
Academic Editor: Soghomon

Boghosian

Received: 29 January 2025

Revised: 25 February 2025

Accepted: 7 March 2025

Published: 9 March 2025

Citation: Prior, T.J.; Redshaw, C. Tin

Complexes Derived from the Acids

Ph2C(X)CO2H (X = OH, NH2):

Structure and ROP Capability.

Catalysts 2025, 15, 261. https://

doi.org/10.3390/catal15030261

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Tin Complexes Derived from the Acids Ph2C(X)CO2H (X = OH,
NH2): Structure and ROP Capability
Timothy J. Prior and Carl Redshaw *

Plastics Collaboratory, Chemistry, School of Natural Sciences, University of Hull, Cottingham Road,
Hull HU6 7RX, UK; t.prior@hull.ac.uk
* Correspondence: c.redshaw@hull.ac.uk

Abstract: Interaction of [Sn(OtBu)4] with the acid 2,2′-diphenylgylcine, Ph2C(X)CO2H
(X = NH2), affords the complex {Sn[Ph2C(NH2)(CO2)]4}·2MeCN (1·2MeCN) after work-up,
whereas when X = OH (benzilic acid), the complex {Sn[Ph2C(O)(CO2)]2(CH3CO2H)2} (2) is
isolated. In 1·2MeCN, the four 2,2′-diphenylglycinate ligands adopt three different coordi-
nation modes (two N,O-chelates, an O,O-chelate, and a monodentate carboxylate ligand),
whilst in 2, two cis-O,O-chelate ligands are present along with two acetic acid ligands, the
latter being derived from hydrolysis of acetonitrile. Both 1 and 2 have been screened as
catalysts for the ring opening polymerization of ε-caprolactone and δ-valerolactone; for
comparison, the commercial catalyst [Sn(Oct)2], where Oct = 2-ethylhexanoate, and the
precursor [Sn(OtBu)4] have been screened under similar conditions. The products were
of low to high molecular weight for PCL and low to moderate molecular weight for PVL,
with wide Ð values, and they comprised several types of polymer families, including
OH-terminated, OH/OMe-terminated, and cyclic polymers. For both monomers, kinetic
profiles indicated that [Sn(Oct)2] outperformed 1, 2, and [Sn(OtBu)4], though under certain
conditions, 1 and 2 afforded high-molecular weight products with better control.

Keywords: tin complexes; Ph2C-functionalized carboxylic acids; solid-state structures; ring
opening polymerization (ROP); cyclic esters

1. Introduction
Petroleum-based plastics continue to be essential for a variety of everyday applications;

however, the issues associated with global plastic pollution are driving the search for more
environmentally friendly materials [1–3]. With this in mind, much research has focused
on the ring opening polymerization (ROP) of cyclic esters. This process typically employs
a catalyst, which can be either metal- or organic-based [4–12], and in the former case,
the active species tends to be either a metal alkoxide or carboxylate. The other ancillary
ligands bound to the catalytic metal centre also play a crucial role in controlling the local
sterics and electronics of the system and can also greatly influence other properties such
as solubility. Commercially, the catalyst of choice is tin octanoate, [Sn(Oct)2], which was
selected given its high catalytic activity (high reaction and conversion rates), ability to
afford high-molecular weight products, and relatively low cost, despite the cytotoxicity
associated with tin compounds [13]. There is considerable interest in the development
of new tin-based catalysts for the ROP of cyclic esters [14–36]. For example, Limwanich
et al. have recently investigated the microwave-assisted ROP of ε-caprolactone under
solvent-free conditions using n-butyltin(IV) chlorides [36]. We have been investigating
the coordination chemistry of the acids Ph2C(X)CO2H, where X = NH2 or OH [37–45],
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given their ability to impart high crystallinity on subsequent products [46]. Given this, we
have extended our studies of these acids to tin chemistry and report herein two products
arising from the interaction of Ph2C(X)CO2H, X = NH2, OH, with [Sn(OtBu)4], Chart 1.
[Sn(OtBu)4] was chosen as the entry point, despite the increased toxicity associated with
Sn(IV), as solid Sn(II) alkoxides tend to suffer from solubility issues [32]. The tin products
1 and 2 have been screened for their ROP capability with the cyclic esters ε-caprolactone
(ε-CL) and δ-valerolactone (δ-VL). Results are compared against the commercial catalyst
[Sn(Oct)2], where Oct = 2-ethylhexanoate, and the precursor [Sn(OtBu)4], which have been
screened under the same conditions.
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Chart 1. The acids Ph2C(X)CO2H (X = OH, NH2) and the complexes 1 and 2.

2. Results and Discussion
2.1. Diphenylglycine

Reaction of [Sn(OtBu)4] with Ph2C(NH2)(CO2H), dpgH, in refluxing toluene afforded
the complex {Sn[Ph2C(NH2)(CO2)]4}·2MeCN (1·2MeCN) after work-up (extraction into
MeCN). Single crystals suitable for X-ray diffraction were grown from a saturated MeCN
solution on standing for 48h at 0 ◦C. The molecular structure is shown in Figure 1, with
selected bond lengths and angles given in the caption; an alternative view of 1·2MeCN
is given in the Supplementary Materials (Figure S1). The complex crystallises in the
centrosymmetric space group P1 with a single, discrete tin complex in the asymmetric
unit. The central Sn(VI) ion is seven-coordinate; four dpg− anions are bound at the tin
centre, but there are three different coordination modes. The first two dpg anions form
five-membered chelates through the carboxylate and amine group (O1, N1 and O3, N2).
This can be classified using the Harris notation [47] as a [1.011] binding mode. The third
ligand binds through a chelating carboxylate (atoms O5 and O6) in mode [1.110]. The final
ligand binds through a single oxygen of the carboxylate (O7). The different coordination
modes are readily apparent from the carboxylate bond lengths. The assignment was
greatly aided by excellent-quality difference Fourier maps which allowed for H-atoms to be
identified. Hydrogens attached to carbon were fitted with a riding model; those attached to
nitrogen were refined freely, subject to restraints that all N-H distances be the same with
a standard deviation of 0.03 Å, and bond angles were similarly restrained. For the five-
membered chelates, the C-O bond lengths are 1.308(3) and 1.216(3) Å for C1 and 1.298(3)
and 1.216(3) Å for C15. The chelating carboxylate centred on C29 has C-O bond lengths
of 1.282(3) and 1.245(3) Å. The strictly monodentate carboxylate centred on C43 has C-O
bond lengths of 1.302(3) and 1.220(3) Å. There is very minor disorder in the position of one
of the phenyl groups (two orientations in the ratio 0.569:0.431(15)), but this was modelled
conservatively using standard techniques, involving bond length restraints for equivalent
atoms in different disorder components. In addition to the tin complex, the asymmetric unit
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contains two well-resolved molecules of acetonitrile which act as hydrogen bond acceptors
to two NH2 groups of the complex, forming a D1

1(2) hydrogen-bonding motif [48]. The
phenyl rings are orientated in a propellor-like fashion, as noted for a number of benzilate
complexes [49].
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Figure 1. View of molecular structure of {Sn[Ph2C(NH2)(CO2)]4}·2MeCN (1·2MeCN), drawn as 50%
probability ellipsoids. For clarity, unbound solvent molecules have been omitted. Selected bond
lengths (Å) and angles (◦): Sn1—O1 2.0576(16), Sn1—O3 2.0923(18), Sn1—O5 2.1461(18), Sn1—O7
2.0687(16), Sn1—N1 2.2244(19), Sn—N2 2.2208(19); O1—Sn—N1 75.59(6), O3—Sn—N2 75.26(7),
O5—Sn—O6 56.54(6), O1—Sn—O7 161.00(7).

There are no intramolecular hydrogen bonds. There is extensive N-H···N hydrogen
bonding between adjacent molecules, but surprisingly, there are no N-H···O interactions.
Most notably, adjacent molecules related by the inversion centre form an R2

2(14) embrace
through N-H···N hydrogen bonds. There is also evidence for C-H···O interactions between
adjacent molecules.

2.2. Benzilic Acid

Similar use of benzilic acid led to the complex {Sn[Ph2C(O)(CO2)]2(CH3CO2H)2} after
work-up (MeCN) (2). Single crystals suitable for X-ray diffraction were grown from a
saturated MeCN solution, standing for 48h at 0 ◦C. The molecular structure is shown in
Figure 2, with selected bond lengths and angles given in the caption; an alternative view
of 2 is given in the Supplementary Materials (Figure S2). The complex crystallises in the
non-centric space group I-42d, with one half a complex in the asymmetric unit. There is
minor disorder in the position of one of the phenyl groups (two orientations in the ratio
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0.55:0.45(5)), but this was modelled conservatively using standard techniques, involving
bond length restraints for equivalent atoms in different disorder components. Each Sn is
six coordinate, and two doubly-deprotonated benzilic acid ligands form five-membered
chelates to the Sn in a cis fashion. The remaining two coordination sites are completed by
the carbonyl oxygen of acetic acid (C=O distance for the binding oxygen is 1.26(2) Å and
for the C-OH, the C-O distance is 1.34(2) Å). The O-H group is not deprotonated but forms
an intramolecular hydrogen bond to the carbonyl of the benzilic acid with motif S1

1(6). The
crystal as a whole was found to contain a single enantiomer (Flack parameter 0.05(3)). The
acetic acid ligand is thought to arise via the hydrolysis of MeCN; such a process usually
occurs in the presence of an acid or base [50–52].
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Figure 2. View of molecular structure of {Sn[Ph2C(O)(CO2)]2(CH3CO2H)2}, drawn as 30% probability
ellipsoids. For clarity, minor disorder is not shown. Symmetry operation used to generate equivalent
atoms: x, 1.5−y, 1.25−z. Selected bond lengths (Å) and angles (◦): Sn1—O2 2.044(10), Sn1—O3
1.965(8), Sn1—O4 2.073(10); O2—Sn—O3 81.6(4), O2—Sn—O4 169.7(4).

There is no included solvent in the structure despite the fact that four pockets of
approximately 3.6% of the cell volume are present.

1H NMR spectra for 1 and 2 are provided in the Supplementary Materials
(Figures S3 and S4).

3. Ring Opening Polymerization (ROP)
3.1. Ring Opening Polymerization of ε-Caprolactone (ε-CL)

Complexes 1 and 2 have been screened for their ability to act as catalysts for the
ROP of ε-caprolactone (ε-CL), and the results are presented in Table 1. Results for 1
and 2 are compared with the industrially employed catalyst Sn(Oct)2. For 1, the ratio
of [ε-CL]:[Sn] was varied between 100:1 and 1000:1 at 130 ◦C over 24 h under N2 or air.
Complexes 1 and 2 were found to be active under these polymerization conditions with
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similar monomer conversions (≥90%, except for entry 4 at 81%), affording polymers with
moderate to relatively high molecular weights, with 1 under N2 (entry 3, Table 1) affording
the highest at ca. 48,750 Da, albeit with poor control (Ð = 3.81); selected GPC traces are
given in the Supplementary Materials (Figures S5–S11). Interestingly, consistent with the
wide Ð values, the MALDI-TOF spectra revealed several families of products, including
OH-terminated polymers and cyclic polymers (e.g., Figures 3–6). There was evidence of
transesterification, and all observed Mn values were significantly lower than the calculated
values. The polymers obtained using [Sn(Oct)2] consistently gave higher molecular weights
than those obtained using 1 and 2 under the same conditions. MALDI-ToF spectra for the
PCL obtained via the use of [Sn(Oct)2] revealed the products to be mostly linear polymers
with H/OH end groups (e.g., see Figure 6). At ambient temperature (15 ◦C), all complexes
exhibited little or no activity.

Table 1. The ROP of ε-CL over 24 h catalysed by 1, 2 [Sn(Oct)2], and [Sn(OtBu)4)].

Entry Cat. [CL]:[Cat] T/◦C Conv a

(%) Mn(obsv)
b Mn Corrected

c Mn,Cal
d Ð b

1 1 500:1 130 >99 19,330 10,840 56,520 4.95
2 e 1 500:1 130 >99 9150 5140 56,250 1.84
3 1 1000:1 130 91 87,060 48,750 103,890 3.81

4 e 1 1000:1 130 81 16,300 9130 92,470 1.64
5 1 100:1 130 97 20,210 11,320 11,090 2.28

6 e 1 100:1 130 99 7460 4180 11,320 1.87
7 f 1 500:1 130 >99 18,300 10,250 56,520 2.15

8 e,f 1 500:1 130 98 14,020 7850 55,950 1.80
9 1 250:1 130 90 39,410 22,070 25,700 2.01

10 e,f 1 250:1 130 >99 13,840 7750 28,270 3.44
11 f 1 250:1 130 >99 70,370 39,410 28,270 2.01
12 1 500:1 15 0 - - - -

13 e 1 500:1 15 0 - - - -

14 2 500:1 130 >99 47,700 26,710 56,520 1.75
15 e 2 500:1 130 >99 38,880 21,770 56,520 1.48
16 f 2 500:1 130 91 27,580 15,440 51,950 2.02

17 e,f 2 500:1 130 99 9570 5360 56,520 2.00
18 2 500:1 15 44 - - - -

19 e 2 500:1 15 18 - - - -
20 Sn(Oct)2 500:1 130 99 55,530 31,100 56,520 1.91

21 e Sn(Oct)2 500:1 130 56 10,730/3440 6010/1930 31,980 1.21/1.11
22 Sn(Oct)2 500:1 130 92 21,120 11,830 52,520 2.31

23 e,f Sn(Oct)2 500:1 130 >99 10,920 6120 56,520 1.64
24 Sn(Oct)2 500:1 15 0 - - - -

25 e Sn(Oct)2 500:1 15 2 - - - -
26 Sn(OtBu)4 500:1 15 0 - - - -

27 e Sn(OtBu)4 500:1 15 0 - - - -
28 Sn(OtBu)4 500:1 130 >99 57,940 32,450 56,520 7.81

29 f Sn(OtBu)4 500:1 130 99 124,070 69,480 56,520 23.9
a Determined by 1H NMR spectroscopy. b Measured by GPC in THF relative to polystyrene standards; c Mn

calculated values after Mark–Houwink correction [53,54]; Mn corrected = 0.56 × Mn obsd. d Calculated from
([CL]0/[cat]0) × conv (%) × monomer molecular weight (MCL = 114.14) + end groups (H/OH used in this case).
e Conducted in air. f Conducted as a melt.
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families are (i) chain polymer (terminated by 2 OH groups, i.e., HO(C6H10O2)H) [M = 17 (OH) +
1(H) + n × 114.14 (CL) + 22.99 (Na+)], e.g., for n = 70, calc. 8007.8 obsv. 8007.4; (ii) chain polymer
(terminated by 2 OH groups) as sodium adducts [M = 17 (OH) + 1(H) + n × 114.14 (CL) + 22.99 (Na+)],
e.g., for n = 70, calc. 8030.8 obsv. 8032.0. (iii) A minor family can be assigned to chain polymers
terminated by OMe/OH end groups as sodium adducts [M = 31 (OMe) + 1(H) + n × 114.14 (CL) +
22.99 (Na+)], e.g., calc. 8044.8, n = 70, obsv. 8048.3.
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Figure 6. MALDI-ToF spectrum of PCL obtained from entry 22, Table 1 ([Sn(Oct)2], 500:1 melt, air).
The main family is a chain polymer (terminated by 2 OH groups) as sodium adducts [M = 17 (OH) +
1(H) + n × 114.14 (CL) + 22.99 (Na+)], e.g., for n = 35, calc. 4034.4 obsv. 4034.4; n = 70, calc. 8030.8
obsv. 8029.3.

A kinetic study (Figure 7) conducted using 500:1 ([ε-CL]:[cat]) at 110 ◦C revealed the
rate trend [Sn(Oct)2] > 1 > 2 > [Sn(OtBu)4]. Both [Sn(Oct)2] and 1 are rather sluggish over
the first 15 h (about 25 h for Sn(OtBu)4), consistent with a structural change under these
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conditions to a more active species. For the individual kinetic traces, see Figures S12–S15 in
the Supplementary Materials.
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Figure 7. Kinetic runs using [ε-CL]:[cat] = 500:1 at 110 ◦C in toluene.

We note that during metal-free studies, we observed that benzilic acid was active for
the ROP of ε-CL with near quantitative conversions when using high-catalyst loadings
(20:1) at 150 ◦C over 24 h, whereas for diphenylglycine, conversions were ≤5% at 150 ◦C
over 24 h, with or without BnOH present [41].

3.2. Ring Opening Polymerization of δ-Valerolactone (δ-VL)

Based on the ε-CL results, the complexes were screened for the ROP of δ-VL using the
ratio of [VL]:[catalyst] of 500:1 (Table 2). All complexes were found to be active under these
polymerization conditions with monomer conversions (≥77%), affording relatively low to
moderate-molecular weight polymers; selected GPC traces are given in the Supplementary
Materials (Figures S16–S23). Even at ambient temperature, 1, 2, Sn(Oct)2, and [Sn(OtBu)4]
were capable of the ROP of δ-VL with good conversions. This behaviour contrasts with
previous ROP studies, where more robust conditions are usually needed for the ROP of
δ-VL versus ε-Cl [38,39], and it is inconsistent with the thermodynamic parameters for
these lactones [55].

Table 2. The ROP of δ-VL over 24 h catalysed by 1, 2 [Sn(Oct)2], and [Sn(OtBu)4)].

Entry Cat. [VL]:[Cat] T/◦C Conv a

(%) Mn
b Mn corrected Mn,Cal

c Ð d

1 1 500:1 15 81 4400 2510 40,570 1.60
2 e 1 500:1 15 80 3540 2020 40,070 2.57
3 1 500:1 130 >99 7190 4100 49,580 3.24

4 e 1 500:1 130 >99 13240 7540 49,580 1.07
5 f 1 500:1 130 93 17,390/3200 9910/1820 46,570 1.29/1.39

6 e,f 1 500:1 130 >99 5210 2970 49,580 1.61

7 2 500:1 130 88 16,060/3560 9150/2050 44,070 1.17/1.38
8 e 2 500:1 130 >99 13,540 7720 49,580 1.60
9 f 2 500:1 130 94 6040 3380 47,070 2.20

10 e,f 2 500:1 130 99 9560 5450 49,580 2.14
11 2 500:1 15 78 3660 2090 39,060 2.39
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Table 2. Cont.

Entry Cat. [VL]:[Cat] T/◦C Conv a

(%) Mn
b Mn corrected Mn,Cal

c Ð d

12 e 2 500:1 15 77 2860 1630 38,560 2.15
13 Sn(Oct)2 500:1 130 >99 8710 4960 49,580 1.99

14 e Sn(Oct)2 500:1 130 >99 8040 4580 49,580 1.65
15 f Sn(Oct)2 500:1 130 90 4130 2350 45,070 9.78

16 e,f Sn(Oct)2 500:1 130 >99 6620 3770 49,580 2.15
17 Sn(Oct)2 500:1 15 89 2740 1560 44,570 1.89

18 e Sn(Oct)2 500:1 15 88 2450 1400 44,070 1.47
19 Sn(OtBu)4 500:1 15 68 7540/4220 4300/2410 g 34,060 1.03/1.02

20 e Sn(OtBu)4 500:1 15 51 2810/1640 1600/930 25,550 1.03/1.03
21 Sn(OtBu)4 500:1 130 >99 77,970 44,440 49,580 4.27
22f Sn(OtBu)4 500:1 130 >99 38,890 22,170 49,580 2.96

a Determined by 1H NMR spectroscopy. b Measured by GPC in THF relative to polystyrene standards; c Mn

calculated values after Mark–Houwink correction [53,54]; Mn corrected = 0.57 × Mn obsd. d Calculated from
([VL]0/[cat]0) × conv (%) × monomer molecular weight (MVL = 100.12) + end groups (H/OH used in this case).
e Conducted in air. f Conducted as a melt. g Lower Mn

b peaks were also observed at 2480 (Ð 1.02) and 1380
(Ð 1.04).

1H NMR and mass spectra of the PVL again indicated that the products contained both
linear and cyclic species. The MALDI-TOF spectra revealed several families of products, in-
cluding H/OH- and H/OMe-terminated polymers and cyclic polymers (e.g., Figures 8–10;
expansions are given as inserts). As for PCL, there was evidence of transesterification, and
all observed PVL Mn values were significantly lower than the calculated values.
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main family is composed of chain polymers (terminated by 2 OH groups) as sodium adducts [M = 
17 (OH) + 1(H) + n × 114.14 (CL) + 22.99 (Na+)], e.g., for n = 40, calc. 4,046.6, obsv. 4,044.5. 

Figure 8. MALDI-ToF spectrum of PVL obtained from entry 3, Table 2 (1, 500:1, toluene, N2). The
main family is composed of chain polymers (terminated by 2 OH groups) as sodium adducts [M = 17
(OH) + 1(H) + n × 114.14 (CL) + 22.99 (Na+)], e.g., for n = 40, calc. 4046.6, obsv. 4044.5.
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Figure 9. MALDI-ToF spectrum of PVL obtained from entry 10, Table 2 (2, 500:1 melt, N2). The main
family is composed of chain polymers (terminated by 2 OH groups) as sodium adducts [M = 17 (OH)
+ 1(H) + n × 114.14 (CL) + 22.99 (Na+)], e.g., for n = 40, calc. 4046.6 obsv. 4046.3.

Catalysts 2025, 15, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 9. MALDI-ToF spectrum of PVL obtained from entry 10, Table 2 (2, 500:1 melt, N2). The main 
family is composed of chain polymers (terminated by 2 OH groups) as sodium adducts [M = 17 
(OH) + 1(H) + n × 114.14 (CL) + 22.99 (Na+)], e.g., for n = 40, calc. 4,046.6 obsv. 4,046.3. 

 

Figure 10. PVL obtained from entry 10, Table 2 (2, 500:1 melt, air). The main family is composed of 
chain polymers (terminated by OH/OMe groups) as sodium adducts [M = 17 (OH) + 1(H) + n × 114.14 
(CL) + 22.99 (Na+)], e.g., for n = 30, calc. 3,059.2, obsv. 3,061.2). 

A kinetic study (Figure 11) conducted using 500:1 ([ε-CL]:[cat]) at 110 °C revealed the 
rate trend [Sn(Oct)2] > 1 > [Sn(OtBu)4] > 2. In this case, sluggish behaviour is only observed 
for 1 over about 12 h and, as in the case of ε-CL, for Sn(OtBu)4 over about 25 h. For the 
individual kinetic traces, see Figures S24–S27 in the Supplementary Materials. 

Figure 10. PVL obtained from entry 10, Table 2 (2, 500:1 melt, air). The main family is composed of
chain polymers (terminated by OH/OMe groups) as sodium adducts [M = 17 (OH) + 1(H) + n ×
114.14 (CL) + 22.99 (Na+)], e.g., for n = 30, calc. 3059.2, obsv. 3061.2.

A kinetic study (Figure 11) conducted using 500:1 ([ε-CL]:[cat]) at 110 ◦C revealed the
rate trend [Sn(Oct)2] > 1 > [Sn(OtBu)4] > 2. In this case, sluggish behaviour is only observed
for 1 over about 12 h and, as in the case of ε-CL, for Sn(OtBu)4 over about 25 h. For the
individual kinetic traces, see Figures S24–S27 in the Supplementary Materials.
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Figure 11. Kinetic runs using [δ-VL]:[cat] = 500:1 at 110 ◦C in toluene.

4. TGA Measurements
The stability of the complexes at the polymerization temperature was checked by TGA.

The runs indicated that both systems were stable, and in the case of 1·2MeCN, only solvent
of crystallization (MeCN) was lost (with calc./obsv. values of ~7%) (see Figure 12).
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5. Materials and Methods
All manipulations were carried out under an atmosphere of nitrogen using standard

Schlenk line and cannula techniques or a conventional N2-filled glove box. Solvents were
refluxed over the appropriate drying agents and distilled and degassed prior to use, i.e.,
toluene was refluxed over Na; acetonitrile was refluxed over calcium hydride. These were
purchased from commercial sources and used directly. ε-Caprolactone (Fisher Scientific,
Loughborough, UK) and δ-valerolactone (Sigma Aldrich, Gillingham, UK) were dried
over CaH2 and then distilled. Tin tert-butoxide (Sigma Aldrich, UK) was stored under
nitrogen in a dry box. 2,2′-diphenylglycine (Sigma Aldrich, UK) and benzilic acid (Sigma
Aldrich, UK) were dried under vacuum at 80 ◦C for 4 h prior to use. Elemental analyses
were performed at the London Metropolitan University or Xi’an Rare Metal Materials
Research Institute Co., Ltd. (Xi’an, China). FTIR spectra (nujol mulls, KBr windows) were
recorded on a Nicolet Avatar 360 FT-IR spectrometer. 1H NMR spectra were recorded at
400.2 MHz on a JEOL ECZ 400S spectrometer (Peabody, MA, USA), with TMS δH = 0 as the
internal standard or residual protic solvent; chemical shifts are given in ppm (δ). Matrix-
Assisted Laser Desorption/Ionization–Time of Flight (MALDI-TOF) mass spectrometry
was performed on a Bruker III smart beam in linear mode. MALDI-TOF mass spectra were
acquired by averaging at least 100 laser shots. Molecular weights were calculated from the
experimental traces using the OmniSEC software (Malvern Panalytical Ltd., Malvern, UK,
v11.35). For the TGA runs, data were collected on a PerkinElmer TGA 400 (Shelton, CT,
USA) using PyrisTM software (v11.0) and a rate of 10 ◦C per min over the 30 ◦C to 800 ◦C
under N2. Sample weights were typically between 3 and 5 mg.

5.1. Synthesis of {Sn[Ph2C(NH2)(CO2)]4}·2MeCN (1·2MeCN)

Ph2C(NH2)CO2H (1.00 g, 4.40 mmol) and Sn(OtBu)4 (0.90 g (0.85 mL), 2.20 mmol)
were refluxed in toluene (20 mL) for 12 h. On cooling, the volatiles were removed in vacuo,
and the residue was extracted into warm MeCN (30 mL). Removal of the MeCN afforded a
white solid. Yield: 1.02 g, 84% (based on dpgH). C56H48N4O8Sn·2MeCN requires C 65.17,
H 4.92, N 7.60%. Found C 65.26, H 4.89, N 7.71%. IR: 3406bw, 3185bw, 2357w, 2336w, 1958w,
1867w, 1659m, 1575s, 1489m, 1403s, 1318m, 1277m, 1261s, 1209w, 1169m, 1158m, 1094s,
1029s, 941w, 918w, 895m, 803s, 764m, 721m, 699s, 676w, 638m. M.S. 1023 (M+–2MeCN). 1H
NMR (CDCl3) δ: 7.21 (bs, 40H, arylH), 3.45 (bs, 8H, NH2), 1.96 (s, 6H, MeCN).

5.2. Synthesis of {Sn[Ph2C(O)(CO2)]2(CH3CO2H)2} (2)

Ph2C(OH)CO2H (1.00 g, 4.38 mmol) and Sn(OtBu)4 (0.60 g, 1.46 mmol) were refluxed
in toluene (20 mL) for 12 h. On cooling, the volatiles were removed in vacuo, and the
residue was extracted into warm MeCN (30 mL). Removal of the MeCN afforded a white
solid. Yield: 0.92 g, 91% (based on Sn). C32H28O10Sn requires C 55.60, H 4.08%. Found C
55.14, H 3.93%. IR: 1957w, 1881w, 1810w, 1650s, 1560s, 1300s, 1281s, 1210m, 1164s, 1085m,
1047s, 1029s, 1002m, 985m, 940w, 906m, 822m, 783m, 758m, 723s, 698m, 621w. M.S. 404
(M+—acetic acid—doubly deprotonated benzilic acid). 1H NMR (CDCl3) δ: 7.63 (dd, 1H, J
8.0 Hz, J’ 2.4 Hz, arylH), 7.51–7.41 (overlapping m, 7H, arylH), 7.33 (bm, 8H, arylH), 7.17
(bm, 2H, arylH), 7.05 (bm, 2H, arylH), 1.85 (bs, 2H, OH), 1.26 (s, 6H, Me).

5.3. ROP of ε-Caprolactone (ε-CL) and δ-Valerolactone (δ-VL)

The pre-catalyst (0.010 mmol) was added to a Schlenk tube in the glovebox at room
temperature. For ROPs in solution, toluene (5 mL) was added. The appropriate amount
of ε-CL (or δ-VL) was added, and the reaction mixture was then placed into a sand bath
pre-heated at 130 ◦C and heated for the prescribed time (24 h) under either N2 or air.
The polymerization mixture was quenched on addition of an excess of glacial acetic acid
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(0.2 mL) in methanol (50 mL). The resultant polymer was then collected on filter paper and
dried in vacuo. GPC (in THF) were used to determine molecular weights (Mn and Ð) of the
polymer products.

5.4. Kinetic Studies

The polymerizations were carried out at 110 ◦C in toluene (2 mL) using 0.010 mmol of
complex. The molar ratio of monomer to initiator to co-catalyst was fixed at 500:1, and at
appropriate time intervals, 0.5 µL aliquots were removed (under N2) and were quenched
with wet CDCl3. The percent conversion of monomer to polymer was determined using
1H NMR spectroscopy.

5.5. X-Ray Crystallography

In both cases, crystals suitable for an X-ray diffraction study were grown from a
saturated MeCN solution at 0 ◦C. Single crystal X-ray diffraction data were collected by
the UK National Crystallography Service (NCS, Southampton, UK) using a Rigaku Oxford
Diffraction diffractometer operating with a rotating anode X-ray generator and HyPix
6000HE detector (Neu-Isenberg, Germany). Table 3 contains basic crystallographic data
and refinements details. It happens that one structure was collected using a Cu source
and one with a Mo source; this normally reflects which instrument is available at the
NCS at the time the sample is studied. There are not technical reasons for the different
choice of sources. Samples were mounted on Mitegen loops and held at 100 K using an
Oxford Cryosystems nitrogen gas cryostream. Both structures were solved and refined
routinely [56–58]. H atoms were included in a riding model; Uiso(H) was set to 120% of that
of the carrier atoms except for OH, NH3, and CH3 (150%). Further details are presented
in Table 2. CCDC 2410598-9 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from the Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/structures (accessed on 10 January 2025).

Table 3. Crystallographic data for 1·2MeCN and 2.

Compound 1·2MeCN 2

Formula C64H54N6O8Sn C32H28O10Sn
Formula weight 1105.78 691.23
Crystal system Triclinic Tetragonal

Space group P1 I-42d
Unit cell dimensions

a (Å) 14.8890(3) 21.0627(5)
b (Å) 14.9289(3) 21.0627(5)
c (Å) 15.0152(3) 14.9499(5)
α (◦) 114.697(2) 90
β (◦) 104.025(2) 90
γ (◦) 108.449(2) 90

V (Å3) 2590.53(10) 6632.3(4)
Z 2 8

Temperature (K) 100(2) 100(2)
Wavelength (Å) 0.71075 1.54184

Calculated density
(gcm–3) 1.418 1.385

Absorption coefficient
(mm–1) 0.557 6.578

Crystal size (mm3) 0.10 × 0.07 × 0.03 0.25 × 0.20 × 0.12
θ(max) (◦) 61.0 140.0

www.ccdc.cam.ac.uk/structures
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Table 3. Cont.

Compound 1·2MeCN 2

Reflections measured 66,619 43,429
Unique reflections 15,748 3162

Rint 0.056 0.086
Number of parameters 686 195

R1 [F2 > 2σ(F2)] 0.049 0.074
wR2 (all data) 0.131 0.16

GOOF, S 1.05 1.21
Largest difference

peak and hole (e Å−3) 2.61 and −0.61 0.65 and −1.10

6. Conclusions
In conclusion, the use of the acids Ph2C(X)CO2H on reaction with tin tert-butoxide

afforded the complexes {Sn[Ph2C(NH2)(CO2)]4}·2MeCN (1·2MeCN) for X = NH2 or the
complex {Sn[Ph2C(O)(CO2)]2(CH3CO2H)2} (2) for X = OH. These tin-based systems are
active as catalysts for the ROP of ε-caprolactone and δ-valerolactone when employed in
solution (toluene) or as melts under either air or N2. The products are of low to high
molecular weight for PCL (1150–48,750 Da) and low to moderate molecular weight for PVL
(1630–7720 Da), generally with broad Ð (1.48–3.81 for PCL; 1.29–3.24 for PVL). A number
of families were evident in the MALDI-ToF mass spectra, with polymers present assigned
to those terminated with H/OH, H/OMe, and cyclic polymers. Kinetic profiles indicated
that [Sn(Oct)2] outperformed 1 and 2, though under certain conditions, 1 and 2 afforded
high-molecular weight products with better control.
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using 1, 2, [Sn(Oct)2] and [Sn(OtBu)4]. Figures S16–S23. Selected gpc traces for PVL. Figures S24–S27.
Kinetic profiles for PVL formation using 1, 2, [Sn(Oct)2] and [Sn(OtBu)4].
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