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Abstract: This study presents the formulation and verification of a novel online adaptive 
reconfigurable learning control algorithm (RLCA) for improved longitudinal motion con-
trol and disturbance compensation in Unmanned Aerial Vehicles (UAVs). The proposed 
algorithm is formulated to track the optimal trajectory yielded by the baseline Linear 
Quadratic Integral (LQI) controller. However, it also leverages reconfigurable dissipative 
and anti-dissipative actions to enhance adaptability under varying system dynamics. The 
anti-dissipative actor delivers an aggressive control effort to compensate for large errors, 
while the dissipative actor minimizes control energy expenditure under low error condi-
tions to improve the control economy. The dissipative and anti-dissipative actors are aug-
mented with state-error-driven hyperbolic scaling functions, which autonomously recon-
figure the associated learning gains to mitigate disturbances and uncertainties, ensuring 
superior performance metrics such as tracking precision and disturbance rejection. By in-
tegrating the reconfigurable dissipative and anti-dissipative actions in its formulation, the 
proposed RLCA adaptively steers the control trajectory as the state conditions vary. The 
enhanced performance of the proposed RLCA in controlling the longitudinal motion of a 
small UAV model is validated via customized MATLAB simulations. The simulation re-
sults demonstrate the proposed control algorithm’s efficacy in achieving rapid error con-
vergence, disturbance rejection, and seamless adaptation to dynamic variations, as com-
pared to the baseline LQI controller. 

Keywords: unmanned aerial vehicle; adaptive control; reconfigurable learning algorithm; 
longitudinal motion; disturbance rejection 
 

1. Introduction 
Unmanned Aerial Vehicles (UAVs) are aircraft that operate without the need for an 

onboard pilot, either autonomously or via remote control [1]. They are widely utilized 
across various industries, including commercial applications such as precision agriculture 
and package delivery, as well as critical sectors like disaster response, military surveil-
lance, and environmental monitoring [2,3]. Their ability to carry out missions in challeng-
ing locations while reducing operational costs and ensuring higher precision for aerial 
operations demonstrates their significance in the present world. However, UAV dynam-
ics are difficult to regulate due to their inherent instability, complexity, and nonlinearity 
[4,5]. 
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The dynamic motion of a UAV is generally classified into four categories: directional, 
forward, longitudinal, and lateral [6]. Controlling the longitudinal motion under random 
disturbances is a crucial issue among the many difficulties encountered when working 
with UAVs [7]. When altitude, velocity, and pitch angle change, the UAV moves along 
the vertical axis, which is known as longitudinal motion [6]. An effective longitudinal mo-
tion is necessary to guarantee a steady flight, precise maneuvering, and performing criti-
cal tasks like takeoff, landing, and following a desired flight path, making it a fundamental 
aspect of UAV operation and control [8]. Stabilizing the system is crucial to ensuring a 
smooth operation because UAVs operate in a variety of environments that are subject to 
parametric disruptions [9]. Robust and agile control principles are necessary during the 
longitudinal motion of the UAV to preserve flight stability under the influence of external 
disturbances caused by wind gusts, imprecise sensor measurements, and modeling inac-
curacies that further hinder their flight control [10]. 

1.1. Literature Review 

Over time, much research has been performed to develop a robust control strategy 
for the longitudinal motion of UAVs [11,12]. The Proportional–Integral–Derivative (PID) 
control strategy is commonly used in UAVs owing to its simplicity and effectiveness [13]. 
Although this control method offers computational simplicity and reliability, it struggles 
with handling unmodeled intrinsic nonlinearities, significant error variations, and ran-
dom flight disturbances [14]. Moreover, the offline optimization of the PID gains poses an 
ill-posed problem. The bio-inspired meta-heuristic optimization algorithms, such as par-
ticle swarm optimization and ant colony optimization, have been used to tune the PID 
gains to improve the controller’s adaptability under environmental indeterminacies 
[15,16]. However, they are inherently prone to premature convergence and high compu-
tational complexity [17,18]. 

The advancement of control strategies has led to the exploration of various innova-
tive control techniques for seamless operation [19,20]. When it comes to handling nonlin-
ear dynamics, the fuzzy logic control scheme exhibits effective responsiveness but it is 
challenging to design fuzzy rules and tune their membership functions [21]. Despite its 
reputation for adaptability, the sliding mode control scheme frequently experiences chat-
tering, a symptom brought on by abrupt switching that impairs system performance [22]. 
The model predictive control scheme also offers robust control actions; however, its real-
time implementation is difficult due to the high processing requirements [23]. The H-in-
finity control reduces fluctuations and disturbances; however, the intended transient re-
sponse characteristics may not always be achieved because the said controller’s constitu-
tion requires complex computations [24]. Even though artificial neural network-based 
controllers can adapt to time-varying systems, their reliance on massive datasets limits 
their performance, as it is infeasible to collect data regarding every operating condition 
[25]. 

A popular alternative to traditional controllers is the linear quadratic regulator (LQR) 
which yields optimal control decisions by minimizing a quadratic cost function. It works 
well in a variety of applications because it can deliver optimal control actions while pre-
serving system stability [26]. However, it lacks robustness against nonlinear disturbances 
and parametric uncertainties [27]. The LQR is generally integrated with auxiliary control 
components to adjust to dynamic system requirements. The integration of an integral con-
troller with the typical LQR increases the controller’s reference tracking accuracy and ro-
bustness against disturbances. However, the dependence of LQR, and its variants, on the 
system’s linearized state space model incapacities them to address modeling uncertainties 
and identification errors. 
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Recently, the learning-based control algorithms have garnered a lot of traction owing 
to their self-learning and self-tuning ability. They offer a pragmatic solution to the afore-
mentioned constraints because of their enhanced design flexibility which increases their 
adaptability to manage difficult, time-varying circumstances [28]. They improve perfor-
mance under unprecedented disturbances by allowing the adaptive control law to learn 
the system requirements and dynamically modify parameters. Although online learning 
control algorithms impose a recursive computational burden, modern computing devices 
possess sufficient resources to efficiently handle this computational overhead. 

1.2. Main Contributions 

This study mainly contributes to formulating a novel online Reconfigurable Learning 
Control Algorithm (RLCA) for robust-optimal longitudinal motion control of UAVs, en-
hancing its trajectory tracking accuracy and disturbance compensation. The short-period 
model is employed to model the longitudinal motion dynamics of a UAV. The fixed-gain 
Linear Quadratic Integral (LQI) controller is used as the baseline controller. The proposed 
RLCA is formulated by integrating a dissipative term, an anti-dissipative term, and a 
model-reference tracking term in the derivative-based learning law. Additionally, the 
RLCA is augmented with an auxiliary adaptation block that serves as a superior regulator 
to dynamically adjust the contribution of each control term in generating the final control 
action. The proposed control framework is designed to enhance the closed-loop system’s 
resilience by leveraging adaptive learning strategies while ensuring optimal performance 
across different flight regimes. The novel contributions of this article are listed as follows: 
1. Constitution of a baseline LQI control law for the longitudinal motion control of a 

UAV. The asymptotic stability of the baseline LQI tracking controller is analyzed in 
a subsequent discussion. 

2. Formulation of the proposed RLCA framework that synergistically combines the dis-
sipative, anti-dissipative term, and model-reference tracking control action in the 
learning control law. 

3. Augmentation of the RLCA with a superior layer of state-error-driven hyperbolic 
scaling functions to autonomously modify the learning gains, ensuring robustness 
against disturbances. 

4. Validation of the enhanced performance of the adaptive RLCA scheme over the base-
line LQI controller via customized MATLAB simulations. 
The proposed adaptive RLCA framework significantly enhances the system’s ability 

to handle disturbances while maintaining efficient and stable operation. The proposed 
framework offers several advantages over conventional adaptive controllers. The anti-dis-
sipative control term in the RLCA improves disturbance by ensuring rapid compensation 
of large perturbations. The dissipative term minimizes the control energy expenditure, 
preventing unnecessary actuator strain. Finally, the model-reference tracking term yields 
optimal tracking decisions while preserving closed-loop stability. The adaptive scaling of 
the learning gains ensures smooth transitions between control phases, avoiding sudden 
control discontinuities and mitigating chattering effects. 

The development and validation of the proposed adaptive RLCA framework for ro-
bust longitudinal motion control of a UAV system have not been explored in the existing 
scientific literature. This study addresses this gap by presenting an innovative approach. 

The remainder of the paper is structured as follows: Section 2 outlines the system’s 
mathematical model and the constitution of the baseline LQI tracking controller. Section 
3 details the formulation of the proposed RLCA framework. Section 4 discusses the offline 
parameter tuning procedure. Section 5 presents a comparative analysis of the proposed 
control scheme based on customized MATLAB simulations. Finally, Section 6 concludes 
the paper. 
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2. System Description 
The UAV is a canonical benchmark system chosen for its complex aerodynamics and 

kinematic instability. The dynamic motion of a UAV is generally classified into four cate-
gories: directional, forward, longitudinal, and lateral [29,30]. However, as discussed ear-
lier, this research work focuses solely on the UAV’s longitudinal motion, which is gov-
erned by variations in the vehicle’s pitch angle, forward velocity, and altitude [31,32]. To 
simplify its complex aerodynamic behavior, the nonlinear equations of motion governing 
the UAV’s longitudinal motion are linearized around a steady-state operating condition. 
The longitudinal motion dynamics of a small UAV, Bluebird, are considered for the in-
vestigation of the proposed control scheme in this study [6]. The UAV is assumed to op-
erate in steady, level flight with a constant velocity. The elevator’s deflection angle is ma-
nipulated by appropriately rotating a DC servomotor onboard the UAV. 

2.1. State Space Model 

The state-space model representing the UAV’s longitudinal motion is expressed in 
(1) [11,29]. 

⎣⎢⎢
⎡𝑞ሶ ሺ𝑡ሻ𝑤ሶ ሺ𝑡ሻ𝑝ሶሺ𝑡ሻ𝜃ሶሺ𝑡ሻ⎦⎥⎥

⎤ ൌ ⎣⎢⎢
⎡𝑋 𝑋௪ 𝑋 −𝑔ሺcos𝜃ሻ𝑍 𝑍௪ 𝑍  0𝑀0 𝑀௪0 𝑋  01  0 ⎦⎥⎥

⎤
⎣⎢⎢
⎡𝑞ሺ𝑡ሻ𝑤ሺ𝑡ሻ𝑝ሺ𝑡ሻ𝜃ሺ𝑡ሻ⎦⎥⎥

⎤  ൦𝑋ఋ𝑍ఋ𝑀ఋ0 ൪ 𝛿ሺ𝑡ሻ, 
𝜃ሺ𝑡ሻ ൌ ሾ0 0 1 0ሿ ⎣⎢⎢

⎡𝑞ሺ𝑡ሻ𝑤ሺ𝑡ሻ𝑝ሺ𝑡ሻ𝜃ሺ𝑡ሻ⎦⎥⎥
⎤  ሾ0ሿ𝛿ሺ𝑡ሻ (1)

where 𝑞ሺ𝑡ሻ is the forward velocity, 𝑤ሺ𝑡ሻ is the vertical velocity, 𝑝ሺ𝑡ሻ is the pitch rate, 𝜃ሺ𝑡ሻ  is the pitch angle, and 𝛿ሺ𝑡ሻ  represents the elevator’s deflection angle. It is to be 
noted that 𝑝ሺ𝑡ሻ ൌ 𝜃ሶሺ𝑡ሻ. The coefficients of the system matrix (𝑋, 𝑋௪, 𝑋, 𝑍, 𝑍௪, 𝑍, 𝑀, 𝑀௪, and 𝑀) are denoted as the stability derivatives, while the coefficients of the input 
matrix (𝑋ఋ, 𝑍ఋ, and 𝑀ఋ) are denoted as the control derivatives [29]. The parameter 𝑔 ൌ9.81 m/sଶ  represents the gravitational acceleration, while 𝜃  is the elevator trim. The 
schematic representing the longitudinal flight dynamics of a UAV is shown in Figure 1. 
The coefficients of the system matrix and the input matrix are identified by considering 
the dynamics of the Bluebird UAV, described in [11,30]. 

 

Figure 1. Schematic of the UAV’s longitudinal flight dynamics. 
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Upon the substitution of the model parameter values, expressed in [11,30], the nom-
inal state space model of the UAV system is presented in Equation (2). 

⎣⎢⎢
⎡𝑞ሶ ሺ𝑡ሻ𝑤ሶ ሺ𝑡ሻ𝑝ሶሺ𝑡ሻ𝜃ሶሺ𝑡ሻ⎦⎥⎥

⎤ = ൦−0.045 0.183 0 −0.241−0.312 −1.945 1  00.1520 −22.5110 −2.036 01  0 ൪ ⎣⎢⎢
⎡𝑞ሺ𝑡ሻ𝑤ሺ𝑡ሻ𝑝ሺ𝑡ሻ𝜃ሺ𝑡ሻ⎦⎥⎥

⎤ +   −0.007 0.124−17.1050  𝛿ሺ𝑡ሻ (2)

The vertical movement of the UAV is categorized into the short-period model and 
the long-period model. For the purpose of this study, the short-period model is employed 
as it provides a more accurate representation than the phugoid model [30]. The change in 
the UAV’s vertical velocity 𝑤ሺ𝑡ሻ and its pitch rate 𝑝ሺ𝑡ሻ are sufficient to depict the short-
period motion. The forward flight speed is practically the same. The dynamics of the ver-
tical motion are simplified if 𝑞ሺ𝑡ሻ = 0, and consequently, the short-period model is repre-
sented as follows [11,30]: 𝑤ሶ ሺ𝑡ሻ𝑝ሶሺ𝑡ሻ൨ = ቂ  −1.945  1−22.511 −2.036ቃ 𝑤ሺ𝑡ሻ𝑝ሺ𝑡ሻ൨ + ቂ  0.124−17.105ቃ 𝛿ሺ𝑡ሻ𝑝ሶሺ𝑡ሻ = ሾ0 1ሿ 𝑤ሺ𝑡ሻ𝑝ሺ𝑡ሻ൨ + ሾ0ሿ𝛿ሺ𝑡ሻ  (3)

The short-period model occurs over a brief period, during which changes in pitch 
angle are significant. As a result, the pitch rate 𝑝ሺ𝑡ሻ dominates the dynamics, while vari-
ations in vertical velocity 𝑤ሺ𝑡ሻ  remain relatively small and less significant in practical 
flight conditions [28]. Since short-period motion primarily consists of rapid pitch oscilla-
tions, the influence of 𝑤ሺ𝑡ሻ is negligible compared to 𝑝ሺ𝑡ሻ. Therefore, deriving the trans-
fer function solely in terms of 𝑝ሺ𝑡ሻ simplifies the system without compromising essential 
dynamic behavior [11,30]. Thus, the state-space model in Equation (3) is used to derive 
the system’s transfer function from the elevator’s deflection angle to the UAV’s pitch rate. 
It is expressed in Equation (4). 𝑝ሺ𝑠ሻ𝛿ሺ𝑠ሻ = −17.11𝑠 − 36.06𝑠ଶ + 3.98𝑠 + 26.47 (4)

where 𝑠 is the Laplace operator. The transfer function representing the UAV’s steering 
inertia model (elevator model) is expressed as follows [30]: 𝛿ሺ𝑠ሻ𝑣ሺ𝑠ሻ = 𝐾௦𝜏𝑠 + 1 (5)

where 𝑣ሺ𝑠ሻ is the control input voltage applied to the elevator’s servomotor, 𝐾௦ is the 
servomotor’s gain constant, and 𝜏 is the servomotor’s time constant. As discussed in the 
previous studies, the values of 𝐾௦  and 𝜏  are set at −1  and 0.1  s, respectively, for the 
Bluebird UAV [11,30]. The resulting transfer function depicting the relationship between 
the elevator’s servo control input 𝑣ሺ𝑠ሻ and the UAV’s pitch angle 𝜃ሺ𝑠ሻ is derived in the 
following expression. 𝑝ሺ𝑠ሻ𝑣ሺ𝑠ሻ = 171.1𝑠 + 360.6𝑠ଷ + 13.98𝑠ଶ + 66.28𝑠 + 264.7 (6)

The aforementioned transfer function is converted into the system’s corresponding 
state space model. For this purpose, the transfer function is dissociated into two separate 
blocks, as shown below. 𝑚ሺ𝑠ሻ𝑣ሺ𝑠ሻ = 1𝑠ଷ + 13.98𝑠ଶ + 66.28𝑠 + 264.7 , 𝑝ሺ𝑠ሻ𝑚ሺ𝑠ሻ = 171.1𝑠 + 360.6  (7)

The variable 𝑚ሺ𝑡ሻ  and its higher-order derivatives are chosen as the intermittent 
state variables of the system, relating the servomotor’s rotation to the UAV’s pitch angle. 
The expressions in Equation (8) are transformed into the time domain as shown below. 
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�⃛�ሺ𝑡ሻ + 13.98𝑚ሷ ሺ𝑡ሻ + 66.28𝑚ሶ ሺ𝑡ሻ + 264.7𝑚ሺ𝑡ሻ = 𝑣ሺ𝑡ሻ  (8)𝑝ሺ𝑡ሻ = 171.1𝑚ሶ ሺ𝑡ሻ + 360.6𝑚ሺ𝑡ሻ (9)

To improve the UAV’s longitudinal reference tracking accuracy and robustness 
against bounded perturbations, a supplementary pitch-rate-error integral variable 𝜀ሺ𝑡ሻ, 
expressed in (10), is also included in the system’s mathematical model [33]. 𝜀ሺ𝑡ሻ = න𝑒ሺ𝑡ሻ 𝑑𝑡  (10)such that, 𝑒ሺ𝑡ሻ = 𝜃ሶ − 𝜃ሶሺ𝑡ሻ 

where 𝜃ሶ is the reference pitch rate of the UAV, and 𝑒ሺ𝑡ሻ is the error between the 
reference and the actual pitch rates of the UAV. The error integral variable is rewritten as 
follows: 𝜀ሶሺ𝑡ሻ = 𝜃ሶ − 𝜃ሶሺ𝑡ሻ (11)

Since 𝑝ሺ𝑡ሻ = 𝜃ሶሺ𝑡ሻ; therefore, by substituting Equation (9) in the above equation, the 
following expression is derived. 𝜀ሶሺ𝑡ሻ = 𝜃ሶ − 171.1𝑚ሶ ሺ𝑡ሻ − 360.6𝑚ሺ𝑡ሻ (12)

The state space model of a linear dynamical system is expressed as shown below. 𝑥ሶሺ𝑡ሻ = 𝑨𝑥ሺ𝑡ሻ + 𝑩𝑢ሺ𝑡ሻ + 𝑮𝑟ሺ𝑡ሻ,𝑦ሺ𝑡ሻ = 𝑪𝑥ሺ𝑡ሻ + 𝑫𝑢ሺ𝑡ሻ  (13)

where 𝑥ሺ𝑡ሻ is the state vector, 𝑦ሺ𝑡ሻ is the output vector, 𝑢ሺ𝑡ሻ is the voltage input, 𝑟ሺ𝑡ሻ 
is the reference pitch rate, 𝑨 is the system matrix, 𝑩 is the control input matrix, 𝑮 is the 
reference input matrix, 𝑪 is the output matrix, and 𝑫 is the feed-forward matrix. The 
state, input, reference pitch, and output variables of the said UAV system are expressed 
as Equation (14). 𝑥ሺ𝑡ሻ = ሾ𝑚ሺ𝑡ሻ 𝑚ሶ ሺ𝑡ሻ 𝑚ሷ ሺ𝑡ሻ 𝜀ሶሺ𝑡ሻሿ் ,𝑢ሺ𝑡ሻ = 𝑣ሺ𝑡ሻ, 𝑟ሺ𝑡ሻ = 𝜃ሶ ,𝑦ሺ𝑡ሻ = 𝑝ሺ𝑡ሻ (14)

The state space matrices of Bluebird’s UAV model are expressed in (15). 𝑨 =  0 1 0  00 0 1  0−264.7−360.6 −66.28−171.7 −13.98 00  0  ,𝑩 = 0010 ,𝑮 = 0001, 𝑪 = ሾ360.6 171.1 0 0ሿ,𝑫 = ሾ0ሿ (15)

2.2. Baseline LQI Controller 

The Linear Quadratic Integral (LQI) controller is a state-feedback compensator that 
improves the system’s reference tracking accuracy while reducing overshoots and under-
shoots by introducing an integral error component into the standard LQR framework 
[33,34]. The control law is formulated by minimizing a quadratic cost function, which pe-
nalizes deviations in both system states and control inputs. The cost function is mathe-
matically represented as follows [35]: 𝐽 = 12න ሺ𝑥ሺ𝑡ሻ்𝑸𝑥ሺ𝑡ሻ + 𝑢ሺ𝑡ሻ்𝑹𝑢(𝑡))ஶ

 𝑑𝑡  (16)

The state-weighting matrix 𝑸  ∈  ℝ4×4 is positive semi-definite, while the control-
weighting matrix 𝑹 ∈ ℝ is positive definite. These matrices are customized to provide a 
well-balanced compromise between the system’s control effort and reference tracking ac-
curacy. The proposed UAV system’s 𝑸 and 𝑹 matrices are represented in Equation (17). 𝑸 = diag(𝑞 𝑞ሶ 𝑞ሷ 𝑞ఌሶ ),𝑹 = 𝑝 (17)
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To acquire an asymptotically stable control law, the coefficients of the 𝑸 and 𝑹 ma-
trices are chosen so that 𝑞  0, 𝑞ሶ  0, 𝑞ሷ  0, 𝑞க  0, and  𝑝  0. Section 4 describes 
the offline tuning approach used to configure these coefficients. Once the weighting ma-
trices have been configured offline, the Hamilton–Jacobi–Bellman (HJB) equations are 
solved to obtain the LQI control law. Their solution yields the following algebraic Riccati 
Equation (ARE) [35]. 𝑨்𝑷 + 𝑷𝑨− 𝑷𝑩𝑹ିଵ𝑩்𝑷 + 𝑸 = 0  (18)

The positive definite, symmetric matrix 𝑷 ∈ ℝ4×4 represents the ARE’s solution. The 
state-compensator gain vector 𝑲 is computed as described in Equation (19) [35]. 𝑲 = 𝑹ିଵ𝑩்𝑷  (19)

The optimal LQI control law thus derived from solving the ARE is expressed in Equa-
tion (20). 𝑢(𝑡) = −𝑲𝑥(𝑡) (20)

where 𝑲 = ሾ𝑘 𝑘ሶ 𝑘ሷ 𝑘ఌሶ ሿ. This integral component enhances the system’s ability to 
eliminate steady-state errors and improves disturbance rejection. 

Stability Proof: The LQI controller’ stability is established via the following Lyapunov 
function, ensuring asymptotic convergence under appropriate weight selection [33]. 𝑍(𝑡) = 𝑥(𝑡)்𝑷𝑥(𝑡)  0, for 𝑥(𝑡) ് 0 (21)

The first derivative of 𝑍(𝑡) is obtained as illustrated below. 𝑍ሶ(𝑡) = 2𝑥(𝑡)்𝑷𝑥ሶ(𝑡) = 2𝑥(𝑡)்𝑷(𝑨 − 𝑩𝑲)𝑥(𝑡) = 2𝑥(𝑡)்𝑷(𝑨 − 𝑩𝑹ିଵ𝑩்𝑷)𝑥(𝑡) = 𝑥(𝑡)்(𝑷𝑨 + 𝑨்𝑷)𝑥(𝑡) − 2𝑥(𝑡)்(𝑷𝑩𝑹ିଵ𝑩்𝑷)𝑥(𝑡) 

(22)

Substituting Equation (18) into Equation (22) simplifies 𝑍ሶ(𝑡), as expressed below. 𝑍ሶ(𝑡) = −𝑥(𝑡)்𝑸𝑥(𝑡) − 𝑥(𝑡)்(𝑷𝑩𝑹ିଵ𝑩்𝑷)𝑥(𝑡)  ൏ 0 (23)

The expression in Equation (22) depicts that 𝑍ሶ(𝑡) becomes a negative definite func-
tion if 𝑹 = 𝑹்  0  and 𝑸 = 𝑸்  0 . Hence, fulfilling the aforementioned prerequisites 
serves to preserve the asymptotic stability of the LQI control law. The schematic of the 
LQI control architecture used for the UAV’s longitudinal motion control is shown in Fig-
ure 2. 

 

Figure 2. Schematic of LQI control law for UAV’s longitudinal motion control. 
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3. Proposed Control Methodology 
A fixed-gain LQI controller has various drawbacks in UAV longitudinal motion con-

trol owing to its inability to adapt to changing flight conditions. Since it operates with 
fixed state feedback gains, the typical LQI controller has difficulty dealing with wind dis-
turbances, payload variations, and changes in actuator dynamics and other aerodynamic 
parameters [33]. Parametric uncertainties caused by variations in both payload and actu-
ator dynamics affect key system parameters, modifying the UAV’s dynamics. The fixe-
gain LQI controller generally results in suboptimal performance, where high-gain settings 
result in excessive control effort and actuator saturation, while a low-gain design compro-
mises tracking precision and disturbance rejection. Furthermore, the fixed-gain LQI con-
troller does not dynamically modify its reaction to exogenous disturbances during a given 
flight phase, resulting in slow response speed, forceful oscillations, overshoots, or even 
instability since the controller lacks real-time adaptation to overcome unanticipated per-
turbations. To overcome these limitations, an LCA was investigated in this study. 

3.1. Learning Control Algorithm (LCA) 

The LCA scheme is formulated by incorporating model-reference tracking, dissipa-
tive, and anti-dissipative terms, which allows the control scheme to robustly suppress os-
cillations in nominal conditions while intensifying control efforts under severe disturb-
ances, ensuring fast yet smooth recovery. The baseline LCA is formulated in Equation (24) 
[36]. 𝑢ሶ (𝑡) = −𝛽𝑢(𝑡) + 𝛾 ቀ𝑢(𝑡) − 𝑢(𝑡)ቁ + 𝛿 ቀ𝑒ఏ(𝑡) + 𝜌𝑒ఏଷ(𝑡)ቁ sign൫𝑒ሶఏ(𝑡)൯ (24)such that, 𝑒ఏ(𝑡) = 𝜃 − 𝜃(𝑡) 

where 𝜃 is the reference pitch angle of the UAV, and 𝑒ఏ(𝑡) is the error between the 
reference and the actual pitch angles of the UAV, 𝑢(𝑡) represents the control effort gen-
erated by the LQI control law in (20), 𝛽 represents the control-decay rate, 𝛾 represents 
the model-reference tracking rates, 𝛿 represents the disturbance-rejection rate, and 𝜌 is 
the predetermined weight of the error cube signal 𝑒ఏଷ(𝑡). These parameters are optimized 
offline by using the tuning procedure discussed in Section 4. The LCA formulation com-
prises the three distinct control components presented in Table 1. 

Table 1. Description of constituent terms in the control law. 

Control Term Mathematical Expression 
Dissipative term −𝛽 𝑢(𝑡) 
Model-reference tracking term 𝛾 ቀ𝑢(𝑡) − 𝑢(𝑡)ቁ 

Anti-dissipative term 𝛿 ቀ𝑒ఏ(𝑡) + 𝜌𝑒ఏଷ(𝑡)ቁ sign൫𝑒ሶఏ(𝑡)൯ 
The model-reference tracking term is tasked to operate under moderate error condi-

tions. The dissipative and anti-dissipative control terms manipulate the control system’s 
adaptability under very small error (equilibrium) or very large error (disturbance) condi-
tions, respectively. The following rationale is used to formulate the LCA [36]. 

The model-reference tracking term assists the LCA to track the baseline LQI control-
ler, 𝑢(𝑡), which acts as a reference control law under normal operating conditions. By 
aligning with the LQI baseline, the LCA ensures stability and optimal state regulation in 
the absence of major disturbances, resulting in smooth system operation and low control 
effort. Additionally, it also ensures smooth transitions between the dissipative and anti-
dissipative terms. 

The dissipative component regulates the system’s energy dissipation under small er-
ror conditions, ensuring a steady and controlled convergence to equilibrium while 
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avoiding excessive servo control requirements. It exponentially reduces the applied con-
trol effort when the system’s response is converging (or settling at) the desired reference 
or when the anti-dissipative term becomes fragile. 

The anti-dissipative component introduces robust corrective actions under large er-
ror conditions by appropriately amplifying (or attenuating) the applied control input in 
response to the system’s error phase under major disturbances, effectively counteracting 
perturbations and accelerating transient recovery. 

The anti-dissipative component is realized by utilizing the error phase information 
of the system’s state response under exogenous disturbances. Figure 3 illustrates the error 
profile of an arbitrary system subjected to an external disturbance, highlighting four dis-
tinct error phases (A to D) [37]. When the system response deviates from the reference 
(phases A and C), the product of the state error and its derivative becomes positive, indi-
cating divergence and necessitating a stiff control action. In contrast, the said product be-
comes negative when the response is converging to the reference (phases B and D), and 
thus, necessitates a softer control application. 

 

Figure 3. Error profile of a system under disturbance [37]. 

The above rationale is mathematically formulated to define the phase-informed anti-
dissipative term, ℎ(𝑡), as presented in Equation (25). ℎ(𝑡) = ቀ𝑒ఏ(𝑡) + 𝜌𝑒ఏଷ(𝑡)ቁ sign൫𝑒ሶఏ(𝑡)൯  (25)

where 𝜌 is the predefined weighting coefficient of 𝑒ఏଷ(𝑡). It is optimized offline by using 
the tuning procedure discussed in Section 4. The signum function, sign(. ), is expressed as 
follows: 

sign൫𝑒ሶఏ(𝑡)൯ = ቐ 1, 𝑖𝑓 𝑒ሶఏ(𝑡)  00, 𝑖𝑓 𝑒ሶఏ(𝑡) = 0−1, 𝑖𝑓 𝑒ሶఏ(𝑡) ൏ 0 (26)

The error cube polynomial ቀ𝑒ఏ(𝑡) + 𝜌𝑒ఏଷ(𝑡)ቁ in the anti-dissipative term introduces 
distinct amplified and attenuated error regions, as shown in Figure 4, flexibly adjusting 
the control response based on error magnitude [38]. It enhances the controller’s respon-
siveness by intensifying control efforts for large errors, ensuring rapid correction while 
attenuating control actions for small errors, preventing excessive actuator activity, and 
minimizing steady-state fluctuations. Consequently, the applied control input exhibits a 
sharp increase in magnitude under significant error conditions, while maintaining a more 
conservative response in near-equilibrium states. 
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Figure 4. Variation pattern of the error cube polynomial with respect to error variations. 

3.2. Reconfigurable Learning Control Algorithm (RLCA) 

To further improve the system’s adaptability to parametric uncertainties, the afore-
mentioned LCA employs a state-error-driven gain modulation mechanism that regulates 
the inclusion of dissipative, model reference tracking, and anti-dissipative control terms. 
The proposed RLCA dynamically reconfigures the weights applied to its constituent con-
trol components based on state error variations, ensuring efficient disturbance rejection 
while preventing excessive control effort. 

This arrangement provides a gradual transition between control phases, minimizing 
chattering and actuator wear. The adaptive weight modulation of the three control terms 
constituting the LCA is governed by a pre-calibrated hyperbolic secant function (HSF). It 
dynamically adjusts the weighting of the model-reference tracking, dissipative, and anti-
dissipative contributions based on state error magnitudes. The HSF is chosen for its 
smooth, even-symmetric waveform, which normalizes the input variables within the 
range of zero to one [38]. The HSF-based adaptive weighting functions are formulated as 
per the following metarules. 
1. For small errors, the adaptation law intensifies the dissipative control action, apply-

ing minimal corrective control. 
2. For moderate errors, a combination of dissipative and model-reference tracking 

terms is deployed to ensure optimal state regulation without excessive control input. 
3. For large errors, the anti-dissipative term is activated to intensify the (phase-in-

formed) control actions for robust disturbance rejection, followed by a gradual tran-
sition back to nominal conditions. 
The aforementioned rationale is diagrammatically expressed in Figure 5. 

 

Figure 5. Rationale of the proposed RLCA framework. 
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The following HSF-based weighting functions are thus constituted to comply with 
the aforementioned metarules. 𝛼ௌ(𝑡) = sech൫𝜇 𝑒ఏ(𝑡)൯ ,𝛼(𝑡) = 1 − 𝛼ௌ(𝑡),𝛼ெ(𝑡) = 2𝛼(𝑡)𝛼ௌ(𝑡) (27)

where sech(. ) represents the HSF, and 𝜇 is the preset positive variation rate of the HSF. 
The waveforms of these hyperbolic gain scaling functions are shown in Figure 6. 

 

Figure 6. Waveforms of the hyperbolic gain scaling functions expressed in (27). 

The dissipative term is weighted by 𝛼ௌ(𝑡) to direct the control law under small error 
conditions, the anti-dissipative term is weighted by 𝛼(𝑡) to direct the control law under 
large error conditions, and the model-reference tracking term is weighted by 𝛼ெ(𝑡) to 
ensure the applied control actions track the nominal LQI trajectory. Parameter 𝜇 is opti-
mized offline by using the tuning procedure discussed in Section 4. The proposed RLCA 
is formulated in Equation (28). 𝑢ሶ (𝑡) = −𝛼ௌ(𝑡)𝛽𝑢(𝑡) + 𝛼ெ(𝑡)𝛾 ቀ𝑢(𝑡) − 𝑢(𝑡)ቁ + 𝛼(𝑡)𝛿 ቀ𝑒ఏ(𝑡) + 𝜌𝑒ఏଷ(𝑡)ቁ sign൫𝑒ሶఏ(𝑡)൯ (28)

If 𝑢(𝑡) = 𝑢(𝑡) − 𝑢(𝑡), the RLCA control law can be rewritten as follows. 𝑢ሶ (𝑡) = −𝛼ௌ(𝑡)𝛽 𝑢(𝑡) + 𝛼ெ(𝑡)𝛾 𝑢(𝑡) + 𝛼(𝑡)𝛿 ℎ(𝑡) (29)

The system continuously refines its control actions based on the formulated algebraic 
law. This differential equation is numerically integrated at each sampling interval, as 
shown in Equation (30), to ensure real-time adaptability. 

𝑢(𝑡) = 𝑒(ିఈೄ(௧)ఉ௧) 𝑢(0) + න൫𝑒൫ିఈೄ(௧)ఉ(௧ି)൯ሾ𝛼ெ(𝑝)𝛾 𝑢(𝑝) + 𝛼(𝑝)𝛿 ℎ(𝑝)ሿ൯௧
 𝑑𝑝 (30)

The control actions are refined online, after every sampling instant, based on the sys-
tem’s state and error variations. The control adaptation process begins by utilizing the 
nominal control signals 𝑢(0) generated by the LQI controller. It is to be noted that as long 
as the power of the exponential term −𝛼ௌ(𝑡)𝛽 is negative definite, the term 𝑒(ିఈೄ(௧)ఉ௧) 
decays to zero as time progresses. To ensure that the power of the exponential term −𝛼ௌ(𝑡)𝛽 remains strictly negative, a small offset ∆= 0.01 is added in 𝛼ௌ(𝑡)𝛽, turning it 
into −(𝛼ௌ(𝑡)𝛽 + ∆). This arrangement prevents it from reaching zero under every operat-
ing condition. The updated control law is shown in Equation (31). 

𝑢(𝑡) = 𝑒(ି(ఈೄ(௧)ఉା∆)௧) 𝑢(0) + න൫𝑒൫ି(ఈೄ(௧ି)ఉା∆)(௧ି)൯ሾ𝛼ெ(𝑝)𝛾 𝑢(𝑝) + 𝛼(𝑝)𝛿 ℎ(𝑝)ሿ൯௧
 𝑑𝑝 (31)
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This behavior signifies that the system is exponentially stable, as the output dimin-
ishes over time. Based on this condition, the finalized RLCA control law is presented in 
Equation (32). 𝑢ሶ (𝑡) = −(𝛼ௌ(𝑡)𝛽 + ∆) 𝑢(𝑡) + 𝛼ெ(𝑡)𝛾 𝑢(𝑡) + 𝛼(𝑡)𝛿 ℎ(𝑡) (32)

Under nominal conditions, the system remains stable as it tracks the LQI controller, 
whose asymptotic stability has been rigorously established in the preceding section. To 
prevent the actuator from saturation under large servo requirements caused by external 
disturbances, the control signal 𝑢(𝑡) is bounded between 0 and 10 V, by using the satu-
ration function of the following form. 

10 𝑠𝑎𝑡൫𝑢(𝑡)൯ = ቐ 10 V,𝑢(𝑡)  10 V𝑢(𝑡), 0  𝑢(𝑡)  10 V 0,𝑢(𝑡) ൏  0  (33)

The combination of these terms allows the controller to dynamically adjust damping 
stiffness and response speed in reaction to disturbances while maintaining closed-loop 
stability. The RLCA updates the weighting of the three control terms constituting the 
LCA, solving the algebraic equations (for adaptive weight modulation) numerically at 
each sampling interval. This self-learning approach strengthens the UAV’s damping con-
trol strength and improves its transient recovery speed against external disturbances dur-
ing the longitudinal motion. The schematic of the RLCA law designed for UAV’s longitu-
dinal motion control, as per the formulations in Equations (27) and (28), is shown in Figure 
7. 

 

Figure 7. Schematic of RLCA framework for UAV’s longitudinal motion control. 

4. Parameter Optimization Procedure 
This section describes the tuning procedure used to offline optimize the coefficients 

of the state and control-weighting matrices, expressed in Equation (17), associated with 
the baseline LQI controller as well as the learning parameters (𝛽, 𝛾, 𝛿, 𝜌, and 𝜇) linked 
with the RLCA scheme. The optimization is carried out by minimizing the cost function 
in Equation (34). 
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𝐽 = න ቂ൫𝑒ఏ(𝑡)൯ଶ + ൫𝑢(𝑡)൯ଶቃ 𝑑𝑡
  (34)

where T is the total duration of a simulation trial. The said cost function captures the 
variations in the system’s state error 𝑒ఏ(𝑡) as well as the applied control input 𝑢(𝑡). The 
function assigns equal weights to both variables to optimize state regulation while econ-
omizing the control energy expenditure. The coefficients of the state and control-
weighting matrices of the LQI controller are chosen within the range of 0 to 100. The pa-
rameters associated with the RLCA are chosen within the range of 0 and 10. Section 5 
outlines the procedure for conducting simulation trials to tune the parameters. All tuning 
parameters are initially set to unity. Figure 8 illustrates the parameter tuning process [33]. 

The tuning begins with initial parameter settings and proceeds iteratively [37]. In 
each trial, the UAV model is tasked to track a step reference position along the longitudi-
nal axis for T = 5.0 s, during which the cost 𝐽, is evaluated; where 𝑘 is the trial number. 
The algorithm searches for optimal parameters by following the descending gradient of 
the cost function. If a new trial results in a lower cost 𝐽, than the cost of the previous 
trial 𝐽,ିଵ, the local minimum 𝐽, is updated. The process stops when either the max-
imum number of trials (𝑘௫) is reached or the cost falls below a predefined threshold. 
This threshold is determined empirically through pilot runs, ensuring a balance between 
computational efficiency and solution accuracy while preventing premature termination. 
To determine the said threshold, the cost for the initial parameter settings is recorded as 𝐽, ≈ 2.47 × 10ସ, and its scaled-down value (heuristically set to 0.05) is used as the al-
gorithm termination criterion. A larger scaling factor increases computational demands, 
while a smaller one risks premature termination. The algorithm is thus concluded when 𝐽, approaches 0.05 𝐽, . 

 

Figure 8. Flow of the parameter optimization procedure [33]. 

Accordingly, the threshold value for 𝐽, as well as 𝑘௫ are set at 1.2 × 10ଷ and 
40, respectively. Thus, the state and control costs optimized are 𝑸 =diag(1.05 31.58 3.22 2.11)  and 𝑹 = 1.02 , respectively. Correspondingly, the LQI 
state feedback gain vector is computed as 𝑲 = ሾ0.66 5.34 3.41 1.85ሿ. Similarly, the 
optimized values of the parameters linked with the RLCA scheme are 𝛽 = 4.092 , 𝛾 =3.87, 𝛿 = 5.63, 𝜌 = 1.48, and 𝜇 = 2.19. 

5. Simulations and Results 
This research adopts a phased approach, with successful simulation results serving 

as a foundation for further experimental validation. Given the preliminary nature of this 
investigative study, meticulous simulations are required to evaluate the proposed con-
troller’s effectiveness and reliability. They allow for repeated refining and optimization, 
resulting in a well-validated framework before moving on to resource-intensive 
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hardware-in-the-loop experiments, improving the likelihood of success in subsequent 
stages. Hence, this section presents the test simulations along with a thorough compara-
tive analysis of the aforementioned longitudinal motion control techniques for a UAV to 
ensure their optimality and resilience in the time-domain. 

5.1. Simulation Setup 

The reference tracking performance of the LQI controller and the proposed RLCA 
are evaluated in the time domain through customized simulations under nominal condi-
tions, sudden wind gusts, constant wind disturbance, cruise altitude adjustments, and 
aerodynamics parameter variations. The control application is implemented in 
MATLAB/Simulink R2020b and executed on a 64-bit embedded computer (2.1 GHz CPU, 
12 GB RAM). The sampling frequency is set at 250 Hz. As outlined in Section 2, the longi-
tudinal motion dynamics of a small UAV, Bluebird, are considered to validate the pro-
posed controller’s effectiveness in tracking the reference trajectory while rejecting the 
bounded exogenous disturbances. The band-limited white noise is incorporated into the 
control input to simulate the effects of moderate turbulence and typical sensor noise en-
countered in UAV operations. In MATLAB/Simulink, the said noise block is configured 
with a noise power of 10−3 and a sampling time of 4.0 msec., ensuring a realistic represen-
tation of sensor disturbances in the system. To prevent the elevator’s actuator saturation, 
the control input signal 𝑢(𝑡) is restricted between 0 and 10 V. 

5.2. Simulation Results 

Five testing scenarios were used to benchmark the proposed RLCA against the LQI 
controller. Simulations evaluated each controller’s performance individually for the UAV 
model being considered. The closed-loop system ensures continuous tracking of the 
UAV’s longitudinal position reference, under every operating condition. In each case, an 
additive white Gaussian noise signal was introduced in the system’s reference input to 
emulate the impact of sensor noise in real-time flight scenarios. 
A. Step reference tracking: This simulation case is used to evaluate the controller’s ability 

to track step changes in altitude under nominal (disturbance-free) conditions. The 
UAV longitudinal model with nominal parameters is used. The test is performed by 
tasking the UAV to track a step reference trajectory of +1.0 deg. The variations in the 
pitch angle of the LQI controller and the RLCA are shown in Figure 9. 

B. Ramp reference tracking: This test case assesses the UAV’s ability to follow continu-
ously changing altitude as a result of cruise altitude adjustments for steady ascent (or 
descent) during long-range flights. A ramp trajectory closely mimics how a UAV’s 
autopilot system adjusts altitude smoothly during the takeoff phase or the landing 
phase. Hence, this test is performed by tasking the UAV model to track the ramp 
reference trajectory of 4.0 deg. peak-to-peak amplitude, +3.0 deg. offset, and a fre-
quency of 0.1 Hz to represent a gradual altitude climb and descent. The reference 
tracking accuracy (or lag) manifested by each controller is presented in Figure 10. 

C. Impulsive disturbance suppression: This simulation is used to test the UAV’s disturb-
ance rejection ability against sudden external forces caused by wind gusts or mid-air 
collision with flying objects. The test is performed by introducing an external pulse 
of ±2.0 V magnitude and 100 ms duration in the control input signal at t = 2.0 s and t 
= 3.5 s, respectively, to observe the system’s transient response. This arrangement 
emulates the application of a short-duration impulsive force under steady flight con-
ditions of the UAV. The time domain profiles of the UAV’s pitch angle, under the 
influence of each controller, are shown in Figure 11. 

D. Step disturbance rejection: This simulation case examines the UAV’s response to sus-
tained external disturbances, such as constant wind disturbance or a sudden change 
in elevator deflection. The test is performed by introducing an external step signal of 
+1.0 V magnitude and 100 ms duration in the control input signal at t = 2.0 s to observe 
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the system’s disturbance recovery response. This arrangement emulates the applica-
tion of a constant external force under steady flight conditions of the UAV. The time 
domain profiles of the UAV’s pitch angle, under the influence of each controller, are 
shown in Figure 12. 

E. Model uncertainties compensation: This simulation evaluates the UAV’s ability to com-
pensate for model uncertainties resulting from variations in actuator dynamics. This 
scenario captures a critical aspect of uncertainty compensation—adjustments in con-
trol system dynamics due to actuator nonlinearities or miscalibrations. The test is 
conducted by increasing the servomotor gain 𝐾௦ by 20% at t = 2.0 s, simulating the 
actuator’s sensitivity to hardware inconsistencies or miscalibrations. The sudden in-
crement in 𝐾௦ modifies the UAV’s state-space model by changing key system pa-
rameters, and altering the elevator’s control response characteristics, which poten-
tially affects the UAV’s pitch stability and tracking accuracy. The time-domain re-
sponses of the UAV’s pitch angle, under the influence of each controller, are pre-
sented in Figure 13. 

F. Performance under extreme conditions: To rigorously assess the robustness of the UAV’s 
control algorithm in extreme real-world conditions, a test case is designed with sim-
ultaneous dynamic variations, external disturbances, and sensor noise. The UAV fol-
lows a continuous ramp reference trajectory, challenging its tracking performance 
under changing setpoints. Sudden impulsive disturbances of ±2.0 V magnitude and 
100 ms duration are injected at discrete intervals to simulate wind gusts or mid-air 
collisions, while band-limited white noise is added to the control input to replicate 
turbulence and sensor noise. Additionally, a 20% increment in the UAV’s servomotor 
gain 𝐾௦ at t ≈ 8.0 s is introduced to assess robustness against model-induced para-
metric uncertainties. The time-domain responses of the UAV’s pitch angle, under the 
influence of each controller, are presented in Figure 14. 

 

Figure 9. Step reference tracking response of the UAV under nominal conditions. 

 

Figure 10. Ramp reference tracking response of the UAV under nominal conditions. 
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Figure 11. Step reference tracking response of the UAV under impulsive disturbances. 

 

Figure 12. Step reference tracking response of the UAV under step disturbance. 

 

Figure 13. Step reference tracking response of the UAV under model uncertainties. 
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Figure 14. Ramp reference tracking response of the UAV under impulsive disturbances. 

5.3. Performance Evaluation and Discussion 

The simulation results are assessed using the following key performance metrics 
(KPMs). 
• RMSEθ: The root mean squared value of the tracking error 𝑒ఏ, calculated as follows: 

𝑅𝑀𝑆𝐸ఏ = ඨ൫𝑒ఏ(𝑛)൯ଶ𝑛  (35)

where 𝑛 represents the total number of samples. 
• OS: The peak deviation observed during the start-up phase of the response; 
• Tset: The duration required for the system response to settle within ±2% of the refer-

ence value; 
• Mpeak: The maximum deviation (overshoot or undershoot) that occurs following a dis-

turbance; 
• Trec: The time taken for the response to stabilize within ±2% of the reference value 

after experiencing a disturbance. 
Table 2 presents a quantitative summary of the simulation results, demonstrating the 

robust tracking and disturbance rejection capabilities of the proposed control law. The 
results validate that the proposed RLCA robustifies control performance by ensuring a 
balanced trade-off between aggressive and conservative control actions, improving tran-
sient response, and preserving steady-state accuracy. 

Table 2. Summary of experimental results. 

Experiment 
Performance Index Control Procedure 
Symbol Unit LQI RLCA 

A 
RMSEθ deg. 0.017 0.013 
OS deg. 0.246 0.027 
Tset sec. 0.516 0.296 

B 
RMSEθ deg. 0.127 0.026 
OS deg. 1.537 0.217 
Tset sec. 0.514 0.288 

C 

RMSEθ deg. 0.027 0.019 
OS deg. 0.255 0.020 
Tset sec. 0.524 0.252 
Mpeak deg. 0.63 0.31 
Trec sec. 0.305 0.211 

D 
RMSEθ deg. 0.023 0.017 
OS deg. 0.247 0.025 
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Tset sec. 0.520 0.204 
Mpeak deg. 0.333 0.145 
Trec sec. 1.292 0.815 

E 

RMSEθ deg. 0.028 0.015 
OS deg. 0.250 0.010 
Tset sec. 0.517 0.288 
Mpeak deg. 0.735 0.270 
Trec sec. 0.427 0.403 

F 

RMSEθ deg. 0.263 0.081 
OS deg. 1.193 0.046 
Tset sec. 0.496 0.302 
Mpeak deg. 2.958 1.709 
Trec sec. 0.344 0.235 

In Test A (Figure 9), the LQI controller exhibits moderate tracking performance, char-
acterized by noticeable overshoot, oscillations, and an extended settling time. In contrast, 
the RLCA scheme achieves superior tracking accuracy, with minimal overshoot, faster 
convergence, and reduced steady-state fluctuations. In Test B (Figure 10), the LQI control-
ler maintains an oscillatory tracking response and demonstrates sensitivity to sinusoidal 
disturbance, resulting in lag and noticeable degradation in tracking accuracy. Meanwhile, 
the RLCA scheme exhibits greater robustness and adaptability to track the ramp trajec-
tory, while also optimizing control resource allocation. In Test C (Figure 11), the LQI-con-
trolled system shows noticeable deviations from the reference trajectory, followed by a 
slow recovery. In contrast, the RLCA scheme effectively dampens impulsive disturbances, 
quickly restoring the system to its reference position while also attenuating peak over-
shoots. In Test D (Figure 12), the LQI controller struggles to maintain steady-state accu-
racy after a disturbance and exhibits a slower transient recovery. However, the RLCA 
scheme achieves superior trajectory tracking accuracy by efficiently adapting to the step 
disturbance. In Test E (Figure 13), the LQI controller demonstrates poor model error com-
pensation, with large fluctuations in the response. Conversely, the RLCA scheme signifi-
cantly improves disturbance attenuation, resulting in a smoother response. Similarly to 
payload variations, the changes in actuator dynamics also impact the UAV’s state-space 
model by modifying key system parameters. While actuator variations alter control effec-
tiveness, payload changes affect stability derivatives. However, both of these parametric 
uncertainties influence the UAV’s overall flight behavior. Since both scenarios lead to var-
iations in UAV’s system dynamics, the outcomes of Test E validate that RLCA’s adaptive 
control strategy remains effective in compensating for such uncertainties in real time. 

In Test F (Figure 14), the LQI controller exhibits noticeable chattering and sensitivity 
to disturbances in the tracking response, leading to increased tracking error and slower 
stabilization. Specifically, it demonstrates higher RMSEθ, peak deviations, and recovery 
times, resulting in lag and reduced accuracy. Meanwhile, the RLCA scheme significantly 
enhances robustness and adaptability, effectively minimizing tracking error, overshoot, 
and transient recovery time. By adaptively regulating the control resource allocation, the 
RLCA scheme ensures improved disturbance rejection and faster transient recovery, mak-
ing it a superior alternative to the LQI controller. 

The superior performance of the RLCA over the LQI controller is attributed to its 
adaptive gain modulation and structured control strategy. Unlike the fixed-gain LQI, 
which applies uniform control gains irrespective of varying system conditions, the RLCA 
dynamically adjusts its control response based on real-time state errors. This adaptability 
enables it to achieve improved tracking accuracy, faster convergence, and better disturb-
ance rejection. One of the primary advantages of the RLCA is its ability to effectively 



Algorithms 2025, 18, 180 19 of 22 
 

mitigate overshoot while enhancing convergence speed. This is achieved through the in-
terplay of its three constituent control terms: 
• Dissipative control component: Under small error conditions, the dissipative term en-

sures controlled energy dissipation, preventing excessive control input fluctuations 
that could lead to oscillations or overshoot. This mechanism exponentially attenuates 
the applied control action as the system state approaches equilibrium, ensuring a 
smooth and stable convergence. 

• Model-reference tracking component: The RLCA employs an LQI-derived model-refer-
ence tracking term, which acts as a baseline controller under nominal conditions. By 
maintaining alignment with the LQI control law when disturbances are absent, the 
RLCA preserves steady-state accuracy while minimizing unnecessary control effort. 
This ensures that the system operates optimally without excessive control actions 
that could compromise stability. 

• Anti-dissipative control component: In contrast to the LQI controller, which lacks a real-
time adaptive response to exogenous perturbations, the RLCA leverages an anti-dis-
sipative term informed by the phase of the system’s state error. This term intensifies 
control actions under large error conditions, ensuring rapid disturbance rejection. 
The inclusion of an error cube polynomial further amplifies corrective control inputs 
when the system deviates significantly from the reference trajectory, accelerating 
transient recovery while maintaining stability. 
These control components are self-regulated via HSF-based adaptive weight func-

tions, allowing smooth transitions between different control phases while minimizing 
chattering and actuator stress. By dynamically modulating control gains in response to 
real-time system states, the RLCA achieves an optimal balance between aggressive cor-
rection during disturbances and conservative control near equilibrium, which accounts 
for its reduced overshoot and faster convergence speed. The synergistic combination of 
the aforementioned three control actions enhances the controller’s adaptability by ena-
bling it to flexibly manipulate the control trajectory as per the state error variations. 

These theoretical insights are corroborated by the simulation results, where the 
RLCA consistently demonstrates lower RMSEθ values, reduced peak deviations, and 
shorter settling times across multiple test scenarios, including nominal tracking, impul-
sive disturbances, and model uncertainties. This highlights the RLCA’s robustness and 
adaptability, making it a more effective solution for UAV longitudinal motion control 
compared to the fixed-gain LQI controller. 

6. Conclusions 
This study presents the methodical formulation of an innovative RLCA framework 

for robust optimal longitudinal motion control of UAVs, enhancing its trajectory tracking 
precision and disturbance rejection capacity. The baseline elevator position control proce-
dure is realized by implementing a fixed-gain LQI tracking control law. However, the 
baseline LQI controller is limited by its inability to adapt to disturbances and changing 
flight conditions, resulting in either excessive control effort or poor tracking performance. 
Therefore, the baseline control procedure is supplemented by augmenting it with a learn-
ing-based adaptative control law that employs self-adjusting dissipative, anti-dissipative, 
and model-reference tracking control terms. The resulting RLCA scheme dynamically 
modulates its learning gains, ensuring robust disturbance rejection, smoother transitions, 
reduced control energy consumption, and enhanced stability during the vertical (longitu-
dinal) flight phase of the UAV. By dynamically balancing aggressiveness and conserva-
tism in control actions, the RLCA effectively reduces overshoot, enhances convergence 
speed, and ensures robust trajectory tracking, making it a more reliable choice for UAV 
longitudinal motion control. The proposed control algorithm is benchmarked against the 
baseline LQI controller by performing credible MATLAB simulations. The simulation 
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results verify that the structured adaptability allows the RLCA to outperform the tradi-
tional LQI control in managing the UAV’s longitudinal motion under bounded exogenous 
disturbances. 

Several potential research directions can be explored in the future to further enhance 
the robustness of the proposed RLCA for UAV longitudinal motion control. The effective-
ness of the RLCA framework can be further validated through hardware-in-the-loop flight 
experiments to assess its practical feasibility under real aerodynamic conditions and actu-
ator constraints. The hyperbolic gain scaling mechanism of the learning gains can be re-
placed by fuzzy inference systems, neural networks, or other computational intelligence 
algorithms. To validate the RLCA’s adaptability to payload variations, tailored simula-
tions can be conducted that involve variations in the system’s stability derivatives to alter 
the UAV’s mass distribution. Finally, the proposed controller design can be extended by 
employing data-driven and reinforcement-learning-based schemes to analyze the sys-
tem’s adaptability, practicality, and computational complexity in real-time applications. 
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