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Abstract
Self-localization, a pivotal aspect explored in this research, holds significant relevance across

various applications, including human-robot interaction and surveillance for aging individuals.

Traditional localization methods relying on GPS signals or visual information face limitations in

poorly illuminated environments or areas with obstructed GPS signals. In these situations, audio

signals emerge as a promising alternative. When localizing both devices/microphones and ambient

objects using audio signals from sources, typically two types of information are used: time of arrival

(TOA) and time difference of arrival (TDOA). TOA measures the distance between microphones

and sources, while TDOA measures the range difference between pairs of microphones relative to

the audio source. However, there are three challenges in localizing both microphones and sources

with TOA and TDOA measurements, which limit the efficiency and accuracy of self-localization,

regardless of whether the microphones and sources are synchronous or asynchronous.

In scenarios where both microphones and sources are asynchronous, both TOA and TDOA contain

unknown timing information (UTIm). The unknown start time for the microphones and the emission

time for the sources are embedded in the TOA measurements. Additionally, there is an unknown time

offset between pairs of microphones in TDOA measurements. Under this scenario, there are at least

two challenges for self-localization. Firstly, TOA requires estimation from both microphone and

source signals, whereas TDOA requires estimation from microphone signals only. Even if the UTIm

in TOA and TDOA is accurately estimated, asynchronous TOA provides range measurements between

microphones and sources, while asynchronous TDOA only provides range differences. Range

measurements contain richer and more efficient information than range difference measurements for

self-localization, as range differences can be derived directly from range measurements. Therefore,

when audio source signals are absent, it is crucial to find a way to use microphone signals alone for

efficient self-localization before estimating UTIm. Secondly, UTIm in both TOA and TDOA pose

significant challenges for self-localization. Traditional methods for estimating UTIm (synchronizing

microphones and sources) in TOA/TDOA measurements often get stuck in local minima due to the

randomness of UTIm, leading to inaccuracies in range measurements and substantial localization

vi



Abstract vii

errors. Therefore, it’s paramount to design a method to improve the accuracy of range measurements

for self-localization.

The third challenge arises in scenarios where both microphones and sources are synchronized, and

range measurements between them are available. Traditional methods require a minimum number of

microphones and sources to achieve effective self-localization. Typically, at least six, five, or four

microphones are required along with four, five, or six sources, respectively. This requirement is

based on the principle that the number of equations (known range measurements) should be greater

than or equal to the number of unknowns (location variables for microphones and sources). When

the number of microphones and sources is below this minimum threshold, traditional state-of-the-art

methods fail. Unfortunately, this issue has not been adequately explored, significantly limiting the

efficiency of self-localization. This poses the third challenge to find a way to reduce the number of

microphones and sources required for self-localization.

To address above three challenges, this PhD thesis proposes a three stage framework (TSF) designed

to simultaneously localize both microphones and audio sources, improving both accuracy and

efficiency for self-localization. The initial stage focuses on developing a mapping function that can

transform between TOA and TDOA formulas, demonstrating their potential equivalence for the first

time. This breakthrough reveals that microphone signals alone are adequate for self-localization,

eliminating the need for source signal waveforms and providing richer information for localization

once UTIm is estimated in asynchronous TOA/TDOA measurements. This advancement could

revolutionize self-localization techniques, greatly expanding their use in challenging environments.

Backed by solid mathematical proof and compelling experimental results, this research makes a

significant contribution to the current discourse on audio self-localization. In the second stage,

an innovative combined low-rank approximation (CLRA) technique aimed at estimating UTIm is

introduced. This involves developing three novel low-rank property (LRP) variants, each of which

is backed by mathematical proof, allowing UTIm to utilize a broader range of low-rank structural

information. By leveraging this augmented low-rank information from both the LRP and the proposed

variants, I formulate four linear constraints on UTIm. Employing the CLRA algorithm, global optimal

solutions for UTIm based on these constraints are derived. Experimental results showcase proposed

method’s superior performance over current state-of-the-art approaches, as demonstrated by higher

recovery numbers and lower estimation errors for UTIm. In the third stage, the proposed TSF relaxes

the minimal configurations required for self-localization by presenting a novel numerical method.

Based on the laws of cosine, the localization problem is transformed to estimate four unknown pairs

of distances pertaining to one pair of microphones and three pairs of sources. Using the triangle
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inequality, both the lower and upper boundaries of these four unknown pairs of distances can be

obtained, enabling the determination of the numerical method by searching for candidates within the

corresponding boundaries. This approach shows that self-localization in 3D space is achievable with

only four microphones and four sources, relaxing the minimal configurations required by traditional

methods, improving the efficiency for self-localization. Both theory and simulation results validate

the feasibility of this new numerical method.

In summary, the impact of the proposed TSF in this PhD thesis extends to providing a comprehensive

understanding of self-localization, enhancing accuracy and efficiency in challenging environments.

The proposed methodologies contribute to the advancement of signal and audio processing, paving

the way for more intelligent and flexible solutions in real-world scenarios.
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Chapter 1

Introduction

1.1 Motivation and Objectives

With the development of automation technology and intelligent systems [1], the demand for au-

tonomously localize devices themselves and the ambient objects in an unknown environment is

increasing [2]. Since the localization research become more and more power-efficient, robust and

intelligent [2], many applications are dominated by this research topic, such as automatic speech

recognition [3], fire fighting [4], human robot interaction (HRI) [5], surveillance for aging people [6]

and rescue missions [7]. Traditional localization methods [8, 9] often rely on Global Positional Sys-

tem (GPS) or visual sensors, however, those methods may face limitations in certain scenarios [10],

such as dark indoor environments, urban canyons, or area with obstructed GPS signals. Therefore,

speech self-localization arises much attentions in the past decades. For example, by using the time

difference in the sound source from three microphones, Lee et al. [11] presented an algorithm for

real-time sound localization in human-robot interaction. In addition, Nakamura et al. [12] devel-

oped an intelligent human tracking system for robots using sound source localization by addressing

noise robustness, selective listening, and tracking challenges through advanced GEVD-MUSIC,

hierarchical Gaussian mixture models for sound source identification, and audio-visual particle

filtering, achieving significant improvements in noise handling, selective listening, and tracking

accuracy. Furthermore, Korayem et al. [13] presented a low-cost communication system for HRI,

integrating a Scout robot and a robotic face with a hidden Markov model-based voice command

detection system trained on a non-native Persian speaker database, achieving the improvement in true

detection over systems trained on native English data. In this context, the interplay between audio

self-localization and object localization becomes crucial, especially when the position of the emitting

1



1.1 Motivation and Objectives 2

object is of interest. By integrating insights from both domains, a comprehensive understanding of

the environment can be achieved, enhancing the potential for intelligent and adaptable solutions in

various real-world scenarios above.

The measurements of time of arrival (TOA) and time difference of arrival (TDOA) [14, 15] are two

typical types of information for self-localization, and both of them can be estimated by analyzing

the received audio signals from microphones and emitted audio signals from sources [16, 17].

Specifically, if the waveform of the source signal is obtained beforehand, such as the corresponding

amplitude, frequency, and duration, TOA between individual microphones and sources can be

obtained through generalized cross-correlation with phase transform (GCC-PHAT) [18–20] or the

mutual information function [21, 22]. Additionally, compared with TOA, when the source signal’s

waveform is unknown, the TDOA of a pair of microphones relative to a corresponding source can

be determined by performing GCC-PHAT [18–20] or the mutual information function [21, 22] on

the signals from the microphones pair [23]. When the recording start times of microphones and

the emission times of audio sources are synchronized, the interval between the emission of an

audio signal by the source and its reception by a microphone can be measured using TOA. This

measurement captures the distance between the microphones and sources. Similarly, TDOA can

be used to measure the delay between the reception of corresponding audio signals by a pair of

microphones, reflecting the range difference relative to the audio source. TOA inherently includes

the direct range between microphones and sources, while TDOA encapsulates the range difference

between microphone pairs. Consequently, TDOA can be derived from TOA. Both measurements

have been employed in various speech applications, including microphone array calibration [24–26],

source localization [27–29], source tracking [30–32], joint microphones and sources localization

(JMSL) [33–35], and simultaneous localization and mapping [36, 37]. However, there are three main

challenges for localizing both microphones and sources, significantly limiting the efficiency and

accuracy for localizing both them.

In practice, microphones and sources are often not synchronized. Human voices or other audio

sources emit signals without being aware of the microphones’ recording times, resulting in unknown

emission times. Additionally, each microphone may start recording at its own independent and

unknown time. This asynchrony causes TOA and TDOA to contain unknown timing information

(UTIm) [38]. Specifically, TOA includes the unknown start times of microphones and emission

times of sources, while TDOA incorporates the unknown time offset between pairs of recordings.

When both microphones and audio sources are asynchronous, there are two main challenges for

localizing them, which limit the efficiency and accuracy of self-localization. Firstly, even if the



1.1 Motivation and Objectives 3

UTIm in TOA/TDOA is accurately estimated, TDOA only provides the range difference between

pairs of microphones relative to the corresponding audio source. In contrast, TOA contains the

range measurements between microphones and sources, which include richer information since

range differences can be directly derived from range measurements. Additionally, once both range

measurements and angle of arrival (AOA) measurements [39] are available, the locations of both

microphones and sources can be directly determined [40]. However, acquiring TOA requires

both microphone and source signals, while TDOA can be obtained using only microphone signals.

Therefore, before estimating UTIm, the urgent task is to unify TOA and TDOA to obtain range

measurements between microphones and sources using only microphone signals. This unification

would improve the efficiency of localizing both microphones and sources, as it allows the use of

fewer resources (microphone signals only) to obtain more information (range measurements) for self-

localization. Secondly, the randomness of UTIm poses significant challenges for the asynchronous

localization of microphones and sources. Traditional methods often get stuck in local minima

when estimating UTIm, leading to inaccuracies in synchronization and localization. Therefore, to

accurately localize microphones and sources using TOA or TDOA, it is imperative to estimate the

global solutions of UTIm contained within these measurements. This involves determining the

unknown start and emission times to effectively utilize TOA or TDOA for accurate localization

purposes.

Furthermore, even when both microphones and sources are synchronized and range measurements

between them are available, the localization task remains challenging. Current state-of-the-art

methods for localizing both microphones and sources can be divided into two categories: closed-form

solutions [33, 35] and iterative methods [41]. These methods have achieved accurate localization of

microphones and sources. However, due to the requirement that the number of equations (known

range measurements) must be greater than or equal to the number of unknowns (location variables

for microphones and sources), the state-of-the-art research indicates that the minimal number of

microphones and sources needed for localization is six/five/four and four/five/six, respectively.

These research efforts have aimed to meet this requirement by presenting either closed-form or

iterative methods [33, 35, 41]. Unfortunately, these minimal configurations limit the flexibility of

self-localization. If the number of microphones and sources is less than the required minimum, the

task of self-localization fails. Therefore, an important question arises: is it possible to relax these

minimal configuration requirements, thus enabling more flexible configurations for self-localization

and enhancing its efficiency in more challenging scenarios?

The goal of this PhD thesis is to enhance the efficiency and accuracy of self-localization by introducing
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a three-stage framework (TSF) that addresses the three key challenges in localizing both microphones

and sources. In the first stage of the proposed TSF, a novel mapping function [38] designed to

transform both TOA and TDOA into an equivalent form is introduced. This unification allows

TOA to be obtained using only microphone signals, enabling the acquisition of range measurements

between individual microphones and sources once the UTIm in the unified TOA/TDOA is estimated.

Experimental results validate the effectiveness of this mapping function. By implementing this

mapping function, the self-localization process becomes more efficient and adaptable.

In the second stage of the proposed TSF, a combined low-rank approximation (CLRA) algorithm

to estimate the solutions for UTIm in TOA/TDOA is introduced, enabling the determination of

accurate range measurements between microphones and sources for localizing both. UTIm in

TOA/TDOA present significant challenges in various applications. Traditional optimization methods

that directly estimate UTIm often perform poorly compared to techniques that leverage low-rank

property (LRP) [42]. LRP introduces an additional low-rank structure, enabling the formulation of

linear constraints on UTIm and enhancing the development of related low-rank structural information.

This approach facilitates the attainment of globally optimal solutions for UTIm, provided the

initialization is appropriate. However, the initialization process often relies on randomness, leading

to suboptimal local minima. To address this, the second stage of the proposed TSF introduces a novel

CLRA method designed to mitigate the effects of random initialization on UTIm. By proposing three

new LRP variants, supported by mathematical proof, UTIm can utilize a richer array of low-rank

structural information. Leveraging this enhanced low-rank information from both LRP and the

proposed variants, four linear constraints on UTIm is established. Using the CLRA algorithm, global

optimal solutions for UTIm based on these constraints is derived. Experimental results demonstrate

that proposed method outperforms existing state-of-the-art approaches, showing higher recovery

rates and lower estimation errors for UTIm. With the proposed CLRA, more accurate distance

measurements between microphones and sources can be achieved, significantly enhancing the final

task of localizing both microphones and sources.

In the third stage of proposed TSF in this PhD thesis, my research aims to relax the minimal

requirements for self-localization in 3D space using range measurements between microphones and

sources, enhancing the efficiency of self-localization. Traditionally, state-of-the-art methods indicate

that a minimum number of microphones and sources are necessary for localizing both microphones

and sources: typically at least four, five, or six microphones and six, five, or four sources, respectively.

However, these minimal configurations restrict the applicability of self-localization in challenging

scenarios where the available number of microphones and/or sources falls below these requirements.
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To address this limitation, I propose a new numerical method that diverges from the principle of

requiring a strict balance between the number of valid equations (range measurements) and unknown

variables (locations of microphones and sources). This method aims to reduce the dependency on

having a large number of microphones and sources by introducing a novel approach to localization.

By conceptualizing the self-localization task as involving several triangles and applying the laws of

cosine, I transform the problem to derive four unknown distances related to one pair of microphones

and three pairs of sources. Then, leveraging triangle inequalities, I establish lower and upper

boundaries for these four unknowns based on known range measurements between microphones and

sources. This enables us to use a numerical method focused on solving for these four unknowns

within their respective boundaries. This approach shows that achieving self-localization in 3D space

is feasible with just four microphones and four sources, while maintaining acceptable localization

errors. This relaxes the stringent minimum configuration requirements imposed by state-of-the-art

methods. Both theoretical analysis and simulation results validate the feasibility and effectiveness

of proposed new numerical method in achieving accurate localization outcomes under reduced

microphones and sources configurations.

In summary, the objectives of this PhD thesis are summarized as:

• By proposing a mapping function, I demonstrated that the asynchronous TOA and TDOA

formulas can be transformed into an identical form. This finding indicates that microphone

signals alone are sufficient for TOA-based localization of microphones and sources. Once the

UTIm is estimated using asynchronous TOA or TDOA measurements, the range measurements

between microphones and sources can be obtained, enhancing the efficiency of localizing both

microphones and sources.

• By presenting a CLRA method, three additional LRP variants are introduced. This enables

the inclusion of UTIm into a richer LRP pool, allowing more linear constraints to be imposed

on UTIm. This approach mitigates the impact of initialization randomness on UTIm, lead-

ing to global solutions for UTIm, which are used for synchronizing both microphones and

sources. Consequently, this results in more accurate range measurements for localizing both

microphones and sources.

• By introducing a new numerical method, the minimum number of microphones and sources

required for localizing both is reduced using range measurements. With proposed novel

numerical method, the number of microphones and sources can be decreased to four each,
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relaxing the minimal configuration needed for the localization task and improving the efficiency

of localizing both microphones and sources.

1.2 Challenges

Despite decades of research into audio self-localization, numerous challenges persist, particularly in

underexplored areas, which hinder the efficiency and accuracy of self-localization. These challenges

can be categorized as follows:

• 1. Equivalence between TOA and TDOA

In scenarios where both microphones and sources operate asynchronously, state-of-the-art

methods typically pursue similar approaches to derive range or range difference measurements

for self-localization. TOA can be determined when both microphone and source signals

are available, facilitating the acquisition of range measurements for localization, contingent

upon accurate estimation of the unknown start times of microphones and emission times of

sources. Conversely, when only microphone signals are accessible, TDOA can be computed,

allowing for the determination of range differences between pairs of microphones relative to

the sources, once the unknown time offset between the microphones is estimated. However,

range measurements inherently offer richer information for self-localization compared to range

difference measurements. Therefore, developing a mapping function that effectively unifies

asynchronous TOA and TDOA measurements to render them equivalent is crucial yet remains

an unexplored area in current research.

(Contribution point 1 tackles this challenge)

• 2. Exploring the low-rank structure information between TOA/TDOA and UTIm

Once TOA and TDOA are unified, exploiting LRP becomes viable for investigating the

relationship between UTIm and TOA/TDOA. LRP facilitates the establishment of linear

constraints that connect UTIm with TOA/TDOA, enabling the derivation of global solutions

for UTIm based on these measurements, assuming proper initialization of UTIm. However,

LRP is susceptible to local optima due to the stochastic nature of initialization, leading to

inaccuracies in UTIm estimation and significant localization errors. Overcoming this challenge

involves identifying additional low-rank structural information that can enhance the diversity

of information utilized by UTIm, thereby reducing the impact of initialization randomness.
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Despite its potential, this area remains unexplored in current research, presenting a substantial

challenge for future investigation.

(Contribution point 2 tackles this challenge)

• 3. Relaxing the minimal configurations for self-localization with numerical solutions

Over the past few decades, various methods have been developed to localize both micro-

phones and sources using closed-form or iterative solutions, typically requiring a minimum

of four/five/six microphones and six/five/four sources, respectively. However, these state-

of-the-art methods encounter limitations when the number of microphones and/or sources

is insufficient to meet these minimal requirements. Therefore, relaxing these minimal con-

figurations specified in existing literature could enhance the efficiency of self-localization

setups, thereby facilitating localization tasks in challenging environments. Nevertheless, the

minimal configurations outlined in current literature are based on the fundamental principle

that the number of valid equations (range measurements) must be greater than or equal to the

number of unknowns (locations of microphones and sources). This principle is inherently

sound, continuing to pose significant challenges in this field.

(Contribution point 3 tackles this challenge)

1.3 Contributions

This PhD thesis makes several key contributions to the field of audio self-localization (Fig. 1.1

presents the flowchart of proposed TSF in this thesis), summarized as follows:

• Unified asynchronous TOA and TDOA measurements

A mapping function that transforms asynchronous TOA and TDOA measurements into an

equivalent form is proposed. This unification allows for the efficient use of microphone signals

alone for TOA-based localization, streamlining the process of obtaining range measurements

between microphones and sources once the UTIm is estimated.

This leads to research work [C1].

• Enhanced low-rank properties for UTIm estimation

By presenting a CLRA method, I introduced three additional LRP variants. These variants

enable the UTIm to be integrated into a richer LRP pool, imposing more linear constraints
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on UTIm. This approach reduces the impact of initialization randomness, leading to more

accurate solutions for UTIm and improving the synchronization and localization accuracy of

both microphones and sources.

This leads to research works [J5] and [J7].

• Reduced minimal configuration requirements

A new numerical method that relaxes the minimal configuration requirements for self-localization

is developed. Proposed method reduces the number of required microphones and sources to

four each, enhancing the efficiency of localization tasks in challenging environments.

This leads to research works [J6] and [J7].

• Mathematical proofs and theoretical insights

This thesis includes rigorous mathematical proofs and derivations that underpin the proposed

methods. These proofs provide a solid theoretical foundation for the unification of TOA and

TDOA measurements, the enhancements in LRP, and the reduction of minimal configuration

requirements.

• Wider impact on signal processing and localization

Beyond the specific contributions to audio self-localization, the techniques and insights de-

veloped in this thesis have broader applications in signal processing and localization. The

proposed methods can be adapted and applied to other domains with similar localization chal-

lenges, such as radio signals, potentially benefiting a wide range of applications in technology

and engineering.

By addressing these key challenges and providing robust theoretical and practical solutions, this thesis

significantly advances the state-of-the-art in audio self-localization and offers valuable contributions

to the wider field of signal processing and localization.

1.4 Organization of Thesis

The organization of this PhD thesis is as follows:

Chapter 1: Introduction

This chapter provides an overview of the motivation behind this PhD thesis, highlighting the chal-

lenges addressed. Additionally, it summarizes the contributions made by this research.
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Figure 1.1: The illustration of proposed three stage framework for asynchronous self-localization
(TOA: time of arrival; TDOA: time difference of arrival; Chap 3: Chapter 3; Chap 4: Chapter 4;
Chap 5: Chapter 5).

Chapter 2: Literature Review and Problem Formulation

This chapter discusses the state-of-the-art literature concerning the synchronization and localization of

both microphones and sources. It also introduces the problem formulation and necessary preliminaries

for understanding the research context.

Chapter 3: Unified Mapping Function for TOA and TDOA

In this chapter, proposed mapping function designed to unify TOA and TDOA is presented. The

methodology, mathematical underpinnings, and experimental results validating the proposed approach

are detailed.

Chapter 4: Low-Rank Properties and CLRA Method for Synchronization of Microphones and

Sources

This chapter focuses on proposed methods and theories for synchronizing microphones and sources.

It includes the introduction of three new variants of LRP, supported by rigorous mathematical

proofs, and the CLRA. Experimental results demonstrating the efficacy of the CLRA algorithm using

simulation and real-world data are also presented.

Chapter 5: Relaxing Minimal Configurations for Self-Localization

This chapter explores research on relaxing the minimal configurations required for self-localization.

It details the transformation of self-localization into estimating four pairs of unknown distances,

establishing boundaries for these distances, and presenting numerical solutions for determining the

locations of microphones and sources.

Chapter 6: Conclusion and Future Directions

This final chapter summarizes the achievements of this PhD thesis. It also provides insights into

potential future research directions stemming from the findings and methodologies developed

throughout the study.



Chapter 2

Background

This chapter begins by reviewing the state-of-the-art research on audio self-localization, detailed in

Section 2.1. Section 2.2 presents the problem formulation for asynchronous self-localization. Section

2.3 provides an overview of the preliminaries related to LRP for UTIm and localization. Finally,

Section 2.4 concludes this chapter by summarizing the key points discussed.

2.1 State-of-the-Arts

In this section, the state-of-the-art approaches for asynchronous audio self-localization are displayed.

The methods for self-localization utilize various measurements such as TOA, TDOA, AOA, and

energy-based techniques. Additionally, pairwise distance estimation methods have been proposed.

For instance, McCowan et al. [43] and Taghizadeh et al. [44] assume a diffuse noise field, where the

microphone pairwise distances are estimated by fitting the measured noise coherence to the noise

field, treating localization as a multidimensional scaling problem [45–47]. However, this approach

requires microphone synchronization and assumes a diffuse noise field, which may not always hold

true. Another pairwise distance estimation method assumes minimum and maximum TDOA values

from sources located at end-fire directions, calculating inter-device distances accordingly [48–51].

This method bypasses the need for unknown time offsets for self-localization but relies on the

assumption of end-fire sources, which is not universally applicable. Some methods utilize energy

information for self-localization [52–54], eliminating the need to obtain UTIm. However, these

methods often assume that certain microphone-source pairs are co-located.

The AOA is another crucial measurement used for self-localization. Le et al. [39] introduced a rank

property specific to AOA, which enables the recovery of both microphone and source locations.

10
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Several methods have been proposed that utilize both TDOA and AOA measurements, leveraging

techniques such as the least squares method [55, 56]. Unlike other methods, AOA measurements do

not require the acquisition of UTIm. However, obtaining accurate AOA measurements poses several

challenges. These challenges include dealing with multipath propagation, environmental noise, array

design considerations, real-time processing requirements, frequency dependence, and the complexity

of phase information.

Self-localization using TOA or TDOA information can be categorized into unsynchronized and

synchronized scenarios based on whether microphones and sources share a common clock. In

scenarios where both TOA and TDOA measurements lack a common clock (unsynchronized),

methods for estimating UTIm and performing self-localization can be categorized into two main

groups: optimization-based and LRP-based methods. Optimization-based approaches typically

employ maximum likelihood estimation to estimate locations and source emission times. For

instance, Biswas et al. [57] proposed a joint estimation method using TOA information, albeit without

microphones’ start times. Raykar et al. [58] derived closed-form solutions assuming co-located

pairs using TOA or TDOA information with maximum likelihood estimation for locations and start

times. Ono et al. [59] introduced an auxiliary function-based algorithm for TDOA-based estimation,

showing improved convergence properties but is sensitive to initialization randomness, impacting the

stability and optimality of microphone and source locations. Badawy et al. [41] proposed a method for

UTIm estimation and self-localization using TOA information. They introduced a novel loss function

that directly computes the locations of microphones and sources. Initially, this method eliminates

UTIm in TOA/TDOA using a Gram matrix, followed by minimizing the corresponding loss function

to determine microphone and source locations. However, the approach is prone to instability because

the Gram matrix substitutes UTIm in TOA/TDOA with functions related to microphone and source

locations, potentially introducing ambiguity in their determination. Hu et al. [56] utilized least

squares with TDOA and AOA for UTIm estimation using the Hessian matrix and local gradients.

Wozniak et al. [55] applied a Moore-Penrose pseudoinverse method combining TDOA and AOA,

albeit requiring both measurements, which is not always feasible for self-localization. LRP-based

methods leverage low-rank information to formulate linear constraints from UTIm information,

categorized into alternating minimization [60, 61], nuclear truncation minimization [62, 63], and

structure total least square (STLS) [64, 65]. Compared to optimization-based methods, LRP-based

approaches demonstrate superior performance in UTIm estimation and self-localization by exploiting

UTIm’s low-rank structure. However, methods relying solely on LRP may encounter local optima,

which can lead to inaccuracies in the range measurements between microphones and sources.
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In synchronized scenarios, various methods have been developed. Localization methods in the

current literature can be broadly categorized into two main groups: closed (or near-closed) form

solutions [33,35] and iterative methods [66,67]. For closed-form solutions, when synchronized TDOA

measurements and the positions of microphones are known, localization of sources can be achieved

using methods such as spherical interpolation [68, 69], hyperbolic intersection [70, 71], or linear

intersection techniques [72]. Applications assuming co-location of microphones and sources utilize

multidimensional scaling methods [45, 58] based on the distances between microphones/sources.

Extensive reviews and mathematical properties of these localization methods are documented in [73],

with detailed references provided in [74] and [75]. Crocco et al. [23] propose a closed-form solution

for JMSL using LRP [42] and synchronized TOA measurements for a pair of co-located microphone

and source. Additionally, Le et al. [33] extend this approach by employing LRP and linear methods to

solve polynomial equations [76,77], providing closed-form and near-closed solutions for JMSL when

there are seven or more microphones and four or more sources with synchronized TOA measurements.

With synchronized TDOA measurements, Le et al. [40] first derive synchronized TOA measurements

from TDOA measurements using LRP. They then present closed-form and near-closed solutions

for JMSL under conditions where there are seven or more microphones and five or more sources,

excluding specific cases [35]: 1) seven microphones and five sources, 2) seven microphones and

six sources, and 3) eight microphones and five sources. Le et al. [34] also propose an algebraic

complete solution for self-localization with synchronized TOA measurements by transforming the

problem into finding an upper triangular linear transformation matrix. Moreover, Pollefeys et al. [78]

propose a method for JMSL using rank-5 factorization with synchronized TDOA measurements,

applicable when there are ten microphones and five sources. In addition to closed-form solutions,

some studies employ gradient descent or auxiliary function methods for nonlinear least-squares

optimization to obtain iterative solutions for JMSL using synchronized TOA [41, 61, 66] or TDOA

measurements [43, 53, 59, 63, 67].

By investigating rigid bipartite graphs, specifically synchronized TOA measurements for JMSL,

Bolker et al. [79] demonstrate that the minimal configurations for JMSL should consist of at least

three microphones and three sources when both microphones and sources are positioned in 2D space

(refer to Theorems 11 and 14 in [79]; note that any three positions among microphones and sources

must not lie on a single line). Additionally, for scenarios where both microphones and sources are

in 3D space, Theorems 11 and 12 in [79] stipulate that the minimal configurations for localizing

microphones and sources require six/five/four microphones and four/five/six sources (note that any

three/four positions among microphones and sources should not lie on a single line/plane). The
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rigid mathematical properties defined in [79] establish these minimal configurations/cases as the

consensus for JMSL. This consensus indicates that the number of valid equations (synchronized

TOA or range measurements between microphones and sources) should at least equal the number

of unknown variables (locations of microphones and sources). Numerous methodologies in the

state-of-the-art aim to achieve these minimal configurations/cases for JMSL without imposing

constraints on the geometric arrangements of microphones and sources. For instance, researchers

at Lund University have proposed closed-form solutions using methods such as the Grobner basis

method [80] and employing the Macaulay2 software to solve polynomial equations [81] (referencing

works like [33, 82, 83]). Notably, Kuang et al. [82] have developed closed-form solutions for

scenarios where both microphones and sources are located in three dimensions. Burgess et al. [83,84]

have investigated closed-form solutions when the span of microphone/source locations has a higher

dimension than the corresponding span of source/microphone locations. Moreover, Zhayida et al. [85]

have examined cases involving four/five microphones and five/four sources, where two distances

are provided between any pair of microphones and any pair of sources. However, these methods

typically require a minimum number of microphones and sources—-four/five/six for microphones

and six/five/four for sources—-limiting the efficiency in self-localization configurations when the

required number of microphones and audio sources is not available.

2.2 Problems Formulation

In this part, the main focuses are about the problem formulation of this PhD thesis. First, the definition

of TOA and TDOA will be displayed, then three challenges pertaining to the transformation of TOA

and TDOA, synchronization of microphones and sources, localization of microphones and sources

will be displayed.

In a 3D space, assuming there are M microphones and N sources located at unknown positions

within a room. These positions are represented by
[
r1, r2, · · · , rM

]
3×M

for the microphones and[
s1, s2, · · · , sN

]
3×N

for the sources, where ri =
[
r1,i, r2,i, r3,i

]T
and s j =

[
s1, j, s2, j, s3, j

]T

(i and j range from 1 to M and 1 to N, respectively). If there is a fundamental control center that

synchronizes both the microphones and sources, it is evident that both the sources emission time

and microphones start time can be known. Under these conditions, TOA between ith microphone

and jth source can be determined using formula ti, j =
∥ri−s j∥2

c (c: speed of sound; ∥•∥: L2 norm).

Additionally, the TDOA formula for a pair of microphones relative to the jth audio source is displayed
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Figure 2.1: The illustration for time of arrival formulation in Eq. (2.1) and time difference of arrival
formulation in Eq. (2.2) with jth source and a pair of microphones (r1: location of 1st mic; ri:
location of ith mic; s j: location of jth source; η j: emission time of jth source; δ1: start time of 1st

mic; δi: start time of ith mic; δ ′
i : time offset between 1st mic and ith mic; ti, j: time of arrival between

ith microphone and jth source; t1, j: time of arrival between 1st microphone and jth source; τi, j: time
difference of arrival between 1st microphone and ith microphone with respect to jth source; c: speed
of sound; ∥•∥2: L2 norm).

as τi, j =
∥ri−s j∥2−∥r1−s j∥2

c using received microphone signals. Using the synchronous TDOA formula

τi, j, it is evident that this formula is determined by the signals from the 1st and ith microphones

signals. In general, TDOA is defined as the time difference between any two microphones relative

to the jth source. However, for convenience, this thesis defines it specifically as the time difference

between the 1st and ith microphones relative to jth source.

However, in most practical scenarios, the microphones and sources are asynchronous, as noted

in references [38, 64, 65], resulting in unknown emission times for the sources and unknown start

times for the microphones. In such asynchronous settings, even the waveform of the source signal is

acquired beforehand, due to the UTIm pertaining to microphones start time and sources emission time,

the TOA measurements between individual microphones and sources remains incomplete, where

those UTIm are represented as δ =
[
δ1,δ2, · · · ,δM

]T
and η =

[
η1,η2, · · · ,ηN

]T
(δi: ith microphone

start time; η j: jth source emission time). Thereby, the formula of asynchronous TOA measurements

is expressed as [38, 41, 64]:

ti, j =
∥ri − s j∥2

c
+η j −δi. (2.1)

Given the invariance of the geometry of microphones and sources to rotation, translation, and

reflection, the locations of the first and second microphones and the first source can be defined as

r1 =
[
0, 0, 0

]T
, r2 =

[
0, 0, r3,2

]T
and s1 =

[
0, s2,1, s3,1

]T
, respectively, where r3,2 > 0

and s2,1 > 0. In addition, the emission time for the first source can be defined as zero, i.e. η1 = 0 [60].
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In the context of asynchronous microphones and sources, when the waveform of the source signal is

unknown, TDOA can be utilized. The GCC-PHAT method [18] can be employed to estimate TDOA

from the received signals at the microphones. Thereby, by denoting the time offset δ ′
i pertaining to

1st and ith microphones’ start time, the asynchronous TDOA formula is expressed as [38, 41, 64]:

τi, j = ti, j − t1, j =
∥ri − s j∥2 −∥r1 − s j∥2

c
+δ1 −δi =

∥ri − s j∥2

c
−

∥r1 − s j∥2

c
+δ

′
i , (2.2)

where Fig. 2.1 illustrates the signal model pertaining to the TOA formula (see Eq. (2.1)) and TDOA

formula (see Eq. (2.2)).

Upon examining Eq. (2.2), it becomes evident the audio signal emitted from jth source can be

received by both 1st and ith microphones. Therefore, the unknown ith microphone start time (δi), jth

source emission time and the range/distance measurements between ith microphone and jth source

are included in the ith microphone signal. Moreover, the unknown 1st microphone start time (δ1), jth

source emission time and the range/distance measurements between 1st microphone and jth source

are included in the 1th microphone signal. Thereby, the estimation of TDOA (τi, j) can be conducted

by GCC-PHAT [18] method with the audio signals from both 1st and ith microphones, resulting in

the statement that the estimation of TDOA measurement is independent from audio signal from

sources. Furthermore, TDOA is defined as the time difference between two microphones relative to

the corresponding source signal. Therefore, it is clear that the TDOA for the jth source in Eq. (2.2)

can also be obtained using the ith microphone signal along with any other remaining microphone

signal.

By defining ηt j =−∥r1−s j∥2
c and δti =−δ ′

i , TDOA formula in Eq. (2.2) can be rewritten as [41, 64]

τi, j =
∥ri − s j∥2

c
+ηs j −δti. (2.3)

Next, the three problems addressed in this PhD thesis are outlined as follows:

• Problem 1: It can be observed that TDOA formula in Eq. (2.3) exhibits a structural similarity

to the TOA formula in Eq. (2.1). Unfortunately, the precise relationship pertaining to TOA and

TDOA formulas remains ambiguous (see Eqs. (2.1) and (2.2)), as existing literature has not

yet clarified this connection. This lack of clarity extends to whether using microphone signals

alone are sufficient for TOA-based self-localization or not. On the other hand, Once the UTIm

is estimated using Eq. (2.1) and Eq. (2.2), range measurements are obtainable via Eq. (2.1),

whereas Eq. (2.2) provides only range differences. The research aim is to assess the feasibility
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of relying solely on microphone signals for self-localization when source signal waveforms are

unavailable. Additionally, this PhD thesis seeks to determine the range measurements between

individual microphones and sources post-UTIm estimation in TOA/TDOA. This investigation

could potentially challenge the prevailing notion that acquiring source signal waveforms

is indispensable for TOA-based self-localization, making the task of self-localization more

efficient, potentially broadening the applicability of self-localization techniques in challenging

environments.

• Problem 2: By integrating the TOA and TDOA formulas in Eqs. (2.1) and (2.2), the low-rank

structure information pertaining to the UTIm and TOA/TDOA can be exploited for establishing

a linear constraint for UTIm. However, relying solely on LRP can cause the solutions for

UTIm to become trapped in local minima, resulting in incorrect range measurements between

microphones and sources. Consequently, my goal is to estimate the UTIm from TOA/TDOA

measurements by incorporating additional linear constraints. This method enables UTIm to tap

into a more comprehensive LRP pool, thereby improving the accuracy of range measurements

between microphones and sources and enhancing the localization of microphones and sources.

• Problem 3: Once both microphones and audio sources are synchronous, the next step is to

localize both microphones and sources using the range/distance measurements between them.

From Eq. (2.1), it is evident that to localize all microphones and sources, the number of

equations MN (the number of range measurements) must be at least equal to the number of

unknown variables 3(M+N). By accounting for the invariance related to translation, rotation,

and reflection in the geometry of microphones and sources, state-of-the-art research over the

past decades has established that the following inequality must be satisfied for successful

localization of both microphones and sources [33]:

MN ≥ 3(M+N)− d(d +1)
2

, (2.4)

where d = 3 denotes 3D space and d(d+1)
2 = 6 is the invariance pertaining to the translation,

rotation and reflection for the geometry of microphones and sources. Therefore, by operating

some simple derivations, it is obvious that Eq. (2.4) can be rewritten as [33]

(M−3)(N −3)≥ 3. (2.5)
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By examining Eq. (2.5), it can be observed that given any three or four positions among

microphones and sources, as long as they do not lie on the same line or plane, the minimum

configurations for the number of microphones and sources are: 1) M = 4 and N = 6, 2) M = 5

and N = 5 and 3) M = 6 and N = 4. This indicates that the total number of microphones and

sources must be at least ten. Otherwise, it is impossible to localize both microphones and

sources. State-of-the-arts during the past decades try to approach this theoretical minimal

configurations by presenting either closed-form solutions or iterative methods.

However, when there are not sufficient number of microphones and sources for conducting

the task of self-localization, resulting in the impossibility for localizing both microphones

and sources, so that the traditional methods in state-of-the-arts are useless for task of self-

localization. Therefore, my goal is not only to localize both microphones and sources but

also to reduce the number of devices/microphones and/or audio sources required for self-

localization, thereby relaxing the minimal configurations suggested by state-of-the-art methods.

Specifically, this thesis aim to demonstrate that the locations of both microphones and sources

can be determined even when the total number of microphones and sources is less than ten.

This approach will make the localization process more efficient, requiring fewer devices and/or

targets, thus enhancing the flexibility of self-localization configurations. Additionally, it will

improve the utility of microphones in challenging environments and extend the capabilities of

self-localization techniques.

2.3 Preliminaries

This part shows the preliminaries of LRP pertaining to the tasks of both synchronization and

localization.

By squaring both sides in Eq. (2.1), it can be derived that:

rT
i ri + sT

j s j −2rT
i s j

c2 = t2
i, j +η

2
j +δ

2
i −2(ti, jη j − ti, jδi +η jδi), (2.6)

where i and j range from 1 to M and 1 to N, respectively.

To develop the LRP, this thesis starts by subtracting the equation for i = 1 and j = 1 sequentially
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from Eq. (2.6), and then add the equation for i = j = 1. Given η1 = 0, this results in [64, 65]:

−2(ri − r1)
T (s j − s1)

c2

= t2
i, j − t2

i,1 − t2
1, j + t2

1,1 +2δi(ti, j − ti,1)−2δ1(t1, j − t1,1)−2η j(ti, j − t1, j)+2η j(δ1 −δi), (2.7)

for i = 2, · · · , M and j = 2, · · · , N.

Then by defining four matrices R∈R3×(M−1) , S∈R3×(N−1), D∈R(M−1)×(N−1) and U∈R(M−1)×(N−1)

for Eq. (2.7), where

R:,i−1 = ri − r1,

S:, j−1 = s j − s1,

Di−1, j−1 = t2
i, j − t2

i,1 − t2
1, j + t2

1,1,

Ui−1, j−1 = 2δi (ti, j − ti,1)−2δ1 (t1, j − t1,1)

−2η j (ti, j − t1, j)+2η j (δ1 −δi) ,

for i = 2, · · · , M and j = 2, · · · , N, Eq. (2.7) can be expressed in matrix form as:

−2RT S
c2 = D+U. (2.8)

In Eq. (2.8), the left-hand side represents information related to the unknown positions of the

microphones and sources, while the right-hand side contains information pertaining to TOA/TDOA

and UTIm. This indicates that determining the UTIm is a prerequisite for estimating the locations

of the microphones and sources. Next, the LRP [38, 42, 64, 65, 86] for both UTIm and localizing

microphones and sources is outlined.

LRP for UTIm estimation: if M−1 > 3

N −1 > 3
, (2.9)

LRP can be stated as

rank (D+U) = rank(RT S)≤ 3. (2.10)

Upon inspecting Eq. (2.10), it is evident that UTIm and TOA/TDOA are included in matrix U, while

TOA/TDOA is encapsulated in matrix D, thereby illustrating the inclusion of low-rank structure
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information between UTIm and known TOA/TDOA in Eq. (2.10). However, initializing UTIm

randomly often leads to solutions becoming trapped in local minima, presenting several challenges.

Firstly, with an insufficient number of microphones or sources—specifically fewer than seven

microphones or six sources—the convergence rate of LRP, defined as the ratio of successfully

recovered configurations to all configurations, approaches zero percent. Secondly, the recovery

rate, which denotes the ratio of successful initializations to all initializations within a configuration,

remains limited regardless of the number of microphones and sources. Thirdly, the estimation error

of UTIm increases significantly in the presence of noise in TOA/TDOA measurements. Hence,

my primary emphasis is to delve into further low-rank structural information pertaining to UTIm

and TOA/TDOA. Through the establishment of supplementary linear constraints grounded on these

observations, my aim is to augment the recovery and convergency rates of UTIm, while alleviating

estimation inaccuracies within noisy environments.

LRP for localization: Upon obtaining UTIm, the range measurements between microphones and

sources is acquired. Alternatively, when both microphones and source signals are available, if there

is a fundamental control device for synchronizing the microphones and sources, we can also obtain

the range measurements between them. This allows us to proceed to the next step of deriving the

locations of both the microphones and the sources. From Eq. (2.8), we have [33],

−2RT S = c2(D+U) = D∗, (2.11)

where D∗
i−1, j−1 = c2(Di−1, j−1 +Ui−1, j−1) = d2

i, j −d2
i,1 −d2

1, j +d2
1,1, di, j is the range measurement

between ith microphone and jth sources, with i and j ranging from 2 to M and 2 to N, respectively.

Then, applying SVD to matrix D∗ in Eq. (2.11) yields [33],

D∗ = U∗A∗V∗T , (2.12)

where U∗ ∈ R(M−1)×(M−1) and V∗T ∈ R(N−1)×(N−1) are the left and right singular matrices, respec-

tively, and A∗ ∈ R(M−1)×(N−1) represents the corresponding singular values. With LRP asserting

rank(D∗)≤ 3 in Eq. (2.11), defining U∗
p = U∗

:,1:3 ∈R(M−1)×3, V∗
p = A∗

1:3,1:3V∗T
:,1:3 ∈R3×(N−1), Eq.

(2.12) can be rewritten as [33]

D∗ = U∗
pV∗

p. (2.13)

Finally, utilizing Eqs. (2.11) and (2.13), by defining an unknown matrix C ∈ R3×3, it can be
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derived [33]: RT = U∗
pC−1

−2S = CV∗
p

. (2.14)

Upon inspection of Eq. (2.14), it is obvious that there are nine unknown variables in matrix C. Further-

more, considering R:,i−1 = ri − r1, S:, j−1 = s j − s1, r1 =
[
0, 0, 0

]T
and s1 =

[
0, s2,1, s3,1

]T
,

introduces two additional unknown variables in s1. Therefore, once the unknown eleven variables

in both matrix C and vector s1 are confirmed, the locations of all microphones and sources can be

achieved.

Over the decades, current state-of-the-arts methods typically require at least four/five/six microphones

and six/five/four sources, respectively, to localize both microphones and sources. This configuration

has been widely accepted as the minimal configurations, streaming from the principle that the number

of equations (range measurements) should equal or exceed the number of unknowns (variables

related to microphone and source locations). However, exploring the possibility of reducing the

number of microphones and sources for self-localization has been overlooked. If these minimal

requirements by reducing the number of required microphones and sources can be relaxed, the

process of self-localization could be significantly enhanced. This reduction not only streamlines

self-localization tasks but also allows for more flexible configurations, potentially revolutionizing

self-localization techniques in various challenging environments.

2.4 Summary

In this chapter, this thesis first summarizes the state-of-the-arts for audio self-localization, including

pairwise distance estimation methods, energy-based method, TOA, TDOA and AOA based methods.

Then the three problems that we shall investigate in this thesis are formulated, including transforma-

tions of asynchronous TOA and TDOA, synchronization of microphones and sources, localization of

microphones and source. Finally, the preliminaries are displayed, including LRP for synchronization

and localization.

My contributions to the TOA and TDOA based asynchronous self-localization are described in the

following chapters.



Chapter 3

Transformation for Asynchronous TOA

and TDOA Measurements

3.1 Introduction

Accurately localizing both distributed microphones and sound sources is critical in various acoustic

applications, including signal enhancement, and separation as well as noise reduction, [14, 15, 64].

Traditionally, TOA and TDOA measurements are employed for this purpose [23]. However, UTIm is

embedded within TOA and TDOA measurements [86], where TOA contains information about the

both unknown microphone start time and source emission time, while TDOA reflects the time offsets

between pairs of microphones relative to audio source, presenting challenges for asynchronous TOA

and TDOA based self-localization.

When source signal waveforms are available are accessible, providing details pertaining to fre-

quency, amplitude, and duration, TOA measurements can be estimated using methods like the

GCC-PHAT [87]. This has led to the evolution of various self-localization methodologies, includ-

ing maximal likelihood estimation [58], probabilistic generative models [88], Gram matrix and

semi-definite relaxation [89], and approaches utilizing the LRP [42] with STLS [65] and alternating

minimization method [61, 86]. Conversely, in scenarios where source signal waveforms are chal-

lenging to obtain, self-localization methodologies focus on TDOA measurements. These can be

estimated using audio signals from microphone pairs [87], prompting the development of techniques

such as such as auxiliary function methods [62], maximum likelihood estimation [55, 58], LRP with

nuclear truncation minimization [62, 90], and distributed damped Newton optimization [56, 91].

21
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However, amid these advancements, a crucial question arises: Can microphone signals alone be

adequate for TOA-based self-localization, thereby eliminating the requirement for source signals and

providing more comprehensive information? Specifically, after estimating UTIm in TOA/TDOA mea-

surements, the range measurements between individual microphones and sources for self-localization

can be derived by using TOA measurements, whereas TDOA measurements offer range differences

between microphone pairs relative to corresponding sources. However, range measurements inher-

ently provide more comprehensive information than range differences. For instance, combining

range measurements with AOA measurements [39] allows for direct localization of both microphones

and sources [40]. Alternatively, utilizing range measurements alone enables closed-form solutions

for JMSL [33]. On the contrary, TDOA measurements rely solely on microphone signals, while

TOA measurements require signals from both microphones and sources. Therefore, proving that

TOA and TDOA can be equivalent with only microphone signals is crucial. Addressing this question

carries profound implications for the field, potentially streamlining and enhancing the efficiency of

self-localization processes. Furthermore, this represents a timely advancement, particularly in light

of the growing complexity of audio environments and the need for flexible localization methods.

This study marks a pioneering effort to address a fundamental question in localization. I introduce

a novel mapping function that equates TOA and TDOA formulas, demonstrating their perfect

correspondence. This finding highlights that microphone signals alone are sufficient for TOA-based

self-localization tasks. Proposed innovative approach not only elucidates the relationship between

TOA and TDOA but also challenges the conventional notion that TOA requires both microphone

signals and source signal waveforms. This breakthrough simplifies self-localization by eliminating

the need for additional source signal information. Furthermore, proposed approach broadens the

scope of properties typically linked to TOA-based localization, such as rank 3 [33] and rank 5 [78],

making them applicable to TDOA-based methods. This advancement has the potential to redefine

self-localization techniques in asynchronous environments and drive further advancements in signal

and audio processing.

3.2 Proposed Mapping Function

When the waveform of the source signals is missing, TOA measurements become unavailable,

leaving only TDOA measurements for self-localization of both microphones and sources. Previous

works have not explored the relationships between asynchronous TOA and TDOA measurements. To

address this gap, a novel general form of mapping function to demonstrate that using microphone
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signals alone is sufficient is introduced. In detail, we propose a novel mapping function to transform

both TOA and TDOA formulas into alternative forms. By introducing new variables to represent the

sub-components of the transformed TOA and TDOA formulas, we demonstrate that all sub-variables

in the transformed formulas are identical. This establishes a clear relationship between the TOA and

TDOA formulas, providing evidence that microphone signals alone are sufficient for TOA-based

self-localization. The proposed general form of the mapping function, f (•), for both TOA and TDOA

formulas (see Eqs. (2.1) and (2.2)), is defined as:

f (ti, j) = ti, j − ti,1 −
∑

M
i=1(ti, j − ti,1)

M
, (3.1)

and

f (τi, j) = τi, j − τi,1 −
∑

M
i=1(τi, j − τi,1)

M
. (3.2)

By applying the mapping function, f (•), to the TOA and TDOA formulas in Eqs. (2.1) and (2.2),

and introducing the following variables:δpi =
∥ri−s1∥2

c

ηp j =
∑

M
i=1(∥ri−s1∥2−∥ri−s j∥2)

cM

, (3.3)

the relationship is formulated as:

f (ti, j) = f (τi, j) =
∥ri − s j∥2

c
−δpi +ηp j, (3.4)

where i and j range from 1 to M and 1 to N, respectively. From Eq. (3.4), it is clear that this

relationship mirrors the structure of the TOA formula in Eq. (2.1). This implies that the locations of

both microphones and sources can be determined using f (•) in a manner similar to TOA-based self-

localization methods. Crucially, this finding challenges the long-held assumption that TOA requires

both microphone signals and the waveform of source signals by demonstrating the sufficiency of

using microphone signals alone. Furthermore, once the UTIm variables δpi and ηp j are estimated,

the range measurements between microphones and sources can be directly obtained. This innovation

simplifies the self-localization process, making it more flexible and efficient, and enhancing its

effectiveness in complex environments.
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3.2.1 Proof for mapping function f (•)

By developing the transformation for the TOA formula, as described in Eq. (3.1). Following that, the

transformation for the TDOA formula is derived, as shown in Eq. (3.2). Ultimately, the accuracy of

Eq. (3.4) is verified by comparing the transformed TOA formula in Eq. (3.1) with the transformed

TDOA formula in Eq. (3.2).

Mapping function for TOA formula

Starting with the TOA formula given in Eq. (2.1):

ti,1 =
∥ri − s1∥2

c
+η1 −δi, (3.5)

then using Eqs. (2.1) and (3.5), the difference between ti, j and ti,1 is expressed as:

ti, j − ti,1 =
∥ri − s j∥2

c
− ∥ri − s1∥2

c
+η j −η1. (3.6)

From Eq. (3.6), the average value of ti, j − ti,1 over index i can be calculated as:

∑
M
i=1(ti, j − ti,1)

M
=

∑
M
i=1(∥ri − s j∥2 −∥ri − s1∥2)

cM
+η j −η1. (3.7)

Finally, using Eqs. (3.6) and (3.7), the mapping function for the TOA formula, f (ti, j), as defined in
Eq. (3.1), is:

f (ti, j) = ti, j − ti,1 −
∑

M
i=1(ti, j − ti,1)

M
=

∥ri − s j∥2

c
− ∥ri − s1∥2

c
+

∑
M
i=1(∥ri − s1∥2 −∥ri − s j∥2)

cM
, (3.8)

where i and j range from 1 to M and 1 to N, respectively.

Mapping function for TDOA formula

Using TDOA formula from Eq. (2.2), the difference between τi, j and τi,1 is derived as follows:

τi, j − τi,1 =
∥ri − s j∥2

c
−

∥r1 − s j∥2

c
− ∥ri − s1∥2

c
+

∥r1 − s1∥2

c
. (3.9)
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From Eq. (3.9), it can be observed that the mean value of τi, j − τi,1 over index i is displayed as

∑
M
i=1(τi, j − τi,1)

M
=

∑
M
i=1(∥ri − s j∥2 −∥ri − s1∥2)

cM
−

∥r1 − s j∥2

c
+

∥r1 − s1∥2

c
. (3.10)

Finally, by combining Eqs. (3.9) and (3.10), the mapping function for the transformation of the
TDOA formula, f (τi, j), is derived as follows:

f (τi, j) = τi, j − τi,1 −
∑

M
i=1(τi, j − τi,1)

M
=

∥ri − s j∥2

c
− ∥ri − s1∥2

c
+

M

∑
i=1

(∥ri − s1∥2 −∥ri − s j∥2)

cM
(3.11)

where i and j range from 1 to M and 1 to N, respectively.

Validation of equivalence

Building on the definitions of δpi and ηp j in Eq. (3.3), along with the transformations of the TOA

and TDOA formulas from Eqs. (3.8) and (3.11), the equivalence of these equations can be confirmed.

This equivalence verifies the mapping function f (•) as defined in Eq. (3.4).

With this verification in Eq. (3.4), it becomes clear that the transformations of the TOA and

TDOA formulas are indeed equivalent, which proves that microphone signals alone are sufficient

for both TOA and TDOA-based self-localization. This finding challenges the traditional notion

that TOA requires both microphone signals and the waveform of source signals for localization.

Furthermore, once the UTIm δpi and ηp j are estimated as shown in Eq. (3.4), range measurements

between microphones and sources can be directly determined using only the microphone signals.

Additionally, the equivalence demonstrated in Eq. (3.4) suggests that properties typically associated

with TOA-based localization, such as rank 3 [33] and rank 5 [78], can also be applied to TDOA-based

localization. This makes the process of self-localization more efficient and adaptable. By eliminating

the need for source signal information, this approach facilitates a range of applications, including

noise reduction, source signal enhancement, and separation [14, 15, 64], all of which depend on

effective self-localization.

3.2.2 Impact of noise on mapping function f (•)

In this part, the impact of noise in TOA and TDOA on the output of proposed mapping function is

analyzed. Let the noise intensities in TOA of Eq. (2.1) and TDOA of Eq. (2.2) be denoted as σti, j

and σtdi, j, respectively, where i and j range from 1 to M and j to N, respectively. Based on these

assumptions, the TOA formula in Eq. (2.1) and TDOA formula in Eq. (2.2) can be reformulated as
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follows: ti, j =
∥ri−s j∥2

c +η j −δi +σti, j

τi, j ==
∥ri−s j∥2

c − ∥r1−s j∥2
c +δ ′

i +σtdi, j

. (3.12)

Upon inspection of Eq. (3.12), by applying the proposed mapping function to TOA and TDOA

formulas in Eq. (3.12), it implies: f (ti, j) =
∥ri−s j∥2

c −δpi +ηp j +σti, j −σti,1 −
∑

M
i=1(σti, j−σti,1)

M

f (τi, j) =
∥ri−s j∥2

c −δpi +ηp j ++σtdi, j −σtdi,1 −
∑

M
i=1(σtdi, j−σtdi,1)

M

. (3.13)

Based on the mapping function defined in Eqs. (3.1) and (3.2), Eq. (3.13) can be reformulated as: f (ti, j) =
∥ri−s j∥2

c −δpi +ηp j + f (σti, j)

f (τi, j) =
∥ri−s j∥2

c −δpi +ηp j ++ f (σtdi, j)
(3.14)

Comparing Eqs. (3.4) with (3.14), it is evident that the proposed mapping function also transforms

the noise into the same form as the TOA and TDOA in Eqs. (3.1) and (3.2). Thus, the output of the

proposed mapping function is determined by the noise intensity σti, j in TOA and σtdi, j in TDOA.

3.3 Experimental Validation

The experimental results are presented to validate the proposed mapping function for showing the

equivalence of asynchronous TOA and TDOA formulas. First, the experimental setups are described

in Section 3.3.1. Next, Section 3.3.2 defines the evaluation metric and demonstrates the validations

of the proposed mapping function.

3.3.1 Setups

Simulation data

The simulation data is generated randomly in MATLAB using a uniform distribution. The start

time for the microphones and the emission time for the sources are within the range [−1, 1]s. The

positions of the microphones and sources are distributed within a room measuring 10×10×3 m3 [41]

and the speed of sound is set to 340 m/s. Both the number of microphones (M) and the number of

sources (N) are set to 20, and 1000 different configurations are simulated. This results in a total of
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400,000 data points for the simulation. In more detail, by applying the ground truth for the locations

of microphones and sources, as well as the microphones’ start times and the sources’ emission

times, to the TOA and TDOA formulas in Eqs. (2.1) and (2.2), we can obtain the corresponding

values of asynchronous TOA and TDOA. Once the proposed mapping function is applied to these

asynchronous TOA and TDOA values, their transformations become identical, thereby verifying the

effectiveness of the proposed mapping function.

Real-Life data

The real-life data [92] was gathered from an office space measuring 5×3 square meters, from which

most furniture was removed. In this setup, 12 fixed microphones recorded a chirp emitted from 65

different positions by a loudspeaker. The resulting real-life dataset comprises a 12×65 synchronous

TOA matrix with an unknown constant time value, available for download on GitHub1 [41, 92], with

the TDOA matrix calculated using Eq. (2.2). For further details on this dataset, readers are referred

to references [41, 92]. Additionally, both the start times of the microphones and the emission times

of the sources fall within the range of [−1, 1]s seconds. The real-life dataset comprises a total of 780

data points, corresponding to the 12 microphones and 65 sources used in the experiment. Fig. 3.1

shows the corresponding positions of 12 microphones.

3.3.2 Evaluations and Results

First, I present the values of the proposed mapping function applied to both TOA and TDOA mea-

surements from simulation and real-life datasets. Subsequently, the validity of the proposed mapping

function defined in Eq. (3.4) is evaluated by assessing the difference between the transformations of

TOA and TDOA formulas:

∆ fi, j = f (ti, j)− f (τi, j), (3.15)

where i and j range from 1 to M and 1 to N, respectively. If ∆ fi, j = 0 as indicated in Eq. (3.15), it

confirms that the transformations of both TOA and TDOA formulas are equivalent, validating the

proposed mapping function f (•).
In Fig. 3.2, both simulated and real datasets are analyzed to present the results. As shown in Figs.

3.2(a) and (c), the values of the proposed mapping function f (•) for TOA and TDOA measurements

in the simulated data fall within the range of [−0.05, 0.05] seconds, while in the real data, the range

1 The real-life data can be accessed at https://github.com/swing-research/xtdoa/tree/master/
matlab

https://github.com/swing-research/xtdoa/tree/master/matlab
https://github.com/swing-research/xtdoa/tree/master/matlab
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Figure 3.1: The illustration for 12 microphones’ positions of real-life dataset [92].

is [−0.02, 0.02] seconds. This variation is likely due to the different sizes of the rooms used in

the simulation and real-life experiments. Additionally, Figs. 3.2(b) and (d) shows that ∆ fi, j has

a magnitude of 10−16 seconds, influenced by MATLAB’s computational precision. Hence, the

condition ∆ fi, j = 0 in Eq. (3.15) is satisfied, confirming that the transformations of the TOA formula

in Eq. (2.1) and the TDOA formula in Eq. (2.2) are equivalent using the proposed mapping function

f (•), thereby validating the statement in Eq. (3.4). Furthermore, Figs. 3.2(b) and (d) show that the

discrepancies between the simulation and real-life dataset results are minimal, with ∆ fi, j being nearly

zero. This minimal discrepancy is due to the application of the proposed mapping function, which

transforms both asynchronous TOA and TDOA formulas. As a result, the transformed TOA and

TDOA values are almost identical, as illustrated in Figs. 3.2(a) and (c).

Given that real-life dataset contains noise, our proposed mapping function ensures that the trans-

formation of both asynchronous TOA and TDOA measurements is identical, as indicated in Figs.

3.2(b) and (d). This can be explained as follows: when audio sources emit signals and microphones

receive them, the noise present in the microphones is fixed. Consequently, the asynchronous TOA

and TDOA measurements include this microphone noise. By applying our mapping function, the

noise in the TOA and TDOA measurements is transformed in the same way, resulting in a ∆ fi, j that is

nearly zero, this fits the theory results in Eq. (3.14). Additionally, the simulation dataset is generated

from 20 microphones and 20 sources, whereas the real-life dataset comprises 12 microphones and
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(a) Transformations of both TOA and TDOA measure-
ments with proposed mapping function

(b) Assessment of ∆ fi, j

(c) Transformations of both TOA and TDOA measure-
ments with proposed mapping function

(d) Assessment of ∆ fi, j

Figure 3.2: Validation of the proposed mapping function using both simulation and real-life
datasets includes the following aspects. Left: Evaluation of the proposed mapping function f (•)
for transformations of both TOA and TDOA measurements using Eqs. (3.1) and (3.2), respectively
(up: simulation datasets; down: real-life dataset). Right: Assessment of ∆ fi, j using Eq. (3.15) (up:
simulation datasets; down: real-life dataset)

65 sources. Despite these differences, the ∆ fi, j results from both datasets are nearly zero, further

validating the effectiveness of the proposed mapping function.

TOA measurements depend on both microphone and source signals, whereas TDOA measurements

rely solely on microphone signals. Figs. 3.2(b) and (d) show that the transformations of TOA

and TDOA measurements are consistent, proving that using only microphone signals suffices for

self-localization. This approach allows for the direct estimation of range measurements between
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microphones and sources once the UTIm in TOA/TDOA is identified, thus removing the necessity

for source signals in the self-localization process. This discovery marks a significant advancement in

the field of self-localization.

3.4 Summary

This chapter explores the feasibility of using microphone signals exclusively for self-localization,

an aspect not previously investigated in existing literature. In situations where both the source

signal emission time and the microphones’ recording start times are unknown, a novel mapping

function is introduced. This function transforms both TOA and TDOA formulas, demonstrating their

equivalence for the first time. This shows that utilizing microphone signals alone is sufficient for

self-localization. Moreover, once the UTIm in TOA/TDOA is estimated, direct range measurements

between microphones and sources become feasible. This capability enhances the flexibility and

efficiency of self-localization tasks. Therefore, the proposed mapping function represents a timely

advancement in the field of self-localization.

Building on this work, the next chapter will address another key challenge in asynchronous self-

localization and present the method I proposed to tackle it: estimating the start times of the micro-

phones and the emission times of the sources.



Chapter 4

Low-Rank Matrices for Synchronization

of Microphones and Audio Sources

4.1 Introduction

Building on my previous work in Chapter 3, which demonstrated the sufficiency of using microphone

signals alone for localization in asynchronous environments, the relationship between asynchronous

TOA and TDOA measurements is investigated. A novel mapping function that aligns the transfor-

mations of TOA and TDOA measurements is investigated, indicating that the low-rank structure

information of UTIm exploited in TOA estimation could similarly benefit TDOA estimation (see Sec-

tion 4.2). This insight suggests that once UTIm in TOA or TDOA is estimated, range measurements

between microphones and sources can be obtained.

In this study, the CLRA method for UTIm estimation in TOA/TDOA is proposed. This method

integrates linear constraints derived from LRP with three new variants of LRP designed to enhance

low-rank structure exploitation between UTIm and TOA/TDOA. By leveraging these constraints to

constrain UTIm, CLRA seeks a global optimization solution, thereby improving both convergence and

recovery rates for UTIm as well estimation accuracy in noisy environments. Additionally, rigorous

mathematical proofs for the proposed LRP variants are represented, solidifying the theoretical basis

of proposed approach. In summary, this chapter not only introduces a novel method for UTIm

estimation but also provides robust evidence of its effectiveness. This advancement promises to

enhance the accuracy of UTIm estimation in TOA/TDOA, marking a significant contribution to

signal processing and localization research.

31
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4.2 Proposed New Low-Rank Properties

This section introduces three proposed variants of LRP aimed at estimating UTIm. LRP leverages

the low-rank structure between UTIm and TOA/TDOA, and these variants enhance this structure,

with the additional structured low-rank information from proposed variants of LRP, we can establish

more linear constraints between UTIm and TOA/TDOA. These constraints confine the solutions of

UTIm to a more precise solution space, thereby increasing the likelihood of achieving global optimal

solutions for UTIm, thereby improving both recovery and convergence rates for UTIm estimation

and reducing estimation errors in noisy environments.

Before introducing the three proposed variants of LRP, it is essential to extend the mapping function

introduced in Chapter 3 to LRP, thereby leveraging the low-rank structure information between

UTIm and TOA/TDOA. Referring to Eq. (3.4), where tpi, j = f (ti, j) = f (τi, j) represents TOA/TDOA

measurements, δpi denotes the pseudo start time of the ith microphone, and ηp j denotes the pseudo

emission time of the jth source. It is evident that LRP, as defined in Eq. (2.10), is applicable to

asynchronous TOA/TDOA measurements. Henceforth in this PhD thesis, unless explicitly stated

otherwise, tpi, j will denote asynchronous TOA/TDOA measurements, δpi will represent the start

time of the ith microphone, and ηp j will signify the emission time of the jth source.

Introducing three new matrices

T∗
1 =

[
D U

]
∈ R(M−1)×2(N−1), (4.1)

T∗
2 =

[
DT UT

]
∈ R(N−1)×2(M−1), (4.2)

and

T∗
3 =

D U

U D

 ∈ R2(M−1)×2(N−1), (4.3)

three variants of LRP are proposed under the condition that Eq. (2.9) holds.

LRPV1:

rank (T∗
1)≤ min{M−1,N −1+3}, (4.4)

where matrix T∗
1 hold low-rank property when M−1 > N −1+3 (see proof in Section 4.3.1).

LRPV2:

rank (T∗
2)≤ min{N −1,M−1+3}, (4.5)
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where matrix T∗
2 holds low-rank property when N −1 > M−1+3 (see proof in Section 4.3.2).

LRPV3:

rank (T∗
3)≤ min{N −1+3,M−1+3}, (4.6)

where matrix T∗
3 holds low-rank property when Eq. (2.9) holds (see proof in Section 4.3.3).

From Eqs. (4.1), (4.2), (4.3), (4.4), (4.5) and (4.6), it is evident that LRPV1, LRPV2, and LRPV3

consistently demonstrate low-rank structure information pertaining to known TOA/TDOA and UTIm,

provided that M−1 > N −1+3 holds for T∗
1, and N −1 > M−1+3 holds for T∗

2.

4.3 Proof for Proposed Variants of LRP

The proof for the three variants of LRP relies on two main components:

1) The foundational LRP framework established in existing literature [42, 64, 65], encapsulated by

Eq. (2.10) in Section 2.3, which asserts rank(D+U)≤ 3.

2) Principles from linear algebra [93–95]. This involves defining three matrices: E∈Rm×n, Θ∈Rn×h,

and O ∈ Rm×h, alongside two column vectors θ ∈ Rn and o ∈ Rm. In accordance with established

linear algebra theory [93–95], it follows:

Theorem 1: For a given linear system Eθ = o, where E is the coefficient matrix, and the augmented

matrix
[
E o

]
∈ Rm×(n+1) with unknown θ , the following conditions are necessary and sufficient

when m ≥ n:

• If rank(E) = rank(
[
E o

]
) = n, then Eθ = o has a unique solution, and vice versa.

• If rank(E) = rank(
[
E o

]
)< n, then Eθ = o has multiple solutions, and vice versa.

Applying Theorem 1, a single linear system can be extended to multiple systems by substituting the

column vectors θ and o with matrices Θ and O, respectively. The conditions outlined in Theorem 1

remain sufficient and necessary [95].

4.3.1 Proof for Proposed LRPV1

This part presents the proof for LRPV1 as defined in Eq. (4.4). The analysis proceeds by examining

the conditions under which rank (T∗
1)< N −1+3 or rank (T∗

1) = N −1+3 in subsequent part.

The LRP framework established in existing literature [42, 64, 65] states that rank(D+U)≤ 3, indi-

cating that three column vectors from matrix D+U can represent the remaining column vectors [64].
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Figure 4.1: The relationship of LRP for the matrix D+U [42,64,65], where M represents the number
of microphones and N denotes the number of sources.

For analytical convenience, assuming the first three column vectors of D+U are linearly independent,

an unknown matrix is introduced:

X =


X1,1 · · · X1,N−1−3

X2,1 · · · X2,N−1−3

X3,1 · · · X3,N−1−3

 ∈ R3×(N−1−3),

that enables these vectors to express the others from D+U [64, 65] (see Fig. 4.1). This relationship

is captured by:

(D:,1:3 +U:,1:3)X = D:,3+1:N−1 +U:,3+1:N−1. (4.7)

Upon inspection of Eq. (4.7), if follows

D:,1:3X−D:,3+1:N−1 +U:,1:3X = U:,3+1:N−1, (4.8)

therefore, this equation can be represented in matrix form as:

[
D:,1:3 D:,4:N−1 U:,1:3

]
X

−I

X

=
[
D U:,1:3

]
X

−I

X

=U:,4:N−1, (4.9)
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Figure 4.2: Steps to prove LRPV1, namely, rank(
[
D U

]
)<N−1+3 or rank(

[
D U

]
) =N−1+3

(N: number of sources; S1: Situation 1; S2: Situation 2; G1: Group 1; G2: Group 2; G3: Group 3).

where I ∈ R(N−1−3)×(N−1−3) is the identity matrix.

Considering


X

−I

X

 ∈ R(N−1+3)×(N−1−3), it is evident that this matrix has N −1+3 rows. Moreover,

by examining the coefficient and augmented matrices in Eq. (4.9), denoted as
[
D U:,1:3

]
and[

D U
]

respectively, and applying Theorem 1 [93–95], it follows:

rank(
[
D U:,1:3

]
) = rank(

[
D U

]
)≤ N −1+3. (4.10)

Next, I analyze the conditions under which
[
D U

]
is a low-rank matrix. For a matrix to exhibit

low-rank properties, the number of both its rows and columns must exceed its rank. Therefore, I

consider two aspects for
[
D U

]
∈ R(M−1)×2(N−1):

1) The number of columns, 2(N − 1). Given N − 1 > 3, it follows that 2(N − 1) > N − 1+ 3,

indicating that the number of columns exceeds the rank of
[
D U

]
, which is N −1+3.

2) The number of rows, M − 1. Since the previous point establishes that the number of columns

already exceeds the rank, for
[
D U

]
to be low-rank, M−1 must be greater than N −1+3. This

completes the proof for LRPV1, demonstrating that rank (T∗
1)≤ N −1+3 if M−1 > N −1+3.

Discussions for LRPV1

In this part, the discussions of the proposed LRPV1 are presented. From Eq. (4.10), it is evident

that N −1+3 sets an upper bound on the rank of the matrix
[
D U

]
if M−1 > N −1+3. I will

now analyze this upper bound, focusing on the conditions under which rank(
[
D U

]
)< N −1+3

or rank(
[
D U

]
) = N − 1+ 3. The proof is divided into two scenarios: rank(D+U) < 3 and

rank(D+U) = 3. The entire procedure is illustrated in Fig. 4.2.

Situation 1: If rank(D:,1:3 +U:,1:3) = rank(D+U)< 3, then rank(
[
D U

]
)< N −1+3.
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Proof: From Eq. (4.9), it can be observed that the sub-matrix I in


X

−I

X

 is an identity matrix. Given

the uniqueness of the identity matrix, it is necessary to determine whether matrix X is unique. Based

on the LRP [42, 64, 65], the relationship in Eq. (4.7) and Theorem 1 [93–95], it can be confirmed that

matrix X has multiple solutions if rank(D:,1:3 +U:,1:3) = rank(D+U)< 3. Consequently, with Eq.

(4.9), it can be concluded that rank(
[
D U

]
)< N −1+3.

This completes the proof for Situation 1.

Situation 2: Once rank(D:,1:3 +U:,1:3) = rank(D+U) = 3, there are three groups:

• Group 1: If rank(D)< N −1 or rank(U)< N −1, it leads to

rank(
[
D U

]
)< N −1+3. (4.11)

Proof: Using basic linear algebra principles [95], it is known that multiplying all elements of a

certain column of a matrix by a constant and adding them to another column does not change

the rank of the matrix. Hence, by multiplying all elements of the jth column of matrix
[
D U

]
by 1 and add them to the { j+N −1}th column, where j = 1, · · · , N −1, it follows

rank(
[
D U

]
) = rank(

[
D D+U

]
). (4.12)

Since only three columns of matrix D+U are independent, i.e., rank(D+U) = rank(D:,1:3 +

U:,1:3) = 3, it implies

rank(
[
D D+U

]
) = rank(

[
D D:,1:3 +U:,1:3

]
). (4.13)

For matrix
[
D D:,1:3 +U:,1:3

]
in Eq. (4.13), it is evident that if rank(D)< N −1, it implies

that one column vector of matrix D can be represented by the remaining column vectors,

leading to

rank(
[
D D:,1:3 +U:,1:3

]
)< N −1+3. (4.14)

Combining Eq. (4.12), Eq. (4.13) and Eq. (4.14), it follows

rank(
[
D U

]
)< N −1+3. (4.15)
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This completes the proof that rank(
[
D U

]
)< N −1+3 if rank(D)< N −1.

Similarity, by multiplying all elements of the { j+N −1}th column of matrix
[
D U

]
by 1,

then add them to the jth column, where j = 1, · · · , N −1, it follows

rank(
[
D U

]
) = rank(

[
D+U U

]
). (4.16)

With Eq. (4.16), and following the same steps as Eqs. (4.13), (4.14) and (4.15), it is easy to

prove that if rank(U)< N −1, then

rank(
[
D U

]
)< N −1+3. (4.17)

This completes the proof that rank(
[
D U

]
)< N −1+3 if rank(U)< N −1.

Combining Eqs. (4.15) and (4.17), it can be concluded that rank(
[
D U

]
) < N − 1+ 3 if

rank(D)< N −1 or rank(U)< N −1.

This completes the proof for Group 1.

• Group 2: If rank(D) = rank(U) = N −1 and rank(
[
D:,1:3 U:,1:3

]
)< 6, then

rank(
[
D U

]
)< N −1+3. (4.18)

Proof: To start, let’s consider the precondition rank(
[
D:,1:3 U:,1:3

]
)< 6 in Group 2. For any

index 4 ≤ n ≤ N −1, it follows that

rank(
[
D:,1:3 D:,n U:,1:3

]
)≤ rank(

[
D:,1:3 U:,1:3

]
)+1. (4.19)

Given rank(
[
D:,1:3 U:,1:3

]
)< 6, it follows rank(

[
D:,1:3 U:,1:3

]
)+1< 6+1= 7. Thus, from

Eq. (4.19), it is derived

rank(
[
D:,1:3 D:,n U:,1:3

]
)< 7. (4.20)

Now, let’s use the method of contradiction [96] to prove Eq. (4.18). Assume rank(
[
D U

]
)<
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N −1+3 is false. Then, from Eq. (4.10), it is derived

rank(
[
D U

]
) = N −1+3. (4.21)

With Eq. (4.21), the following observation is made: Observation: For any 4 ≤ n ≤ N −1, it

holds that rank(
[
D:,1:3 D:,n U:,1:3

]
) = 7.

Proof: From Eq. (4.21), for any 4 ≤ n ≤ N −1, it follows

rank(
[
D:,1:3 D:,n U:,1:3 U:,n

]
) = 4+3 = 7. (4.22)

By performing the elementary operations on the matrix
[
D:,1:3 D:,n U:,1:3 U:,n

]
in Eq.

(4.22), such as multiplying all elements of the jth column by 1 and adding them to the { j+4}th

column ( for j = 1, · · · , 4), it holds that

rank(
[
D:,1:3 D:,n U:,1:3 U:,n

]
) = rank(

[
D:,1:3 D:,n D:,1:3 +U:,1:3 D:,n +U:,n

]
) = 7. (4.23)

Since D:,n +U:,n is dependent on D:,1:3 +U:,1:3, i.e., rank(
[
D:,1:3 +U:,1:3 D:,n +U:,n

]
) =

rank(D:,1:3 +U:,1:3), from Eq. (4.23), it follows

rank(
[
D:,1:3 D:,n D:,1:3 +U:,1:3 D:,n +U:,n

]
) = rank(

[
D:,1:3 D:,n D:,1:3 +U:,1:3

]
) = 7.

(4.24)

Performing further elementary operations on the matrix
[
D:,1:3 D:,n D:,1:3 +U:,1:3

]
in Eq.

(4.24), such as multiplying all elements of the jth column by −1 and adding them to the

{ j+4}th column (for j = 1, 2, 3), it holds that

rank(
[
D:,1:3 D:,n D:,1:3 +U:,1:3

]
) = rank(

[
D:,1:3 D:,n U:,1:3

]
) = 7. (4.25)

This completes the proof for Observation.

On one hand, Eq. (4.20) confirms that rank(
[
D:,1:3 D:,n U:,1:3

]
) < 7. On the other hand,

the Observation shows that rank(
[
D:,1:3 D:,n U:,1:3

]
) = 7, this cause a contradiction. Since
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Eq. (4.20) is correct, implying rank(
[
D U

]
) = N −1+3 is wrong and it holds that

rank(
[
D U

]
)< N −1+3, (4.26)

when rank(D) = rank(U) = N −1 and rank(
[
D:,1:3 U:,1:3

]
)< 6.

This completes the proof for Group 2.

• Group 3: Given rank(D) = rank(U) = N −1 and rank(
[
D:,1:3 U:,1:3

]
) = 6, it follows

rank(
[
D U

]
) = N −1+3. (4.27)

Proof: To prove Eq. (4.27), a contradiction method is employed [96]. Assume rank(
[
D U

]
)=

N −1+3 in Eq. (4.27) is wrong, then Eq. (4.10) states rank(
[
D U

]
)≤ N −1+3, implying

that

rank(
[
D U

]
)< N −1+3. (4.28)

With Eq. (4.28), it follows that rank(
[
D U

]
) = N − 1+ 2 or rank(

[
D U

]
) < N − 1+ 2.

Both scenarios will be disproven in two steps.

Step 1: Suppose rank(
[
D U

]
) = N −1+2, the following observations are then made.

Observation 1: The rank of the matrix matrix
[
D U:,1:3

]
is a function of N −1, implying that

rank(
[
D U:,1:3

]
) = N −1+2.

Proof: Given rank(
[
D U

]
) = N − 1 + 2 and rank(

[
D U:,1:3

]
) = rank(

[
D U

]
) in Eq.

(4.10), it is clear that

rank(
[
D U:,1:3

]
) = N −1+2. (4.29)

This completes the proof for Observation 1.

Observation 2: The rank of the matrix
[
D U:,1:3

]
is constant and does not vary with N −1.

Proof: If rank(
[
D U

]
) = N −1+2, then for any index 4 ≤ n ≤ N −1, it follows:

rank(
[
D:,1:3 D:,n U:,1:3 U:,n

]
) = 4+2 = 6 (4.30)

By performing elementary column operation on
[
D:,1:3 D:,n U:,1:3 U:,n

]
in Eq. (4.30), it
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holds that:

rank(
[
D:,1:3 D:,n U:,1:3 U:,n

]
) = rank(

[
D:,1:3 D:,n D:,1:3 +U:,1:3 D:,n +U:,n

]
) = 6.

(4.31)

Since D:,n+U:,n can be expressed using D:,1:3+U:,1:3, i.e., rank(
[
D:,1:3 +U:,1:3 D:,n +U:,n

]
)

= rank(D:,1:3 +U:,1:3), then from Eq. (4.31), it follows:

rank(
[
D:,1:3 D:,n D:,1:3 +U:,1:3 D:,n +U:,n

]
) = rank(

[
D:,1:3 D:,n D:,1:3 +U:,1:3

]
) = 6.

(4.32)

Applying further elementary column operations on
[
D:,1:3 D:,n D:,1:3 +U:,1:3

]
in Eq. (4.32),

it can be observed that:

rank(
[
D:,1:3 D:,n D:,1:3 +U:,1:3

]
) = rank(

[
D:,1:3 D:,n U:,1:3

]
) = 6. (4.33)

From the initial condition that rank(
[
D:,1:3 U:,1:3

]
) = 6 in Group 3 and Eq. (4.33), it follows:

rank(
[
D:,1:3 U:,1:3

]
) = rank(

[
D:,1:3 D:,n U:,1:3

]
) = 6. (4.34)

Eq. (4.34) implies that any D:,n can be expressed by
[
D:,1:3 U:,1:3

]
. Since n⊂{4, · · · , N −1},

it holds that:

rank(
[
D:,1:3 U:,1:3

]
) = rank(

[
D:,1:3 D:,4 · · ·D:,N−1 U:,1:3

]
) = rank(

[
D U:,1:3

]
) = 6.

(4.35)

This completes the proof for Observation 2.

Observation 1 indicates that the rank of
[
D U:,1:3

]
varies with N − 1, while Observation

2 asserts that this rank is constant, leading to a contradiction. Therefore, rank(
[
D U

]
) =

N −1+2 is incorrect.

Step 2: Suppose rank(
[
D U

]
)< N −1+2, the following observation is made.

Observation 3: rank(
[
D:,1:3 U:,1:3

]
)< 6.
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Proof: If rank(
[
D U

]
)< N −1+2, for any 4 ≤ n ≤ N −1, it follows:

rank(
[
D:,1:3 D:,n U:,1:3 U:,n

]
)< 4+2 = 6. (4.36)

Performing elementary column operations on
[
D:,1:3 D:,n U:,1:4 U:,n

]
in Eq. (4.36), it

holds that:

rank(
[
D:,1:3 D:,n U:,1:3 U:,n

]
) = rank(

[
D:,1:3 D:,n D:,1:3 +U:,1:3 D:,n +U:,n

]
)< 6. (4.37)

Since D:,n +U:,n can be expressed using D:,1:3 +U:,1:3, from Eq. (4.37), it follows:

rank(
[
D:,1:3 D:,n D:,1:3 +U:,1:3 D:,n +U:,n

]
) = rank(

[
D:,1:3 D:,n D:,1:3 +U:,1:3

]
)< 6.

(4.38)

Applying further elementary column operations on
[
D:,1:3 D:,n D:,1:3 +U:,1:3

]
in Eq. (4.38),

it follows:

rank(
[
D:,1:3 D:,n D:,1:3 +U:,1:3

]
) = rank(

[
D:,1:3 D:,n U:,1:3

]
)< 6. (4.39)

Given that

rank(
[
D:,1:3 U:,1:3

]
)≤ rank(

[
D:,1:3 D:,n U:,1:3

]
), (4.40)

then with Eq. (4.39), it holds that:

rank(
[
D:,1:3 U:,1:3

]
)< 6. (4.41)

This completes the proof for Observation 3.

Observation 3 confirms the rank on
[
D:,1:3 U:,1:3

]
< 6. on the other hand, the precondition

in the Group 3 indicates
[
D:,1:3 U:,1:3

]
= 6, leading to a contradiction. Thus, it can be

concluded that rank(
[
D U

]
)< N −1+2 is incorrect.

In conclusion, Step 1 indicates that rank(
[
D U

]
)=N−1+2 is incorrect and rank(

[
D U

]
)<

N −1+2 is incorrect has been confirmed by Step 2, implying that rank(
[
D U

]
)≤ N −1+2

is wrong, so that rank(
[
D U

]
) = N −1+3 is correct.
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Figure 4.3: The relationship of LRP for the matrix D+U [42,64,65], where M represents the number
of microphones and N denotes the number of sources.

This completes the proof for Group 3.

4.3.2 Proof for Proposed LRPV2

This part presents the proof for the proposed LRPV2 in Eq.(4.5), subsequently, the discussions

leading to rank (T∗
2)< M−1+3 or rank (T∗

2) = M−1+3 are presented.

From the state-of-the-art LRP methods [42,64,65], it is obvious that rank(D+U)= rank(DT +UT )≤
3. This indicates that three row vectors from the matrix D+U can represent the remaining row

vectors [64]. For analytical convenience, the first three row vectors of D+U are assumed to be

independent. Hence, an unknown matrix is introduced

X∗ =


X∗

1,1 · · · X∗
1,M−1−3

X∗
2,1 · · · X∗

2,M−1−3

X∗
3,1 · · · X∗

3,M−1−3

 ∈ R3×(M−1−3),

that allows the first three row vectors of D+U to represent the remaining row vectors (see Fig.

4.3) [64, 65], expressed as:

(DT
1:3,: +UT

1:3,:)X
∗ = DT

3+1:M−1,: +UT
3+1:M−1,:. (4.42)
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Upon inspecting Eq. (4.42), it implies

DT
1:3,:X

∗−DT
3+1:M−1,: +UT

1:3,:X
∗ = UT

3+1:M−1,:. (4.43)

Next, Eq. (4.43) can be expressed as the matrix multiplication form, leading to

[
DT

1:3,: DT
4:M−1,: UT

1:3,:

]
X∗

−I

X∗

=
[
DT UT

1:3,:

]
X∗

−I

X∗

= UT
4:M−1,:, (4.44)

where I ∈ R(M−1−3)×(M−1−3) is identity matrix.

Given that the matrix


X∗

−I

X∗

 ∈ R(M−1+3)×(M−1−3), has M−1+3 rows, which is the number of rows

in this matrix. Additionally, notice that the coefficient matrix and the augmented matrix in Eq. (4.44)

are
[
DT UT

1:3,:

]
and

[
DT UT

]
, respectively. Therefore, according to Theorem 1 [93–95], it follows

rank(
[
DT UT

1:3,:

]
) = rank(

[
DT UT

]
)≤ M−1+3. (4.45)

Next, the conditions that make the matrix
[
DT UT

]
low-rank are examined. For matrix to have

low rank property, both the number of rows and columns must exceed the corresponding rank.

Therefore, two aspects are evaluated: the number of columns and rows of the matrix
[
DT UT

]
∈

R(N−1)×2(M−1).

1) First, let’s consider the number of columns in the matrix
[
DT UT

]
, which is 2(M−1). Given

that M−1 > 3, it implies that 2(M−1)> M−1+3, meaning the number of columns in the matrix[
DT UT

]
exceeds its rank, M−1+3.

2) Next, the number of rows in the matrix
[
DT UT

]
is considered., which is N −1. Since it has

already been established that the number of columns in the matrix
[
DT UT

]
is greater than its

corresponding rank, if the number of rows in the matrix
[
DT UT

]
is also greater than its rank, i.e.,

N −1 > M−1+3, then it can be concluded that the matrix
[
DT UT

]
is a low-rank matrix.

This completes the proof for LRPV2 that rank (T∗
2)≤ M−1+3 if N −1 > M−1+3.
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Figure 4.4: Steps to prove LRPV2, namely, rank(
[
DT UT

]
) < M −1+3 or rank(

[
DT UT

]
) =

M−1+3 (M: number of microphones; S1: Situation 1; S2: Situation 2; G1: Group 1; G2: Group 2;
G3: Group 3).

Discussions for LRPV2

From Eq. (4.45), it is evident that M −1+3 establishes an upper limit for the rank of the matrix[
DT UT

]
if N −1 > M−1+3. Let’s explore this upper limit by analyzing the conditions under

which rank(
[
DT UT

]
)< M−1+3 or rank(

[
DT UT

]
) = M−1+3. The proof can be divided

into two situations: rank(DT +UT )< 3 and rank(DT +UT ) = 3. The entire procedure is illustrated

in Fig. 4.4.

Situation 1: If rank(DT
1:3,: +UT

1:3,:) = rank(DT +UT )< 3, then rank(
[
DT UT

]
)< M−1+3.

Situation 2: If rank(DT
1:3,: +UT

1:3,:) = rank(DT +UT ) = 3, three groups are considered.

• Group 1: If rank(DT )< M−1 or rank(UT )< M−1, it follows that

rank(
[
DT UT

]
)< M−1+3. (4.46)

• Group 2: If rank(DT ) = rank(UT ) = M−1 and rank(
[
DT

1:3,: UT
1:3,:

]
)< 6, it follows

rank(
[
DT UT

]
)< M−1+3. (4.47)

• Group 3: If rank(DT ) = rank(UT ) = M−1 and rank(
[
DT

1:3,: UT
1:3,:

]
) = 6, it follows that

rank(
[
DT UT

]
) = M−1+3. (4.48)

Proof: Using the same methodology as for LRPV1 in Section 4.3.1, the two situations above are

easily proven.

This completes the proof for the conditions (see Fig. 4.4 for those conditions) that lead to

rank(
[
DT UT

]
) = M−1+3 or rank(

[
DT UT

]
)< M−1+3.
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4.3.3 Proof for Proposed LRPV3

This part provides the proof for the proposed LRPV3 in Eq. (4.6). Next, the discussions that

result in either rank
(
T∗

3
)
< min(N−1+3,M−1+3) or rank

(
T∗

3
)
= min(N−1+3,M−1+3) are

presented.

Two situations for LRPV3 are considered: M ≥ N and M < N.

If M ≥ N, the proof for LRPV3 in Eq. (4.6) simplifies to:

rank

D U

U D

≤ N −1+3. (4.49)

From Eq. (4.7), it followsD:,1:3X−D:,3+1:N−1 +U:,1:3X = U:,3+1:N−1

U:,1:3X−U:,3+1:N−1 +D:,1:3X = D:,3+1:N−1

. (4.50)

Then Eq. (4.50) in matrix multiplication form can be written as:

[
D:,1:3 D:,3+1:N−1 U:,1:3

]
X

−I

X

= U:,3+1:N−1

[
U:,1:3 U:,3+1:N−1 D:,1:3

]
X

−I

X

= D:,3+1:N−1

, (4.51)

where I ∈ R(N−1−3)×(N−1−3) is the identity matrix. Thus, Eq. (4.51) can be written as

D U:,1:3

U D:,1:3




X

−I

X

=

U:,3+1:N−1

D:,3+1:N−1

 . (4.52)

Since matrix


X

−I

X

 ∈R(N−1+3)×(N−1−3), the number of rows in


X

−I

X

 is N−1+3.Additionally, the
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coefficient matrix and the augmented matrix in Eq. (4.52) are

D U:,1:3

U D:,1:3

 and

D U

U D

, respectively.

Based on Theorem 1 [93–95], it follows:

rank(

D U:,1:3

U D:,1:3

) = rank(

D U

U D

)≤ N −1+3. (4.53)

This completes the proof for LRPV3 when M ≥ N.

If M < N, the proof for LRPV3 in Eq. (4.6) transforms to:

rank

D U

U D

≤ M−1+3. (4.54)

Upon inspection of Eq. (4.42), it holds that:DT
1:3,:X∗−DT

3+1:M−1,: +UT
1:3,:X∗ = UT

3+1:M−1,:

UT
1:3,:X∗−UT

3+1:M−1,: +DT
1:3,:X∗ = DT

3+1:M−1,:

, (4.55)

therefore, Eq. (4.55) is derived as matrix multiplication form:

[
DT

1:3,: DT
3+1:M−1,: UT

1:3,:

]
X∗

−I

X∗

= UT
3+1:M−1,:

[
UT

1:3,: UT
3+1:M−1,: DT

1:3,:

]
X∗

−I

X∗

= DT
3+1:M−1,:

, (4.56)

where I ∈ R(M−1−3)×(M−1−3) is the identity matrix.

Moreover, Eq. (4.56) is rewritten as

DT UT
1:3,:

UT DT
1:3,:




X∗

−I

X∗

=

UT
3+1:M−1,:

DT
3+1:M−1,:

 . (4.57)
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Given that matrix


X∗

−I

X∗

 ∈ R(M−1+3)×(M−1−3), it is evident that matrix


X∗

−I

X∗

 has M−1+3 rows.

Additionally, it is observed that the coefficient matrix and the augmented matrix in Eq. (4.57) areDT UT
1:3,:

UT DT
1:3,:

 and

DT UT

UT DT

, respectively. According to Theorem 1 [93–95], it follows:

rank(

DT UT
1:3,:

UT DT
1:3,:

) = rank(

DT UT

UT DT

)≤ M−1+3. (4.58)

Given that

DT UT

UT DT

=

D U

U D

T

, it follows:

rank(

D U

U D

T

) = rank(

D U

U D

)≤ M−1+3. (4.59)

This completes the proof for LRPV3 when M < N.

Finally, combining Eq. (4.53) when M ≥ N with Eq. (4.59) when M < N, it holds that:

rank(

D U

U D

)≤ min(N −1+3,M−1+3). (4.60)

This completes entire proof for LRPV3.

Discussions for LRPV3

The discussions of LRPV3 in Eq. (4.53) are first presented when M ≥ N, followed by the discussions

of LRPV3 in Eq. (4.58) when M < N. The entire procedures are illustrated in Figs. 4.5 and 4.6 for

M ≥ N and M < N, respectively.

(1) M ≥ N: From Eq. (4.53), it is evident that N −1+3 serves as an upper bound for the rank of

the matrix

D U

U D

 under the condition M ≥ N. The upper boundary is analyzed with two possible

situations: either rank(D+U)< 3 or rank(D+U) = 3.
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Figure 4.5: Steps to prove LRPV3 when M ≥ N, namely, rank(
[

D U
U D

]
) < N − 1 + 3 or

rank(
[

D U
U D

]
) = N −1+3 (N: number of sources; S1: Situation 1; S2: Situation 2; G1: Group 1;

G2: Group 2; G3: Group 3).

Situation 1: If rank(D:,1:3 +U:,1:3) = rank(D+U)< 3, it follows that rank(

D U

U D

)< N −1+3.

Situation 2: If rank((D:,1:3 +U:,1:3) = rank(D+U) = 3, three groups emerge:

• Group 1: If rank(D)< N −1 or rank(U)< N −1, it results in

rank(

D U

U D

)< N −1+3. (4.61)

• Group 2: If rank(D) = rank(U) = N −1 and rank(
[
D:,1:3 U:,1:3

]
)< 6, it leads to

rank(

D U

U D

)< N −1+3. (4.62)

• Group 3: If rank(D) = rank(U) = N −1 and rank(
[
D:,1:3 U:,1:3

]
) = 6, it results in

rank(

D U

U D

) = N −1+3. (4.63)

Proof: Initially, by performing elementary operations on the matrix

D U

U D

–multiply all of elements
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of ith column by 1 and adding them to the {i+M−1}th column—-it can be derived from Eq. (4.53):

rank(

D U

U D

) = rank(

 D U

D+U U+D

)≤ N −1+3. (4.64)

Subsequently, employing the proof procedure similar to LRPV1 in Section 4.3.1 for

 D U

D+U U+D


in Eq. (4.64) verifies the aforementioned situations.

This completes the proof concerning conditions (see Fig. 4.5 for those conditions) that result in

rank(

D U

U D

)< N −1+3 or rank(

D U

U D

) = N −1+3 when M ≥ N.

(2) M < N : From Eq. (4.58), it is observed that M−1+3 sets an upper boundary for the rank of the

matrix

DT UT

UT DT

 under the condition M < N. This upper boundary is analyzed with two scenarios:

either rank(DT +UT )< 3 or rank(DT +UT ) = 3.

Situation 1: If rank(DT
1:3,: +UT

1:3,:) = rank(DT +UT )< 3, then rank(

DT UT

UT DT

)< M−1+3.

Situation 2: If rank(DT
1:3,: +UT

1:3,:) = rank(DT +UT ) = 3, three groups are identified:

• Group 1: If rank(DT )< M−1 or rank(UT )< M−1, it results in

rank(

DT UT

UT DT

)< M−1+3. (4.65)

• Group 2: If rank(DT ) = rank(UT ) = M−1 and rank(
[
DT

1:3,: UT
1:3,:

]
)< 6, it follows

rank(

DT UT

UT DT

)< M−1+3. (4.66)

• Group 3: If rank(DT ) = rank(UT ) = M−1 and rank(
[
DT

1:3,: UT
1:3,:

]
) = 6, it results in

rank(

DT UT

UT DT

) = M−1+3. (4.67)
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Figure 4.6: Steps to prove LRPV3 when M < N, namely, rank(
[

DT UT

UT DT

]
) < M − 1 + 3 or

rank(
[

DT UT

UT DT

]
) = M − 1+ 3 (M: number of microphones; S1: Situation 1; S2: Situation 2;

G1: Group 1; G2: Group 2; G3: Group 3).

Proof: Initially, by performing elementary operations on the matrix

DT UT

UT DT

–multiplying all

elements of the jth row by 1 and adding them to the { j+N −1}th column–I derive from Eq. (4.58):

rank(

DT UT

UT DT

) = rank(

 DT UT

DT +UT UT +DT

)≤ M−1+3. (4.68)

Subsequently, employing the proof procedure as LRPV1 in Section 4.3.1 for

 DT UT

DT +UT UT +DT


in Eq. (4.68) verifies the aforementioned situations when M < N.

This completes the proof concerning rank(

DT UT

UT DT

)< M−1+3 or rank(

DT UT

UT DT

) = M−

1+3 under different conditions (see Fig. 4.6 for those conditions) when M < N.

4.4 Proposed CLRA Algorithm

This section begins by outlining the four linear constraints, utilizing low-rank structural information

as employed by LRP in Section 2.3 and the three LRP variants in Section 4.2. Using these constraints,

I introduce a CLRA method, which is then applied to UTIm estimation.

Both LRP and the proposed three LRP variants exploit the low-rank structural information between

UTIm and TOA/TDOA. This allows UTIm to leverage a more extensive pool of low-rank structural

information compared to LRP alone, thereby facilitating the derivation of global solutions for UTIm.

This process involves two main steps. First, based on the aforementioned four LRPs, corresponding

linear constraints are formulated. Subsequently, these constraints are combined to formulate an
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objective function through the proposed CLRA method. The Gaussian Newton method [97] is then

applied to solve this objective function. This approach helps mitigate the sub-optimal and locally

minimal values of UTIm resulting from the randomness pertaining to the initialization of UTIm.

4.4.1 Linear constraint based on LRP

Upon inspecting Eqs. (2.8) and (2.10), matrices D and U can be expressed as
D =

[
D:,1:3 D:,4:N−1

]
U =

[
U:,1:3 U:,4:N−1

] . (4.69)

Consequently, it is established that

rank([D:,1:3 +U:,1:3 D:,4:N−1 +U:,4:N−1]) = rank(D:,1:3 +U:,1:3)≤ 3. (4.70)

From Eq. (4.70), I infer the existence of a matrix X such that

(D:,1:3 +U:,1:3)X = D:,4:N−1 +U:,4:N−1, (4.71)

where X ∈ R3×(N−1−3) is an unknown matrix to be estimated in Section 4.4.5.

4.4.2 Linear constraint based on LRPV1

Upon examining Eqs. (4.1) and (4.4), T∗
1 is decomposed as T∗

1 =
[
T∗

11 T∗
12

]
, where T∗

11 ∈
R(M−1)×(N−1+3) and T∗

12 ∈ R(M−1)×(N−1−3). This yields

rank(
[
T∗

11 T∗
12

]
) = rank(T∗

11)≤ N −1+3. (4.72)

From Eq. (4.72), I infer the existence of a matrix Z such that

T∗
11Z = T∗

12, (4.73)

where Z ∈ R(N−1+3)×(N−1−3) is an unknown matrix to be estimated in Section 4.4.5.
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4.4.3 Linear constraint based on LRPV2

Upon inspecting Eqs. (4.2) and (4.5), I decompose T∗
2 as T∗

2 =
[
T∗

21 T∗
22

]
where T∗

21 ∈R(N−1)×(M−1+3)

and T∗
22 ∈ R(N−1)×(M−1−3). This yields

rank(
[
T∗

21 T∗
22

]
) = rank(T∗

21)≤ M−1+3. (4.74)

Upon examining Eq. (4.74), I infer the existence of a matrix W such that

T∗
21W = T∗

22, (4.75)

where W ∈ R(M−1+3)×(M−1−3) is an unknown matrix to be estimated in Section 4.4.5.

4.4.4 Linear constraint based on LRPV3

Upon reviewing Eqs. (4.3) and (4.6), I initially define MN as min(N−1+3,M−1+3) and decompose

T∗
3 as T∗

3 =
[
T∗

31 T∗
32

]
where T∗

31 ∈ R2(M−1)×MN and T∗
32 ∈ R2(M−1)×(2(N−1)−MN). This gives us

rank(
[
T∗

31 T∗
32

]
) = rank(T∗

31)≤ MN . (4.76)

From Eq. (4.76), I infer the existence of a matrix such that

T∗
31Y = T∗

32, (4.77)

where Y ∈ RMN×(2(N−1)−MN) is an unknown matrix to be estimated in Section 4.4.5.

4.4.5 Algorithm

The STLS [64, 65, 86] relies solely on LRP for UTIm estimation. This approach often traps the

UTIm solution in local minima, thereby limiting both recovery accuracy and convergence rates,

especially in noisy environments. To achieve a globally optimal solution for UTIm estimation, three

variants of LRP are introduced, namely LRPV1, LRPV2 and LRPV3. These three variants leverage

additional low-rank structure information compared to the LRP alone, leading to improved estimation

robustness.
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Figure 4.7: Illustration of the combinations of four low-rank properties in the proposed CLRA
method with varying numbers of microphones M and sources N (α for LRPV1, β for LRPV2, γ for
LRPV3; α = β = γ = 0 in the shadow area for STLS [64, 65, 86]; C1: α ̸= 0 and γ ̸= 0, C2: β ̸= 0
and γ ̸= 0, C3: γ ̸= 0).

The objective function is formulated as follows:

f (δp,ηp,X,Y,Z,W) =∥U∥2
F +λ

2∥(D:,1:3 +U:,1:3)X− (D:,4:N−1 +U:,4:N−1)∥2
F +α

2∥T∗
11Z−T∗

12∥2
F

+β
2∥T∗

21W−T∗
22∥2

F + γ
2∥T∗

31Y−T∗
32∥2

F , (4.78)

where ∥•∥F denotes the Frobenius norm, ∥U∥2
F serves as a regularization term [64,65,86], and λ , α ,

β and γ are penalty parameters associated with the respective low-rank properties (LRP, LRPV1,

LRPV2, and LRPV3). Notably, when γ = α = β = 0, the proposed CLRA method reduces to STLS,

which employs only LRP for UTIm estimation [64, 65, 86].

Additionally, for any given number of microphones M and sources N, I categorize into three cases

based on their difference: 1) Case 1 (C1): M−N > 3; 2) Case 2 (C2): N −M > 3; 3) Case 3 (C3):

|M−N| ≤ 3. From Eqs. (4.4) and (4.5), specifically M−1 > N −1+3 and N −1 > M−1+3, it’s

evident that LRPV1 and LRPV2 exhibit low-rank properties exclusively in C1 and C2, respectively.

Thus, the combination of the four low-rank properties is summarized as follows:

1) β = 0 in C1;

2) α = 0 in C2; and

3) α = 0 and β = 0 in C3. Fig. 4.7 illustrates the combination of the four low-rank properties for

CLRA.

Subsequently, a comprehensive solution for minimizing the objective function in Eq. (4.78) is out-
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lined. I utilize column-wise matrix vectorization, v(·) (i.e., v(X)= [X1,1, · · · ,X3,1, · · · ,X1,(N−1−3), · · · ,
X3,(N−1−3)]

T ), to define

p =
[
δp

T
ηp

T v(X)T v(Y)T v(Z)T v(W)T
]T

,

and

q =
[
fA

T
λ fB

T
γfC

T
αfD

T
β fE

T
]T

,

where 

fA = v(U)

fB = v((D:,1:3 +U:,1:3)X− (D:,4:N−1 +U:,4:N−1))

fC = v(T∗
31Y−T∗

32)

fD = v(T∗
11Z−T∗

12)

fE = v(T∗
21W−T∗

22)

. (4.79)

The objective function Eq. (4.78) can thus be rewritten as f (p) = ∥q∥2
2, where the dimension

pertaining to the vectors q and p are Q = (M − 1)(8(N − 1)− 2MN − 6)− 3(N − 1) and P = M +

N − 1+ 3(N − 1− 3)+MN(2(N − 1)−MN)+ (N − 1+ 3)(N − 1− 3)+ (M − 1+ 3)(M − 1− 3),

respectively.

Finally, to solve the nonlinear least squares problem, the Gauss-Newton algorithm [97] is employed.

This involves computing the Jacobian matrix

J = ∂q/∂p ∈ RQ×P, (4.80)

which represents the derivative of vector q with respect to vector p (see details in Section 4.4.6). The

iterative update of p proceeds as

pm+1 = pm − (JmT Jm)
−1

JmT qm, (4.81)

where m denotes mth iteration. The overall flowchart of the proposed CLRA method is depicted in

Fig. 4.8.
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Figure 4.8: The algorithm flowchart pertaining to proposed CLRA method (w∗: threshold for
divergence; dp: stopping threshold for iterations; m2: maximal number of iterations; m1: mth

1
iteration; OF: Objective function; JM: Jacobian matrix; ∥•∥2: L2 norm).

4.4.6 Form of the Jacobian matrix for CLRA Method

In this part, the form of the Jacobian matrix pertaining to the proposed CLRA method in Eq. (4.80)

is detailed, thereby, the Jacobian matrix J = ∂q
∂p can be derived as follows:

J =



∂ fA
∂δp

∂ fA
∂ηp

· · · ∂ fA
∂w

λ
∂ fB
∂δp

λ
∂ fB
∂ηp

· · · λ
∂ fB
∂w

...
...

. . .
...

β
∂ fE
∂δp

β
∂ fE
∂ηp

· · · β
∂ fE
∂w

 . (4.82)
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Subsequently, the computation of block matrices in (4.82) is derived as:

∂ fA
∂δp

=

[
v( ∂U

∂δp1
) · · · v( ∂U

∂δpM
)

]
∂ fA
∂ηp

=

[
v( ∂U

∂ηp2
) · · · v( ∂U

∂ηpN
)

]
∂ fA
∂x =

[
v( ∂U

∂X1,1
) · · · v( ∂U

∂X3,(N−1−3)
)

]
∂ fA
∂y =

[
v( ∂U

∂Y1,1
) · · · v( ∂U

∂YMN ,(2(N−1)−MN )
)

]
∂ fA
∂z =

[
v( ∂U

∂Z1,1
) · · · v( ∂U

∂Z(N−1+3),(N−1−3)
)

]
∂ fA
∂w =

[
v( ∂U

∂W1,1
) · · · v( ∂U

∂W(M−1+3),(M−1−3)
)

]
, (4.83)

where

∂Ui−1, j−1

∂δpk
=

−2(tp1, j − tp1,1)+2ηp j, k = 1

(2(tpi, j − tpi,1)−2ηp j)• ↑i,k, k = 2, · · · ,M

for ↑i,k=

{
0, i ̸= k

1, i = k
and i = 2, · · · ,M and j = 2, · · · ,N;

∂Ui−1, j−1

∂ηpk
= (−2(tpi, j − tp1, j)+2(δp1 −δpi))• ↑ j,k

for k = 2, · · · ,N;

∂Ui−1, j−1

∂Xk,l
= 0

for l = 1, · · · , N −1−3 and k = 1, · · · ,3;

∂Ui−1, j−1

∂Yk,l
= 0

for l = 1, · · · , 2(N −1)−MN and k = 1, · · · , MN ;

∂Ui−1, j−1

∂Zk,l
= 0

for l = 1, · · · , N −1−3 and k = 1, · · · , N −1+3;

∂Ui−1, j−1

∂Wk,l
= 0
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for l = 1, · · · ,M−1−3 and k = 1, · · · , M−1+3.

By denoting V = (D:,1:3 +U:,1:3)X−D:,4:N−1 −U:,4:N−1, it follows:

∂ fB
∂δp

=

[
v( ∂V

∂δp1
) · · · v( ∂V

∂δpM
)

]
∂ fB
∂ηp

=

[
v( ∂V

∂ηp2
) · · · v( ∂V

∂ηpN
)

]
∂ fB
∂x =

[
v( ∂V

∂X1,1
) · · · v( ∂V

∂X3,(N−1−3)
)

]
∂ fB
∂y =

[
v( ∂V

∂Y1,1
) · · · v( ∂V

∂YMN ,2(N−1)−MN
)

]
∂ fB
∂z =

[
v( ∂V

∂Z1,1
) · · · v( ∂V

∂ZN−1+3,N−1−3
)

]
∂ fB
∂w =

[
v( ∂V

∂W1,1
) · · · v( ∂V

∂WM−1+3,M−1−3
)

]
, (4.84)

where

∂Vi−1, j−1

∂δp1
=

∂ (U:,1:3X−U:,4:N−1)i−1, j−1

∂δp1
=

∂ ∑
3
u=1(Ui−1,uXu, j−1)−Ui, j−1+3

∂δp1

=
3

∑
u=1

(2(ηpu − tpi,u+1 + tp1,1)Xu, j−1)+2(ηp j+3 − tpi, j+3 + tp1,1)

for j = 2, · · · ,N −3 and i = 2, · · · ,M;

∂Vi−1, j−1

∂δpk

=
∂ (U:,1:3X−U:,4:N−1)i−1, j−1

∂δpk
=↑i,k •{

3

∑
u=1

(2(tpi,u+1 − tpi,1 −ηpu+1)Xu, j−1)−2(tpi, j+3 − tpi,1 −ηp j+3)}

for k = 2, · · · ,M;

∂Vi−1, j−1

∂ηpk
=

∂ (U:,1:3X−U:,4:N−1)i−1, j−1

∂ηpk
=

{
(−2(tpi,k − tp1,k)+2(δp1 −δpi))Xk−1, j−1 k = 2, · · · ,4

(−2(tpi, j+3 − tp1, j+3)+2(δp1 −δpi))• ↑k, j+3 k = 5, · · · ,N
;

∂Vi−1, j−1

∂Xk−1,l−1
=

∂ ((D:,1:3 +U:,1:3)X)i−1, j−1

∂Xk−1,l−1
=

∂ ∑
3
u=1 (D:,1:3 +U:,1:3)i−1,uXu, j−1

∂Xk−1,l−1

=↑l−1, j−1 •(D:,1:3 +U:,1:3)i−1,k−1
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for l = 2, · · · ,N −3 and k = 2, · · · ,4;
∂Vi−1, j−1

∂Yk,l
= 0

for l = 1, · · · ,2(N −1)−MN and k = 1, · · · ,MN ;

∂Vi−1, j−1

∂Zk,l
= 0

for l = 1, · · · , N −1−3 and k = 1, · · · , N −1+3;

∂Vi−1, j−1

∂Wk,l
= 0

for l = 1, · · · , M−1−3 and k = 1, · · · , M−1+3.

Given that

T∗
3 =

D U

U D

=
[
T∗

31 T∗
32

]
and {

∂Di−1, j−1
∂δpk

= 0
∂Di−1, j−1

∂ηpl
= 0

,

and ∂Ui−1, j−1
∂δpk

and ∂Ui−1, j−1
∂ηpl

in Eq. (4.83) (i = 2, · · · ,M, j = 2, · · · ,N, k = 1, , · · · ,M and l = 2, · · · ,N),

denote V1 = T∗
31Y−T∗

32, it holds that:

∂ fC
∂δp

=

[
v( ∂V1

∂δp1
) · · · v( ∂V1

∂δpM
)

]
∂ fC
∂ηp

=

[
v( ∂V1

∂ηp2
) · · · v( ∂V1

∂ηpN
)

]
∂ fC
∂x =

[
v( ∂V1

∂X1,1
) · · · v( ∂V1

∂X3,(N−1−3)
)

]
∂ fC
∂y =

[
v( ∂V1

∂Y1,1
) · · · v( ∂V1

∂YMN ,2(N−1)−MN
)

]
∂ fC
∂z =

[
v( ∂V1

∂Z1,1
) · · · v( ∂V1

∂ZN−1+3,N−1−3
)

]
∂ fC
∂w =

[
v( ∂V1

∂W1,1
) · · · v( ∂V1

∂WM−1+3,M−1−3
)

]
, (4.85)

where

∂V1i−1, j−1

∂δpk
=

[T∗
31Y−T∗

32]i−1, j−1

∂δpk
=

MN

∑
u=1

[
∂T∗

31
∂δpk

]i−1,uYu, j−1 − [
∂T∗

32
∂δpk

]i−1, j−1
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for k = 1, · · · ,M, i = 2, · · · ,2M−1 and j = 2, · · · ,2N −1−MN ;

∂V1i−1, j−1

∂ηpk
=

∂ [T∗
31Y−T∗

32]i−1, j−1

∂ηpk
=

MN

∑
u=1

[
∂T∗

31
∂ηpk

]i,uYu, j − [
∂T∗

32
∂ηpk

]i, j

for k = 2, · · · ,N;
∂V1i−1, j−1

∂Xk,l
=

∂ [T∗
31Y−T∗

32]i−1, j−1

∂Xk,l
= 0

for l = 1, · · · ,N −1−3, k = 1, · · · ,3 and l = 1, · · · ,N −1−3;

∂V1i−1, j−1

∂Yk−1,l−1
=

∂ (T∗
31Y−T∗

32)i−1, j−1

∂Yk−1,l−1
=↑l−1, j−1 •(T∗

31)i−1,k−1

for l = 2, · · · ,2N −1−MN and k = 2, · · · ,MN +1;

∂V1i−1, j−1

∂Zk,l
= 0

for l = 1, · · · , N −1−3 and k = 1, · · · , N −1+3;

∂V1i−1, j−1

∂Wk,l
= 0,

for l = 1, · · · , M−1−3 and k = 1, · · · , M−1+3.

Given that T∗
1 =

[
D U

]
=
[
T∗

11 T∗
12

]
, denote V2 = T∗

11Z−T∗
12, it is derived:



∂ fD
∂δp

=

[
v( ∂V2

∂δp1
) · · · v( ∂V2

∂δpM
)

]
∂ fD
∂ηp

=

[
v( ∂V2

∂ηp2
) · · · v( ∂V2

∂ηpN
)

]
∂ fD
∂x =

[
v( ∂V2

∂X1,1
) · · · v( ∂V2

∂X3,(N−1−3)
)

]
∂ fD
∂y =

[
v( ∂V2

∂Y1,1
) · · · v( ∂V2

∂YMN ,2(N−1)−MN
)

]
∂ fD
∂z =

[
v( ∂V2

∂Z1,1
) · · · v( ∂V2

∂ZN−1+3,N−1−3
)

]
∂ fD
∂w =

[
v( ∂V2

∂W1,1
) · · · v( ∂V2

∂WM−1+3,M−1−3
)

]
, (4.86)

where

∂V2i−1, j−1

∂δpk
=

[T∗
11Z−T∗

12]i−1, j−1

∂δpk
=

N−1+3

∑
u=1

[
∂T ∗

11
∂δpk

]i−1,uZu, j−1 − [
∂T12

∗

∂δpk
]i−1, j−1



4.4 Proposed CLRA Algorithm 60

for k = 1, · · · ,M, i = 2, · · · ,M and j = 2, · · · ,N −3;

∂V2i−1, j−1

∂ηpk
=

∂ [T∗
11Z−T∗

12]i−1, j−1

∂ηpk
=

N−1+3

∑
u=1

[
∂T∗

11
∂ηpk

]i−1,uZu, j−1 − [
∂T12

∗

∂ηpk
]i−1, j−1

for k = 2, · · · ,N;
∂V2i−1, j−1

∂Xk,l
=

∂ [T∗
11Z−T∗

12]i−1, j−1

∂Xk,l
= 0

for l = 1, · · · ,N −1−3 and k = 1, · · · ,3;

∂V2i−1, j−1

∂Yk,l
=

∂ [T∗
11Z−T∗

12]i−1, j−1

∂Yk,l
= 0

for l = 1, · · · ,2(N −1)−MN and k = 1, · · · ,MN ;

∂V2i−1, j−1

∂Zk−1,l−1
=

∂ (T∗
11Z−T∗

12)i−1, j−1

∂Zk−1,l−1
=↑l−1, j−1 •(T∗

11)i−1,k−1

for l = 2, · · · ,N −3 and k = 2, · · · ,N +3;

∂V2i, j

∂Wk,l
=

∂ (T∗
21Z−T∗

22)i, j

∂Wk,l
= 0

for l = 1, · · · ,M−1−3 and k = 1, · · · ,M−1+3.

Given that T ∗
2 =

[
DT UT

]
=
[
T∗

21 T∗
22

]
, denote V3 = T∗

21W−T∗
22, it follows:



∂ fE
∂δp

=

[
v( ∂V3

∂δp1
) · · · v( ∂V3

∂δpM
)

]
∂ fE
∂ηp

=

[
v( ∂V3

∂ηp2
) · · · v( ∂V3

∂ηpN
)

]
∂ fE
∂x =

[
v( ∂V3

∂X1,1
) · · · v( ∂V3

∂X3,(N−1−3)
)

]
∂ fE
∂y =

[
v( ∂V3

∂Y1,1
) · · · v( ∂V3

∂YMN ,2(N−1)−MN
)

]
∂ fE
∂z =

[
v( ∂V3

∂Z1,1
) · · · v( ∂V3

∂ZN−1+3,N−1−3
)

]
∂ fE
∂w =

[
v( ∂V3

∂W1,1
) · · · v( ∂V3

∂WM−1+3,M−1−3
)

]
, (4.87)

where

∂V3i−1, j−1

∂δpk
=

[T∗
21W−T∗

22]i−1, j−1

∂δpk
=

M−1+3

∑
u=1

[
∂T∗

21
∂δpk

]i−1,uWu, j−1 − [
∂T∗

22
∂δpk

]i−1, j−1
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for k = 1, · · · ,M, i = 2, · · · ,N and j = 2, · · · ,M−3;

∂V3i−1, j−1

∂ηpk
=

∂ [T∗
21W−T∗

22]i−1, j−1

∂ηpk
=

M−1+3

∑
u=1

[
∂T∗

21
∂ηpk

]i−1,uWu, j−1 − [
∂T∗

22
∂ηpk

]i−1, j−1

for k = 2, · · · ,N;
∂V3i−1, j−1

∂Xk,l
=

∂ [T∗
21W−T∗

22]i−1, j−1

∂Xk,l
= 0

for l = 1, · · · ,N −1−3 and k = 1, · · · ,3;

∂V3i−1, j−1

∂Yk,l
=

∂ [T∗
21W−T∗

22]i−1, j−1

∂Yk,l
= 0

for l = 1, · · · ,2(N −1)−MN and k = 1, · · · ,MN ;

∂V3i−1, j−1

∂Zk,l
=

∂ (T∗
21W−T∗

22)i−1, j−1

∂Zk,l
= 0

for l = 1, · · · ,N −1−3 and k = 1, · · · ,N −1+3;

∂V3i−1, j−1

∂Wk−1,l−1
=

∂ (T∗
21W−T∗

22)i−1, j−1

∂Wk−1,l−1
=↑l−1, j−1 •(T∗

21)i−1,k−1 (4.88)

for l = 2, · · · ,M−3 and k = 2, · · · ,M+3.

4.5 Experimental Results

The simulation settings are detailed in Section 4.5.1. The impact of parameters from the proposed

three variants of LRP on the CLRA method is discussed in Section 4.5.2. Sections 4.5.3, 4.5.4, and

4.5.5 then present the performance comparison of the CLRA method with both STLS and auxiliary

function-based algorithms [59]. Robustness analysis is conducted in Section 4.5.6, examining both

STLS and CLRA under noise conditions in both simulated and real datasets. Finally, Section 4.5.7

discusses the limitations observed in the proposed variants of LRP and the CLRA method.

4.5.1 Simulation Setup

The simulation data regarding the locations of microphones and sources, as well as their respective

start and emission times, are generated randomly using MATLAB R2019a on a computer equipped

with a 3.7-GHz CPU, six cores, and 16.0G RAM. Specifically, microphone and source locations are
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Figure 4.9: The impact of parameters (λ ∗ for LRP and γ∗ for LRPV3) on proposed CLAR1 pertaining
to recovery rate under three cases.

uniformly distributed within a 10m×10m×3m room suitable for real-world applications [41, 64].

The start time (δ ) and emission time (η) are uniformly generated from the range
[
−1 1

]
s [41, 64].

Additionally, the speed of sound c is set to 340m/s. For the parameters of the proposed CLRA

method (refer to Fig. 4.8), I set w∗ = 1030, dp = 10−9 and m2 = 100. These parameters dictate

that the algorithm terminates if: the objective function value exceeds 1030, the difference in values

for variable p in Eq. (4.81) between two consecutive iterations falls below 10−9, or the number of

iterations exceeds 100.

To evaluate the robustness of the CLRA method against initialization changes, multiple initializations

are employed for each configuration. Typically, a single initialization suffices for microphone start

times and source emission times in a specific configuration. However, in cases where random

initialization fails to achieve the globally optimal solution for UTIm, multiple initializations are

necessary. By counting the number of globally optimal UTIm solutions achieved across multiple

random initializations using the CLRA method and comparing these with other state-of-the-art

methods, the superior recovery rate performance of the proposed CLRA method can be demonstrated.

The recovery rate Rr(M,N) is defined as:

Rr(M,N) =
∑

Nc(M,N)
i=1 Nei(M,N)

In(M,N)Nc(M,N)
, (4.89)

where Nei(M,N) is the count of globally optimal solutions achieved by the algorithms from initial-

izations in the ith configuration, Nc(M,N) is the total number of configurations, and In(M,N) is the

total number of initializations per configuration. Successful recovery is determined when the errors
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(er) between the estimated and ground truth values of UTIm is less than 10−4s, computed as:

er =
∑

M
i=1 ∥δpi −δepi∥

M
+

∑
N
j=1 ∥ηp j −ηep j∥

N
, (4.90)

where δpi and ηp j denote the ground truth values, and δepi and ηep j represent the estimated values of

UTIm.

Furthermore, the convergence rate Cr(M,N) is defined as

Cr(M,N) =
Ce(M,N)

Nc(M,N)
,

Ce(M,N) =
Nc(M,N)

∑
i=1

sri,

sri =

{
1 Nei(M,N) ̸= 0

0 Nei(M,N) = 0
, (4.91)

where Cr(M,N) indicates the ratio of configurations with successful recovery to the total number

of configurations Nc(M,N), and Ce(M,N) counts the total number of successful recovery instances

across all configurations (Requirement: er in Eq. (4.90) between the estimated and ground truth

values of UTIm is less than 10−4s). The high convergence rate highlights the CLRA method’s

robustness against changes in microphone or source configurations, especially when the number of

microphones and sources is not sufficient for UTIm.

4.5.2 Parameters Analysis

This subsection examines the parameters of the three proposed variants of LRP within the CLRA

framework. I categorize them as follows: CLRA1 when α = β = 0 (combining LRP with proposed

LRPV3), CLRA2 when α = γ = 0 (combining LRP with proposed LRPV2), and CLRA3 when

β = γ = 0 (combining LRP with proposed LRPV1). I set the number of configurations Nc(M,N) = 10

configurations In(M,N) = 100 initializations per configuration, resulting in 1000 implementations

for fixed M and N, revealing the impact of parameters on CLRA1, CLRA2, and CLRA3.

Additionally, as illustrated in Fig. 4.7, parameters β and α are zero in C1 and C2, respectively;

In C3, both the α and β are zero. Nonetheless, even when both α and β are zero, CLRA behaves

differently depending on the number of microphones M and sources N, due to the consistent low-rank

property of proposed LRPV3 across C1, C2, and C3. Therefore, I analyze the parameters (λ and γ of

CLRA1 (defined in Eq. (4.78)) across scenarios C1, C2, and C3, with configurations set as M = 15,
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Figure 4.10: The impact of β ∗ on recovery rate using CLRA2 when M = 8, N = 15 and α∗ on
recovery rate using proposed CLRA3 when M = 15, N = 8.

N = 8 for C1, M = 8, N = 15 for C2 and M = 10, N = 10 for C3. Following the analysis of these

two parameters, I proceed to examine the parameter β for CLRA2 with M = 15 and N = 8, while

keeping M = 8 and N = 15 constant for the parameter α of CLRA3.

1) Analysis of Parameters λ and γ for CLRA1: I set parameters λ = 10λ ∗
and γ = 10γ∗ for CLRA1

in Eq. (4.78), varying λ ∗ and γ∗ from 1 to 15. Fig. 4.9 demonstrates the influence of λ ∗ and γ∗ on

CLRA1’s recovery rate across different numbers of microphones and sources. In the left and middle

sub-figures of Fig. 4.9, both λ ∗ and γ∗ exhibit similar effects on CLRA1’s recovery rate: when λ ∗

and γ∗ are small (less than 5), the recovery rate is nearly 0%. As λ ∗ surpasses 5 and γ∗ ≤ λ ∗, the

recovery rate exceeds 0%. Notably, the peaks in recovery rate occur when λ ∗ = γ∗. From the right

sub-figure in Fig. 4.9, it can be observed that when λ ∗ < 8, CLRA1’s recovery rate is nearly 0%.

However, for λ ∗ > 8 and γ∗ ≤ λ ∗+2, the recovery rate surpasses 0%. Moreover, the recovery rate

peaks when λ ∗ = γ∗+3. Therefore, unless specified otherwise, I use λ ∗ = 10 and γ∗ = 10 for both

C1 and C3, and λ ∗ = 12 and γ∗ = 9 for C2.

2) Analysis of Parameter β for CLRA2: I set parameter λ = 1010 and analyze the impact of β on

CLRA2. Denoting β = 10β ∗
, β ∗ is varied from 1 to 15. Fig. 4.10 depicts CLRA2’s recovery rate

as β ∗ varies. The plot reveals that β ∗ significantly affects CLRA2’s performance: with small β ∗

(less than 8), the recovery rate stabilizes around 8%. As β ∗ reaches 11, CLRA2 achieves a recovery

rate of approximately 28%, which then diminishes with further increases in β ∗. Thus, β ∗ = 11 for

CLRA2 is adopted unless specified otherwise.

3) Analysis of Parameter α for CLRA3: Setting λ = 1010, I analyze the effect of α on CLRA3.

Denote α = 10α∗
and vary α∗ from 1 to 15. Fig. 4.10 indicates that α∗ also significantly impacts

CLRA3: for α∗ < 9, CLRA3’s recovery rate stabilizes around 17%. However, as α∗ continues to

increase, the recovery rate rises, reaching about 37% when α∗ = 11. Hence, α∗ = 11 is selected for

CLRA3 unless specified otherwise.
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Figure 4.11: Performance comparison of STLS and the proposed CLRA method in terms of recovery
rate (CLAR1: α = β = 0; CLAR2: α = γ = 0; CLAR3:β = γ = 0).

(a) Convergency rate.

(b) Percentage point.

Figure 4.12: The performance comparison for STLS and proposed CLRA in terms of convergency
rate (CLAR1: α = β = 0; CLAR2: α = γ = 0; CLAR3: β = γ = 0; pp in the colorbar of figure (b)
denotes percentage point for the difference of convergency rate between proposed CLRA methods
and STLS).

(a) M = 10; N = 10 (b) M = 15; N = 8 (c) M = 8; N = 15

Figure 4.13: Comparison of the running time between the proposed CLRA methods and STLS.
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4.5.3 Comparison of the Performance for Low-Rank Properties

This subsection demonstrates the performance of the proposed CLRA methods compared to the

STLS method [64].

Upon inspection of the linear constraints in Eq. (4.71) formulated by LRP, the number of equations

((M−1)(N −1−3)) should be larger than or equal to the number of unknowns (3(N −1−3)+M+

N −1), it implies (M−5)(N −5)≥ 8, so that the minimal number of microphones and sources for

UTIm is 6/7/8 and 13/9/8, respectively, and vice versa. Since proposed three variants of LRP are

the additional LRP for UTIm based on LRP, thus, they should also follow the lower boundary of M

and N for UTIm estimation with their corresponding additional constraints.

For the STLS method, the parameter λ in Eq. (4.78) is set to 1010 (γ = α = β = 0). The parameters

for the proposed CLAR methods, which combine one low-rank property with LRP (i.e., CLRA1,

CLRA2, and CLRA3), are detailed in Section 4.5.2. For the proposed CLAR method utilizing all four

low-rank properties, I categorize them into three cases: 1) C3: The parameters λ and γ in Eq. (4.78)

are both set to 1010 and 1010, and α = β = 0. 2) C1: The parameters are set to λ = 1010, γ = 1010,

α = 1011 and β = 0. 3) C2: The parameters are set to λ = 1012, γ = 109, β = 1013 and α = 0.

Furthermore, both M and N are varied from 1 to 15. For each fixed pair of M and N, I randomly

configure 200 scenarios (Nc(M,N) = 200) and perform 100 initializations (In(M,N) = 100) for each

configuration.

Comparison of Recovery Rate

Fig. 4.11 presents the recovery rate comparison between the proposed CLRA methods and STLS.

Firstly, examining the STLS results, it is clear that when M ≤ 6 or N ≤ 6, the recovery rate is

approximately 0%. However, when both M ≥ 7 and N ≥ 7, the recovery rate for STLS ranges from

0% to 28%

Secondly, when comparing the proposed CLRA1 to STLS, it can be observed that with M ≤ 6 or

N ≤ 5, CLRA1’s recovery rate is about 0%, matching STLS. But when M = 7 and N ≥ 10, CLRA1’s

recovery rate varies from 0% to 8%, outperforming STLS. Notably, when M ≥ 14 and N = 6, CLRA1

achieves about a 1% recovery rate, while STLS remains at 0%. Moreover, for M > 12 and N > 8,

CLRA1’s recovery rate exceeds STLS by about 10% to 20%. Therefore, when M ≥ 7 and N ≥ 6,

CLRA1 performs better than STLS, validating LRPV3 and CLRA1.

Thirdly, comparing CLRA2 to STLS, it can be observed that when M = 6 and N > 13, CLRA2

achieves a recovery rate of 2% to 4%, compared to STLS’s 0%. When M ≥ 7 and N > M+3, CLRA2
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significantly outperforms STLS, particularly with N = 15 and 7 ≤ M ≤ 10, achieving 18% to 27%

higher recovery rates. Hence, with M ≥ 6 and N > M+3, CLRA2 surpasses STLS, confirming the

efficacy of LRPV2 and CLRA2.

Fourthly, evaluating CLRA3 against STLS, it can be observed that when N = 6 and M > 13, CLRA3

achieves a 2% to 4% recovery rate, better than STLS’s 0%. When N ≥ 7 and M > N +3, CLRA3

again outperforms STLS, especially with M = 15 and 7 ≤ N ≤ 10, achieving 12% to 19% higher

recovery rates. Thus, when N ≥ 6 and M > N +3, CLRA3 outshines STLS, validating LRPV1 and

CLRA3.

Finally, comparing the comprehensive CLRA method (LRP combined with LRPV1, LRPV2, and

LRPV3) to STLS, it it obvious a significant improvement in recovery rates when M > 5 and N > 5.

Additionally, combining LRP with all three LRP variants yields better recovery rates than combining

LRP with only one LRP variant, further validating the effectiveness of LRPV1, LRPV2, and LRPV3.

Comparison of Convergency Rate

Fig. 4.12(a) shows the convergence rate of the proposed CLRA methods compared to STLS, while

Fig. 4.12(b) highlights the corresponding percentage points for better illustration. Firstly, analyzing

the STLS results in Fig. 4.12(a), it is clear that when M < 7 or N < 6, the convergence rate is around

0%. As both M and N increase, the convergence rate for STLS improves. Notably, for M ≥ 13 and

N ≥ 12, the convergence rate exceeds 90%.

Secondly, examining Fig. 4.12(b), I compare the percentage points between CLRA1 and STLS.

When M < 6 or N < 6, the percentage points between CLRA1 and STLS are approximately 0%

since both have a 0% convergency rate. For M > 10 and N > 9, CLRA1’s convergence rate is 2% to

18% higher than STLS. Additionally, when 6 ≤ M ≤ 9 or 5 ≤ N ≤ 8, CLRA1’s convergence rate is

6% to 58% higher than STLS, validating the proposed LRPV3 and CLRA1.

Next, I compare CLRA2 with STLS. When M = 5, both STLS and CLRA2 have a 0% convergence

rate, resulting in 0% percentage points between them. When M = 6 and N > 12, CLRA2’s con-

vergence rate is 28% to 63% higher than STLS. For M ≥ 7 and N > M + 3, CLRA2 consistently

outperforms STLS, particularly when M = 7 and N > 10, with CLRA2’s convergence rate being

11% to 50% higher. Therefore, when M ≥ 6 and N > M+3, CLRA2 shows superior performance,

validating LRPV2 and CLRA2.

I then compare CLRA3 with STLS. When N = 6 and M > 12, CLRA3’s convergence rate is

32% to 58% higher than STLS. For N ≥ 7 and M > N + 3, CLRA3 outperforms STLS, CLRA3
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Figure 4.14: Comparison of recovery rates across different configurations using Ono, STLS, and
CLRA Methods.

outperforms STLS, particularly when N = 7 and M ≥ 11, with a 32% to 58% higher convergence

rate. Additionally, when N ≥ 8 and M > N +3, CLRA3’s convergence rate is 14% to 19% higher.

Thus, for N ≥ 6 and M > N +3, CLRA3 surpasses STLS, validating LRPV1 and CLRA3.

Finally, comparing the comprehensive CLRA method (LRP combined with LRPV1, LRPV2, and

LRPV3) to STLS, it is observed that CLRA achieves a much higher convergence rate for M > 5 and

N > 5. Combining all three rank properties with LRP results in better performance than using just

one, further validating LRPV1, LRPV2, and LRPV3.

4.5.4 Computational Complexity Analysis

In this subsection, I analyze the computational complexity of the proposed CLRA method compared

to STLS, which uses only LRP [64].

Both STLS and the proposed CLRA method are based on the Gauss-Newton method, where the

most computationally intensive part is updating the variables (see Eq. (4.81) and Fig. 4.8). There

are three main operations in Eq. (4.81): 1) calculating the multiplication of two Jacobian matrices,

J(m)T J(m) (see Section 4.4.6 for the Jacobian matrix form); 2) calculating the inverse of J(m)T J(m),

i.e., (J(m)T J(m))−1; 3) calculating the multiplication of (J(m)T J(m))−1 and J(m)T
.

When only LRP is used for UTIm, three sub-variables in variable p need to be estimated: δp,

ηp and X. Therefore, the size of the corresponding Jacobian matrix is (M − 1)(2(N − 1)− 3) by

M−32 +(3+1)(N −1). Let JS1,r and JS1,c be (M−1)(2(N −1)−3) and M−32 +(3+1)(N −1),

respectively, resulting in the computational complexity: 1) O(J2
S1,c

JS1,r) for the multiplication of two

Jacobian matrices; 2) O(J3
S1,c

) for the inverse of J(m)T J(m); 3) O(J2
S1,c

JS1,r) for the multiplication of
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(J(m)T J(m))
−1

and J(m)T
. Thus, the overall computational complexity for using only LRP is

O(min(J2
S1,c

JS1,r ,J
3
S1,c

)). (4.92)

For the proposed CLRA method, computational complexity is analyzed in three cases based on the

number of microphones and sources: C1, C2 and C3. In C3, using only LRP and LRPV3, four

variables need to be estimated: δp, ηp, X and Y. The size of the Jacobian matrix is (M−1)(6(N−1)−
3−MN) by M−32−M2

N +(3+1+2MN)(N−1). Let JS1,4,r and JS1,4,c be (M−1)(6(N−1)−3−MN)

and M−32 −M2
N +(3+1+2MN)(N −1), respectively. The computational complexity using both

LRP and LRPV3 is

O(min(J2
S1,4,c

JS1,4,r ,J
3
S1,4,c

)). (4.93)

In C1, using LRP, LRPV1, and LRPV3, five variables need to be estimated: δp, ηp, X, Y and Z. The

Jacobian matrix size is (M − 1)(7(N − 1)− 23−MN) by M − 232 −M2
N +(3+N + 2MN)(N − 1).

Let JS1,2,4,r and JS1,2,4,c be (M−1)(7(N −1)−23−MN) and M−232 −M2
N +(3+N +2MN)(N −1),

respectively. The computational complexity for using LRP, LRPV1, and LRPV3 is

O(min(J2
S1,2,4,c

JS1,2,4,r ,J
3
S1,2,4,c

)). (4.94)

In C2, using LRP, LRPV2, and LRPV3, five variables need to be estimated: δp, ηp, X, Y and W. The

Jacobian matrix size is (M−1)(7(N−1)−3−MN)−(N−1)3 by M−32−M2
N +(3+1+2MN)(N−

1)+(M−1−3)(M−1+3). Let JS1,3,4,r and JS1,3,4,c be (M−1)(7(N −1)−3−MN)− (N −1)3 and

M−32 −M2
N +(3+1+2MN)(N −1)+ (M−1−3)(M−1+3), respectively. The computational

complexity for using LRP, LRPV2, and LRPV3 is

O(min(J2
S1,3,4,c

JS1,3,4,r ,J
3
S1,3,4,c

)). (4.95)

With those analysis, it can be concluded that the differences in computational complexities from Eqs.

(4.92) to (4.95) are: 
JS1,4,r − JS1,r = 2(M−1)(2(N −1)−MN)

JS1,2,4,r − JS1,4,r = (M−1)(N −1−3)

JS1,3,4,r − JS1,4,r = (N −1)(M−1−3)

, (4.96)
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and 
JS1,4,c − JS1,c = MN(2(N −1)−MN)

JS1,2,4,c − JS1,4,c = (N −1+3)(N −1−3)

JS1,3,4,c − JS1,4,c = (M−1+3)(M−1−3)

, (4.97)

From Eqs. (4.92) to (4.97), it is clear that the computational complexity increases with additional

rank properties (LRPV1, LRPV2, or LRPV3) because the size of the Jacobian matrix grows.

From Eqs. (4.92) to (4.97), we see that the computational complexity increases with additional

rank properties (LRPV1, LRPV2, or LRPV3) because the size of the Jacobian matrix grows. Given

M microphones and N sources, the number of configurations Nc(M,N) is set to 50, and for each

configuration, the number of initializations In(M,N) is set to 100, totaling 5000 implementations.

Fig. 4.13 shows the running time for these 5000 implementations across three cases. Fig. 4.13(a)

for C3 with M = 10 and N = 10, using only LRP and LRPV3. Here, STLS’s running time ranges

from 3 to 110 milliseconds, and the proposed CLRA method with LRP and LRPV3 takes up to 150

milliseconds. Fig. 4.13(b) for C1 with M = 15 and N = 8, using LRP, LRPV1, and LRPV3. STLS

remains fast, with running times from 3 to 100 milliseconds. CLRA1 and CLRA3 take more time due

to the larger Jacobian matrix sizes, with CLRA1 having a larger median value than CLRA3 because

of the larger matrix size for LRPV3. The overall running time for CLRA is under 300 milliseconds.

Figure 4.13 illustrates the running time for the 5000 implementations across three cases: C3, C1,

and C2. In Fig. 4.13(a), with M = 10 and N = 10, only LRP and LRPV3 are used in the proposed

CLRA method. STLS’s running time with only LRP ranges from 3 to 110 milliseconds, indicating

high speed. When both LRP and LRPV3 are utilized, the Jacobian matrix size in CLRA increases

compared to STLS, leading to longer update times for UTIm. However, it remains efficient, with

running times under 150 milliseconds per implementation.

In Fig. 4.13(b), with M = 15 and N = 8, the proposed CLRA method employs LRP, LRPV1, and

LRPV3. The running time of STLS, using only LRP, is again very fast, ranging from 3 to 100

milliseconds for the 5000 implementations. With both LRP and LRPV1 or both LRP and LRPV3,

the Jacobian matrix size increases, causing CLRA1 and CLRA3 to take more time than STLS for

updating the UTIm. The median running time for CLRA1 is higher than that for CLRA3, as the

LRPV3 matrix is larger than the LRPV1 matrix (refer to Eqs. (4.1) and (4.3)). Consequently, CLRA

takes longer than both CLRA1 and CLRA3 due to its larger Jacobian matrix. Despite this, the

running time remains under 300 milliseconds per implementation.

In Fig. 4.13(c), with M = 8 and N = 15, LRP, LRPV2, and LRPV3 are used in the proposed CLRA
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Figure 4.15: Comparison of recovery error ranges for UTIm achieved by STLS and the proposed
CLRA, categorized as er < 10−4s and 10−4s ≤ er < 10−2s.

method. The running time pattern in Fig. 4.13(c) is similar to that in Fig. 4.13(b), with all methods

taking less than 900 milliseconds per implementation.

4.5.5 Comparison of the Performance with Other Methods

In this subsection, I compare the proposed CLRA method with the auxiliary function-based algorithm

Ono [59].

Experiments are conducted for three cases: C1, C2, and C3. Given M microphones and N sources, the

number of configurations Nc(M,N) is set to 50, with 50 initializations In(M,N) for each configuration,

resulting in 2500 implementations for each M and N. The maximum iteration number for each

implementation of Ono [59] is set to 2×105.

Fig. 4.14 displays the recovery rate within 50 initializations for each configuration. As shown, in all

three cases (C3: M = 10, N = 10 and M = 18, N = 18; C1: M = 15, N = 8 and M = 20, N = 14;

C2: M = 8, N = 15 and M = 14, N = 20), the recovery rate achieved by the Ono algorithm is

consistently zero. In contrast, as both M and N increase, the recovery rates for both STLS and CLRA

methods improve. Additionally, the recovery rate for STLS is superior to that of the Ono algorithm.

Furthermore, for fixed values of M and N, CLRA demonstrates a significantly higher recovery rate

than STLS in terms of minimum, maximum, and median values, reaffirming the effectiveness of the
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(a) Realistic Simulation

(b) Office Real Data

Figure 4.16: Estimation errors for UTIm achieved by STLS and proposed CLRA under varying
levels of additional noise in TOA/TDOA measurements.

proposed CLRA method.

4.5.6 Robust Analysis

In this subsection, Gaussian noise will be introduced to the TOA/TDOA measurements, with a mean

of zero and standard deviations σ = {10−2,10−3, · · · ,10−8}, to demonstrate the robustness of the
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proposed CLRA method.

First, the experimental results using TOA/TDOA measurements as described in Section 4.5.1 are

presented. Both the number of configurations Nc(M,N) and the number of initializations In(M,N)

are set to 50, resulting in 2500 implementations for each M and N. I show the ratio of two different

estimation error ranges achieved by STLS and the proposed CLRA: er < 10−4s and 10−4s ≤ er <

10−2s. An error of er < 10−4s corresponds to a distance error of 0.034 m, which is acceptable

for localization tasks, while er < 10−2s introduces about 3.4 m of error, significantly impacting

localization. These two error ranges illustrate the performance impact of STLS and CLRA under

different noise intensities σ .

As shown in Fig. 4.15, when the noise intensity σ > 10−6, the ratio for er < 10−4 achieved by

both STLS and CLRA is 0. However, when σ ≤ 10−6, CLRA outperforms STLS significantly, for

example, with M = 15 and N = 8, CLRA achieves a ratio of about 40% for er < 10−4, compared to

just 6% for STLS. Additionally, the ratio for 10−4 ≤ er < 10−2 achieved by CLRA is consistently

higher than STLS, indicating that STLS often results in higher errors (er > 10−2) compared to CLRA.

This verifies the robustness of the proposed CLRA method.

Besides TOA/TDOA simulation data, I also analyze robustness using two other data types:

1. Realistic Simulation: Microphone and source locations are randomly generated within a 5m×
5m×3m room, with a 1s chirp signal. The simulation audio signals1 are generated with a 48k Hz

sampling rate and a sound speed of 340 m/s. TOA/TDOA measurements are obtained using the

GCC-PHAT method [18]. The mean TOA/TDOA measurement errors are approximately 5×10−6s

based on the 48k Hz sampling rate.

2. Real Data: Real data collected in a 5m×5m×3m office with 12 microphones at a 96kHz sampling

rate. A chirp signal was played from various positions, producing a 12×23 TOA/TDOA matrix2 [92].

Due to microphone sampling rates and environmental noise, the mean TOA/TDOA measurement

errors are around 1×10−4s, making real applications more challenging than simulations.

For both data types, the number of initializations In(M,N) is set to 100. Fig. 4.16 shows the

estimation errors er for these data types. As seen in Figs. 4.16(a) and (b), with varying noise

intensities σ values achieved by both STLS and CLRA exceed 10−4s, translating to distance errors

over 0.034m. This is because the noise in TOA/TDOA measurements from realistic simulation and

real data is greater than 10−6s. However, generally, the proposed CLRA method results in lower

estimation errors than STLS across different noise levels in both realistic simulation and real data.
1 https://www.audiolabs-erlangen.de/fau/professor/habets/software/signal-generator
2 https://github.com/swing-research/xtdoa/tree/master/matlab

https://www.audiolabs-erlangen.de/fau/professor/habets/software/signal-generator
https://github.com/swing-research/xtdoa/tree/master/matlab
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These findings indicate that the proposed CLRA has greater potential for real-world applications

compared to state-of-the-art methods.

4.5.7 Limitations

The proposed CLRA method incorporates three additional variants of LRP compared to the STLS

method, which utilizes only LRP. By integrating these three additional linear constraints formulated

by proposed LRP variants, the CLRA method can explore more globally optimal solutions with

different initializations, outperforming STLS in both simulation and real data scenarios. However,

there are some limitations to the proposed CLRA method:

1) The proposed LRPV1 is constrained by the number of microphones and sources, functioning only

when M−1 > N −1+3 and N −1 > 3.

2) The proposed LRPV2 is similarly limited by the number of microphones and sources, operating

only when N −1 > M−1+3 and N −1 > 3.

3) The CLRA method is unable to denoise TOA/TDOA measurements when environmental noise is

present.

4.6 Summary

In this chapter, the primary objective is to synchronize microphones and sources by estimating the

UTIm of TOA/TDOA. By constructing matrices D and U of Eq. (2.8) in various combinations,

three new LRP variants were introduced to exploit the additional low-rank structure information

between UTIm and TOA/TDOA. A proof for these three LRP variants was also provided. Utilizing

the low-rank structure information from these LRP variants, combined with LRP to constrain the

UTIm, I developed the CLRA method for estimating UTIm. Experimental results demonstrated

that the proposed CLRA method outperforms state-of-the-art techniques in recovery and conver-

gence rates as well as estimation accuracy, validating the effectiveness of the low-rank structure

information exploited by the three LRP variants, enhancing the accuracy of range measurements for

self-localization.

Once the microphones and sources are synchronized and the range measurements between them

are obtained, the next chapter will address a key challenge in localizing both: relaxing the minimal

configuration requirements for the number of microphones and sources necessary for self-localization.



Chapter 5

Numerical Solutions for Relaxing the

Minimal Configurations of Joint

Microphones and Sources Localization

5.1 Introduction

Building in Chapter 4, I proposed a CLAR method comprising three additional variants of the

LRP to estimate UTIm in TOA/TDOA, achieving globally optimal solutions for acquiring range

measurements between microphones and sources. Alternatively, in scenarios where centralized

control of both microphones and sources is feasible, synchronization can be implemented to facilitate

the acquisition of range measurements between them. Therefore, this chapter will study localizing

both microphones and sources using range measurements between them.

Despite the advancements made in localizing both microphones and sources, state-of-the-arts [33,

82–85] usually necessitate a minimum number of microphones and sources—four/five/six micro-

phones and six/five/four sources. This requirement can limit the efficiency of self-localization when

the needed number of microphones and audio sources is not available. Therefore, a critical and

substantial question remains: Can we relax the minimal configurations established by current state-

of-the-art methods for JMSL? Specifically, consider the challenging scenario where the number of

microphones and/or sources is fewer than the minimal configurations proposed in existing literature.

Presently, there are neither iterative nor closed-form methods available in the literature that can

handle localization under such constraints, severely limiting the efficiency of JMSL. However, if

75
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an alternative approach that circumvents the established principles in JMSL regarding the required

number of equations and unknown locations is discovered, it might be feasible to further reduce

the number of microphones and sources for JMSL applications. Answering this question holds

profound implications for the field, not only because it remains largely unexplored but also because

it could enhance the flexibility and efficiency of JMSL configurations by enabling the use of fewer

devices/microphones and sources.

In this chapter, I address the problem of JMSL in 3D space using LRP and synchronized TOA or range

measurements. I introduce a novel numerical method aimed at relaxing the minimal configurations

defined by state-of-the-art approaches over the past decades, thereby facilitating the localization of

both microphones and sources and enhancing the flexibility of JMSL configurations. By formulating

the JMSL problem in terms of triangles and applying the laws of cosine, the localization problem is

transformed into estimating four unknown pairs of distances: one pair for microphones and three pairs

for sources. This approach reduces the problem to determining four unknown variables that represent

the locations of all microphones and sources. Using triangle inequalities, the lower and upper bounds

for these four unknown distance pairs are established based on known synchronized TOA or range

measurements between microphones and sources. Finally, a numerical optimization method is

employed to find optimal solutions within these boundaries, iteratively refining the candidates with

a small step size. With proposed numerical method, I demonstrate that the minimal configurations

required for JMSL can be achieved with just four microphones and four sources. This relaxation of

the minimal configurations defined by state-of-the-art methods represents a significant contribution

to the field, suggesting that four microphones and four sources are sufficient for effective JMSL.

Therefore, this study marks a substantial advancement and represents a groundbreaking advancement

in the realm of JMSL, potentially revolutionizing JSSL techniques and expanding their applicability

in more challenging environments.

5.2 Proposed Numerical Method Based On Triangles

In this section, leveraging fundamental properties of triangles such as the laws of cosine and

triangle inequality, I introduce a novel numerical method aimed at reducing the required number

of microphones and sources for JMSL. This approach not only relaxes the minimal configurations

traditionally required for JMSL but also enhances the adaptability of JMSL configurations, thereby

facilitating localization tasks in more challenging environments. Next, in Section 5.2.1, I employ the

construction of multiple triangles to transform the localization problems of both microphones and
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(a) Triangle for r1, r2 and s j . (b) Triangle for r1, s1 and s2.

(c) Triangle for r1, s1 and s3. (d) Triangle for r1, s1 and s4.

Figure 5.1: Triangles for transforming JMSL to four unknown pairs of distance measurements.

sources, focusing on determining solutions for four unknown distances: one pair for microphones

and three pairs for sources. Section 5.2.2 illustrates how these four unknown distances directly

influence the estimated locations of microphones and sources. In Sections 5.2.3 and 5.2.4, I detail the

process of obtaining numerical solutions for these four unknown distances. Section 5.2.3 establishes

lower and upper boundaries for the four unknown distances using triangle inequalities. Section

5.2.4 outlines the method used to iteratively search for optimal solutions within these boundaries.

Finally, in Section 5.2.5, I extend the proposed numerical solutions to various scenarios of JMSL,

demonstrating the flexibility and robustness of proposed approach in handling different configurations

and environmental conditions.
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5.2.1 Laws of cosine for transformations of JMSL

Upon examining Eq. (2.14), it becomes evident that(ri − r1)
T = U∗

pi−1,:C
−1

−2(s j − s1) = CV∗
p:, j−1

, (5.1)

where i = 2, · · · , M and j = 2, · · · , N. Given that r1 =
[
0, 0, 0

]T
, r2 =

[
0, 0, r3,2

]T

and s1 =
[
0, s2,1, s3,1

]T
, respectively, where r3,2 > 0 and s2,1 > 0, it is apparent that once solutions

for s2,1 and s3,1 and the nine unknown variables in matrix C are found, localization of all microphones

and sources can be achieved. Next, the solutions of these eleven variables are expressed as four

unknown pairs of distance measurements related to one pair of microphones and three pairs of

sources. Defining αmic as the distance between the 1st and 2nd microphones, βs as the distance

between the 1st and 2nd sources, γs as the distance between the 1st and 3rd sources, ηs as the distance

between the 1st and 4th sources, we derive the following equation using the law of cosines from Fig.

5.1(a):

α
2
mic = d2

1, j +d2
2, j −2(r1 − s j)

T (r2 − s j), (5.2)

where (r1−s j)
T (r2−s j) = ∥r1−s j∥2∥r2−s j∥2cos(θr1−s j,r2−s j) and θr1−s j,r2−s j is the angle between

vectors r1 − s j and r2 − s j.

Upon inspection of Eq. (5.2), with r1 =
[
0, 0, 0

]T
, r2 =

[
0, 0, r3,2

]T
and (r1−s j)

T (r1−s j) =

d2
1, j, where r3,2 = αmic and j ranges from 1 to N, it implies

s3, j =
α2

mic +d2
1, j −d2

2, j

2αmic
, (5.3)

where j = 1, · · · , N.

Upon inspecting Eq. (5.3) and (r1 − s1)
T (r1 − s1) = d2

1,1, since s1,1 = 0 and s2,1 > 0, it follows

s2,1 =
√

d2
1,1 − s2

3,1. (5.4)

With Eqs. (5.3) and (5.4), it becomes evident that the two unknown variables s2,1 and s3,1 can

be represented by the unknown distance αmic between 1st and 2nd microphones. Therefore, the

subsequent task is to obtain solutions for the nine variables in matrix C. From Eq. (5.1), −2(s j−s1)=
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CV∗
p:, j can be rewritten as

C =−2
[
s2 − s1 s3 − s1 s4 − s1

]
V∗

p
−1
:,1:3, (5.5)

thus the unknown three variables in the third row of matrix C are

C3,: =−2
[
s3,2 − s3,1 s3,3 − s3,1 s3,4 − s3,1

]
V∗

p
−1
:,1:3. (5.6)

By applying Eq. (5.3) to Eq. (5.6), it holds that

C3,: =−


d2

1,2 −d2
2,2 −d2

1,1 +d2
2,1

d2
1,3 −d2

2,3 −d2
1,1 +d2

2,1

d2
1,4 −d2

2,4 −d2
1,1 +d2

2,1


T

V∗
p
−1
:,1:3

αmic

=
D1,1:3V∗

p
−1
:,1:3

αmic
=

U∗
p1,:

αmic
. (5.7)

Upon inspection of Eq. (5.7), since matrix U∗
p is known, it is evident that the three variables in the

third row of matrix C are the functions of unknown αmic. Therefore, by inspecting Eqs. (5.3), (5.4),

and (5.7), it can be observed that the five unknown variables s2,1, s3,1 and C3,: are the functions of

αmic only. Next task is to find solutions for the remaining six unknown variables in matrix C.

From Figs. 5.1(b), (c), and (d), applying the laws of cosine to the corresponding three triangles

yields: 
β 2

s = d2
1,1 +d2

1,2 −2sT
1 s2

γ2
s = d2

1,1 +d2
1,3 −2sT

1 s3

η2
s = d2

1,1 +d2
1,4 −2sT

1 s4

. (5.8)

Since sT
j s j = d2

1, j, Eq. (5.8) can be rewritten as:


β 2

s = d2
1,2 −d2

1,1 −2sT
1 (s2 − s1)

γ2
s = d2

1,3 −d2
1,1 −2sT

1 (s3 − s1)

η2
s = d2

1,4 −d2
1,1 −2sT

1 (s4 − s1)

. (5.9)

Upon inspection of Eq. (5.9), by applying −2(s j − s1) = CV∗
p:, j−1 and s1 =

[
0, s2,1, s3,1

]T
to Eq.
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(5.9), it follows: 
β 2

s = d2
1,2 −d2

1,1 + s2,1C2,:V∗
p:,1 + s3,1C3,:V∗

p:,1

γ2
s = d2

1,3 −d2
1,1 + s2,1C2,:V∗

p:,2 + s3,1C3,:V∗
p:,2

η2
s = d2

1,4 −d2
1,1 + s2,1C2,:V∗

p:,3 + s3,1C3,:V∗
p:,3

. (5.10)

From Eq. (5.10), the three variables in the second row of matrix C can be expressed as:

C2,: =


β 2

s −d2
1,2 +d2

1,1

γ2
s −d2

1,3 +d2
1,1

η2
s −d2

1,4 +d2
1,1


T

V∗
p
−1
:,1:3 − s3,1C3,:

s2,1
. (5.11)

Upon inspection of Eq. (5.11), since s2,1, s3,1 and C3,: are the functions of αmic, it follows that the

solutions of three variables C2,: depend on four unknown distances αmic, βs, γs and ηs. Therefore,

from the solutions of C2,: in Eq. (5.11), it is evident that when r1, r2 and s1 are co-linear, the stability

of C2,: solutions is compromised in the presence of estimation errors for αmic, βs, γs and ηs. However,

as previously stated, no three or four positions among microphones and sources should lie on a single

line or plane. Therefore, this special case for the solution of C2,: can be excluded. Finally, once the

remaining three variables C1,: are expressed as the functions of four unknown distances αmic, βs, γs

and ηs, all microphone and source locations can be determined based on the four unknown distance

measurements.

Considering sT
j s j = d2

1, j (see Fig. 5.1(a)), it follows:


d2

1,2 = s2
1,2 + s2

2,2 + s2
3,2

d2
1,3 = s2

1,3 + s2
2,3 + s2

3,3

d2
1,4 = s2

1,4 + s2
2,4 + s2

3,4

. (5.12)

To express the three variables in C1,: as functions of αmic, βs, γs, ηs, Eq. (5.12) is written as:
(s1,2 − s1,1 + s1,1)

2 +(s2,2 − s2,1 + s2,1)
2 = d2

1,2 − s2
3,2

(s1,3 − s1,1 + s1,1)
2 +(s2,3 − s2,1 + s2,1)

2 = d2
1,3 − s2

3,3

(s1,4 − s1,1 + s1,1)
2 +(s2,4 − s2,1 + s2,1)

2 = d2
1,4 − s2

3,4

, (5.13)

then applying −2(s j − s1) = CV∗
p j−1 and s1,1 = 0 to Eq. (5.13), where j ranges from 2 to N, results
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in: 
(C1,:V∗

p:,1)
2 = 4(d2

1,2 − s2
3,2)− (C2,:V∗

p:,1 −2s2,1)
2

(C1,:V∗
p:,2)

2 = 4(d2
1,3 − s2

3,3)− (C2,:V∗
p:,2 −2s2,1)

2

(C1,:V∗
p:,3)

2 = 4(d2
1,4 − s2

3,4)− (C2,:V∗
p:,3 −2s2,1)

2

. (5.14)

Upon inspection of Eq. (5.14), C1,: can be expressed as

C1,: =


±
√

4(d2
1,2 − s2

3,2)− (C2,:V∗
p:,1 −2s2,1)2

±
√

4(d2
1,3 − s2

3,3)− (C2,:V∗
p:,2 −2s2,1)2

±
√

4(d2
1,4 − s2

3,4)− (C2,:V∗
p:,3 −2s2,1)2


T

V∗
p
−1
:,1:3. (5.15)

From Eq. (5.15), C1,: is clearly a function of αmic, βs, γs and ηs, considering s3, j, s2,1 as functions

of αmic (see Eqs. (5.3) and (5.4)) and the three variables of C2,: as functions of αmic, βs, γs and ηs

(see Eq. (5.11)). Additionally, Eq. (5.15) indicates eight ambiguities in the solutions of C1,:, posing

challenges in obtaining a definitive solution. Fortunately, due to the reflection invariance concerning

the geometry of microphones and sources, the eight ambiguities in Eq. (5.15) can be reduced to four

distinct ambiguities: {+,+,+}, {+,+,−}, {+,−,+} and {+,−,−}.

Considering Eqs. (5.3), (5.4), (5.7), it is evident that the five variables s2,1, s3,1 and C3,:, are the

function of unknown variable αmic. Moreover, upon inspection of Eqs. (5.11) and (5.15), the six

variables in C1,: and C2,: are the functions of αmic, βs, γs and ηs. Thus, the eleven variables above

depend solely on αmic, βs, γs and ηs, indicating that the locations of all microphones and sources

can be determined using only these four unknown variables. Furthermore, while there are four

ambiguities in C1,:, these ambiguities can be resolved by comparing the distance errors between

the ground truth range measurements di, j and the four distance sets d(se)
i, j = ∥r(se)

i − s(se)
j ∥ (where

se = 1, · · · , 4, i = 1, · · · , M, j = 1, · · · , N), , leading to min{
√

∑
M
i=1 ∑

N
j=1(di, j −d(se)

i, j )2},

where se = 1, · · · , 4. . In the subsequent subsection, the impact of the four unknowns αmic, βs, γs

and ηs on the locations of microphones of sources is illustrated.

5.2.2 Effects of four unknowns on locations of microphones and sources

Upon examining Eq. (5.3) and Fig. 5.2(a), it is clear that the third coordinate of all sources, s3, j,

can be determined by the unknown variable αmic. Consequently, the possible solutions for the first

and second coordinates of all sources lie on different circles, each of which can be defined by αmic

since s2
1, j + s2

2, j = d2
1, j − s2

3, j. Furthermore, the first source’s coordinates, s1,1 and s2,1, being zero and



5.2 Proposed Numerical Method Based On Triangles 82

(a) Effect of αmic where j ≥ 2. (b) Effects of βs, γs and ηs.

Figure 5.2: Effects of four unknowns on locations of microphones and sources.

greater than zero respectively, indicate that the location of the first source s1 can be determined solely

by αmic (refer to Eqs. (5.3) and (5.4)).

Moreover, as established by Eqs. (5.7), (5.11) and (5.15), the nine variables in matrix C can

be dominated by four unknown variables αmic, βs, γs and ηs. This allows for determining the

locations of all microphones and sources. Specifically, from Fig. 5.2(b), it is evident that once

βs, γs and ηs are known, three sources s2, s3 and s4 can be localized because the distance di, j

between microphone ri and source s j is known. Thus, with the position of s1, s2, s3 and s4, the

solutions of eleven variables s2,1 s3,1, C can be obtained, resulting in the solutions for localizing

all microphones and sources (see Eq. (5.1)). Hence, estimating the four unknowns αmic, βs, γs

and ηs is crucial for JMSL. Unfortunately, there is no prior information available regarding these

unknowns, making their estimation challenging. Particularly, when there are only four microphones

and four sources, the number of valid equations from di, j = ∥ri − s j∥ is only two (as analyzed in

Section 5.2.4), making it impossible to solve for the four unknowns. This leads to the conclusion

that the minimal configuration requires at least six/five/four microphones and four/five/six sources,

respectively. However, if an alternative method can be found to bypass the principle of the number of

valid equations (synchronized TOA/range/distance measurement) and unknown locations, numerical

solutions for the four unknowns may still be possible even with only four microphones and four

sources for JMSL. Therefore, the next subsection will derive the boundaries of these four unknowns.
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5.2.3 Triangle inequality for lower and upper boundaries of four unknowns

In this subsection, before determining the solutions of four unknown variables αmic, βs, γs and ηs, I

will establish both the lower and upper boundaries for these variables using the triangle inequality.

The triangle inequality states that in any triangle, the length of one side must be greater than or

equal to the absolute difference between the lengths of the other two sides, and less than or equal

to their sum. Specifically, for a triangle with side length a1, a2 and a3, respectively, it holds that

|a2 −a3| ≤ a1 ≤ |a2 +a3|, where | • | denotes the absolute value. Therefore, from Figs. 5.2(a) and

(b), it can be derived that the lower and upper boundaries for the four unknown variables αmic, βs, γs

and ηs: 

max{|d1, j −d2, j|} ≤ αmic ≤ min{|d1, j +d2, j|}

max{|di,1 −di,2} ≤ βs ≤ min{|di,1 +di,2|}

max{|di,1 −di,3} ≤ γs ≤ min{|di,1 +di,3|}

max{|di,1 −di,4} ≤ ηs ≤ min{|di,1 +di,4|}

, (5.16)

where i ranges from 1 to M and j ranges from 1 to N. In the following subsection, I will explore

an alternative numerical method to obtain numerical solutions for these four unknowns within the

boundaries defined in Eq. (5.16), even when the number of both microphones and sources is limited

to four.

5.2.4 Numerical solutions for JMSL

In this subsection, I derive numerical solutions for the four unknown variables αmic, βs, γs and ηs

using the boundaries established in Eq. (5.16). Before estimating the numerical solutions, I will first

demonstrate the number of valid equations needed to clarify the solutions provided by the proposed

numerical method.
Given that the distance di, j between ith microphone and jth source is formulated as ∥ri − s j∥2:
di, j = ∥ri − s j∥2 (i = 1, · · · , M and j = 1, · · · , N) can be categorized into three cases


d2

1, j = rT
1 r1 + sT

j s j −2rT
1 s j j = 1, · · · ,N

d2
i,1 = rT

i ri + sT
1 s1 −2rT

i s1 i = 1, · · · ,M

d2
i, j = rT

i ri + sT
j s j −2rT

i s j i = 2, · · · ,M; j = 2, · · · ,N

. (5.17)

From Eq. (5.17), since r1 =
[
0, 0, 0

]T
, it follows that d2

1, j = sT
j s j for j = 1, · · · ,N. Therefore,
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with d2
1,1 = sT

1 s1, it can be derived that d2
i,1 = rT

i ri +d2
1,1 −2rT

i s1 for i = 1, · · · ,M. Similarity, with

d2
1, j = sT

j s j and −2rT
i (s j − s1) = U∗

pi−1,:V
∗
p:, j−1 = d2

i, j −d2
i,1−d2

1, j +d2
1,1 (see Eqs. (2.11), (2.14) and

(5.1)), it holds that d2
i, j = rT

i ri + sT
j s j −2rT

i s j (i = 2, · · · ,M; j = 2, · · · ,N) in Eq. (5.17) as

d2
i,1 −d2

1,1 = rT
i ri −2rT

i s1, (5.18)

which matches the variant of d2
i,1 = rT

i ri + sT
1 s1 −2rT

i s1 in Eq. (5.17) for i = 2, · · · ,M. Therefore,

Eq. (5.17) can be written as:d2
1, j = sT

j s j j = 1, · · · ,N

d2
i,1 −d2

1,1 = rT
i ri −2rT

i s1 i = 1, · · · ,M
. (5.19)

Next, I will show the valid equations in Eq. (5.19) for obtaining the numerical solutions for the four

unknowns. Since r1 =
[
0, 0, 0

]T
, the equation d2

i,1 −d2
1,1 = rT

i ri −2rT
i s1 is invalid when i = 1.

Additionally, when i = 2, d2
i,1 −d2

1,1 = rT
i ri −2rT

i s1 is also invalid as it is the same as the equation

α2
mic = d2

1, j +d2
2, j −2(r1 − s j)

T (r2 − s j) in Eq. (5.2) for j = 1. Therefore, there are just M−2 valid

equations for d2
i,1 −d2

1,1 = rT
i ri − 2rT

i s1. Next, I shall present the number of valid equations for

d2
1, j = sT

j s j in Eq. (5.19), where j = 1, · · · ,N. When j = 1, d2
1,1 = sT

1 s1 is invalid since as it is already

used to formulate variables s2,1 and s3,1 (see Eqs. (5.3) and (5.4)). When j = 2, 3 and 4, d2
1, j = sT

j s j

are also invalid as they are used to formulate the three variables C1,: (see Eqs. (5.12), (5.13), (5.14)

and (5.15)). Thus, there are only N −4 valid equations for d2
1, j = sT

j s j, where j = 1, · · · ,N. From

this analysis, it is clear that the number of valid equations for solving the four unknowns is only

M+N −6 with synchronized TOA measurements.
Given that the number of valid equations is M +N −6 in Eq. (5.19), , it is evident that obtaining
either closed-form solutions or iterative solutions for the four unknowns using optimization methods
is impossible when 1) M = 4 and N = 4; 2) M = 4 and N = 5 and 3) M = 5 and N = 4. Fortunately,
using the boundaries derived in Eq. (5.16), obtaining numerical solutions for the four unknowns
becomes possible. In more detail, first, the boundaries of the four unknowns can be divided into
several candidate values with a given small step. Second, with these candidate values, several sets of
locations for the microphones and sources are obtained. Finally, the numerical solutions for JMSL
can be found by selecting the sets of microphone and source locations that minimize the error with
the valid equations in Eq. (5.19):

Er =

√
M

∑
i=3

(d2
i,1 −d2

1,1 − rT
i ri +2rT

i s1)2 +

√√√√ N

∑
j=5

(d2
1, j − sT

j s j)2. (5.20)
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Algorithm: Numerical solutions for JMSL
Input: 1. M and N;

2. Range measurements between microphones and sources.
Output: Locations for M microphones and N sources.
Step 1: Obtain the lower and upper boundaries for αmic, βs, γs and ηs

with Eq.(5.16).
Step 2: Exclude the candidates of αmic, βs, γs and ηs in Step 1.
Step 2.1: Exclude the candidates of αmic with s2,1 > 0 in Eq. (5.4).
Step 2.2: Exclude the candidates of βs, γs and ηs with Eq. (5.14):

C1,:V∗
p:,1 ≥ 0, C1,:V:,2 ≥ 0 and C1,:V∗

p:,3 ≥ 0.
Step 3: Test remaining candidates for αmic, βs, γs and ηs:
Step 3.1: Obtain values for s2,1, s3, j, C3,:, C2,: and C1,:

with Eqs. (5.3), (5.4), (5.7), (5.11) (5.15);
Step 3.2: Obtain locations for all microphones and source

with Eqs. (5.1);
Step 3.3: Calculate the Er in Eq. (5.20).
Step 4: Choose the optimal value for αmic, βs, γs and ηs

with minimal value of Er in Step 3.
Step 5: Obtain the locations for all microphone and sources

using Step 3.1 and Step 3.2.

Note that when N < 5, the second term on the right-hand side of Eq. (5.20) should be discarded. The

pseudo code for localizing both microphones and sources with the four unknowns αmic, βs, γs and ηs

is presented in the Algorithm.

5.2.5 Extensions of proposed numerical method

To validate the proposed numerical method for confirming the locations of microphones and sources

using four unknowns, and to facilitate the applications of JMSL, I extend the method to five different

scenarios:

1) One co-located microphone and source and one known distance between a pair of microphones:

In this scenario, an additional microphone ra is co-located with the 1st source s1. This allows us to

solve for three variables: βs, γs and ηs , based on the known distances between the three sources

(s1, s2 and s3) and the additional microphone ra. Additionally, knowing the distance between the

1st microphone r1 and 2nd microphone r2 allows us to determine αmic. Consequently, the locations

of all microphones and sources can be determined with closed-form solutions using the proposed

method in this chapter.

2) On co-located microphone and sources: Here, an additional microphone ra is co-located with

the 1st source s1 [23]. This setup allows us to solve for βs, γs and ηs, leaving only αmic as the

unknown variable. The task of JMSL is to estimate the optimal numerical solution for αmic within

the boundaries defined in Eq. (5.16) using the proposed Algorithm in Section 5.2.4.

3) Two known distances for one pair of microphones and one pair of sources: In this scenario, the
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distances between two microphones and two sources are known. Assuming these known distances

are between the 1st and 2nd microphones and 1st and 2nd sources, the solutions of αmic and βs are

determined. Therefore, the task of JMSL is to find the optimal numerical solutions for γs and ηs

within the boundaries in Eq. (5.16) using the proposed Algorithm.

4) One known distance between any two microphones: Here, the distance between any two micro-

phones is known. Assuming the known distance is between the 1st and 2nd microphones, the solution

for αmic is obtained. The task of JMSL is then to find the optimal numerical solutions for βs, γs

and ηs within the boundaries in Eq. (5.16). In this setup, the number of known distances between

microphones and sources is MN and the number of unknowns is 3(M+N)−7 as αmic = r3,2. Using

the principle that the number of equations should be at least equal to the number of unknowns,

(M − 3)(N − 3) ≥ 2, it implies that configurations with four microphones and four sources are

impossible for JMSL. However, proposed numerical method in the Algorithm demonstrates that

estimating the three unknowns βs, γs and ηs makes it possible to localize four microphones and four

sources, relaxing the minimal configuration requirements of traditional methods and facilitating

JMSL when the number of microphones and/or sources is limited.

5) No prior information: In this scenario, there are no known distance measurements between

any pairs of microphones or sources. The task of JMSL is to estimate the optimal solutions for

the four unknowns αmic, βs, γs and ηs within the boundaries in Eq. (5.16). Here, the number of

known range measurements between microphones and sources is MN and the number of unknowns is

3(M+N)−6, indicating that configurations with 1) M = 4 and N = 4; 2) M = 4 and N = 5; 3) M = 5

and N = 4 are impossible for localizing both microphones and sources. However, using proposed

numerical method in the Algorithm, the solutions for the four unknowns can be estimated even in

these minimal configurations, reducing the number of required microphones and/or sources compared

to traditional methods and relaxing the minimal configuration constraints of past state-of-the-art

techniques.

5.3 Synthetic Experiments and Evaluations

In Section 5.3.1, the experimental settings are discussed. Following that, Section 5.3.2 presents

the results of the proposed numerical method. Additionally, I demonstrate the robustness of pro-

posed numerical method by adding Gaussian noise with zero mean and standard deviations σ of

{10−6,10−4,10−3,10−2} [33] meters to both the range measurements di, j and the four unknown

variables, as described in [33]. Finally, Section 5.3.3 illustrates the limitations of the proposed
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Figure 5.3: Results for proposed numerical method: scenario with one co-located microphone
and source and one known distance between a pair of microphones (where log10 represents log10
transformation; known values of αmic, βs, γs and ηs).

numerical method.

5.3.1 Setup

Simulation data:

The locations of microphones and sources are randomly generated in MATLAB using a uniform

distribution within a unit cubic room of size 1×1×1 m3 [33] with the speed of sound 340 m/s [33].

Consequently, the distance measurements between the microphones and sources can be derived from

their respective locations.

Evaluation metric:

To evaluate and validate the proposed numerical method, I compare the localization errors between

the ground truth and the estimated locations of microphones and sources. The error metric is defined

as:

EM =
∑

M
i=1 ∥ri − r∗i ∥+∑

N
j=1 ∥s j − s∗j∥

M+N
, (5.21)

where r∗i and s∗j represent the estimated locations of the ith microphone and jth source, respectively.

5.3.2 Results

Results for different configurations and noise intensity σ

In this part, 30 different random configurations are conducted for given M microphones and N

sources, then average the localization errors EM in Eq. (5.21) over these configurations. Figs. 5.3,

5.4 and 5.5 present the results using simulation data from these 30 configurations. Specifically, Figs.
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(a) One co-located additional microphone and source (M = 4 and N = 4): the principle for searching αmic by using
Er in Eq. (5.20) (left), and the effect of αmic on localization errors EM in Eq. (5.21) with different searching size of
step (right).

(b) Localization error for proposed numerical method: scenario with one co-located additional microphone and
source.

(c) Localization error for proposed numerical method: scenario with two known distances of any one pair of
microphones and one pair of source.

Figure 5.4: Results for proposed numerical method; log10 denotes the transformation of log10 for
the corresponding values; known βs, γs and ηs for figure (a); known βs, γs and ηs for figure (b);
known αmic and βs for figure (c).
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5.3 and 5.4 display the results for first three scenarios outlined in Section 5.2.5, validating proposed

method’s claim that the locations of microphones and sources can be determined by four unknown

variables when M ≥ 4 and N ≥ 4. Figure 5.5 shows results for the last two scenarios in Section 5.2.5,

further validating that four variables can represent the locations of all microphones and sources while

also relaxing the minimal configurations established by state-of-the-art methods, thus enhancing the

flexibility of JMSL configurations.

First, Fig. 5.3 presents the results for the scenario with one co-located additional microphone

and source and one known distance between a pair of microphones. This scenario implies that

the four variables αmic, βs, γs and ηs in proposed numerical method are known. As shown in Fig.

5.3, with a noise intensity of 0 m, the average localization error EM of 30 different configurations

is approximately 10−15 m when both M and N vary from 4 to 10, validating proposed method’s

assertion that the locations of all microphones and sources can be represented by four unknown

variables. Moreover, when noise is introduced into both the four variables (αmic, βs, γs and ηs)

and the distances di, j between microphones and sources, the average localization errors for the 30

configurations vary with the noise intensity σ . Specifically, for σ = 10−6 m, the average localization

error EM ranges from 10−5 m to 10−4 m when both M and N vary from 4 to 10. For σ = 10−4 m,

the average localization error EM ranges from 10−3 m to 10−2 m for the same range of M and N. For

σ = 10−2 m, the average localization error EM also ranges from 10−2 m to 10−1 m when both M and

N vary from 4 to 10. Overall, the results in Fig. 5.3 confirm the proposed numerical method’s claim

that the locations of all microphones and sources can be represented by four unknown variables when

M ≥ 4 and N ≥ 4, demonstrating its applicability in scenarios where one additional microphone and

one source are co-located, and the distance between a pair of microphones is known.

Second, Fig. 5.4 shows the results for other two scenarios: one with an additional co-located

microphone and source, and another with two known distances between any two microphones and

any two sources. To determine the step size for searching the corresponding four unknowns αmic,

βs, γs and ηs, the scenario with one additional co-located microphone and source with M = 4 and

N = 4 are visualized. As shown in the left sub-figure of Fig. 5.4(a), when setting the step size to

10−3 m for searching the optimal αmic within the boundaries in Eq. (5.16), the optimal αmic can be

found by choosing the minimal Er in Eq. (5.20). The right sub-figure of Fig. 5.4(a) illustrates that

as the searching step size for αmic varies from 10−6 m to 10−2 m, the value of average localization

error EM for 30 different configurations is nearly linear. Specifically, with a searching step of αmic is

10−3 m, the average localization error EM for 30 configurations is approximately 10−2 m. Therefore,

to balance localization accuracy and the time required for searching unknowns, I set the step size
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(a) Localization error for proposed numerical method: scenario with one known distance for a pair of microphones
(M = 4 and N = 4 relaxes the minimal configuration of state-of-the-arts).

(b) Localization error for proposed numerical method: scenario without known distances for any pairs of microphones
and any pairs of sources (M = 4 and N = 4, M = 4 and N = 5 and M = 5 and N = 4 relaxes the minimal configurations
of state-of-the-arts).

Figure 5.5: Results for two scenarios: unknown three variables βs, γs and ηs for figure (a); unknown
four variables αmic, βs, γs and ηs for figure (b) (log10 denotes the transformation of log10 for the
corresponding values).

for searching the four unknowns αmic, βs, γs and ηs to 10−3 m within the boundaries of Eq. (5.16),

unless otherwise specified.

With a search step size of 10−3 m for αmic, Fig. 5.4(b) shows the results for the scenario with one

co-located additional microphone and source, implying that three variables βs, γs and ηs are known.

As seen in Fig. 5.4(b), if the noise intensity is 0 m, the average localization error EM across 30

different configurations ranges from 0.008 m to 0.012 m as both M and N vary from 4 to 10. This

supports the claim that the proposed numerical method can represent the locations of all microphones

and sources using four unknown variables. When noise is introduced to βs, γs, ηs and the distance

measurements di, j, the average localization error changes with the noise intensity σ . Specifically,

with σ = 10−6 m, the average localization error EM for 30 configurations is similar to that when

σ = 0 m. If σ = 10−4 m, the average localization error EM ranges from 0.009 m to 0.029 m for

30 configurations as both M and N vary from 4 to 10. When σ = 10−2 m, the average localization

error EM ranges from 0.14 m to 0.22 m. Overall, the results in in Fig. 5.4(b) validate the statement
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that the proposed numerical method can represent the locations of all microphones and sources

with four unknown variables when M ≥ 4 and N ≥ 4, resulting in the conclusion that proposed

numerical method can be applied to the scenario with one co-located additional microphone and

source, demonstrating that a 10−3 m search step for αmic is feasible for JMSL.

With a search step size of 10−3 m for both γs and ηs, Fig. 5.4(c) shows the results for the scenario with

two known distances between any pair of microphones and any pair of sources, implying that αmic

and βs are known. As shown in Fig. 5.4(c), when the noise intensity is 0 m, the average localization

error EM for 30 configurations ranges from 0.005 m to 0.022 m as M and N vary from 4 to 10. This

also validates the proposed numerical method, indicating that the locations of all microphones and

sources can be represented by four unknown variables. When noise is added to αmic, βs and the

distance measurements di, j, the average localization error EM varies with σ . Specifically, when

σ = 10−6 m and σ = 10−4 m, the average localization errors EM of those two situations for 30

configurations are similar to those when σ = 0 m. If σ = 10−2 m, the average localization error

EM ranges from 0.06 m to 0.08 m for 30 configurations as M and N vary from 4 to 10. Overall,

the results in Fig. 5.4(c) validate that the proposed numerical method can represent the locations

of all microphones and sources with four unknown variables when M ≥ 4 and N ≥ 4, resulting in

the conclusion that proposed numerical method can be applied to the scenario when two distances

between any one pair of microphones and any one pair of sources are known, demonstrating that a

10−3 m search step for αmic and βs is feasible for JMSL.

Moreover, comparing the results from Figs. 5.4(b) and 5.4(c) when σ = 10−2 m, it is evident that

the scenario with two known distances (Fig. 5.4(c)) achieves better localization accuracy than the

scenario with three known distances (Fig. 5.4(b)). Specifically, with fixed noise intensity in both

distance measurements di, j and known variables (i.e., βs, γs, and ηs in Fig. 5.4(b) and γs and ηs in

Fig. 5.4(c)), searching for the optimal solutions for the remaining unknown variables (αmic in Fig.

5.4(b) and αmic and βs in Fig. 5.4(c)) allows the metric in Eq. (5.20) to choose the optimal values of

unknown variables that minimize Er in Eq. (5.20). This results in better localization accuracy in

Fig. 5.4(c) than in Fig. 5.4(b), due to the presence of noise in three variables (βs, γs, and ηs) in Fig.

5.4(b), compared to noise in only two variables (γs and ηs) in Fig. 5.4(c).

Third, Fig. 5.5(a) and (b) shows the results for two scenarios: 1) one known distance of a pair

of microphones; 2) no prior information for any pairs of microphones or sources. With a search

step size of 10−3 m for the three variables βs γs and ηs, Fig. 5.5(a) shows the localization results

when αmic is known. As illustrated in Fig. 5.5(a), if the noise intensity σ is 0 m, 10−6 m, 10−4

m and 10−2 m, the average localization error EM of 30 different configurations ranges within
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[
0.01 0.05

]
m,

[
0.01 0.06

]
m,

[
0.02 0.06

]
m and

[
0.08 0.13

]
m, respectively. This validates

that the proposed numerical method can represent the locations of all microphones and sources

with four variables. Furthermore, when M = 4 and N = 4, the average localization errors EM of

30 different configurations for σ = 0 m σ = 10−6 m, σ = 10−4 m and σ = 10−2 m are 0.05 m, 0.06

m 0.05 m and 0.09 m, respectively, validating that the proposed method can localize microphones

and sources with M = 4 and N = 4, which is fewer than the minimal configurations reported in

state-of-the-art methods over the past decades (see analysis of the fourth scenario in Section 5.2.5).

Additionally, with a search step size of 10−3 m for four unknown variables αmic, βs, γs and ηs, Fig.

5.5(b) shows the corresponding localization results. As seen from Fig. 5.5(b), if the noise intensity σ

is 0 m, 10−6 m, 10−4 m and 10−2 m, the average localization error EM for 30 different configurations

ranges within
[
0.02 0.09

]
m,

[
0.02 0.09

]
m,

[
0.01 0.11

]
m and

[
0.05 0.17

]
m, respectively.

This further validates that the locations of all microphones and sources can be represented by four

unknown variables. More importantly, when M = 4 and N = 4, the average localization errors EM of

30 different configurations for σ = 0 m, σ = 10−6 m, σ = 10−4 m and σ = 10−2 m are 0.09 m, 0.09

m, 0.11 m and 0.17 m, respectively. When M = 4 and N = 5, these errors are 0.06 m, 0.06 m 0.07 m

and 0.14 m, respectively. When M = 5 and N = 4, the errors are 0.08 m, 0.08 m 0.06 m and 0.13 m,

respectively. These results confirm that the proposed numerical method can be used for localizing

both microphones and sources even when the number of microphones and sources is less than the

requirement of minimal configurations reported in state-of-the-art methods over the past decades

(see analysis of fifth scenario in Section 5.2.5).

Results for fixed configurations and noise intensity σ

In this part, to further validate and evaluate that the proposed numerical method can relax the minimal

configurations for JMSL, 30 independent experiments with fixed configurations and a noise intensity

σ = 10−3 are conducted. The step size for searching unknowns is set to 10−3 m within the boundaries

defined in Eq. (5.16). Fig. 5.6 presents the results for the following cases: 1) known αmic with M = 4

and N = 4; 2) unknown four variables with M = 4 and N = 4; 3) unknown four variables with M = 4

and N = 5; 4) unknown four variables with M = 5 and N = 4. Additionally, to visualize the impact

of a noise intensity of σ = 10−3 m on localizing microphones and sources, I display the ground truth

and the estimated locations for σ = 0 m for both microphones and sources.

Using a step size of 10−3 m for searching three unknowns, Fig. 5.6(a) shows the results for the

case when αmic is known. From Fig. 5.6(a), it can be observed that the EM for σ = 0 m is 0.006
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(a) Known αmic; mean EM for σ = 10−3 m: 0.04 m. (b) Unknown four variables; mean EM for σ = 10−3

m: 0.10 m.

(c) Unknown four variables; mean EM for σ = 10−3 m:
0.06 m.

(d) Unknown four variables; mean EM for σ = 10−3

m: 0.04 m

Figure 5.6: Localization results of the proposed numerical method for relaxing the minimal configu-
rations of state-of-the-arts with the step size of 10−3 m.

m, indicating high localization accuracy. Even when noise is introduced to both αmic and the

distances between microphones and sources, the localization accuracy remains high, with an average

localization error EM of just 0.04 m for 30 different experiments when σ = 10−3 m. Then in Figs.

5.6(b) (c) and (d), using a step size of 10−3 m for searching four unknowns, I show the results

for scenarios with four unknowns for M = 4 and N = 4, M = 4 and N = 5 and M = 5 and N = 4,

respectively. For σ = 0 m, the localization errors EM for M = 4 and N = 4, M = 4 and N = 5

and M = 5 and N = 4 are 0.079 m, 0.016 m, 0.021 m, respectively. When noise (σ = 10−3 m) is

introduced into the distances between microphones and sources, the localization accuracy remains

good, with average localization errors EM of 0.1 m, 0.06 m and 0.04 m for M = 4 and N = 4, M = 4

and N = 5 and M = 5 and N = 4, respectively. These results in Fig. (5.6) validate that proposed

method effectively relaxes the minimal configurations for JMSL, making the configurations more
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flexible and enhancing the field of signal processing.

5.3.3 Discussions

The proposed numerical method converts the localization problems into the task of estimating four

unknown variables. The lower and upper boundaries of these variables are determined using triangle

inequalities. The solutions for these variables are then found by using the known range measurements

between microphones and sources. This method challenges the long-standing consensus on the

minimal configurations required by state-of-the-art methods over the past decades, thereby making

the configurations of JMSL more flexible, enhancing the efficiency of JMSL.

In a simulation room of 1×1×1 m3 with a search step of 10−3 m, the proposed numerical method

achieved accurate localization results. Although these results are from simulations, the only require-

ment for the proposed method is having the range measurements between microphones and sources,

suggesting it can also achieve accurate localization in real environments. In addition, the results

in Fig. (5.3), (5.4), (5.5) and (5.6) also show the robustness of proposed numerical method. When

different levels of noise with varying intensities σ are introduced into the range measurements, the

proposed numerical method demonstrates consistent and accurate localization results. This indicates

that the method is robust to external noise and not significantly sensitive to errors in the initial

range measurements. While the proposed numerical method demonstrates theoretical robustness, its

practical applicability in real-world scenarios requires consideration of varying acoustic conditions

and hardware limitations. In environments with noise, reverberation, or occlusions, pre-processing

techniques such as noise reduction, signal enhancement, and adaptive filtering can be employed to

improve the accuracy of time-of-arrival TOA measurements. The method’s effectiveness has been

validated through simulations with added noise, indicating its potential for deployment in practical

settings. Furthermore, the design of JMSL systems must account for the specific characteristics of

different microphone types, such as capacitor and MEMS microphones, which vary in sensitivity,

resolution, and range. To ensure accurate localization, careful attention to microphone synchroniza-

tion and calibration is crucial. The microphone arrangement should also be optimized based on

the environment—indoor settings may benefit from strategic placement and acoustic treatment to

minimize reflections, while outdoor applications may require robust systems capable of handling

environmental interferences like wind noise. These considerations demonstrate that the proposed

method is adaptable to a wide range of real-world conditions and provides practical guidelines for

effective JMSL system design.
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In addition, the proposed numerical method is applicable to larger rooms since room size is not a

prerequisite. However, it has a significant limitation: the time required to search for optimal solutions

for the unknown variables. For example, when performing JMSL using the proposed method, once

the distance matrix D∗ in Eq. (2.11) and the two singular matrices U∗
p and V∗

p in Eq. (2.13) are

obtained, the key task is to determine the values of eleven unknowns: s2,1, s3,1, and nine variables

in C. From Eqs. (5.3), (5.4), (5.6), (5.11), and (5.15), it is evident that the time complexity for

computing these nine variables is constant, i.e., O(1), indicating independence from the data scale.

However, the computation of these eleven variables depends on the precise values of four additional

unknowns (αmic, βs, γs and ηs). Solving for these four variables requires an iterative search within

the boundaries defined in Eq. (5.16). For instance, if the boundaries for all four unknowns span

one meter, the number of iterations needed to find the optimal numerical solutions for JMSL is

approximately 109 when αmic is known and 1012 when all four variables are unknown. This illustrates

the computational intensity and time-consuming nature of the proposed numerical method.

5.4 Summary

In this chapter, the main focus is to relax the minimal configurations of state-of-the-arts during past

decades by using the synchronized TOA/range measurements between microphones and sources. By

formulating the localization problems with several triangles and applying the laws of cosine to those

triangles, the localization problems of microphones and sources can be transformed to the estimation

of four unknown distances pertaining to a pair of microphones and three pairs of sources. Then

the triangle inequalities have been used for obtaining the lower and upper boundaries for the four

unknown distances, so that I can search the optimal numerical solutions for those four unknowns

under the corresponding lower and upper boundaries, given an appropriate step. Experimental results

validate the feasibility of proposed numerical method: 1) the locations of all microphones and sources

can be represented by four variables when the number of both microphones and sources is larger than

or equal to four; 2) four microphones and four sources are enough to localize both microphones and

sources when the distance of one pair of microphones is known. 3) even without prior information

about the distances between a pair of microphones and three pairs of sources, all microphones and

sources can still be localized when the number of microphones and sources is four/four/five and

four/five/four, respectively. This is fewer than the minimal number typically required for localizing

both microphones and sources according to state-of-the-art methods. Therefore, proposed research

output in this chapter is a milestone for the topic of JMSL, as it not only challenges the long-term
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assumption that the task of JMSL must need at least six/five/four microphones and four/five/six

sources, respectively, but also making the configurations of JMSL more flexible and efficient.

In addition, the research output in this chapter opens an new research gate for JMSL by challenging

the consensus of minimal configurations during past decades. By breaking the consensus of minimal

configurations for JMSL in state-of-the-arts during the past decades, finding more efficient way to

obtain the solutions of four unknowns can be an new research sub-topic of JMSL, though further

reducing the number of microphones and sources might be another alternative research direction for

JMSL.



Chapter 6

Conclusion and Future Work

6.1 Summary

This PhD thesis addresses the asynchronous self-localization of microphones and audio sources by

proposing a TSF, enhancing the efficiency of accuracy for self-localization. First, I demonstrate the

equivalence of TOA and TDOA, proving that microphone signals alone suffice for self-localization,

thereby simplifying the task, making the task of self-localization more efficient. Then a CLRA

method is introduced to estimate the UTIm for asynchronous TOA/TDOA, which helps obtain the

accurate range measurements between microphones and sources. Finally, the primary focus of

this thesis is to relax the minimal configurations required by state-of-the-art methods from the past

decades by using the range measurements between microphones and audio sources, enhancing the

efficiency of self-localization .

In Chapter 2, a comprehensive literature review on audio self-localization is presented, covering TOA-

based, TDOA-based, AOA-based, enerygy-based and pairwise distance estimation methods. Despite

advancements in these areas, several research gaps remain. Firstly, TOA measurements require both

microphone and source signals, whereas TDOA measurements need only microphone signals. After

estimating the UTIm for TOA and TDOA, TOA provides range measurements between microphones

and sources, while TDOA only offers range differences relative to the source. Range measurements

are more informative for self-localization. Therefore, before estimating the UTIm, unifying TOA

and TDOA is crucial so that range measurements can be obtained using only microphone signals.

I propose a solution for this in Chapter 3. Secondly, after unifying TOA and TDOA, the next task

is to estimate the UTIm. Existing LRP is in a risk of getting stuck in local minima if the UTIm

initialization is inappropriate, which is often random. Thus, it is urgent to explore more low-rank

97
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structure information of UTIm. I propose a solution for this in Chapter 4. Third, once the range

measurements between microphones and sources are available, traditional methods have aimed

to achieve minimal configurations for localization using either closed-form or iterative solutions,

typically involving six/five/four microphones and four/five/six sources. The consensus on minimal

configurations is based on having more or equal number of equations (range measurements) than

unknowns (microphone and source locations). However, it remains unexplored to localize both

microphones and sources with fewer than the minimal configurations stated by state-of-the-art

methods, which could make the localization task more efficient. Therefore, I present a numerical

solution in Chapter 5. This chapter also introduced the problem formulation and preliminaries related

to the three challenges mentioned above.

In Chapter 3, I proposed a mapping function for the transformation of TOA and TDOA. With

proposed mapping function, I proved that the transformation of TOA and TDOA can be identical to

each other, challenging the long-term assumptions that TOA measurements needs to be estimated

with both microphones and sources signals, obtaining the range measurements between microphones

and sources once the UTIm in TOA/TDOA is estimated, making the task of self-localization more

efficient.

In Chapter 4, I proposed a CLRA method for UTIm estimation. Traditional methods use LRP for

UTIm estimation but risk local minima due to random initialization. I introduced three new LRP

variants, supported by mathematical proof, enriching the pool of LRP solutions. I then introduced

four linear constraints for UTIm based on LRP and the proposed variants, and applied the Gaussian

Newton method to solve for the UTIm, achieving a global optimal solution, enhancing the accuracy

of range measurements between microphones and sources for self-localization.

In Chapter 5, I presented a numerical method that transforms the localization problem into the

estimation of four unknowns, deriving their lower and upper boundaries. This allows obtaining

solutions within these boundaries, relaxing the minimal configurations required by state-of-the-art

methods over the past decades. This method shows that fewer microphones and sources are needed

for JMSL than previously thought, making self-localization more flexible and efficient.

6.2 Future Research Plan

In this section, I outline potential future research directions for asynchronous TOA and TDOA-based

self-localization.
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• Enhancing Low-Rank Property Variants: The proposed LRPV1 and LRPV2 methods in

Chapter 4 have limitations related to the number of microphones and sources. Specifically,

LRPV1 maintains the low-rank property only when M −1 > N −1+3 and N −1 > 3, and

LRPV2 maintains it when N − 1 > M − 1+ 3 and M − 1 > 3. These constraints limit the

applicability of the methods for UTIm estimation. To overcome this, future research could

focus on developing new variants of LRPV1 and LRPV2. By reforming their structures using

advanced mathematical operations, their low-rank properties are retained while eliminating

the current limitations.

• Improving the CLRA Method: The proposed CLRA method in Chapter 4 has certain limitations

in its denoising capabilities. One way to address this is to revise the objective function in

Eq. (4.78) to better account for noise in TOA/TDOA measurements. This adjustment could

enhance the CLRA’s denoising performance, thereby improving the accuracy of both UTIm

estimation and the resulting range measurements.

• Optimizing the Numerical Method for JMSL: The numerical method proposed in Chapter

5 aims to relax the minimal configurations required for JMSL in state-of-the-art methods.

However, the method’s search process for the four unknowns is time-consuming. Future

research could explore incorporating energy information from both microphone and source

signals to derive pairwise distances pertaining to pairs of microphones or sources more

efficiently. This approach could significantly speed up the localization process and make the

configurations more flexible and efficient.

• Integrating UTIm Estimation and Localization: Despite the advancements in the proposed TSF

for audio self-localization in this PhD thesis, there remains a gap between UTIm estimation

in the second stage and the localization of microphones and sources in the third stage. The

third stage assumes known range measurements between microphones and sources, which

suggests that four microphones and four sources are sufficient for self-localization. However,

in the second stage, the minimal requirement for the number of microphones and sources

for UTIm estimation is (M − 5)(N − 5) ≥ 8, making four microphones and four sources

insufficient. A potential solution is to design a method that simultaneously estimates UTIm

and performs localization. This would enable more flexible self-localization configurations for

both synchronous and asynchronous scenarios.

• Improved Temporal Estimation in Asynchronous Environments Based on the Proposed CLRA
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Method: Building upon the CLRA technique introduced in this thesis for UTIm in asyn-

chronous environments, future research could further enhance the accuracy and robustness

of temporal estimation. While the proposed method shows significant improvements over

traditional approaches, there is potential for further refinement using advanced machine learn-

ing or optimization techniques. By leveraging the augmented low-rank structural information

from various data sources, future work could reduce errors even in noisy or highly dynamic

environments. The impact of these improvements would be profound in applications such as

human-robot interaction, where accurate temporal estimation is crucial for seamless coordi-

nation, or in elderly monitoring systems, where reliability in localization could significantly

improve safety and response times.

• Multimodal Sensory Fusion Leveraging the Proposed TOA-TDOA Mapping Function: The

novel mapping function between TOA and TDOA developed in this research demonstrates

the potential for using only microphone signals for TOA-based self-localization. Future work

could extend this by integrating other sensory modalities, such as visual or LiDAR data,

with the proposed audio-based framework. This multimodal approach would combine the

advantages of audio self-localization in poor lighting or obstructed environments with visual

or range-based sensors to provide even more robust and accurate localization. The potential

impact would be transformative for autonomous robots navigating in complex environments,

where multimodal fusion could enable more reliable decision-making and interaction. For

applications in elderly care, this could enhance monitoring systems to function in a broader

range of conditions, improving overall safety and coverage.

• Further Reduction in Device Requirements Using the Proposed Numerical Method: This

thesis presents a novel numerical method that reduces the minimum number of microphones

and sources required for effective self-localization. Future research could explore additional

optimizations to further minimize hardware requirements while maintaining or improving

accuracy. By refining the proposed method, it may be possible to achieve accurate localization

with even fewer devices, making the technology more accessible and affordable for practical

deployment. The potential impact of this work is significant for low-cost applications, such

as home security or wearable devices, where minimal hardware is essential. This reduction

in complexity could broaden the scope of audio self-localization, enabling its use in more

resource-constrained environments without compromising performance.
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• Real-Time Self-Localization Systems Based on the Proposed TSF Framework: The TSF

introduced in this dissertation has already demonstrated improvements in both the accuracy

and efficiency of self-localization. Future work could focus on enhancing the real-time

capabilities of this framework by optimizing computational efficiency. This could involve

further developing the algorithms to process data faster or implementing parallel processing

techniques to handle larger datasets in real-time scenarios. The impact of such developments

would be particularly important for time-critical applications, such as autonomous driving or

emergency response systems, where rapid and accurate localization is essential. By achieving

real-time performance, the proposed methods could expand the practical applications of audio

self-localization to dynamic, fast-paced environments where instant responses are crucial.
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[82] Y. Kuang, S. Burgess, A. Torstensson, and K. Åström. A complete characterization and solution to the microphone

position self-calibration problem. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,

pages 3875–3879, 2013.
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