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Abstract—Hyperspectral image classification (HSIC) presents
significant challenges due to spectral redundancy and spatial dis-
continuity, both of which can negatively impact classification per-
formance. To mitigate these issues, this work proposes the differen-
tial spatial-spectral transformer (DiffFormer), a novel framework
designed to enhance feature discrimination and improve classifi-
cation accuracy. At its core, DiffFormer incorporates a differen-
tial multihead self-attention mechanism, which accentuates subtle
spectral-spatial variations by applying differential attention across
neighboring patches. The architecture integrates spectral-spatial
tokenization, utilizing 3-D convolution-based patch embeddings,
positional encoding, and a stack of transformer layers augmented
with the SwiGLU activation function—a variant of the gated lin-
ear unit—to enable efficient and expressive feature extraction. In
addition, a token-based classification head ensures robust repre-
sentation learning, facilitating precise pixelwise labeling. Exten-
sive experiments on benchmark hyperspectral datasets demon-
strate that DiffFormer consistently outperforms state-of-the-art
methods in classification accuracy, computational efficiency, and
generalizability.

Index Terms—Differential attention, hyperspectral image
classification (HSIC), spatial-spectral transformer (SST).

I. INTRODUCTION

HYPERSPECTRAL imaging has emerged as a transfor-
mative technology with diverse applications, including

precision agriculture [1], object classification [2], environmental
monitoring [3], urban mapping for mineral exploration [4], [5],
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food processing [6], [7], bakery products [8], bloodstain identi-
fication [9], [10], and meat processing [11], [12]. By capturing
detailed spectral information at the pixel level, hyperspectral
image (HSI) enables fine-grained material classification [13].
However, its practical deployment is constrained by challenges
such as high dimensionality, spectral variability, complex spatial
structures, and the Hughes phenomenon [14], [15]. Addressing
these challenges requires classification frameworks that are not
only highly accurate but also computationally efficient and ca-
pable of effectively integrating spatial-spectral information [16],
[17], [18], [19].

Recent advancements in Transformer-based models have
demonstrated significant success in hyperspectral image classi-
fication (HSIC) by leveraging self-attention mechanisms to pro-
cess image patches effectively [20], [21], [22], [23], [24], [25].
For example, Huang et al. [26] introduced the spectral-spatial
vision foundation model-based transformer (SS-VFMT), which
enhances pretrained vision foundation models (VFMs) with
specialized spectral and spatial enhancement modules. They
further propose a patch relationship distillation strategy (SS-
VFMT-D) to optimize the utilization of pretrained knowledge
and introduce the spectral-spatial vision-language transformer
(SS-VLFMT) for generalized zero-shot classification, enabling
the recognition of previously unseen classes. Although these
methods achieve impressive performance, they are constrained
by high-computational complexity and a strong dependence
on pretrained models, which may limit their adaptability to
domain-specific applications.

Shu et al. [27] proposed a dual attention transformer network
(DATN) for HSIC that integrates a spatial-spectral hybrid trans-
former module to capture global spatial-spectral dependencies
and a spectral local-conv block (SLCB) module to extract lo-
cal spectral features effectively. While DATN enhances feature
representation by combining global and local information, its
reliance on multihead self-attention (MHSA) mechanisms may
still lead to computational overhead. Zhong et al. [28] proposed a
spectral-spatial transformer network that integrates spatial atten-
tion and spectral association modules to address convolutional
limitations while a factorized architecture search framework
enables efficient architecture optimization. Despite achieving
competitive accuracy with reduced computational costs, rely-
ing on a specialized architecture search framework may limit
flexibility for broader applications.

Yang et al. [29] proposed the quaternion transformer
network, which addresses the limitations of traditional
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transformers in HSIC by leveraging quaternion algebra for
efficient 3-D structure processing and spectral-spatial represen-
tation. However, the reliance on hypercomplex computations
may increase implementation complexity and resource require-
ments. Zhang et al. [30] proposed a LiT network that integrates
lightweight self-attention modules and convolutional tokeniza-
tion to balance local feature extraction and global dependency
capture for HSIC. Despite improved efficiency and reduced
overfitting, its reliance on controlled sampling strategies may
limit adaptability to diverse datasets. Yang et al. [31] proposed a
HiT classification network that combines spectral-adaptive 3-D
convolution and Conv-Permutator modules to enhance spatial-
spectral representation in HSIs, addressing convolutional neural
networks (CNNs)’ limitations in mining spectral sequences.
However, the added complexity of these modules may increase
computational overhead. Yu et al. [32] proposed the MST-
Net combining a self-attentive encoder and multilevel features
decoding within an efficient transformer-based framework for
HSIC. However, reliance on sequence-based processing and po-
sitional embeddings may underexploit the inherent 3-D structure
of HSIs. Zhang et al. [33] proposed the MATNet which inte-
grates multiattention mechanisms and transformers for HSIC,
improving boundary pixel classification with spatial-channel
attention and a novel Lpoly loss function. However, reliance
on semantic-level tokenization may limit fine-grained feature
preservation.

Ye et al. [34] introduced a novel differential transformer
architecture designed for noise cancellation. However, its ap-
plicability to HSIC is constrained by several limitations. First,
the reliance on subtractive attention for sparse patterns may
fail to effectively address the spectral redundancy and spatial
discontinuity inherent in HSIC, resulting in suboptimal feature
discrimination. Furthermore, the model is primarily designed
for text-based tasks and lacks essential components such as
spectral-spatial tokenization and domain-specific architectural
adaptations required for high-dimensional remote sensing data,
which are fundamental to spatial-spectral transformers (SSTs).

Moreover, SSTs themselves present several challenges for
instance, training large-scale SST models is computationally
expensive, primarily due to the quadratic complexity of the
self-attention mechanism with respect to sequence length, which
limits scalability [35], [36], [37]. Unlike CNNs, which inher-
ently encode translation invariance through shared-weight con-
volutional filters, SSTs often struggle to maintain robust spatial
representations under minor input translations [38], [39], [40].
In addition, the fixed-size patch tokenization employed in SSTs
may hinder the model’s ability to capture fine-grained spectral-
spatial details, thereby affecting classification performance [41],
[42], [43]. Another critical limitation is the requirement for large
labeled datasets to achieve optimal performance. In data-limited
scenarios, SSTs are prone to overfitting, restricting their ef-
fectiveness in real-world applications with limited annotated
hyperspectral samples [44]. Therefore, this study proposes a
novel framework designed to overcome the aforementioned
limitations through the following key contributions.

1) Differential Attention Mechanism for Localized Fea-
ture Discrimination: The proposed differential MHSA

(DMHSA) mechanism enhances hyperspectral feature
representation by computing differential attention scores.
These scores highlight subtle spectral-spatial variations
while mitigating spectral redundancy and spatial noise, al-
lowing for more discriminative interpixel modeling. This
approach significantly improves classification accuracy by
refining spectral-spatial feature dependencies.

2) Integration of SwiGLU Activation in Spectral-Spatial
Transformers: The differential spatial-spectral trans-
former (DiffFormer) integrates SwiGLU, a variant of
the gated linear unit (GLU) activation function, into the
feed-forward layers of the transformer blocks. SwiGLU’s
adaptive gating mechanism enables selective feature en-
hancement, improving the model’s capacity to capture
intricate spectral-spatial dependencies while maintaining
computational efficiency.

3) Class Token for Unified Spectral-Spatial Representation:
To achieve global spectral-spatial feature aggregation, a
learnable class token is introduced, summarizing infor-
mation across hyperspectral bands. In addition, sinusoidal
positional encoding is applied to hyperspectral data, en-
suring precise spatial and spectral continuity modeling.
This tailored encoding enhances the alignment between
spectral-spatial tokenization and feature representation, a
critical factor for improving HSIC performance.

4) Efficient Patch-Based Spectral-Spatial Tokenization: The
DiffFormer employs a 3-D convolutional patch embedding
strategy that simultaneously extracts spectral and spatial
features while reducing input dimensionality. This method
ensures that essential spectral-spatial relationships are pre-
served, allowing for computationally efficient processing
without sacrificing feature richness.

II. PROPOSED METHODOLOGY

This section introduces the proposed differential SST (Diff-
Former) model for HSIC. DiffFormer integrates differential
attention mechanisms and spatial-spectral tokenization to ef-
fectively encode both spatial and spectral dependencies. The
architectural components and key innovations are illustrated
in Fig. 1. Designed to capture complex spatial and spec-
tral relationships in HSIs, DiffFormer combines convolutional
and transformer-based methodologies. Its core components in-
clude spatial-spectral patch embedding, positional encoding, the
DMHSA module, and a classification head.

A. Spatial-Spectral Patch Embedding

An HSI cube X = {xi, yi} ∈ RH×W×K consists of spectral
vectors xi = {xi,1, xi,2, xi,3, . . . , xi,K}, where xi represents
the spectral information of pixel i, and yi denotes its correspond-
ing class label. Here, H and W define the spatial dimensions
(height and width) of the HSI, while K represents the number
of spectral channels. Each pixel i is described by a spectral vector
xi ∈ Rk, with {xi,1, xi,2, . . . , xi,K} representing its spectral
values, and yi being an integer indicating the class assignment.

The HSI cube is partitioned into overlapping 3-D patches,
where each patch is centered at spatial coordinates (α, β) and
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Fig. 1. Schematic representation of the DiffFormer pipeline for HSIC. The pipeline starts with hyperspectral data preprocessing, where fused patches are generated
and spatial-spectral features are extracted. DMHSA is employed within the encoder to refine the attention mechanism by integrating positional embeddings for
enhanced spectral-spatial relationships. The hierarchical encoding layers aggregate the learned features across L− 1 layers, enabling multiscale representation
learning.

spans P × P pixels across K spectral bands. This results in
a 3-D subregion that encapsulates both spatial and spectral
information. The total number of extracted patches, m, is com-
puted as follows:

m = (H − P + 1)× (W − P + 1) (1)

assuming a stride of s = 1. If the stride s is smaller than the
patch size P , the patches overlap. The overlap ratio, r, is given
as follows:

r = 1− s

P
(2)

where r quantifies the extent of overlap between adjacent
patches. When s = P , no overlap occurs (r = 0), whereas, for
s < P , the patches overlap, with the overlap ratio increasing
as the stride decreases. Each patch undergoes spatial-spectral
patch embedding. A 3-D convolutional layer extracts feature
representations using patches of size P × P ×K, ensuring
efficient spectral-spatial feature learning as follows:

Xpatch ∈ RNpatch×dembed (3)

where Npatch is the number of patches and dembed is the embed-
ding dimension. In addition, a trainable class token is appended
to this sequence to facilitate global feature aggregation.

B. Positional Encoding

To preserve spatial context, a sinusoidal positional encoding
is incorporated into the patch embeddings as follows:

Xpos = Xpatch +PE (4)

where PE ∈ R(Npatch+1)×dembed encodes spatial relationships.
The positional encoding matrix is precomputed using trigono-
metric functions as follows:

PE(pos, 2i) = sin
( pos
100002i/dembed

)
(5)

PE(pos, 2i+ 1) = cos
( pos
100002i/dembed

)
. (6)

In contrast to learnable positional embeddings, sinusoidal en-
coding facilitates smooth interpolation for unseen input lengths,
thereby preserving spatial coherence in hyperspectral data.

C. Differential Multihead Self-Attention (DMHSA)

The core innovation of DiffFormer lies in the DMHSA
module. Unlike conventional MHSA, which primarily captures
global dependencies, DMHSA introduces differential operations
on attention scores to model fine-grained variations—crucial for
HSIC. The standard attention scores are computed as follows:

S =
QKT

√
dhead

(7)

where Q,K,V represent the query, key, and value matrices,
respectively, and dhead is the head dimension. To introduce
differential attention, the DMHSA module computes as follows:

Sdiff = softmax

(
QKT −Δ(QKT )√

dhead

)
(8)

where Δ(QKT ) captures the difference in attention scores
across neighboring spectral-spatial tokens. This formulation ex-
plicitly encodes local contrastive dependencies, distinguishing
spectral features that are critical for fine-grained classification.

The differential operation Sdiff introduces several key bene-
fits: 1) Relative attention dynamics: Unlike absolute attention
scores, Sdiff emphasizes changes in attention values, making it
effective in detecting transitions between consecutive tokens.
2) Enhanced sensitivity to local variations: By highlighting
significant attention shifts, it improves the model’s ability to rec-
ognize fine-grained contextual differences—essential for HSIC
tasks. 3) Sparsity and interpretability: By suppressing uniform
or redundant attention patterns, the differential operation yields
sparse and interpretable attention maps, reducing computational
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overhead. 4) Robustness to noise: The differential formulation
mitigates sensitivity to small perturbations in query-key inter-
actions, making the model resilient in noisy environments. 5)
Sequential dependency encoding: By focusing on attention tran-
sitions, DMHSA naturally captures sequential dependencies,
beneficial for tasks with strong spatial or temporal correlations.
6) Multiscale representation: When combined with hierarchical
or multihead attention, the mechanism effectively captures both
absolute and relative importance across different granularities.
7) Regularization effect: The differential operation helps smooth
attention transitions, preventing abrupt changes that could arise
from overfitting, thereby enhancing model generalization. Fi-
nally, the resulting attention weights are used to compute the
weighted sum of values as follows:

Z = SdiffV. (9)

D. Transformer Encoder Block

Each encoder block integrates DMHSA with the SwiGLU
activation function to enhance feature expressiveness. The
SwiGLU activation is defined as follows:

SwiGLU(x, g) = x� σ(g) + x (10)

where σ(·) denotes the sigmoid function. Layer normalization
and residual connections ensure stable training and effective
gradient flow. The output from the final SST layer is projected
through a dense layer to extract the class token representation.
This class token is then processed by fully connected layers with
L2 regularization to generate the classification logits as follows:

y = softmax(Wzcls + b) (11)

where zcls represents the class token embedding and W,b are
trainable parameters.

E. Computational Complexity and Implementation

To ensure a fair computational cost comparison, we an-
alyze the complexity of DiffFormer relative to both stan-
dard transformer-based and CNN-based architectures. The core
computational component, the DMHSA mechanism, retains
the O(N2

patch · dhead) complexity of conventional self-attention.
However, it introduces computational sparsity by leveraging
spectral-spatial differential scoring, which refines attention
maps and reduces redundant operations.

a) Comparison with CNN-based architectures: Unlike
CNNs, which exhibit O(Npatch · k2 · C2) complexity (where k
is the kernel size and C is the number of channels), DiffFormer
effectively balances global spectral dependence modeling and
localized feature extraction with a comparable parameter foot-
print. This enables better long-range spatial-spectral interactions
while maintaining computational efficiency.

b) Computational cost of DMHSA versus standard MHSA:
The standard MHSA mechanism performs full pairwise atten-
tion computation with complexity as follows:

OMHSA = O(N2
patch · dhead). (12)

TABLE I
SUMMARY OF THE HSI DATASETS USED FOR EXPERIMENTAL EVALUATION

In contrast, DMHSA introduces differential scoring, modify-
ing attention logits as follows:

S′ = S+ λ(S[:, 1 :]− S[:, : −1]) (13)

where S is the self-attention score matrix. This results in an ad-
ditional term ofO(Npatch · dhead), yielding an overall complexity
of

ODMHSA = O(N2
patch · dhead) +O(Npatch · dhead). (14)

Since Npatch � 1 in HSI, the additional term remains asymp-
totically insignificant, leading to a negligible increase in com-
putational overhead ( 4.6%), as verified in our empirical runtime
analysis.

c) Implementation and Experimental Setup: All experi-
ments are conducted using TensorFlow with mixed-precision
training and GPU acceleration for computational efficiency. We
utilize NVIDIA RTX 3090 GPUs for training, employing the
Adam optimizer with a learning rate of 10−4. Performance
is evaluated based on the following metrics overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (κ). To
ensure reproducibility, we use identical random seeds, dataset
partitions, and training hyperparameters across all comparative
models.

III. EXPERIMENTAL DATASETS AND SETTINGS

To validate the efficacy of the DiffFormer, we utilize four HSI
datasets characterized by diverse spatial and spectral features.
This section details the datasets, experimental setup, evaluation
metrics, and comparative results to demonstrate the robustness
and adaptability of the DiffFormer. The experimental datasets
include WHU-Hi-HanChuan (HC) [45], Salinas (SA), Pavia
University (PU), and University of Houston (UH). Table I pro-
vides the experimental datasets’ key details and characteristics.

The experimental settings for evaluating the DiffFormer were
designed to ensure a robust assessment of its performance across
the different datasets. During the training phase, the Adam opti-
mizer from the TensorFlow legacy module is used with a learning
rate of 0.001 and a decay rate of 1× 10−6, helping the model
converge efficiently while minimizing the risk of overfitting. The
training process spans 50 epochs, with a batch size of 56, which
is large enough to allow for efficient gradient updates without
overwhelming the system’s memory capacity. The feed-forward
network within each transformer layer consists of 4× 64 units,
enabling the model to extract rich and complex features from the
input data. To mitigate overfitting, dropout is applied with a rate
of 0.1 and layer normalization is incorporated with an epsilon
value of 1× 10−3 to stabilize the learning process. In addition,
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TABLE II
CLASSIFICATION PERFORMANCE ACROSS DIFFERENT PATCH SIZES ON FOUR

DATASETS, WITH THE HIGHEST VALUES FOR EACH METRIC

HIGHLIGHTED IN BOLD

Fig. 2. Classification performance of different percentages of training sam-
ples.

a kernel regularizer with an L2 penalty of 0.01 is applied to
the model’s weights to further promote generalization and avoid
overfitting. To reduce the dimensionality of the spectral data,
PCA is employed, selecting the top 15 spectral bands that
contribute most significantly to the variance, thereby retaining
the most relevant information for classification.

After training and validating the model, its performance is
evaluated on the test set using several key metrics: OA, which
reflects the proportion of correctly classified samples across all
classes; AA, which provides the mean classification accuracy
per class; per-class accuracy, which evaluates the performance
of the model for each class; and the κ, a measure that accounts
for agreement between the predicted and true labels, adjusted
for chance. These metrics together provide a comprehensive
assessment of the model’s effectiveness in various aspects.

IV. ABLATION AND PARAMETER OPTIMIZATION

The choice of patch size significantly impacts the performance
of HSIC models by influencing the balance between spatial
detail and contextual information. Smaller patches allow the
model to capture fine-grained spatial features but may lack
broader contextual awareness, while larger patches provide more
spatial context but could blur subtle spectral distinctions. The
results in Table II highlight this tradeoff, showing that larger
patch sizes generally yield superior classification performance
across most datasets. However, excessively large patches can
lead to diminishing returns or even performance degradation in
some cases, as seen with the HC and UH datasets. These findings
underscore the importance of selecting an optimal patch size to
maximize classification accuracy while maintaining computa-
tional efficiency.

The number of training samples directly affects the classi-
fication performance of HSIC models by influencing general-
ization ability and robustness. As shown in Fig. 2, increasing
the percentage of training samples generally improves accuracy

Fig. 3. Impact of transformer layer depth on HSIC.

TABLE III
IMPACT OF ATTENTION HEADS ON OA ACROSS FOUR DATASETS

TABLE IV
IMPACT OF DIFFERENT ACTIVATION FUNCTIONS ON DIFFFORMER

across all datasets. However, the rate of improvement diminishes
beyond a certain point, indicating a saturation effect where
additional samples provide marginal gains. The results highlight
the tradeoff between dataset size and computational efficiency,
emphasizing the importance of selecting an optimal training
sample size to balance performance and resource constraints.

Fig. 3 highlights the impact of transformer layer depth on clas-
sification performance in HSIC. The results show that increasing
the number of layers initially improves accuracy, but excessive
depth leads to diminishing returns and potential overfitting.
While deeper models can capture more complex spatial-spectral
dependencies, their performance fluctuates across datasets, in-
dicating dataset-specific optimal depths. These findings empha-
size the need for a balanced architectural design to maximize
accuracy while maintaining computational efficiency.

The number of attention heads directly influences the model’s
ability to capture spatial-spectral relationships in HSIC as shown
in Table III. This test evaluates how varying attention heads
affect classification accuracy. The results reveal that increasing
the number of heads does not always guarantee better perfor-
mance, as optimal accuracy is dataset-dependent. While some
datasets benefit from higher attention diversity, others show
stable or slightly fluctuating accuracy. These findings highlight
the tradeoff between attention richness and model efficiency,
guiding the selection of an optimal head configuration.

Table IV presents a quantitative analysis of the impact of
different activation functions on the performance of DiffFormer.
Among the tested activations, SwiGLU consistently outper-
forms all others, achieving the highest κ, OA, and AA across all
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TABLE V
COMPARISON OF ACTIVATION FUNCTIONS FOR HSIC

datasets. Notably, GELU offers competitive performance, par-
ticularly on PU, but lacks the fine-grained feature sensitivity re-
quired for HSIC. Traditional activations such as ReLU, PReLU,
and ELU show comparatively lower accuracy, indicating that
they may not be optimal for capturing the complex spectral-
spatial dependencies in HSIs. These results demonstrate that
SwiGLU effectively enhances feature expressiveness, leading
to superior classification accuracy.

Table V further provides a qualitative assessment of activation
functions in HSIC based on three critical properties: feature
selectivity, gradient flow, and spectral adaptation. Unlike ReLU,
PReLU, ELU, and GELU, SwiGLU uniquely supports feature
selectivity and spectral adaptation, which are crucial for hy-
perspectral data representation. In addition, SwiGLU exhibits
the best gradient flow, similar to GELU, mitigating vanishing
gradients and improving model stability. The ability of SwiGLU
to selectively amplify relevant spectral-spatial features while
maintaining smooth gradient propagation explains its superior
classification performance in Table IV. These findings highlight
the importance of activation function choice in HSIC and es-
tablish SwiGLU as the most effective activation for DiffFormer,
facilitating robust spectral-spatial representation learning.

Overall, our analysis demonstrates that attention mechanisms,
patch size selection, and training sample allocation significantly
impact HSIC performance. DMHSA consistently outperforms
other attention strategies by effectively capturing spectral-spatial
dependencies, while optimal patch sizes strike a balance between
fine-grained feature extraction and contextual information. In
addition, increasing training samples improves classification
accuracy, though with diminishing returns beyond a threshold.
These findings underscore the importance of designing efficient
attention-based models with well-calibrated input configura-
tions to maximize classification accuracy and computational
efficiency.

V. COMPARATIVE RESULTS AND DISCUSSION

This section presents a detailed discussion of the compara-
tive results of DiffFormer against several SOTA methods. The
selected comparative approaches encompass advanced archi-
tectures that exploit spatial-spectral information, transformer-
based designs, hybrid models, and state-space models (Mamba).
Specifically, we compare DiffFormer with the attention graph
convolutional network (AGCN) [46], the pyramid hierarchical
SST (PyFormer) [47], the spatial-spectral transformer with con-
ditional position encoding (Former) [39], the spectral-spatial
wavelet transformer (WaveFormer) [41], the hybrid convolu-
tion transformer (HViT) [48], the multihead spatial-spectral

TABLE VI
PERFORMANCE COMPARISON ON THE HC DATASET ACROSS CLASSWISE

ACCURACIES, AGGREGATE METRICS, AND COMPUTATIONAL TIME

Mamba‘ [49], and the spatial-spectral wavelet Mamba (Wave-
Mamba) [44]. For all methods, we followed the experimental
settings outlined in their respective papers while uniformly
employing a 12× 12 patch size for input data across all datasets.
This ensures a standardized framework for evaluating classifi-
cation performance, eliminating biases arising from variations
in patch size.

Table VI provides a comprehensive evaluation of various
SOTA models on the HC dataset, reporting per-class accuracy,
OA, AA, κ, and computational time. The results demonstrate
that DiffFormer consistently outperforms other methods across
most metrics, particularly in terms of κ and OA, achieving
99.8664% and 99.3137%, respectively. Notably, DiffFormer
achieves high per-class accuracy for critical classes such as
Strawberry (99.6199%), Cowpea (99.7509%), and Sorghum
(99.9377%), exceeding the performance of the best competitors
such as WaveFormer and HViT. It also demonstrates compet-
itive accuracy for challenging classes such as Water spinach
(99.7222%), whereas other models, such as MHMamba, per-
form significantly worse (70.5555%). In addition, DiffFormer
maintains computational efficiency with a runtime of 3669.13 s,
which is significantly lower than models such as PyFormer
(85926.77 s) and MHMamba (52495.05 s). The qualitative
results presented in Fig. 4 further corroborate the quantitative
findings, showing that DiffFormer produces more accurate and
spatially coherent classification maps compared to its coun-
terparts. Models such as MHMamba and WaveMamba exhibit
noticeable misclassifications and noisy outputs, particularly in
heterogeneous regions. In contrast, DiffFormer achieves smooth
and precise segmentation, effectively capturing spatial-spectral
relationships.

Table VII summarizes the performance across various land
cover classes in the UH dataset. Moreover, Fig. 5 illustrates the
classification maps produced by each model, highlighting spatial
variability and class-specific performance. The results show that
the proposed DiffFormer achieves competitive accuracy across
most classes, outperforming other models in critical categories.
For example, DiffFormer attains a perfect accuracy (100%)
for high-precision classes such as Synthetic Grass, Highway,
and Running Track, demonstrating its robustness in distinguish-
ing spectrally and spatially homogenous regions. Notably, the
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Fig. 4. Classification maps for the HC dataset, highlighting spatial variability and class-specific performance.

Fig. 5. Classification maps for the UH dataset, highlighting spatial variability and class-specific performance.

TABLE VII
PERFORMANCE COMPARISON ON THE UH DATASET ACROSS CLASSWISE

ACCURACIES, AGGREGATE METRICS, AND COMPUTATIONAL TIME

model also achieves superior performance in challenging cate-
gories such as Commercial (100%) and Residential (99.2105%),
where other models show variability. In contrast, models such
as MHMamba underperform in several categories, such as
Parking Lot 2 (62.8205%) and Water (96.2962%), indicating
its limitations in handling complex spectral-spatial variations.

Similarly, HViT exhibits consistent but slightly lower perfor-
mance across most classes, particularly for Road (99.0415%)
and Tennis Court (100%). From an aggregate perspective, Diff-
Former outperforms all competing models, achieving the high-
est OA (99.6229%), AA (99.4594%), and κ (99.5923%). The
second-best model, WaveFormer, delivers comparable perfor-
mance but falls slightly short in terms of AA (99.1512%) and
OA (99.3878%), underscoring the improvements introduced by
DiffFormer. In terms of computational efficiency, DiffFormer
exhibits a balanced tradeoff between accuracy and time, with a
processing time of 219.45 s. While WaveFormer is marginally
faster (146.79 s), its slightly lower performance highlights the
significance of the proposed enhancements in DiffFormer. No-
tably, Former requires the longest processing time (6392.95 s),
making it impractical for large-scale applications.

The results in Table VIII comprehensively evaluate and com-
pare the performance of various models on the SA dataset. From
Table VIII, the proposed model, DiffFormer, outperforms other
models in most aggregate metrics, achieving the highest OA
(99.8152%), AA (99.8546%), and κ (99.7942%). These results
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TABLE VIII
PERFORMANCE COMPARISON ON THE SA DATASET ACROSS CLASS-WISE

ACCURACIES, AGGREGATE METRICS, AND COMPUTATIONAL TIME

Fig. 6. Classification maps for the SA dataset, highlighting spatial variability
and class-specific performance.

indicate superior classification reliability. Classwise accuracies
reveal that DiffFormer maintains consistent performance across
classes, with perfect scores for challenging categories such as
“Broccoli 1,” “Broccoli 2,” and “Stubble,” outperforming mod-
els such as MHMamba, which struggles particularly in “Vinyard
Untrained” with a significantly lower accuracy (73.6378%). Fur-
thermore, DiffFormer demonstrates competitive computational
efficiency with a runtime of 767.71 s, which, while not the
fastest, remains practical compared to WaveMamba’s extensive
runtime of 8526.14 s.

Fig. 6 provides a qualitative comparison of classification
maps. It highlights the spatial consistency and accuracy of Diff-
Former, especially in regions with complex class distributions,
such as “Fallow Rough” and “Vinyard Vertical.” Misclassifica-
tions, evident in other models such as PyFormer and MHMamba,
are significantly reduced in DiffFormer, leading to smoother and
more accurate spatial patterns. In addition, the high fidelity of the
maps corroborates the quantitative superiority of DiffFormer.

TABLE IX
PERFORMANCE COMPARISON ON THE PU DATASET ACROSS CLASS-WISE

ACCURACIES, AGGREGATE METRICS, AND COMPUTATIONAL TIME

Fig. 7. Classification maps for the PU dataset, highlighting spatial variability
and class-specific performance.

Table IX presents a comprehensive comparison of classi-
fication performance on the PU dataset. Notably, DiffFormer
demonstrates superior OA of 99.4623%,κ of 99.2872%, and AA
of 99.1498%, consistently outperforming existing approaches.
In particular, DiffFormer achieves SOTA results for challenging
classes such as Asphalt (99.4972%), Bitumen (99.7493%), and
Shadows (99.6478%). These improvements suggest its effec-
tiveness in capturing spatial and spectral correlations. In con-
trast, AGCN also achieves high performance, with the high-
est AA of 99.5006%, but marginally lower OA and κ . The
Former, PyFormer, and WaveFormer exhibit competitive re-
sults across most metrics but fall behind DiffFormer, espe-
cially in the Bare Soil and Bitumen classes. WaveMamba and
MHMamba, while innovative, exhibit suboptimal performance,
particularly in classes such as Bricks and Gravel, indicating
potential limitations in capturing finer spatial features. From a
computational perspective, DiffFormer balances accuracy with
efficiency, achieving competitive inference time (601.86 s) rela-
tive to Former (383.60 s) and WaveFormer (383.09 s), while sig-
nificantly outperforming models such as PyFormer (2840.00 s)
and WaveMamba (3952.37 s).

The classification maps in Fig. 7 visually highlight the spatial
distribution of predicted labels for each model. DiffFormer
showcases the superior performance of class boundaries and
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reduction in misclassified pixels, especially in heterogeneous
regions such as Meadows and Bare Soil. In comparison, AGCN
and WaveFormer exhibit satisfactory classification but suffer
from subtle boundary inconsistencies. Models such as MH-
Mamba and WaveMamba display noticeable artifacts and re-
duced precision in high-variability regions, consistent with their
lower quantitative performance. Conversely, Former and Py-
Former demonstrate balanced accuracy across large homoge-
neous classes but struggle to preserve spatial details in smaller
regions such as Bitumen and Bricks. The visualization further
validates the effectiveness of DiffFormer in handling spectral-
spatial variability, ensuring high classification accuracy across
diverse land cover types.

VI. CONCLUSION

This article introduced DiffFormer, a novel differential SST
designed to address the challenges of spectral redundancy and
spatial discontinuity in HSIC. The core innovation of DiffFormer
lies in its DMHSA mechanism, which enhances hyperspectral
feature representation by refining spectral-spatial dependencies
through differential attention scoring. In addition, the integra-
tion of the SwiGLU activation function and class token-based
aggregation improves feature discrimination while maintaining
computational efficiency. The proposed patch-based spectral-
spatial tokenization strategy ensures scalable feature extrac-
tion by optimizing input dimensionality without compromising
spectral fidelity. Extensive experiments on benchmark hyper-
spectral datasets validate the superiority of DiffFormer over
SOTA models in both classification accuracy and computa-
tional efficiency. Empirical results demonstrate that DiffFormer
effectively balances spectral feature expressivity and model
complexity, achieving competitive performance with a reduced
computational footprint. The ablation studies further highlight
the impact of DMHSA, SwiGLU, and spectral-spatial tokeniza-
tion in improving generalization and robustness across different
HSI scenarios.

Despite these advancements, several future research
directions remain open. One promising avenue is the
development of adaptive or hierarchical tokenization strategies
that dynamically adjust the granularity of spectral-spatial feature
extraction based on scene complexity, reducing redundant
computations while preserving fine-grained spectral details.
In addition, optimizing transformer architectures for energy
efficiency and hardware acceleration could enable real-time
HSIC on resource-constrained platforms such as UAVs,
CubeSats, and edge devices. Another important direction is the
integration of self-supervised or contrastive learning paradigms
to enhance feature robustness, particularly in scenarios where
labeled hyperspectral data is scarce. Leveraging spectral
similarity constraints or contrastive embeddings could improve
generalization while reducing dependency on extensive manual
annotations. Furthermore, exploring graph-based or attention
fusion techniques could enhance spatial-spectral reasoning
by explicitly modeling interpixel relationships, improving
classification accuracy in complex land cover or remote sensing
applications. Finally, incorporating uncertainty quantification

techniques within DiffFormer could provide better interpretabil-
ity and reliability in decision-making, ensuring its applicability
to critical remote sensing tasks such as disaster monitoring,
precision agriculture, and mineral exploration.
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