1546 (31.0) 815 (37.4) 593 (31.1) 138 (15.3)   465 (25.4) <0.001 

Systolic BP (mmHg) 
  

138.0 [120.0, 157.0] 128.0 [113.0, 145.0] 142.0 [126.0, 162.0] 

149.0 [133.0, 

165.2] 
  

141.0 [124.0, 161.0] <0.001 

Diastolic BP 

(mmHg) 
  

78.0 [69.0, 88.0] 76.0 [67.0, 86.0] 78.0 [68.8, 89.0] 80.0 [72.0, 90.0] 
  

80.0 [70.0, 89.0] <0.001 

Left ventricular systolic dysfunction 

LV Impairment             
 

None   1692 (33.9) 0 (0.0) 1058 (55.4) 634 (70.4)   982 (53.6) <0.001 

Trivial   390 (7.8) 0 (0.0) 291 (15.2) 99 (11.0)   144 (7.9) 0.984 

Mild   727 (14.6) 0 (0.0) 560 (29.3) 167 (18.6)   199 (10.9) <0.001 

Worse   2180 (43.7) 2180 (100.0) 0 (0.0) 0 (0.0)   505 (27.6) <0.001 

Findings on electrocardiogram 

Heart rate (bpm) 
  

72.0 [62.0, 84.0] 74.0 [64.0, 87.0] 72.0 [62.0, 85.0] 67.0 [59.0, 78.0] 

227 

(12) 72.0 [63.0, 84.0] 0.899 
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Heart rhythm 

(Sinus %) 
  

3020 (60.5) 1347 (61.8) 861 (45.1) 812 (90.2) 
  

1142 (62.4) 0.169 

QRS (ms) 
112 (2) 

100.0 [88.0, 124.0] 114.0 [98.0, 144.0] 96.0 [84.8, 112.0] 92.0 [82.0, 100.0] 

286 

(16) 98.0 [86.0, 112.5] <0.001 

Blood test 

Haemoglobin (g/dL)   13.3 [12.1, 14.4] 13.5 [12.3, 14.6] 12.8 [11.7, 14.1] 13.5 [12.6, 14.4] 1052 (58) 13.2 [12.0, 14.4] 0.49 

Sodium (mmol/L)   139.0 [136.0, 140.0] 138.0 [136.0, 140.0] 139.0 [137.0, 140.0] 

139.0 [137.0, 

141.0] 865 (47) 

139.0 [136.0, 

140.0] 0.417 

Potassium (mmol/L)   4.3 [4.1, 4.7] 4.4 [4.1, 4.7] 4.3 [4.0, 4.7] 4.3 [4.1, 4.6] 879 (48) 4.3 [4.0, 4.7] 0.237 

Urea (mmol/L)   6.8 [5.2, 9.3] 7.1 [5.4, 9.8] 7.1 [5.4, 9.8] 5.8 [4.7, 7.3] 867 (47) 6.8 [5.2, 9.7] 0.58 

Creatinine (umol/L   99.0 [82.0, 125.0] 105.0 [86.0, 132.0] 100.0 [82.0, 129.0] 87.0 [74.0, 102.0] 871 (48) 100.0 [82.0, 126.0] 0.508 

Albumin (g/L)   38.0 [35.0, 40.0] 38.0 [35.0, 40.0] 37.0 [35.0, 39.0] 38.0 [36.0, 40.0] 961 (53) 37.0 [34.0, 40.0] 0.001 

NT-proBNP (ng/L)   

1099.4 [422.8, 

2604.8] 1750.6 [748.1, 3914.8] 

1307.0 [750.0, 

2479.6] 

226.8 [167.1, 

296.1] 1232 (67) 

752.9 [310.2, 

2025.0] <0.001 

Heart failure medication 

Beta-blocker (%)   2590 (51.9) 1529 (70.1) 833 (43.6) 228 (25.3)   520 (28.4) 
 

Low dose   1477 (57) 931 (60.9) 439 (52.7) 107 (46.9)   307 (59) <0.001 

High dose   1113 (43) 598 (39.1) 394 (47.3) 121 (53.1)   213 (41) <0.001 

ACE/ARB (%)   3819 (76.5) 1972 (90.5) 1317 (69.0) 530 (58.9)   986 (53.9) <0.001 

MRA (%)   1299 (26.0) 893 (41.0) 336 (17.6) 70 (7.8)   268 (14.6) <0.001  

Table 8.1: Baseline demographic and clinical characteristics for two different cohortsa) patients with completed data (N = 4989) and their diagnostic categories (CHF 

phenotypes: HeFREF and HeFPEF (>=400 and 125-399)). b) patients with incomplete data (N = 1830).  P values are for difference between total patients in cohorts, 

model was developed on cohort (a) and validated on cohort (b). 

*Continuous variables are presented as median (interquartile range), whereas categorical variables are expressed as numbers and percentage.  

P value indicates significance at the 0.05 level. *NT-proBNP only became a clinical service during the course of the data collection. See section 4 of chapter 4 for 

abbreviations. 
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From BL to end of 1st cycle (N = 4989) 

Variable 
Neither (N (%)) Hosp (N (%)) Dead (N (%)) Total N (%) 

2714 (54) 1699 (34) 576 (12) 4989 (100) 

Age (years)        

< 75 1375 (56) 908 (37) 181 (07) 2464 (100) 

≥ 75 1339 (53) 791 (31) 395 (16) 2525 (100) 

Sex       

Female 1102 (57) 613 (32) 214 (11) 1929 (100) 

Male 1612 (53) 1086 (35) 362 (12) 3060 (100) 

Diagnostic categories       

HeFREF 1117 (51) 782 (36) 281 (13) 2180 (100) 

HeFPEF ≥ 400  987 (52) 661 (35) 261 (14) 1909 (100) 

HeFPEF 125-399 610 (68) 256 (28) 34 (4) 900 (100) 

From end of 1st cycle to end of 2nd cycle (N = 4413) 

Variable 
Neither (N (%)) Hosp (N (%)) Dead (N (%)) Total N (%) 

2898 (66) 1168 (26) 406 (9) 4413 (100) 

Age (years)        

< 75 1488 (65) 532 (23) 263 (12) 2283 (100) 

≥ 75 1144 (54) 466 (22) 520 (24) 2130 (100) 

Sex       
Female 1068 (62) 371 (22) 276 (16) 1715 (100) 

Male 1564 (58) 627 (23) 507 (19) 2698 (100) 

Diagnostic categories       
HeFREF 1069 (56) 464 (24) 366 (19) 1899 (100) 

HeFPEF ≥ 400  939 (57) 378 (23) 331 (20) 1648 (100) 

HeFPEF 125-399 624 (72) 156 (18) 86 (10) 866 (100) 
 

Table 8.2: Total number of observed transitions among states.  

Stratified by selective variables *Data is expressed as numbers and percentage (round to 2 digits). Abbreviation: BL; baseline, Hosp; Hospitalisation; HF, Heart failure; 

HeFREF, HF with reduced ejection fraction; HeFPEF, HF with preserved ejection fraction; N, total number; %, percentage.
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Figure 8.1: Transitions from the first two cycles (cohort (a))These cycles were used to develop the 

model. 

 

 

8.1.1 Unadjusted model  

 

Table 8.3 shows the predictions made by the unadjusted model (M1) and the deviations 

from the observed data. As examples, the predicted transition intensity from hospital to death 

is 0.11, meaning that of 100 patients who are hospitalised at the end of one cycle, 11 will have 

died by the end of the next. Similarly, the transition intensity from [Neither] to death of 0.08 

means that of 100 patients who have not been hospitalised at the end of one cycle, 8 will have 

died by the end of the next. The differences between model predictions and observed events 

are also shown. The majority of observed transition probability fall within the CI of model 

(M1) predictions. Meaning errors are zero. This close alignment between predicted and 

BL
(n=4989)

0.34

Dead 
(n=576)

Neither
(n=913)

Hosp
(n=598)
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(n=188)
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Neither
(n=2174)

0.54

0.54

Neither
(n=1926)

Hosp
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(n=218)

0.71

0.21

0.08

1st cycle 2nd cycle
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observed values underscores the model's effectiveness in capturing the dynamics of disease 

progression and the risks associated with hospitalisation.  

For a hospitalised patient, recovery (defined as the ratio of the intensities from [Hosp] 

to [Neither] and [Hosp] to [Dead]) was approximately 5 times more likely than death 

(0.54/0.11). For further detail and interpretation of the data, refer to the table legend.   
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Models prediction in the derivation cohort (for those with complete data: N = 4989) 

State-to-state  

transition 

Unadjusted 

 model (M1) 

Observed transition intensities 

for each cycle 

Error  

(predicted (M1) - observed) 

Multivariable 

model (M2) 

TI (95% CI) 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th TI (95% CI) 

BL - Neither 0.54 (0.52, 0.57) 
no further transitions 

from BL after first cycle 
NA 

0.59 (0.54, 0.64) 

BL - Hosp 0.34 (0.32, 0.36) 0.34 (0.32, 0.35) 

BL - Dead 0.12 (0.10, 0.13) 0.08 (0.07, 0.09) 

Neither - Neither 0.71 (0.69, 0.73) 

  

0.73 0.71 0.72 

  

-0.02 0.00 -0.01 0.72 (0.70, 0.74) 

Neither - Hosp 0.21 (0.19, 0.23) 0.2 0.21 0.20 0.01 0.00 0.01 0.21 (0.19, 0.23) 

Neither - Dead 0.08 (0.07, 0.09) 0.08 0.08 0.08 0.00 0.00 0.00 0.07 (0.06, 0.08) 

Hosp - Neither 0.54 (0.50, 0.57) 0.49 0.52 0.49 0.05 0.02 0.04 0.54 (0.51, 0.58) 

Hosp - Hosp 0.35 (0.31, 0.39) 0.38 0.34 0.35 -0.03 0.01 0.01 0.38 (0.34, 0.42) 

Hosp - Dead 0.11 (0.10, 0.13) 0.13 0.14 0.16 -0.02 -0.03 -0.05 0.08 (0.07, 0.10) 

Model performance in the validation cohort (for those in whom one or more of the covariates were missing: N = 1830) 

  

State-to-state  

transition 

Unadjusted  

 model (M1) 

Observed transition intensities 

for each cycle 

Error  

(predicted (M1) - observed)   

TI (95% CI) 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 
  

BL - Neither 0.54 (0.52, 0.57) 0.57 
no further transitions 

from BL after first cycle 

-0.03 

NA 
  

BL - Hosp 0.34 (0.32, 0.36) 0.26 0.08   

BL - Dead 0.12 (0.10, 0.13) 0.17 -0.05   

Neither - Neither 0.71 (0.69, 0.73) 
NA 

0.78 0.80 0.77 0.79 
NA 

-0.07 -0.09 -0.06 -0.08   

Neither - Hosp 0.21 (0.19, 0.23) 0.15 0.13 0.17 0.16 0.06 0.08 0.04 0.05   
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Neither - Dead 0.08 (0.07, 0.09) 0.07 0.07 0.05 0.06 0.01 0.01 0.03 0.02   

Hosp - Neither 0.54 (0.50, 0.57) 0.53 0.56 0.55 0.50 0.01 -0.02 -0.01 0.04   

Hosp - Hosp 0.35 (0.31, 0.39) 0.32 0.31 0.31 0.37 0.03 0.04 0.04 -0.01   

Hosp - Dead 0.11 (0.10, 0.13) 0.15 0.14 0.14 0.13 -0.04 -0.03 -0.03 -0.02     

 

Table 8.3: Predicted and observed probabilities 

 

Table shows he predicted transition probabilities of unadjusted model (M1) and multivariable model (M2) and model validation using the observed 

probabilities from the raw data of following cohort (a) and (b) In the first half of the table the column 2 (light grey) shows the predictions made by the 

unadjusted model (along with 95% CI). The observed transition probabilities are shown in the central columns (darker grey). The model was derived 

using observed data for the first two cycles. All patients started in [BL] state and transition from this state was unidirectional to one of three other states. 

Data is expressed as transition probabilities with CI (rounded to 2 digits).  The columns shaded green to red (by size of error) show the precision of the 

unadjusted model. Minus (-) signs mean underestimation of model; the others are overestimates. Note: The majority of observed transition probability fall 

within the CI of model (M1) predictions. Meaning errors are zero. For example, the model predicts the transition intensity of from [Hosp] to death is 0.11 

with 95% CIs (0.10 - 0.13)). The observed probability of this transition in the fourth cycle of cohort (a) is 0.14 (bold) which falls only 0.01 outside of CI 

of the model prediction. 

The right-hand column (yellow) shows the predictions made by the multivariable model after adjusting covariates. Transition probability is equivalent to 

the transition intensity (TI) of a specific transition during a single cycle in an MSM. 

 

The second half of the table shows the performance of unadjusted model (M1) (as mentioned above) against the probabilities obtained (central columns 

(darker grey)) from the validation cohort. To show the error for 1st and 2nd annual cycles, the transitions from BL to 1st year and 1st to 2nd year were 

also included. The columns shaded green to red (by size of error) show the precision of the unadjusted model. 

 

Abbreviation: BL; baseline, Hosp; Hospitalisation, TI; Transition intensities, CI; Confidence Interval. NA; not applicable.  The likelihood ratio (-2*log-

likelihood) of the unadjusted model was: 28048.21 and for the adjusted model was: 27140.98 
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8.1.2 Univariable analysis 

Univariable analysis was performed using all the variables in Table 8.1. The models 

were reduced by backward selection, eliminating those with no impact on transition intensities: 

the final model contained only: age, sex, NT-proBNP, NYHA class, haemoglobin, urea, 

albumin, a loop diuretic (yes/no). For each covariate, a separate independent variable is fitted 

as shown in Table 8.4. Example interpretation, age ≥ 75 years [BL] to [Dead] there is 13% 

chance of individual died and relative risk of dying is doubled compare to those < 75 years old. 

The rest follow suit. 

 

Covariate State transition TI (CI = 95%) HR (95% CI) 

     
Age ≥75 (years) BL - Neither 0.53 (0.49, 0.58) 0.93 (0.87, 0.99) 

 BL - Hosp 0.34 (0.33, 0.37) 0.97 (0.89, 1.05) 

 BL - Dead 0.13 (0.12, 0.14) 2.21 (1.93, 2.54) 

 Neither - Neither 0.73 (0.71, 0.75) 0.88 (0.82, 0.95) 

 Neither - Hosp 0.20 (0.18, 0.21) 1.21 (1.05, 1.40) 

 Neither - Dead 0.07 (0.06, 0.08) 2.52 1.97, 3.22) 

 Hosp - Neither 0.56 (0.53, 0.59) 0.91 (0.81, 1.02) 

 Hosp - Hosp 0.33 (0.33, 0.36) 0.94 (0.81, 1.09) 

 Hosp - Dead 0.11 (0.10, 0.13) 2.57 (1.98, 3.34) 

Sex (male) 

 BL - Neither 0.52 (0.48, 0.57) 0.93 (0.87, 0.99) 

 BL - Hosp 0.34 (0.33, 0.35) 1.13 (1.03, 1.23) 

 BL - Dead 0.14 (0.13, 0.15) 1.08 (0.95, 1.24) 

 Neither - Neither 0.72 (0.71, 0.74) 0.95 (0.88, 1.03) 

 Neither - Hosp 0.20 (0.18, 0.21) 1.12 (0.95, 1.30) 

 Neither - Dead 0.08 (0.07, 0.09) 1.35 (1.06, 1.71) 

 Hosp - Neither 0.56 (0.53, 0.59) 0.94 (0.83, 1.05) 

 Hosp - Hosp 0.32 (0.28, 0.35) 1.14 (0.98, 1.32) 

 Hosp - Dead 0.12 (0.11, 0.14) 1.00 (0.78, 1.28) 

NT-proBNP (log10) 

 BL - Neither 0.56 (0.51, 0.61) 0.76 (0.71, 0.81) 

 BL - Hosp 0.35 (0.34, 0.37) 1.22 (1.12, 1.33) 

 BL - Dead 0.09 (0.08, 0.10) 4.28 (3.71, 4.93) 
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 Neither - Neither 0.71 (0.69, 0.73) 0.86 (0.79, 0.93) 

 Neither - Hosp 0.21 (0.20, 0.23) 1.30 (1.12, 1.51) 

 Neither - Dead 0.08 (0.07, 0.09) 2.40 (1.90, 3.05) 

 Hosp - Neither 0.56 (0.53, 0.60) 0.82 (0.73, 0.93) 

 Hosp - Hosp 0.34 (0.30, 0.38) 1.09 (0.94, 1.27) 

 Hosp - Dead 0.10 (0.08, 0.12) 2.66 (2.05, 3.45) 

NYHA (III/IV) 

 BL - Neither 0.54 (0.50, 0.59) 0.71 (0.66, 0.77) 

 BL - Hosp 0.34 (0.32, 0.35) 1.32 (1.21, 1.45) 

 BL - Dead 0.12 (0.11, 0.13) 2.92 (2.56, 3.34) 

 Neither - Neither 0.72 (0.70, 0.74) 0.89 (0.81, 0.98) 

 Neither - Hosp 0.20 (0.18, 0.21) 1.16 (0.98, 1.38) 

 Neither - Dead 0.08 (0.07, 0.09) 2.35 (1.86, 2.97) 

 Hosp - Neither 0.56 (0.53, 0.60) 0.79 (0.69, 0.86) 

 Hosp - Hosp 0.32 (0.28, 0.35) 1.22 (1.05, 1.42) 

 Hosp - Dead 0.12 (0.10, 0.13) 1.74 (1.36, 2.22) 

Haemoglobin 

 BL - Neither 0.52 (0.48, 0.57) 1.05 (1.03, 1.07) 

 BL - Hosp 0.36 (0.34, 0.37) 0.98 (0.95, 1.00) 

 BL - Dead 0.12 (0.11, 0.13) 0.75 (0.72, 0.78) 

 Neither - Neither 0.71 (0.69, 0.73) 1.03 (1.01, 1.06) 

 Neither - Hosp 0.21 (0.19, 0.23) 0.94 (0.89, 0.98) 

 Neither - Dead 0.08 (0.07, 0.09) 0.87 (0.81, 0.94) 

 Hosp - Neither 0.56 (0.53, 0.59) 1.05 (1.02, 1.09) 

 Hosp - Hosp 0.32 (0.29, 0.36) 0.95 (0.91, 1.00) 

 Hosp - Dead 0.12 (0.10, 0.13) 0.86 (0.80, 0.92) 

Urea 

 BL - Neither 0.52 (0.47, 0.56) 0.98 (0.97, 0.99) 

 BL - Hosp 0.36 (0.34, 0.37) 1.01 (1.00, 1.01) 

 BL - Dead 0.13 (0.12, 0.14) 1.08 (2.56, 3.34) 

 Neither - Neither 0.71 (0.69, 0.73) 0.98 (0.97, 0.99) 

 Neither - Hosp 0.21 (0.20, 0.23) 1.02 (1.01, 1.04) 

 Neither - Dead 0.08 (0.07, 0.09) 1.07 (1.06, 1.09) 

 Hosp - Neither 0.56 (0.53, 0.59) 0.99 (0.97, 1.00) 

 Hosp - Hosp 0.32 (0.28, 0.36) 1.00 (0.99, 1.02) 

 Hosp - Dead 0.12 (0.10, 0.14) 1.05 (1.03, 1.07) 

Albumin 

 BL - Neither 0.53 (0.48, 0.58) 1.03 (0.97, 0.99) 

 BL - Hosp 0.36 (0.34, 0.37) 0.99 (1.00, 1.01) 

 BL - Dead 0.12 (0.11, 0.13) 0.85 (2.56, 3.34) 

 Neither - Neither 0.71 (0.69, 0.73) 1.01 (0.97, 0.99) 

 Neither - Hosp 0.21 (0.19, 0.23) 1.00 (0.97, 1.02) 

 Neither - Dead 0.08 (0.07, 0.09) 0.91 (0.88, 0.94) 

 Hosp - Neither 0.56 (0.53, 0.59) 1.02 (1.01, 1.04) 

 Hosp - Hosp 0.33 (0.29, 0.36) 0.99 (0.97, 1.01) 

 Hosp - Dead 0.11 (0.10, 0.13) 0.91 (0.88, 0.94) 

Loop diuretic (yes) 

 BL - Neither 0.54 (0.49, 0.58) 0.80 (0.75, 0.85) 
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 BL - Hosp 0.34 (0.32, 0.35) 1.28 (1.17, 1.40) 

 BL - Dead 0.13 (0.12, 0.14) 2.39 (2.03, 2.82) 

 Neither - Neither 0.73 (0.71, 0.74) 0.85 (0.79, 0.91) 

 Neither - Hosp 0.20 (0.18, 0.21) 1.46 (1.25, 1.70) 

 Neither - Dead 0.08 (0.07, 0.09) 2.83 (2.14, 3.74) 

 Hosp - Neither 0.56 (0.53, 0.60) 0.88 (0.88, 0.99) 

 Hosp - Hosp 0.32 (0.29, 0.36) 1.06 (0.91, 1.23) 

  Hosp - Dead 0.11 (0.10, 0.13) 2.13 (1.56, 2.92) 

Table 8.4: Cox Markov model for independent variablesTransition trajectories and unadjusted hazard 

ratios (HRs) for independent variables Abbreviations: TI, transition intensities; CI, confidence 

interval; HR, hazard ratio, NYHA, New York Heart Association; BL, baseline; Hosp, Hospitalisation; 

Dead, death. Example interpretation, BL to dead: for every increase in log10 NTproBNP HR increase 

4 folds (bold). 

 

 

8.1.3 Multivariable model  

The right-hand column (yellow) of Table 8.3 shows the predictions made by the 

multivariable model (M2) after adjusting covariates. The multivariable model under-estimated 

the intensity of transitions from any state to death. As an example, for the transition from [Hosp] 

to [Dead] the difference between predicted and observed events at cycle 3, 4 and 5 were -0.02, 

0.03 and 0.05 for the unadjusted model, and -0.05, -0.06 and -0.08 for the multivariable model, 

respectively. A likelihood ratio test is performed as defined in the model diagnostics section. 

The model gave a slightly better fit compared to the unadjusted model (𝑝 < 0.001), and the 

likelihood ratio test was lower (27,140 vs 28,048). Table 8.5 shows the performance of the 

model against the end-point of cardiovascular mortality for cohort (a), the multivariable model 

perform little better (smaller LLR) than the unadjusted model in predicting the endpoint death 

when patients transit from [Hosp] to [Dead] state. 
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State-to-state  

transition 

Adjusted model (M2) 

Observed transition intensities for each 

cycle Error (predicted - observed) 

TI (95% CI) 

1st 

CV 

2nd 

CV 

3rd 

CV 

4th 

CV 

5th 

CV 
1st 2nd 3rd 4th 5th 

BL - Neither 0.59 (0.54, 0.64)   
no further transitions 

from BL after first cycle 

  

NA BL - Hosp 0.34 (0.32, 0.35)     

BL - Dead 0.08 (0.07, 0.09) 0.08 0.00 

Neither - Neither 0.72 (0.70, 0.74) 

NA 

        

NA 

        

Neither - Hosp 0.21 (0.19, 0.23)             

Neither - Dead 0.07 (0.06, 0.08) 0.05 0.04 0.04 0.04 -0.02 -0.03 -0.03 -0.03 

Hosp - Neither 0.54 (0.51, 0.58)             

Hosp - Hosp 0.38 (0.34, 0.42)             

Hosp - Dead 0.08 (0.07, 0.10) 0.06 0.07 0.08 0.08 -0.02 -0.01 0.00 0.00 
 

Table 8.5: Multivariable models against the end-point of CV mortality of cohort (a) 
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The risk of transitioning can be seen by the hazard ratios in multivariable analysis 

(Table 8.6)). In older patients (≥ 75 years), the risk of moving from [Hosp] state to death more 

than doubled (2.20) with increasing age, adjusted for the other covariates. An observation is 

the risk of going from [BL] to [Hosp] for older people was less than 1 (0.85); this reflects the 

selection bias where older people move from [BL] to death in the first cycle.  

To better understand the influence of these variables on the state to state transitions. I 

standardised the variables to Z-scores (mean = 0, SD = 1), all on the same scale. This allows 

us to compare directly which of those independent variables have the biggest effect on 

transition. Looking at the Z-score hazard ratios moving from [BL] to death, NT-proBNP has 

the higher hazard (1.70) then age, NYHA and urea, with hazards of 1.19, 1.18 and 1.10, 

respectively. The strongest influence in the transition to death from [Neither] or from [Hosp] 

is age (1.31 and 1.48, respectively). Sex and NYHA have higher HRs (1.11 and 1.09, 

respectively) for Re-hospitalisation. Moving to [Hosp] state from [BL], the ordering is different, 

with high NYHA (III/IV) (1.09), NTproBNP (1.07) and male sex (1.06). [Neither] moving to 

[Hosp], NT-proBNP, Albumin, loop diuretic have the strongest influence (with same Z-score 

(1.10)) and male gender (1.09). There is little influence of urea and age (1.02). 
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Cox Markov model 

Transitions 
Age-group Sex  

NT-proBNP  

(ng/L) 

NYHA 
Haemoglobin  

(g/dL) 

Urea  

(mmol/L) 

Albumin 

(g/L) 

Loop diuretic 

≥ 75 years Male  III-IV Yes 

BL - Neither 1.06 (0.98, 1.15) 0.91 (0.84, 0.99) 0.79 (0.72, 0.85) 0.79 (0.72, 0.86) 1.04 (1.01, 1.06) 0.99 (0.98, 1.00) 1.01 (1.00, 1.02) 1.00 (0.92, 1.09) 

BL - Hosp 0.85 (0.77, 0.94) 1.12 (1.01, 1.24) 1.11 (1.00, 1.22) 1.21 (1.09, 1.35) 0.98 (0.95, 1.01) 0.99 (0.98, 1.01) 1.01 (1.00, 1.03) 1.06 (0.95, 1.19) 

BL - Dead 1.42 (1.19, 1.70) 1.10 (0.93, 1.31) 2.19 (1.84, 2.91) 1.46 (1.23, 1.74) 0.91 (0.87, 0.96) 1.02 (1.01, 1.04) 0.94 (0.92, 0.96) 1.10 (0.88, 1.38) 

Neither - Neither 0.94 (0.86, 1.04) 0.91 (0.83, 1.01) 0.93 (0.84, 1.03) 0.94 (0.84, 1.05) 1.03 (0.99, 1.06) 0.99 (0.98, 1.00) 1.00 (0.99, 1.01) 0.92 (0.83, 1.02) 

Neither - Hosp 1.03 (0.87, 1.23) 1.17 (0.98, 1.40) 1.15 (0.96, 1.37) 1.02 (0.87, 1.24) 0.93 (0.87, 0.98) 1.01 (0.99, 1.03) 1.03 (1.00, 1.05) 1.23 (1.01, 1.50) 

Neither - Dead 1.71 (1.27, 2.30) 1.43 (1.06, 1.92) 1.41 (1.07, 1.87) 1.42 (1.07, 1.89) 1.00 (0.92, 1.09) 1.03 (1.01, 1.06) 0.94 (0.91, 0.98) 1.63 (1.13, 2.35) 

Hosp - Neither 0.90 (0.78, 1.03) 0.86 (0.74, 0.99) 0.90 (0.78, 1.04) 0.81 (0.70, 0.93) 1.04 (0.99, 1.08) 1.00 (0.98, 1.01) 1.01 (0.99, 1.03) 1.03 (0.88, 1.19) 

Hosp - Hosp 0.94 (0.79, 1.11) 1.21 (1.01, 1.45) 1.00 (0.84, 1.19) 1.19 (1.00, 1.41) 0.95 (0.90, 1.00) 1.00 (0.98, 1.01) 1.00 (0.98, 1.02) 0.94 (0.78, 1.13) 

Hosp - Dead 2.20 (1.60, 3.03) 1.13 (0.83, 1.55) 1.72 (1.25, 2.34) 1.51 (1.12, 2.03) 1.01 (0.92, 1.11) 1.03 (1.00, 1.05) 0.95 (0.92, 0.99) 1.24 (0.84, 1.83) 

(b)  Z-score hazard of transitioning 

BL - Neither 1.03 (0.99, 1.07) 0.96 (0.92, 0.99) 0.85 (0.80, 0.90) 0.91 (0.87, 0.94) 1.06 (1.01, 1.10) 0.98 (0.93, 1.02) 1.05 (1.00, 1.09) 1.00 (0.96, 1.04) 

BL - Hosp 0.92 (0.88, 0.97) 1.06 (1.00, 1.11) 1.07 (1.00, 1.15) 1.09 (1.04, 1.14) 0.96 (0.91, 1.00) 0.97 (0.92, 1.03) 1.04 (0.96, 1.10) 1.03 (0.97, 1.09) 

BL - Dead 1.19 (1.09, 1.30) 1.05 (0.96, 1.14) 1.70 (1.52, 1.91) 1.18 (1.09, 1.27) 0.86 (0.79, 0.93) 1.10 (1.04, 1.16) 0.80 (0.69, 0.81) 1.05 (0.94, 1.17) 

Neither - Neither 0.97 (0.93, 1.02) 0.96 (0.91, 1.01) 0.95 (0.89, 1.01) 0.98 (0.93, 1.03) 1.04(0.99, 1.10) 0.95 (0.99, 1.01) 1.00 (0.95, 1.05) 0.96 (0.92, 1.01) 

Neither - Hosp 1.02 (0.93, 1.11) 1.09 (1.00, 1.17) 1.10 (0.97, 1.24) 1.01 (0.93, 1.05) 0.88 (0.79, 0.97) 1.03 (0.93, 1.13) 1.10 (0.99, 1.21) 1.10 (1.01, 1.22) 

Neither - Dead 1.31 (1.31, 1.52) 1.19 (1.03, 1.38) 1.26 (1.04, 1.53) 1.17 (1.04, 1.33) 1.00 (0.86, 1.16) 1.15 (1.03, 1.29) 0.79 (0.68, 0.91) 1.28 (1.07, 1.54) 

Hosp - Neither 0.95 (0.89, 1.05) 0.93 (0.87, 1.00) 0.93 (0.86, 1.04) 0.91 (0.86, 0.97) 1.06 (0.98, 1.14) 0.99 (0.92, 1.07) 1.04 (0.97, 1.12) 1.01 (0.94, 1.09) 

Hosp - Hosp 0.97 (0.89, 1.06) 1.10 (1.01, 1.20) 1.00 (0.89, 1.12) 1.09 (1.01, 1.17) 0.90 (0.83, 0.99) 0.97 (0.89, 1.06) 1.00 (0.91, 1.09) 0.97 (0.88, 1.06) 

Hosp - Dead 1.48 (1.26, 1.74) 1.07 (0.92, 1.24) 1.41 (1.14, 1.74) 1.20 (1.05, 1.37) 1.02 (0.87, 1.19) 1.11 (1.01, 1.24) 0.82 (0.71, 0.95) 1.12 (0.92, 1.35) 

Table 8.6: Multivariable Cox Markov model with Z-Score Table shows multivariable hazard ratio (HR) and Z-score with 95% confidence interval (CI) from obtained from 

Cox Markov proportional hazard model. Table show the possible risk factors for the individual transitions. Z-score was used to standardise variables to a distribution with 

mean of zero and standard deviation of 1. Abbreviations: see table 1 
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8.1.4 Goodness of fit assessment  

Further evidence for goodness-of-fit was obtained by estimating mean prevalence 

counts in different states at each time interval. The predicted and observed counts for both the 

unadjusted and multivariable models are shown in Figure 8.2. The predictions of the unadjusted 

model closely matched the observed data, whereas the adjusted model overestimated the 

[Neither] and [Hosp] states and underestimated [Dead].  
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Figure 8.2: Goodness-of-fit assessment prediction vs observed 

Graphs shows the goodness-of-fit assessment by mean counts in different states at each time interval. The observed (from data) and expected prevalence counts by the fitted 

models (unadjusted and multivariable) are plotted. Abbreviation: Hosp, Hospital. 
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8.1.5 Study vignettes 

Building other covariates is relatively simple as illustrated by the three examples below.  

Additional covariates (i.e., HR, SBP, drugs) were added individually to the 

multivariable model one by one (Table 8.7). For example, the risk of transitioning from [BL] 

to death is 40% less (HR = 0.60; 95% CI, 0.47 - 0.76) if a patient is on a high-dose beta-blocker 

(BB) compare to none. Even if the patient was on low doses of beta-blocker, the risk of 

transitioning to death was still 16% (HR = 0.84; 95% CI, 0.69 – 1.01) less than none. Although 

these figures are high, their effect on transition rates is marginal (Table 8.8). In contrast, when 

I included (without/with BB) the heart rate or systolic blood pressure (SBP), the risk of 

transitioning from any group was flat (HRs approximately 1). 

This is confirmed using -2*log-likelihood ratio test statistics (LLR), which hardly 

changed on the introduction of these variables in addition to the fitted model. The base (M1) 

LLR (28048); with the introduction of multi variables (M2)  LLR (27,141), adding BB little 

change LLR (27,109) and further added HR and SBP even smaller reduction LLR (26,106 and 

27,106 respectively)  Table 8.8. 
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Beta Blocker  

Transitions 
Age-group Sex  

NT-proBNP  
(ng/L) 

NYHA 
Haemoglobin  

(g/dL) 
Urea  

(mmol/L) 
Albumin 

(g/L) 

Loop diuretic Beta blocker Beta blocker 

≥ 75 years Male  III-IV Yes Low dose High dose 

BL - Neither 1.07 (0.99, 1.16) 0.9 (0.83, 0.98) 0.78 (0.72, 0.85) 0.79 (0.72, 0.86) 1.04 (1.01, 1.06) 0.99 (0.98, 1) 1.01 (1, 1.02) 0.99 (0.91, 1.08) 1.02 (0.93, 1.12) 1.08 (0.98, 1.19) 

BL - Hosp 0.86 (0.77, 0.95) 1.11 (1, 1.23) 1.1 (0.99, 1.21) 1.22 (1.1, 1.35) 0.98 (0.95, 1.01) 0.99 (0.98, 1) 1.01 (1, 1.03) 1.05 (0.94, 1.18) 1.05 (0.93, 1.18) 1.06 (0.93, 1.2) 

BL - Dead 1.37 (1.15, 1.64) 1.13 (0.95, 1.35) 2.25 (1.9, 2.66) 1.44 (1.21, 1.7) 0.91 (0.87, 0.96) 1.02 (1.01, 1.03) 0.95 (0.93, 0.97) 1.16 (0.92, 1.45) 0.84 (0.69, 1.01) 0.6 (0.47, 0.76) 

Neither - Neither 0.95 (0.86, 1.05) 0.91 (0.82, 1) 0.92 (0.83, 1.01) 0.94 (0.84, 1.06) 1.03 (0.99, 1.06) 0.99 (0.97, 1) 1 (0.98, 1.01) 0.91 (0.82, 1.01) 1.03 (0.92, 1.15) 1.08 (0.96, 1.21) 

Neither - Hosp 1.02 (0.86, 1.22) 1.18 (0.98, 1.41) 1.14 (0.95, 1.37) 1.01 (0.83, 1.23) 0.93 (0.88, 0.98) 1.01 (0.99, 1.03) 1.03 (1, 1.06) 1.23 (1.01, 1.5) 1.05 (0.86, 1.28) 0.89 (0.71, 1.11) 

Neither - Dead 1.65 (1.22, 2.23) 1.48 (1.1, 1.99) 1.47 (1.11, 1.95) 1.4 (1.05, 1.86) 1 (0.92, 1.09) 1.03 (1.01, 1.06) 0.94 (0.91, 0.98) 1.74 (1.21, 2.52) 0.72 (0.52, 0.99) 0.73 (0.51, 1.05) 

Hosp - Neither 0.91 (0.79, 1.04) 0.85 (0.74, 0.98) 0.89 (0.77, 1.03) 0.81 (0.7, 0.93) 1.04 (0.99, 1.08) 1 (0.98, 1.01) 1.01 (0.99, 1.03) 1.02 (0.88, 1.19) 1.03 (0.88, 1.2) 1.06 (0.89, 1.25) 

Hosp - Hosp 0.94 (0.79, 1.11) 1.21 (1.01, 1.45) 1 (0.84, 1.19) 1.19 (1, 1.41) 0.95 (0.9, 1) 0.99 (0.97, 1.01) 1 (0.98, 1.02) 0.94 (0.77, 1.13) 1.01 (0.83, 1.23) 0.99 (0.8, 1.22) 

Hosp - Dead 2.17 (1.58, 3) 1.16 (0.85, 1.59) 1.74 (1.26, 2.39) 1.51 (1.13, 2.03) 1.01 (0.92, 1.11) 1.03 (1, 1.05) 0.95 (0.92, 0.99) 1.28 (0.86, 1.89) 0.83 (0.6, 1.16) 0.81 (0.55, 1.19) 

Heart rate    

Transitions 
Age-group Sex  

NT-proBNP  
(ng/L) 

NYHA 
Haemoglobin  

(g/dL) 
Urea  

(mmol/L) 
Albumin 

(g/L) 

Loop diuretic 
Heart rate  

(bpm) 

 

≥ 75 years Male  III-IV Yes  

BL - Neither 1.06 (0.98, 1.15) 0.91 (0.84, 0.99) 0.78 (0.72, 0.85) 0.78 (0.71, 0.86) 1.04 (1.01, 1.06) 0.99 (0.98, 1) 1.01 (1, 1.02) 1 (0.92, 1.09) 1 (1, 1)  

BL - Hosp 0.84 (0.76, 0.94) 1.11 (0.99, 1.23) 1.12 (1.01, 1.24) 1.22 (1.1, 1.36) 0.98 (0.95, 1.01) 0.99 (0.98, 1) 1.01 (1, 1.03) 1.07 (0.95, 1.2) 1 (1, 1)  

BL - Dead 1.45 (1.21, 1.74) 1.12 (0.94, 1.34) 2.13 (1.79, 2.53) 1.46 (1.23, 1.74) 0.91 (0.86, 0.95) 1.02 (1.01, 1.04) 0.94 (0.92, 0.96) 1.07 (0.86, 1.34) 1 (1, 1.01)  

Neither - Neither 0.94 (0.86, 1.04) 0.91 (0.83, 1.01) 0.93 (0.84, 1.03) 0.95 (0.84, 1.06) 1.03 (0.99, 1.06) 0.99 (0.97, 1) 1 (0.99, 1.01) 0.93 (0.84, 1.02) 1 (1, 1)  

Neither - Hosp 1.03 (0.86, 1.23) 1.17 (0.98, 1.4) 1.15 (0.96, 1.38) 1.03 (0.84, 1.25) 0.93 (0.87, 0.98) 1.01 (0.99, 1.03) 1.03 (1, 1.05) 1.2 (0.99, 1.46) 1 (0.99, 1)  

Neither - Dead 1.75 (1.3, 2.37) 1.44 (1.06, 1.94) 1.31 (0.98, 1.75) 1.35 (1.01, 1.8) 0.99 (0.91, 1.09) 1.04 (1.01, 1.06) 0.94 (0.91, 0.98) 1.65 (1.14, 2.38) 1 (1, 1.01)  

Hosp - Neither 0.91 (0.79, 1.05) 0.87 (0.75, 1) 0.89 (0.77, 1.03) 0.8 (0.69, 0.93) 1.03 (0.99, 1.08) 1 (0.98, 1.01) 1.01 (0.99, 1.03) 1.02 (0.88, 1.19) 1 (1, 1.01)  

Hosp - Hosp 0.92 (0.77, 1.09) 1.17 (0.98, 1.41) 1.02 (0.86, 1.23) 1.2 (1.01, 1.43) 0.95 (0.9, 1.01) 0.99 (0.97, 1.01) 1 (0.97, 1.02) 0.94 (0.78, 1.14) 1 (0.99, 1)  

Hosp - Dead 2.26 (1.63, 3.13) 1.17 (0.85, 1.61) 1.66 (1.21, 2.3) 1.48 (1.1, 2) 1.01 (0.92, 1.1) 1.02 (1, 1.05) 0.95 (0.91, 0.99) 1.23 (0.83, 1.82) 1 (0.99, 1.01)  

BP Systolic  
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Table 8.7: Multivariable Cox Markov model with additional covariates to estimated HR 

 

 

 

 

 

 

 

 

Transitions 
Age-group Sex  

NT-proBNP  
(ng/L) 

NYHA 
Haemoglobin  

(g/dL) 
Urea  

(mmol/L) 
Albumin 

(g/L) 

Loop diuretic 
BP Systolic  

(mmHg) 

 

≥ 75 years Male  III-IV Yes  

BL - Neither 1.05 (0.97, 1.14) 0.91 (0.84, 0.99) 0.79 (0.73, 0.86) 0.79 (0.72, 0.86) 1.04 (1.01, 1.06) 0.99 (0.98, 1) 1.01 (1, 1.02) 1.01 (0.93, 1.1) 1 (1, 1)  

BL - Hosp 0.84 (0.76, 0.93) 1.12 (1.01, 1.25) 1.1 (1, 1.22) 1.22 (1.09, 1.35) 0.98 (0.95, 1.01) 0.99 (0.98, 1) 1.01 (1, 1.03) 1.07 (0.96, 1.2) 1 (1, 1)  

BL - Dead 1.47 (1.23, 1.75) 1.06 (0.89, 1.26) 2.13 (1.79, 2.52) 1.42 (1.2, 1.69) 0.91 (0.87, 0.96) 1.02 (1.01, 1.04) 0.95 (0.93, 0.96) 1.03 (0.82, 1.29) 0.99 (0.99, 1)  

Neither - Neither 0.95 (0.86, 1.05) 0.9 (0.82, 1) 0.92 (0.83, 1.02) 0.94 (0.84, 1.05) 1.03 (0.99, 1.06) 0.99 (0.98, 1) 1 (0.99, 1.01) 0.92 (0.83, 1.01) 1 (1, 1)  

Neither - Hosp 1.02 (0.86, 1.22) 1.18 (0.99, 1.42) 1.15 (0.96, 1.38) 1.02 (0.84, 1.24) 0.92 (0.87, 0.98) 1.01 (0.99, 1.03) 1.03 (1, 1.05) 1.24 (1.01, 1.51) 1 (1, 1)  

Neither - Dead 1.65 (1.22, 2.22) 1.48 (1.09, 2) 1.5 (1.13, 2) 1.47 (1.11, 1.96) 1 (0.91, 1.09) 1.03 (1.01, 1.06) 0.94 (0.91, 0.98) 1.67 (1.16, 2.41) 1 (1, 1.01)  

Hosp - Neither 0.91 (0.79, 1.05) 0.86 (0.74, 0.99) 0.9 (0.78, 1.04) 0.81 (0.7, 0.93) 1.04 (0.99, 1.08) 1 (0.98, 1.01) 1.01 (0.99, 1.03) 1.02 (0.88, 1.19) 1 (1, 1)  

Hosp - Hosp 0.93 (0.78, 1.1) 1.21 (1.01, 1.45) 1 (0.84, 1.19) 1.19 (1, 1.41) 0.95 (0.9, 1) 0.99 (0.97, 1.01) 1 (0.98, 1.02) 0.95 (0.79, 1.15) 1 (1, 1)  

Hosp - Dead 2.16 (1.57, 2.98) 1.12 (0.82, 1.53) 1.73 (1.26, 2.37) 1.52 (1.13, 2.04) 1.01 (0.92, 1.11) 1.03 (1, 1.05) 0.95 (0.91, 0.98) 1.25 (0.84, 1.84) 1 (1, 1.01)  
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Transitions 
Beta-blocker (BB) Heart rate (HR) BP Systolic (BPS) 

Transition intensities (95% CI) Transition intensities (95% CI) Transition intensities (95% CI) 

BL - Neither 0.59 (0.54, 0.64) 0.59 (0.54, 0.64) 0.59 (0.54, 0.64) 

BL - Hosp 0.34 (0.32, 0.35) 0.34 (0.32, 0.35) 0.33 (0.32, 0.35) 

BL - Dead 0.08 (0.07, 0.09) 0.08 (0.07, 0.09) 0.08 (0.07, 0.09) 

Neither - Neither 0.72 (0.65, 0.79) 0.72 (0.65, 0.79) 0.72 (0.65, 0.79) 

Neither - Hosp 0.21 (0.19, 0.23) 0.21 (0.19, 0.23) 0.21 (0.19, 0.23) 

Neither - Dead 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 

Hosp - Neither 0.54 (0.5, 0.58) 0.54 (0.51, 0.58) 0.54 (0.51, 0.58) 

Hosp - Hosp 0.38 (0.3, 0.46) 0.38 (0.3, 0.45) 0.37 (0.3, 0.45) 

Hosp - Dead 0.08 (0.07, 0.1) 0.08 (0.07, 0.1) 0.08 (0.07, 0.1)  

Table 8.8: Estimated multivariable TI further adjusting for BB, HR and BPS*Data is expressed as transition intensities with 95% CI (rounded to 2 digits). Adjusted with 

Age, Sex, NTproBNP, NYHA, Haemoglobin, Urea, Albumin, Loop Diuretic. Abbreviation: See Table 7.1 
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8.1.6 Sensitivity  

I stratified by diagnostic category (phenotypes), as shown in Table 8.9. This can lead 

to more accurate estimates of transition probabilities and intensities within each subgroup. 

Healthcare resources can be allocated more efficiently, focusing on those who need the most 

attention. As discussed earlier in descriptive characteristics, the model has predicted less 

variation in transition intensities can be seen for HeFREF and HeFPEF ≥ 400. The probability 

of transitioning to [Dead] is lower in HeFPEF 125-399.  
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Transitions 
HeFREF HeFPEF>=400 HeFPEF>=125-399 

Transition intensities (95% CI) Transition intensities (95% CI) Transition intensities (95% CI) 

BL - Neither 0.56 (0.49, 0.63) 0.56 (0.48, 0.63) 0.69 (0.57, 0.81) 

BL - Hosp 0.35 (0.33, 0.38) 0.34 (0.32, 0.37) 0.28 (0.25, 0.31) 

BL - Dead 0.09 (0.07, 0.1) 0.1 (0.08, 0.12) 0.03 (0.02, 0.05) 

Neither - Neither 0.72 (0.61, 0.83) 0.68 (0.56, 0.79) 0.82 (0.67, 0.97) 

Neither - Hosp 0.21 (0.18, 0.24) 0.24 (0.21, 0.28) 0.15 (0.12, 0.18) 

Neither - Dead 0.07 (0.06, 0.09) 0.08 (0.07, 0.1) 0.03 (0.02, 0.05) 

Hosp - Neither 0.52 (0.47, 0.57) 0.53 (0.48, 0.59) 0.59 (0.5, 0.7) 

Hosp - Hosp 0.39 (0.28, 0.5) 0.37 (0.25, 0.49) 0.38 (0.18, 0.58) 

Hosp - Dead 0.09 (0.07, 0.12) 0.1 (0.07, 0.13) 0.03 (0.01, 0.07)  

Table 8.9: Estimated transition intensities stratified by diagnostic categories 
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8.1.7 Long-term prediction with Sojourn time and Total length of stay   

Mean sojourn time10: As illustrated in Table 8.10, the maximum mean sojourn time of 

unadjusted model (M1) and multivariable model (M2) related to [Neither] was equal to 3.60 

(95% CI: 3.32, 3.84) and 3.44 (95% CI: 3.21, 3.69) cycles respectively. The average amount 

of time spent in the state [Hosp] before making a transition was 1.54 (95% CI: 1.45, 1.64) or 

1.61 (95% CI: 1.51, 1.71) cycles. The predicted cycles for both states remain similar 

without/with covariates. The observed average was 1.8 cycles in the [Hosp] state in 5 years. 

On the other hand, the inclusion of the additional covariate (BB, SBP, HR) in the adjusted 

model indicates that the sojourn time remains the same. The covariates appear to influence the 

transition rates rather than the time spent (cycles) in each state.  

 

 

State 
Unadjusted model  

(M1) 

Adjusted model  

(M2) 

estimate SE estimate SE 

Neither 3.44 (3.21, 3.69) 0.12 3.60 (3.32, 3.84) 0.13 

Hosp 1.54 (1.45, 1.64) 0.05 1.61 (1.51, 1.71) 0.05 

 
Table 8.10: Mean sojourn time (in cycles) for the two models (M1 & M2)Abbreviation: SE, standard 

error; Hosp, Hospitalisation 

 

 
 

10 The mean sojourn time is defined as the average time a patient spends in each state in single stay 
(which could include consecutive cycles) before making any transition to other states. 
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The two models can be run through notionally in a theoretical space to the point where 

all the subjects have died (the total length of stay) 11. Table 8.11 shows the projected number 

of cycles (for both the unadjusted and multivariable model) that an individual will spend in 

each of the potential states before transitioning to [Dead]. Both estimates (that life expectancy 

is approximately 10 years (7.11 + 2.83) and 13 (9.06 + 3.63) years in the two models) are 

consistent with the actual observation of 41% mortality at 5 years.  

 

State 
Model 

Unadjusted (M1) Adjusted (M2) 

Neither 7.11 9.06 

Hosp 2.83 3.63 
 

Table 8.11: Total length of stay (in cycles) for the two models (M1 & M2) 

 

 

8.1.8 Case trajectories 

The same random selection of 9 patients (chapter 2) was made to investigate the 

prediction made by the adjusted model (Figure 8.3). The individual's prediction (their 

probability of state transition up to the 5th cycle) based on their covariate values was obtained 

using equation 7.1. The BL baseline characteristics of these individuals also can be seen. It can 

be seen that such an analysis would help in determining the causes of unexpected causes for 

hospitalisations. Note that the model predicted the trajectories based on the baseline values 

(Table 8.1). 

 
 

11 The total length of stay is defined as the anticipated exposure time spent by an individual in each 
state during the study period before death. 
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Figure 8.3: Predicted probabilities over time for 9 randomly selected patientsThe table below show the baseline characteristics of these patients and these 8 covariates 

were used to calculate the probabilities using the equation𝑞𝑟𝑠 =  𝑞𝑜𝑒𝑥𝑝 (𝑏𝑒𝑡𝑎 𝑧(𝑡)).  
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 Discussion 

I have used a four-state Markov model to describe the disease trajectory of patients 

with heart failure. I generated the model by observing events during the first two years of 

follow up, and the model yielded surprisingly accurate predictions of how a population 

with heart failure will behave during subsequent years. Trying to understand the trajectory 

of heart failure in a population of individuals is complicated by the vagaries of life: 

patients have multiple co-morbidities, and may have events at random that are unrelated 

to heart failure. Any model attempting to describe progression will thus be limited by the 

failure of any model to include all possible variables (Kazmi et al. (2022). I attempted to 

improve the power of the model by including covariates that might have an impact on 

subsequent outcome, but found that the multivariable model was slightly better predicting 

cardiovascular (CV) mortality when patients were hospitalised.  

When assessing HRs, NT-proBNP (ng/L) was found to be the most influential 

factor for moving from [BL] to [Hosp] or to death (i.e., [Dead]). Age was the strongest 

variable for moving to death from being hospitalised or not being hospitalised. It has been 

noticed that a significant number of patients over the age of 75 years moved from BL to 

death rather than hospitalisation due to selection bias. Loop diuretic was initially 

considered as present or absent. E.g. the probability of transitioning from [Hosp] to [Dead] 

was 0.08 and replacing this variable with Loop dose (mg) change to probability of 

transitioning 0.10. Loop dose is more sensitive than loop present and absent because it is 

continuously distributed.  
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 I show that it is possible to combine Cox modelling with multistate Markov 

chains, but that in the instance of HF, it does not enhance the predictive power of a model. 

However, with the cox modelling I can predict the CV death better. The explanation lies 

with the fact that the covariates at baseline were included only: subsequent changes to the 

covariates were ignored by the model. Further work might tackle the complexity of 

changes in covariates with time, but given the predictive power of the unadjusted model, 

such an approach might not greatly increase the value of the model. Even when I restricted 

the analysis to the endpoint of cardiovascular death only, the adjusted model did not 

perform better than the unadjusted. There is some error in the unadjusted model, but there 

is no particular pattern of either under or over-prediction. 

The study adopts a dual temporal perspective, focusing on both short term 

(immediate) and long term (extended) prediction. The unadjusted model fits so well with 

the observed data during subsequent years, it is likely that the analysis of total length of 

stay is valid. The implication is that with current medical management, a newly assessed 

patient with heart failure might expect to survive for 10 cycles with approximately three 

hospitalised cycles in that period. This analysis may be of interest when applied to the 

population of patients in a clinical trial. Such trials are almost never run to completion 

(i.e., to the point where all subjects have died), but developing a Markov model by using 

the transitions during the first two years of a clinical trial (the typical length of 

cardiovascular trials) to model what the lifetime effect on death and hospitalisations might 

be, is potentially a helpful way to visualise the impact of an intervention.  

The average sojourn time was similar irrespective of whether the covariates were 

included or not (Table 8.12). In order to further understand the impact of other factors, 

additional covariates (BB, SBP, HR) were included in the multivariable model. The 

inclusion had little influence on transition intensities but did not change the sojourn time. 
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The total length of stay (Table 8.11) also indicating the survival of patients increased by 

three cycles when clinical features were included in the model. This shows that the 

covariates appear to influence the rates of transition and total length of stay rather than 

the time spent (cycles) in each state. 

An additional value for running such models is to understand the implication for 

the design of health services. Planning is difficult: often systems are structured in 

response to the measured incidence of a specific condition without a consideration of the 

overall impact of a condition might be during the lifetime of an individual patient. Here, 

I have developed a model that suggests what the implications for the health care system 

might be given a diagnosis of HF.  

In the model, at every cycle, the proportion of patients transitioning from a given 

state to another remains constant. This finding suggests that the course of heart failure is 

more linear at a population level than is commonly supposed and, thus, much more 

predictable if the current state of a patient is known. One consequence of the finding is 

that that it is the state of the patient at the end of one cycle that carries prognostic 

information, not the history of preceding states. The past information simply leads to the 

current state, once you’re in that state you don’t need to reference past states to predict 

what will happen next (“memoryless” property).  

 

• Limitations 

This is an observational study of a large population in a single centre only: the 

characteristics of the population might not be representative of patients with heart failure 

as a whole. This is the only hospital providing secondary care for the patients locally, but 
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it is possible that some patients were admitted to hospital elsewhere. However, deaths are 

collected centrally and are accurate. 

The multivariable model was less accurate than the unadjusted model because it 

only used covariates from the baseline visit and didn’t account for changes in clinical 

factors over time. The models were not designed to predict the total number of hospital 

events and/or total stay in hospital (in days) in a particular cycle. The model only 

considered the possibility of one hospital event within a cycle: if a patient was 

hospitalised and then died within a single cycle, the hospitalisation was not counted.   

The general limitations associated with MSM extend to this work. Fitting an MSM 

model with covariates can be complicated and computationally intensive due to a 

potentially large number of potential variables as well as potential parameters: hence, I 

developed a model with a limited number of covariates and limited it only to those 

parameters describing the data well.  

 

 Conclusion 

A simple 4 state Markov chain model derived from events observed in the first 

two years of follow up predicts the outcomes of patients with chronic heart failure with a 

high degree of accuracy. Dynamic risk stratification based on the prediction of an MSM 

provides greater insight into the clinical trajectory of groups of patients. For this, it 

requires a rigid categorisation into a finite number of mutually exclusive and exhaustive 

disease states. The model might be useful in designing health care systems to 

accommodate the large number of patients with heart failure.  
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 Conclusion 

 

In this thesis I have successfully used a large dataset of patients being investigated 

for a possible diagnosis of heart failure to develop dynamic models that effectively 

describe the disease trajectories for groups of patients as well as individuals. These 

models are capable of predicting adverse events over a number of consecutive cycles and 

effectively capturing both short-term and long-term behaviours of the disease. Adopting 

a dual temporal perspective (focusing on both immediate and extended timeframes) is 

crucial for understanding how any chronic condition evolves over time. 

This thesis provides a range of modelling strategies, each offering a unique 

perspective on the understanding of risk and dynamic risk modelling of CHF. Depending 

on the level of detail required, a specific strategy can be employed. Each model, detailed 

in separate chapters, focused on various states of disease progression. These models have 

been validated across different time intervals (specially, different cycle durations) to 

ensure their reliability and accuracy. The study successfully employed machine learning 

techniques to model disease progression.  

The incorporation of clinical covariates into the models has provided deeper 

insights into how diverse factors influence the disease trajectories of heart failure patients. 

These models have demonstrated their ability to track changes in health status accurately 

and predict the risk of death or hospitalisation over time. The methodology developed in 

this thesis offers a framework that can be adopted to design (and resource) systems 

tailored for a group of patients with possible heart failure. Importantly, this approach also 

holds potential for application to other chronic conditions, such as chronic lung or kidney 

disease, thereby broadening the impact of this work.  
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 Summary of work and key contributions  

 

9.1.1 Explore the progression of HF using data. 

 Chapter two provided essential background and context on the progression of chronic 

heart failure. Here, I highlighted the distinguishing between progressive and non-

progressive chronic diseases. Various methodologies and mathematical functions used to 

model changes health trajectories were described. I highlighted key element required for 

analysing and modelling changes in patient health status over time. The progression of 

HF disease was thoroughly explored using extensive Hull LifeLab data in chapter four. 

Various health states and the risk factors were identified for evaluation of their influence 

on the disease trajectories and outcomes. I also illustrated the organisation of data into 

longitudinal health events.  

Key contribution: This exploration builds a foundational understanding essential for 

dynamic risk modelling, which supports further objectives in analysing heart failure 

progression. Specifically, it provides insights into the various states and transitions 

patients undergo, informed by observed clinical data and findings detailed in (Kazmi et 

al., 2022; Kazmi et al., 2024). 
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9.1.2 Investigate the practical challenges in clinical data 

In chapter four I addressed several challenges associated with handling clinical data, 

including misaligned sample data, missing values and non-normal distributions. I 

developed detailed strategies to improve the data handling which facilitated the accurate 

modelling of disease progression in subsequent chapters (5-8). The findings of chapter 

five laid the ground work for further enhancement in the methodologies, which were 

elaborated upon in chapter 6. Building on these results, chapter seven introduced the final 

model.  

Key contribution: This iterative process of refinement strengthened the robustness 

of my data analysis and established a strong foundation for ongoing and future research. 

The strategies developed for managing clinical data challenges have improved the 

accuracy and reliability of my predictive models. 

 

9.1.3 Development of dynamic risk models for trajectories in HF 

 The development of dynamic risk models began with providing patients' baseline 

characteristics and highlighting the differences between patients with and without OPD 

follow-up visits. This comparison aimed to identify any unique baseline traits between 

the two groups, as detailed in chapter Four. The data were organised in longitudinal 

health events format. In chapter five, supervised machine learning techniques were 

applied to classify subsets of the Hull LifeLab population into different classes. The 

process helped in extracting meaningful insights from the dataset. This also involved 

identifying if data imbalances could affect model accuracy in later stages. The insight 
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derived from these analyses was critical for understanding the health trajectories of 

patients with heart failure.   

Key contribution: Building on the groundwork, I developed dynamic risk models 

using absorbing Markov chains in chapter seven. I predicted future outcomes based on 

earlier events in a patient’s history, and analysed the influence of age and sex on disease 

progression.  I achieved the study’s aim by demonstrating that dynamic risk stratification 

provides a unique perspective compared to traditional models of disease progression. This 

approach views the clinical trajectory of patients collectively while also allowing for 

individual trajectory predictions, enabling further survival analysis. I further expanded 

dynamic risk model by incorporating clinical covariates to examine their impact on 

transitions between clinical states in order to broaden the prediction scale to cover both 

short-term and long-term behaviours. 

 

9.1.4 Linearity in Heart Failure progression:  

The analysis in chapter six and seven suggests that at every cycle, the proportion of 

patients transitioning from one state to another remains constant. One consequence of the 

finding is that the patient's state at the end of one cycle carries prognostic information, 

not the history of preceding states. The history is “hidden” in the present state.  

Key contribution: The findings suggest that the course of heart failure is 

representative of a linear model at a population level than is commonly supposed, and, 

thus, much more predictable for an individual if the current state of a patient is known.  
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The structure of the thesis and the objectives provides an understanding and 

application of a multistate risk modelling framework to the problem of progressive 

chronic heart failure (CHF). This comprehensive approach has ensured that each stage of 

the modelling process is robust and that the conclusions drawn are well-supported by 

empirical evidence. 

 

 Limitations and future directions 

This is an observational study of a large population in a single centre only: the 

characteristics of the population might not be representative of patients with heart failure 

as a whole. The data are taken from the only hospital providing secondary care for the 

patients locally, but some patients may have been admitted to the hospital elsewhere. 

However, deaths are collected centrally and are accurate. 

The multivariable model's predictions were less accurate than the unadjusted 

model reflects the fact that I was limited to the covariates collected at the baseline visit 

and did not consider changes in clinical covariates from baseline. The models were not 

designed to predict the total number of hospital events and/or total stay in hospital (in 

days) in a particular cycle. The model only considered the possibility of one hospital event 

within a cycle: if a patient was hospitalised and died within a single cycle, the 

hospitalisation was not counted.   

The general limitations associated with MSM extend to this work. Fitting an MSM 

model with covariates can be complicated and computationally intensive due to the 

potentially large number of potential variables and potential parameters: hence, I 

developed a model with a limited number of covariates and limited it only to those 

parameters describing the data well.  
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Recommendations for future work include further validation of the models I 

have developed in different populations and settings and exploring the integration of 

newer data sources and emerging technologies in model refinement and 

implementation. 
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