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Abstract 

Colloidal particles are used to stabilise multiphase liquids by adsorbing to liquid 

interfaces, but they also serve as model systems for studying self-assembly in two-dimensions. 

The rich variety of interactions at liquid interfaces, e.g., electrostatic, Van der Waals, and 

capillary, provide powerful handles for designing self-assembly. In this thesis, we exploit the 

interplay between particle interactions and particle anisotropy to create complex two-

dimensional structures. Specifically, we use finite element simulations and Monte Carlo 

simulations to study the self-assembly of isotropic and anisotropic colloidal particles at flat and 

curved interfaces.  

Firstly, we study the orientation and localisation of single rod-like particles, and the 

self-assembly of two rods on a cylindrical sessile drop, in both the flotation regime and 

immersion regime. We show we can control the orientation and self-assembly configuration 

through the hight of the drop, particle surface chemistry, and particle geometry. 

Secondly, we study the self-assembly of core-shell spherical particles adsorbed at a flat 

liquid interface. This system is experimentally found to form complex phases when the system 

is compressed. Our simulations reproduce all the key features of the experimental phase 

behaviour and allows us to estimate the underlying soft shell interaction potential. 

Thirdly, we study the self-assembly of core-shell ellipsoidal particles in the absence of 

external compression. Experimentally, this system forms chains of side-to-side particles or 

interconnected triangular lattice structures depending on the particles aspect ratio and shell 

thickness. Our simulations reproduce experimentally observed self-assembled structures as 

well as the trend of how these structures evolve with aspect ratio and shell thickness. 

Finally, we study the self-assembly of polygonal plates with undulating edges, where 

capillary interactions are controlled purely by the shape of the particles. By using different 

combinations of polygon shapes and edge undulations, we show that self-assembly can be 

programmed into the particles through particle shape alone.  
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 Introduction 

Colloids are small solid particles in the size range 1nm - 10𝜇m dispersed in a liquid 

medium. Unknowingly, we interact with colloids daily in the form of milk,1 paints,2 lotions,3 

and many others. Colloidal particles can also be used to stabilise multiphase fluids e.g., 

emulsions4–6, foams7, and bijels8,9 by adsorbing to liquid interfaces. Utilising this phenomenon 

is of particular interest to the medical community, where encapsulation of drugs for targeted 

drug delivery is a new and upcoming treatment method, with hopes to revolutionise difficult 

to treat conditions like cancer.10 

However, colloidal particles at liquid interfaces are also an ideal model system for 

studying self-assembly. For particles with a diameter greater than 10nm, the energy required 

to detach the particles from the interface is much greater than background thermal noise, 

leading to irreversible adsorption.11 For example, a spherical particle with diameter 10nm has a 

detachment energy of ~103𝑘𝐵𝑇 at an air-water interface, meaning typical fluctuations in the 

thermal background noise will not be strong enough to cause detachment. This provides the 

perfect system for studying self-assembly in two-dimensions (2D). Colloidal particles at liquid 

interfaces also exhibit a wide variety of interactions, e.g., electrostatic, Van der Waals, and 

steric, which are qualitatively different compared to the bulk equivalent,12,13 and additionally 

capillary interactions, which have no analogue in the bulk.14 These interactions can be 

exploited to serve as powerful handles to control self-assembly. 

In addition, modern advances in techniques mean that it is now possible to create 

complex colloidal building blocks, including non-spherical colloidal particles such as 

ellipsoids,15,16 cylinders,17,18 cubes,19,20 dumbbells,21–23 core-shell particles,24–26 and patchy 

particles with inhomogeneous surface chemistry.21,27–29 Even more recently, the emergence of 

three-dimensional (3D) printing30,31 and two-photon polymerisation32,33 techniques allow us to 

create colloidal particles with complex 3D shapes on the micron scale. These advances provide 

colloid scientists with more possibilities than ever before to engineer the self-assembly of 

colloids. 

The aim of this thesis is to explore how we can use the interplay between interfacial 

forces and particle anisotropy and morphology to control the self-assembly of colloids at liquid 

interfaces to create a rich variety of complex 2D structures. These 2D materials have potential 

applications in many fields including photonics,34,35 phononics,36,37 plasmonics,38,39 and auxetic 

materials.40 
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The rest of the Thesis is organised as follows: In Chapter 2 we cover the background and 

literature surrounding the topics covered in this Thesis. We start by looking at spherical 

particles and non-spherical particles at flat liquid interfaces, then a generalised theory for 

capillary interactions, before finally looking at the behaviour of colloidal particles at a curved 

interface. 

In Chapter 3 we cover the simulation techniques used within this research, which includes 

the finite element software Surface Evolver which is used to perform static interfacial energy 

calculations, and the Monte Carlo Metropolis method which we used to study the 2D self-

assembly of many particles.  

In the remaining chapters I cover the results of my work over the course of my PhD. 

Starting with studying the self-assembly of rod-like particles on a cylindrical interface using the 

finite element method Surface Evolver. Specifically, in Chapter 4 we study the orientation and 

localisation of single rods, and the self-assembly of two rods in the floatation regime where 

the height of the drop is much larger than the width of the particles. This means that the hard 

steric interactions with the substrate the cylindrical drop sits on does not play any significant 

role determining particle behaviour, and assembly is driven purely through the interaction of 

the particle’s meniscus deformation with the curvature of the interface. 

In Chapter 5, we study a similar problem to Chapter 4 but this time in the immersion 

regime where the height of the drop is comparable or smaller than the width of the particle. 

Here the steric interactions from the substrate play a critical role in the self-assembly. 

In Chapter 6, we use minimum energy calculations and Monte Carlo simulations to study 

the self-assembly of core-shell particles (hard impenetrable core and a soft repulsive shell) 

adsorbed to a liquid interface when the system is compressed. Experimentally, this system is 

observed to form complex self-assembled phases such as particle clusters and complex chains, 

depending on area fraction, relative sizes of the shell to core diameter and the shape of the 

interaction potential. Our simulations reproduce all the key features of the experimental phase 

behaviour and allows us to estimate the underlying soft shell interaction potential. 

In Chapter 7, we use minimum energy calculations and Monte Carlo simulations to study 

the self-assembly of core-shell elliptical particles in the absence of external compression. 

Experimentally, this system is observed to form either chains of side-to-side particles or 

interconnected triangular lattice structures depending on the aspect ratio and shell thickness 

of the particles. Our simulations and theoretical calculations reproduce experimentally 
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observed self-assembled structures as well as the trend of how these structures evolve with 

aspect ratio and shell thickness. 

In Chapter 8 we use both Surface Evolver and Monte Carlo simulations to study the self-

assembly of polygonal plates with undulating edges interacting through capillary forces. Here 

the capillary interactions are not controlled by surface chemistry but purely by the shape of 

the particles. By using different combinations of polygon shapes and edge undulations, we are 

able to obtain a rich variety of 2D structures, including hexagonal close packed, honeycombs, 

Kagome and quasicrystal lattices.  

Finally, in Chapter 9, we summarise the key conclusions from the thesis and discuss 

potential future work. 
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 Background and Literature Survey 

In this Chapter we will review the background theory and literature for the 

thermodynamics of single particles and the assembly of multiple particles adsorbed at liquid 

interfaces, where the selection of the material is based on what is most relevant to the rest of 

the thesis. We initially look at spherical and anisotropic rod-like particles at a flat interface 

then look at more complex particle shapes, such as polygons and cubes. Once we have an 

intuition about the behaviour of particles at a flat liquid interface, we revisit the problem by 

studying the system in a more mathematical way. Finally, we expand our discussion to include 

the assembly of particles at curved liquid interfaces.  

2.1 Spherical Particles at flat Fluid Interfaces 

We start by looking at the simplest example, a single spherical particle adsorbed to a 

flat interface between two immiscible fluids, for now we will neglect the effect of gravity and 

discuss that later in this section. For convenience in the thesis, unless otherwise stated, we will 

call the top fluid phase oil and the bottom phase water, though our discussion in fact applies 

to interfaces between any two immiscible fluids. Particles adsorb to the oil-water interface to 

minimise unfavourable contact between the two immiscible fluids. This creates two new, more 

favourable interfaces, the particle-oil, and particle-water interfaces. The addition of the new 

interfaces now means that there is a line around the particle where all three phases (particle, 

water, and oil) meet, referred to as the three-phase contact line.  
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Figure 2.1: A spherical particle adsorbed to an oil-water interface with different surface chemistries. (a) 
A hydrophilic particle with contact angle 𝜃𝑤 < 90°,  (b) a neutrally wetted particle with contact angle 
𝜃𝑤 = 90°, (c) a hydrophobic particle with contact angle 𝜃𝑤 > 90°.   

The three-phase contact line’s position on the particle is controlled by the balance of 

all surface tension forces from each of the three interfaces. Depending on the surface 

chemistry of the particle, the particle may prefer to be more in the water (hydrophilic) or more 

in the oil (hydrophobic). In Figure 2.1 we show examples of particles with different surface 

chemistries at an oil-water interface. At the three-phase contact line the oil-water surface 

tension 𝛾𝑜𝑤 pulls along the interface, and the particle-oil and particle-water surface tension 

𝛾𝑝𝑜 and 𝛾𝑝𝑤 respectively, pulls tangentially to the surface of the particle at the contact point. 

The balance of these surface tension forces along the tangential plane to the particle at the 

three-phase contact line can be rearranged and written as 

cos 𝜃𝑤 =
𝛾𝑝𝑜 − 𝛾𝑝𝑤
𝛾𝑜𝑤

  (2.1) 

where 𝜃𝑤 is the angle between the oil-water interface and the tangential plane to the particle 

measured towards the more polar bulk fluid (i.e., water in this case), referred to as the contact 

angle. Equation (2.1) is known as Young’s equation, and importantly highlights that around the 

contact line, there must be a constant contact angle 𝜃𝑤.13 For spherical particles, the constant 
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contact angle 𝜃𝑤 can be satisfied by changing the height of the particle relative to the 

interface. If 𝜃𝑤 < 90° the spherical particle is more submerged in the water phase and 

therefore referred to as hydrophilic (Figure 2.1a). If 𝜃𝑤 = 90° the spherical particle is equally 

submerged in the water and oil phases and therefore referred to as neutral or neutrally wetted 

(Figure 2.1b). If 𝜃𝑤 > 90° the spherical particle is more submerged in the oil phase and 

therefore referred to as hydrophobic (Figure 2.1c). 

 The change in the particle’s centre of mass relative to the interface causes a change in 

interfacial area between the three phases, which changes the interfacial energy. The interfacial 

energy of the system 𝐸𝑖𝑛𝑡 can be calculated with these areas using  

𝐸𝑖𝑛𝑡 = 𝐴𝑜𝑤𝛾𝑜𝑤 + 𝐴𝑝𝑤𝛾𝑝𝑤 + 𝐴𝑝𝑜𝛾𝑝𝑜 (2.2) 

where 𝐴𝑜𝑤, 𝐴𝑝𝑤 and 𝐴𝑝𝑜 are the areas of the oil/water, particle/water, and particle/oil 

interfaces respectively. Equation (2.2) can be recast to eliminate one surface tension between 

the particle using equation (2.1) resulting in  

𝐸𝑖𝑛𝑡 = 𝐴𝑜𝑤𝛾𝑜𝑤 + 𝐴𝑝𝑤𝛾𝑝𝑤 + 𝐴𝑝𝑜(𝛾𝑜𝑤cos𝜃𝑤 + 𝛾𝑝𝑤) 

= 𝛾𝑜𝑤(𝐴𝑜𝑤 + 𝐴𝑝𝑜 cos 𝜃𝑤) + 𝛾𝑝𝑤(𝐴𝑝𝑤 + 𝐴𝑝𝑜) 
(2.3) 

Additionally, we can eliminate one interfacial area using 𝐴 = 𝐴𝑝𝑜 + 𝐴𝑝𝑤, where 𝐴 is the total 

surface area of the particle leading to  

𝐸𝑖𝑛𝑡 = 𝛾𝑜𝑤(𝐴𝑜𝑤 + 𝐴𝑝𝑜 cos 𝜃𝑤) + 𝐴𝛾𝑝𝑤 (2.4) 

In order to understand the thermodynamic behaviour of the system, we need to minimise 

equation (2.4). However, the term 𝐴𝛾𝑝𝑤 on the right-hand side is a constant of the system and 

will therefore not play a role in the thermodynamic behaviour. For this reason, the term is 

dropped, and the behaviour is instead effectively given by 

𝐸𝑖𝑛𝑡 = 𝛾𝑜𝑤(𝐴𝑜𝑤 + 𝐴𝑝𝑜 cos𝜃𝑤) (2.5) 

For equations (2.2) to (2.5), line tension contributions have been neglected as they are only 

relevant for nanosized particles and this thesis focuses on particles in the micron and 

submicron range.41,42 
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Figure 2.2: Examples of flotation forces (a, c, e) and immersion forces (b, d, e) for attractive (a, b), 
repulsive (c, d) configurations, as well as for small particles (radius 𝑅 < 10𝜇m) (e, f). Ψ1 and Ψ2 are the 
angles of the interface at contact with the particle relative to the horizon and 𝛼1 and 𝛼2 are the contact 
angles.14 

 When the particle is floating at the interface like in Figure 2.1, i.e., where the height of 

both fluid phases is much larger than the particle size, the particle is said to be in the flotation 

regime. In the flotation regime, if the particle has large enough mass, it is susceptible to 

gravitational forces. The effect of gravity on a particle at the oil-water interface is measured by 

a quantity called the Bond number 𝐵𝑜. Which can be calculated by 

𝐵𝑜 =
(𝜌𝑝 − 𝜌𝑓)𝑔𝐿

2

𝛾𝑜𝑤
 (2.6) 

where 𝜌𝑝 and 𝜌𝑓 are the density of the particle and the density of the bulk fluid (which we 

assume have similar densities), 𝑔 is the acceleration due to gravity, and 𝐿 is the characteristic 

particle size, e.g., the radius.43 For large bond numbers 𝐵𝑜 ≥ 1, the interface deforms 

isotopically, causing an increase to interfacial area (and interfacial energy), and therefore a 

restoring force from the interface to oppose gravity. We refer to this type of isotropic 
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distortion as a monopolar deformation to the interface. If there are multiple particles at the 

interface, the system can minimise deformation and therefore energy by aggregating particles 

together (Figure 2.2a). This can be observed in breakfast cereals floating in milk, where the 

cereal would aggregate with each other or stick to the walls of the bowl, which led this 

phenomena often being called the ‘Cheerios effect’.44 

 The Bond number 𝐵𝑜 doesn’t only apply to particles that are denser than the 

surrounding fluid, but also apply to ‘particles’ that are buoyant, e.g., bubbles. In this case the 

force of gravity drives the interface to deform in the opposite direction, with the surface 

tension again opposing the buoyancy force. We refer to these types of monopolar 

deformations as either negative if the deformation is negative (i.e., towards the bottom 

subphase), or positive if the deformation is positive (i.e., towards the top subphase). When 

two like deformations (positive-positive or negative-negative) overlap, the particles are 

attracted to each other to minimise interfacial energy. When two opposite deformations 

(negative-positive or positive-negative) overlap, the interfacial area increases, and the particles 

are repelled. Describing the deformations as positive or negative has led to the capillary 

monopole often being called a ‘capillary charge’ or ‘capillary pole’ because of the similarity to 

electrostatic interactions. However, one important difference between electric charges and 

capillary charges is that for capillary charges, like charges (Figure 2.2a) attract, and unlike 

charges (Figure 2.2c) repel. The concept of ‘capillary charge’ and interactions between 

interfacial deformations is made more rigorous in Section 2.4. 

 Flotation forces are only important for spherical particles with sizes above 10𝜇m,6 

below this the Bond number 𝐵𝑜 ≪ 1 and gravitational induced deformations are negligible. 

Interfacial deformations can still be present for spherical particles smaller than 10𝜇m when in 

the immersion regime. In the immersion regime, the height of one of the bulk fluid phases is 

smaller than the size of the particle, for example when the particle is in contact with a solid 

substrate like in Figure 2.2b, d.45,46 The contact of the particle with the solid substrate causes 

the particle to protrude from the interface and the interface must to deform to satisfy the 

constant contact angle condition imposed by Young’s equation, leading to monopolar 

deformation. Immersion forces can also be induced without the use of a solid substrate, by 

using a thin film of liquid (Figure 2.2f), e.g., a soap bubble.47 On a the thin film the particle 

protrudes equally from both sides of the interface and the necessity to satisfy the constant 

contact angle condition causes both top and bottom interfaces to produce monopolar 

deformation, like that seen in Figure 2.2f. Unlike in the flotation regime, in the immersion 

regime the monopolar immersion forces can be relevant even down to the nanoscale.48 In 
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Chapter 4 and Chapter 5 of this thesis, we will discuss the behaviour of single and multiple rod 

like particles at a cylindrical interface in both the flotation and immersion regime.  

2.2 Rod-Like Particles at Flat Interfaces 

Capillary interactions, however, can still exist between sub-micron sized particles in 

flotation regime if the particle is anisotropic. In this section we consider rod-like particles, e.g., 

ellipsoids and cylinders, at a flat interface. The anisotropy of these rod-like particles means 

that, from the perspective of the interface, the sides and tips of the particles have different 

slopes. In other words, for a flat interface, if the interface doesn’t deform, we will have a 

different contact angle for the sides and the tips. 

 

Figure 2.3: Simulations of hydrophilic cylinders (a) and ellipsoids (c) with 𝜃𝑤 = 80° (red) at a liquid 
interface (grey), with labelled positive (rise) and negative (depression) deformations. Contact line profile 
for the cylinder (b) and ellipsoid (d), z-axis scaled for clarity.49 

 Take for example a hydrophilic (𝜃𝑤 < 90°) cylinder. Because the cylinder is hydrophilic 

it can reduce its interfacial energy by moving more into the water phase for the same reasons 

as presented in Section 2.1. However, if the interface remained flat, the contact angle at the 

flat tips of the cylinders would be 90° and at the curved sides would be < 90°. To ensure a 

constant contact angle around the contact line, we therefore need to have negative interfacial 

deformation at the sides (to increase contact angle) and positive interfacial deformation at the 

tips (to decrease contact angle). This leads to the interface having a quadrupolar deformation 

(Figure 2.3a) and the contact line being undulated around the particle (Figure 2.3b). In the case 

of hydrophilic cylinders, we see that the quadrupolar interfacial deformation has the rise at the 

tips of the cylinders and a depression at the sides. If we instead look at hydrophobic cylinders 

(𝜃𝑤 > 90°) we can use the same procedure to see that they have a rise at the sides, and a 
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depression at the tips. In other words, the contact line undulations are inverted for hydrophilic 

and hydrophobic homogeneous particles.50 

 For a hydrophilic (𝜃𝑤 < 90°) ellipsoid, the curvature at the tips is greater than the 

curvature at the sides, so when the particle is immersed more in the water phase, if the 

interface remained flat, the slopes and therefore the contact angle at the tips 𝜃𝑇𝑖𝑝𝑠 and sides 

𝜃𝑆𝑖𝑑𝑒𝑠 would be < 90°, but 𝜃𝑇𝑖𝑝𝑠 < 𝜃𝑆𝑖𝑑𝑒𝑠. To ensure a constant contact angle around the 

contact line, we therefore need to have negative interfacial deformation at the tips (to 

increase contact angle) and positive interfacial deformation at the sides (to decrease contact 

angle). This again leads to a quadrupolar interfacial deformation (Figure 2.3c) and an 

undulated contact line (Figure 2.3d). Again, we can apply the same procedure to hydrophobic 

ellipsoids and see that they have a quadrupolar deformation with a rise at the tips and a 

depression at the side, again inverse from its hydrophilic counterpart.51 However, it is 

important to note that the contact line for ellipsoids are inverted compared to cylinders 

(hydrophilic ellipsoids have the rise at the sides and hydrophilic cylinders have the rise at the 

tips). This means that the direction of the contact line undulations can be controlled not only 

through contact angle, but also by particle shape.  

In the special case where either the cylinder or ellipsoid is neutrally wetted (𝜃𝑤 =

90°), the constant contact angle condition can be satisfied without deforming the interface. 

Interestingly, a spherocylinder, which is a shape with cylindrical sides but with hemispherical 

caps at the tips, does not induce any interfacial deformation, regardless of contact angle.21 For 

spherocylinders the curvature at the sides of the particle and at the tips of the particle are 

equal, i.e., they both have circular curvature. This means the constant contact angle condition 

can always be satisfied regardless of the contact angle by a flat interface by changing the 

height of the interface relative to the particle, just like a sphere.  
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Figure 2.4: Maximum difference in interfacial height Δ𝑢𝑚𝑎𝑥  between the positive and negative 
deformations as a function of contact angle 𝜃 for ellipsoidal particles of varying aspect ratio Λ = 𝑎/𝑏.52 

 The undulations at the sides and tips of the rod-like particles leads to a quadrupolar 

deformation of the liquid interface. This generates anisotropic capillary interactions which 

cause the particles to spontaneously assemble into either a tip-to-tip or side-to-side 

configuration because like capillary charges attract. The strength of the interaction between 

two particles is dependent on the height of the undulations,50 and they themselves depend on 

both contact angle 𝜃𝑤, and aspect ratio Λ.52 The particle aspect ratio Λ = 𝑎/𝑏 is a measure of 

how anisotropic the rods are, and is simply the ratio of the length of the semi-major axis 𝑎 

(longest radius) and the semi-minor axis 𝑏 (shortest radius). Reducing the contact angle from 

90° causes the difference between positive and negative deformation to increase, but only to 

a point, as once the contact angle reaches 0° the particle is detached from the interface. The 

maximum in interfacial height difference Δ𝑢𝑚𝑎𝑥 between positive and negative undulations 

occurs for contact angles somewhere between 30° and 60° for hydrophilic particles. However, 

the maxima itself also varies with particle aspect ratio Λ (Figure 2.4), which influences the 

height of the interface by changing the profile along the three-phase contact line.52 Increasing 

Λ for an ellipsoidal particle leads to sharper tips and therefore the contact angle changes even 

more rapidly at the tips with interfacial height compared to the sides. 
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Figure 2.5: Tip-to-tip (end-to-end) and side-to-side capillary interaction energy as a function of centre-
to-centre distance 𝑑𝑐𝑐  for ellipsoids (a), and cylinders (b), with contact angle 𝜃𝑤 = 80° and aspect ratio 
Λ = 3.49 

 Ultimately, energy minimisation is what drives assembly into either tip-to-tip or side-

to-side configuration. In Figure 2.5a,b we show the capillary interaction energy as a function of 

centre-centre separation for ellipsoids and cylinders respectively for both for the tip-to-tip and 

side-to-side configurations simulated by Botto et al.49 We can see from Figure 2.5a that the 

minimum energy state for two ellipsoids is the side-to-side orientation; this fact is not 

surprising since the capillary attraction between the particles is to a first approximation an 

inverse power law (i.e., the interaction drops off rapidly with increasing separation (see 

Section 2.4)) and the particles can achieve the smallest centre-to-centre separation in the side-

to-side configuration. However, interestingly for any fixed separation greater than the length 

of the particle, the tip-to-tip configuration is preferred as this configuration has a lower 

potential energy compared to the side-to-side configuration. These observations provide an 

important insight into how a pair of ellipsoids at an interface will assemble. The ellipsoids 

initially approach each other tip-to-tip until they are in contact with each other. At this point 

the ellipsoids hinge around the contact point and roll over into the side-to-side configuration 

whilst always remaining in contact.49  

 For cylinders, as seen from Figure 2.5b, the minimum energy state is the tip-to-tip 

configuration in both the near field (i.e., small separation) and the far field (i.e., large 

separation). This is surprising since the minimum energy state for two rods interacting via 

quadrupolar interactions is the side-to-side configuration. However, cylinders have a much 

larger contact line undulation at the tips than at the sides as shown in in Figure 2.3, making tip-

to-tip assembly more favourable energetically compared to side-to-side assembly. In addition, 

cylinders have sharp edges which results in a large capillary torque that opposes the rollover of 

the cylindrical particles into the side-to-side configuration.49 We will consider the capillary 

interaction and self-assembly of ellipsoids, cylinders and spherocylinders at a cylindrical 
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interface in Chapter 4 and Chapter 5. Whilst in Chapter 7 we will consider the capillary 

interaction and self-assembly of core-shell ellipsoids at a flat interface. 

2.3 More Complex Anisotropic Particles 

 

Figure 2.6: (a) Probability of 30𝜇m cube orientation as a function of contact angle 𝜃at an air-water 
interface. Dotted lines serve as predictions for the statistics at non-experimentally tested contact angles, 
and shapes represent experimentally measured probabilities with greater than 1000 particles. (b) 
Assemblies of cubes at different contact angles.19  

With advances in fabrication techniques a whole host of other anisotropic particle 

shapes have been studied, for example, the cube. Rod-like particles (with large enough aspect 

ratio)53,54 only absorb to the interface in one orientation – with their long axis parallel to the 

plane of the interface. However, cubes can adsorb in three distinct orientations: face-up, edge-

up, or vertex-up. Song et al19,20 found experimentally using 30𝜇m edge length cubes that the 

orientation at which they adsorb to the interface can be controlled by the cubes contact angle 

𝜃𝑤, face-up (𝜃𝑤 < 20°), edge-up (50° < 𝜃𝑤 < 60°), and vertex-up (𝜃𝑤 > 90°), with phase co-

existence for cubes with contact angles between these ranges (Figure 2.6a). They found that 

face-up cubes assemble into a square phase, edge-up cubes assemble into chains, and vertex-

up cubes assemble into hexagonal lattices (Figure 2.6b). 
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Figure 2.7: Phases formed by 2D assemblies of vertex-up (a-c), edge-up (d,e), and face-up (f) cubes. In 
the schematics the positive and negative undulations are represented as red and blue lobes around the 
cubes respectively.55 

Complementing the experimental studies above, Anzivino et al studied the orientation 

and self-assembly theoretically using finite element simulations.55 For micron-sized cubes such 

as those studied by Song et al,19,20 the contribution from entropy to the free energy of the self-

assembly is negligible, and the equilibrium structures are therefore structures that minimises 

the energy. For face-up cubes they found that there is no interfacial deformation and 

therefore there should not be capillary driven assembly in this system, therefore any assembly 

found in experiments must come from non-capillary interactions.  

For edge-up cubes, the projection of the contact line is a rectangle, and they found 

that the capillary poles coincide with the sides of the projection. This leads to quadrupolar 

interfacial deformation where it was found that the overlapping of the positive poles from the 

flat face of the cube at the interface was much stronger than overlapping of the negative poles 

from the angled faces at the interface. This leads to a strong tendency for particles to assemble 

into chain-like structures (Figure 2.7d) with positive poles overlapping, or square-like 

structures (Figure 2.7e).  

For vertex-up cubes, the projection of the contact line is a hexagon, and they found 

that the capillary poles coincide with the vertices of the hexagonal projection. This leads to 

hexapolar interfacial deformation where the minimum energy state is hexagonal close packed 

(Figure 2.7a) rather than honeycomb (Figure 2.7b). This is because there is a smaller centre-to-

centre distance at side-to-side contact, i.e., dipole-dipole interactions rather than the corner-

to-corner contact, i.e., tripole-to-tripole interactions. The importance of the location of the 
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undulations relative to the contact line projection will be discussed further and in more detail 

in Chapter 8.  

Whilst the entropy is negligible in calculations for micro-scale particles like those used 

by Song et al,19,20 it does however play a significant role for nano-scale particles. Soligno et al 

found that when they included entropy in their calculations, it was possible to stabilise the 

honeycomb structure (Figure 2.7b) for nanoscale vertex-up cubes at finite temperature.56 

Furthermore, Soligno et al,57 studied cubes with truncated edges where their theoretical 

calculations were in good agreement with experimental observations of truncated nano 

cubes.58,59 

 

Figure 2.8: Patterned hexagons experimentally tested by Whitesides and co-workers and their self-
assembled structures at a perfluorodecalin-water interface (water is the top subphase). Hexagons are 
categorised by number of sides that have different surface chemistries than the majority. Thick black 
lines represent hydrophobic faces. Notation for each different arrangement of hydrophilic/hydrophobic 
faces are as follows: Hydrophobic faces are labelled in square brackets, and the number which are 
contained within the bracket represents the number of the face which has been hydrophobized (starting 
with face 1) in a counterclockwise fashion. For example, a [1] hexagon only has one face that is 
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hydrophobic, a [1,2,3,4] hexagon has four adjacent faces that are hydrophobic, and a [1,3,5] hexagon 
has alternating hydrophobic and hydrophilic faces.60 

 Fabrication advancements not only allow the creation of interesting microscale 

shapes, but also open the door for selective surface functionalisation to create particles with 

patchy surface chemistry.  For example, Whitesides and co-workers created flat hexagonal 

plates with either hydrophobic or hydrophilic sides and deposited these particles at a water-oil 

interface; they used a high-density oil, so water is the top phase. Since hydrophobic and 

hydrophilic edges induce positive and negative interfacial deformations respectively at a 

water-oil interface, by using different combinations of hydrophobic and hydrophilic edges, 

Whitesides and co-workers were able to create different multipolar edge undulations around 

the hexagons, leading to the formation of different self-assembled structures (Figure 2.8).  

The hexagons used to create these structures are on the mm scale, so to reduce 

gravitational flotation forces, Whitesides and co-workers density matched the water phase 

with the polymer used for the hexagons by adding salt. This allows the [0] hexagons (no 

hydrophobic faces) to produce small monopolar deformations which interact very weakly with 

each other, forming disordered aggregates. However, by making all faces hydrophobic 

([1,2,3,4,5,6] hexagons) strong monopolar deformation occurs and particles aggregate into a 

compact hexagonal array.  

This asymmetry in contact angles also causes similarly configurated particles to behave 

differently, for example the two configurations that have one face different from the majority. 

Both the [1] and [1,2,3,4,5] hexagons have a non-centrosymmetric distribution of hydrophilic 

faces leading to the particles tilting at the interface, which cause complex interfacial 

deformations making selective faces stickier, leading to dimers or disordered aggregates for 

the [1] and [1,2,3,4,5] hexagons respectively.  

Other noteworthy configurations include, [1,4] and [1,3,5] hexagons. The [1,4] 

hexagons produce quadrupolar interfacial deformation which coincide with the edges of the 

particles, this then promotes the formation of chain structures where the particles assemble 

edge-to-edge to minimise interfacial deformation. The [1,3,5] hexagons produce hexapolar 

interfacial deformations where the undulations coincide with the edges of the particles this 

causes them to assemble into honeycomb lattices. Note that this honeycomb lattice is not an 

incomplete close packed hexagonal phase, as the hole in the honeycomb lattice are 

surrounded by poles of the same sign, making it energetically unfavourable to insert an 

additional [1,3,5] hexagon in to fill these holes.  
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Figure 2.9: (a) Self-assembled hexagonal plates into honeycomb arrays, created by hydrophobising 
alternating faces. (b) Self-assembled crosses into square arrays, created by hydrophobising only the 
‘tips’ of the crosses. (c) Self-assembly of a binary ‘lock and key’ system into chains, created by selectively 
hydrophobising the inner and outer surfaces of the ‘lock and key’ respectively. (d) Binary system of 
hydrophobic cubes, light grey cubes have a larger height than those of the dark cubes. Dark surfaces in 
the insets represent hydrophobic surfaces and white faces indicate hydrophilic faces.61 

Control over the interfacial deformation is not the only important factor for assembly 

configuration, as the steric forces from the particles themselves become important in the near 

field. For hexagons, the shape of the particles cause assembly with 2,3,6 fold symmetry like the 

honeycomb array (Figure 2.9a), but lattices with 4 fold symmetry (square lattices) are absent 

from the assembled structures in Figure 2.8. Whitesides and co-workers then further used 

their patterning technique on other polygonal plates like crosses with hydrophobic ‘tips’ in 

Figure 2.9b to form open square lattices. They also used a binary system consisting of ‘lock and 

key’ shaped particles (Figure 2.9c), and selectively hydrophobized surfaces such that cross 

species interaction is more favourable than same species interaction. In Figure 2.9d Whitesides 

and co-workers also show hierarchical self-assembly with cubes with identical surface 

chemistries, but different physical heights. This causes a hierarchy of particle-particle 

interactions with the largest interaction strength coming from large particles interacting with 

each other, followed by cross species interaction, and finally short particles interacting with 

each other.61 

Whitesides and co-workers have clearly showed that this is a versatile system that 

allows us to programme self-assembly through combinations of shape, selective surface 

chemistry, and height. However, for this system, particles are on the mm scale, hence the 

necessity for density matching of the particle material. Scaling down of this process, could 

eliminate the need for careful material selection, opening the door to designing 

metamaterials. However, the main weakness with Whitesides and co-workers approach is that 

the patchy edge geometry makes it very difficult to scale down the particle synthesis below the 

mm scale.62 In Chapter 8, we propose a method to circumvent the fabrication issues by using 

particle shape alone to control the interfacial deformation and capillary interactions. This 

enables the possibility to scale down particle synthesis to much smaller sizes using readily 

available synthesis techniques. 
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2.4 General Theory for Capillary Interactions Between Particles at Flat 
Liquid Interfaces 

In previous sections, we have discussed the physical origins of interfacial deformations 

and how systems minimise energy and form self-assembled structures. In this section we 

approach this problem in a more formal fashion. Starting from first principles, we describe the 

interfacial deformation for one particle adsorbed at a flat interface in polar coordinates, then 

consider the far-field energy for two interacting capillary multipoles of arbitrary order, before 

looking at the energy between two interacting elliptical quadrupoles. 

The presence of an interfacial tension between the two immiscible fluids implies that 

for curvatures in the interface, a Laplace pressure difference occurs between the two fluid 

phases. This pressure difference can be written as 

Δ𝑃 = 𝛾 (
1

𝑟1
+
1

𝑟2
) (2.7) 

where 𝑟1 and 𝑟2 are the principal radii of curvature at a given point on the surface, which will 

be discussed further in Section 2.5. If we parameterise the height of the interface as a scalar 

field ℎ(𝑥, 𝑦), where 𝑥, 𝑦 are Cartesian coordinates within the interfacial plane, calculation of 

the principal radii of curvatures and hence Laplace pressure, becomes a non-linear second 

order partial derivative. However, because the induced curvatures from the presence of the 

particles are small, we can approximate the curvatures by neglecting higher order gradient 

terms, i.e., we can take the limit of small slopes.63 In this limit, equation (2.7) can be rewritten 

as 

Δ𝑃 = 𝛾∇2ℎ(𝑥, 𝑦) (2.8) 

where ∇2 is the 2D scalar Laplace operator (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
). Far from the particle, the interface is 

flat, and hence Δ𝑃 = 0, and because the system is in equilibrium, the pressure difference 

across any part of the interface must also be zero,63 so we can write.  

∇2ℎ(𝑥, 𝑦) = 0 (2.9) 

Note that equation (2.7) does not imply that the interface is flat everywhere, but rather when 

the surface is curved the principal radii of curvature are equal, but opposite. 

 To solve equation (2.9), it is advantageous to use coordinate systems which match the 

symmetry of the problem, for example polar coordinates for particles with near circular 

symmetry. By representing the height of the interface in terms of polar coordinates ℎ(𝑟, 𝜃) 
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and representing this as a product of two functions 𝑅(𝑟), Φ(𝜃) (which only depend on one of 

the scalar parameters respectively) equation (2.9) can be split into two equations and solved 

independently for 𝑅(𝑟) and Φ(𝜃). Since equation (2.9) is a linear equation, from linear 

superposition a general solution for ℎ(𝑟, 𝜃) can be written as 

ℎ(𝑟, 𝜃) = 𝐴0 ln(𝑟) + 𝐴1𝑟
−1 cos(𝜃 + 𝛼1) +𝐴2𝑟

−2 cos(2𝜃 + 𝛼2) +… (2.10) 

Here, each of the terms 𝐴0 ln(𝑟), 𝐴1𝑟
−1 cos(𝜃 + 𝛼1), and 𝐴2𝑟

−2 cos(2𝜃 + 𝛼2) etc, represent 

deformation with monopolar, dipolar, and quadrupolar, etc, symmetry. The coefficients 𝐴𝑖  and 

𝛼𝑖 represent the amplitude and phase (with respect to 𝜃) of the mode and can be solved based 

upon boundary conditions. In the absence of external forces, the amplitude for the monopolar 

mode 𝐴0 = 0, otherwise there would be a restoring force from surface tension. In the absence 

of an external torque, the amplitude for the dipolar mode 𝐴1 is also 0, otherwise there would 

be a restoring torque due to surface tension at the contact line. This means that the leading 

order term without an external force or torque is quadrupolar.64  

In equation (2.10) the influence of each mode 𝑚 decays with respect to 𝑟−𝑚. With 

quadrupolar being the slowest decaying mode, in the far field higher order modes will have 

minimal influence, and the quadrupolar mode will be the dominating mode effecting the 

height of the interface. For this reason, particles with rough surfaces or “patchy” wetting 

conditions lead to quadrupolar deformation.65 In this case, the height of the interface due to a 

polar quadrupole is given by 

ℎ(𝑟, 𝜃) = 𝐻𝑐 (
𝑟𝑐
𝑟
)
2

cos(2𝜃) (2.11) 

Here the amplitude of the mode (𝐴2 in equation (2.10)) has been rewritten in terms of 𝐻𝑐 and 

𝑟𝑐 which refers to the amplitude of the height of the interface at the contact line and radius of 

the contact line respectively.  In equation (2.11) we have also removed the phase angle 𝛼2 by 

orienting the definition of 𝜃 = 0° to coincide with one of the quadrupolar rise axes. For 

spherical particles with contact angles close to 90° the contact radius 𝑟𝑐 is very close to that of 

the radius of the particle.64 For non-spherical particles like ellipsoids, we can still approximate 

the interfacial deformation using a circular multipole by choosing an intermediate radius for 𝑟𝑐, 

e.g. the mean of the semi-major and semi-minor axes. We can then calculate 𝐻𝑐 by performing 

an interfacial simulation and taking a Fourier transform of the height of the interface along a 

circular contour surrounding the particle and extracting the coefficient for the relevant 

mode.65  Then, because we know the interfacial height contribution from each mode at the 
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circular contour, and that the height decays according to equation (2.10), we can calculate 𝐻𝑐 

at 𝑟𝑐 for each mode. 

 

Figure 2.10: Two capillary quadrupoles, A and B at separation L. The “+” and “-“ represent positive and 
negative interfacial deformations and angles 𝜙𝐴 and 𝜙𝐵  represent the rotation of the negative antinode 
of the contact line with respect to the line that joins the particles centres. Note that in this definition the 
𝜙𝐴 rotates clockwise, and 𝜙𝐵  rotates counterclockwise.66 

 By using equation (2.11) Stamou et al were able to calculate the “self-energy”, i.e., the 

increase in energy due to the undulated surface, for an individual particle. Furthermore, 

Stamou et al then went on to calculate the interaction energy between two identical polar 

quadrupoles. They did this by subtracting the “self-energy” of each of the particles from the 

increase in energy of the two-particle system at separation 𝐿. In the two-particle system the 

height of the deformed interface is given by the superposition approximation, i.e, ℎ = ℎ𝐴 +

ℎ𝐵. Ultimately for this system this calculation involves evaluating the deformation field of 

particle A at the contact line of particle B using a Taylor approximation, and then doubling the 

potential (because both particles are identical polar quadrupoles) to find 

𝑉(𝐿) ≈ −12𝜋𝛾𝐻𝑐
2 cos(2(𝜙𝐴 − 𝜙𝐵)) (

𝑟𝑐
4

𝐿4
) (2.12) 

where 𝜙𝐴 and 𝜙𝐵 are angles of rotation defined in Figure 2.10.  

Danov et al66 generalised the work of Stamou et al64 by calculating the capillary 

interaction between capillary multipoles of arbitrary order. To do this, they used a bi-polar co-

ordinate system (which corresponds to the geometry of the system) to calculate the interfacial 

deformation ℎ from the joint system and then calculated the interaction potential V(𝐿). For 

particles at large distances the interaction energy can be approximated to 

𝑉(𝐿) ≈ −𝜋𝛾𝐺0𝐻𝐴𝐻𝐵 cos(𝑚𝐴𝜙𝐴 −𝑚𝐵𝜙𝐵) (
𝑟𝐴
𝑚𝐴𝑟𝐵

𝑚𝐵

𝐿𝑚𝐴+𝑚𝐵
) (2.13) 
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where 𝑚𝐴, 𝑟𝐴 and 𝑚𝐵, 𝑟𝐵 are the mode and average contact line radius of particle A and B 

respectively, and 𝐺0 is given by 

𝐺0 = ∑
2(−1)𝑚𝐴+𝑚𝐵𝑚𝐴!𝑚𝐵!

(𝑚𝐴 − 𝑛)! (𝑚𝐵 − 𝑛)! 𝑛! (𝑛 − 1)!

min (𝑚𝐴,𝑚𝐵)

𝑛=1

 (2.14) 

For two identical interacting quadrupoles equation (2.13) reduces to the interaction potential 

found by Stamou at al in equation (2.12) and for hexapoles (𝑚𝐴 = 𝑚𝐵 = 3) the interaction 

potential is given by 

𝑉(𝐿) ≈ −𝜋𝛾60𝐻𝑐
2 cos(3(𝜙𝐴 − 𝜙𝐵)) (

𝑟𝑐
6

𝐿6
) (2.15) 

Equation (2.13) not only allows us to calculate the interaction potential between 

particles that have a single capillary mode but also allows us to calculate the interaction 

potential between particles that have multiple modes by performing a sum of each of the 

separate interacting modes. However, it is important to note that this is a far-field formula 

which is accurate for 𝐿 ≥ 3𝑟𝑐, but may not capture the near-field behaviour.66  

So far, we have only described the particle induced deformation in terms of polar 

multipoles. Whilst this is an accurate description in the far field or for particles whose 

projection of the contact line is close to circular, it does not capture the near-field behaviour of 

rod-like particles like ellipsoids and cylinders.65 For example, in section 2.2 we discussed the 

interaction potential between two identical ellipsoids and cylinders where, for a fixed 

separation greater than the length of the particle, the tip-to-tip orientation is preferred 

compared to the side-to-side. In contrast, if we represent the ellipsoid as a polar quadrupole, 

we see that the interaction potential is minimised when cos(2(𝜙𝐴 − 𝜙𝐵)) = 1, i.e., when 

𝜙𝐴 = 𝜙𝐵. These angles represent mirror symmetric orientations of the particles so that both 

tip-to-tip and side-to-side configurations have the same energy for two polar quadrupoles. To 

capture the elongated quadrupolar deformation caused by rod-like particles more accurately, 

Lewandowski et al calculated the quadrupolar deformation around rod-like particles using 

elliptical coordinates.50  
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Figure 2.11: Elliptic coordinate system (𝑠, 𝑡) plotted on a cartesian plane (𝑥, 𝑦). Lines of constant 𝑠 
represent concentric ellipses with focal points (−𝛼, 0) and (𝛼, 0), whilst lines of constant 𝑡 represent 
hyperbolae.67 

To calculate the interaction potential between two rod-like particles, first we 

represent the height of the interface around each particle in terms of elliptical coordinates. 

The elliptical coordinates (𝑠, 𝑡) are related to cartesian coordinates (𝑥, 𝑦) in the interfacial 

plane by the coordinate transformation 

𝑥 = 𝛼 cosh(𝑠) cos(𝑡) 

(2.16) 

𝑦 = 𝛼 sinh(𝑠) sin(𝑡) 

where lines of constant 𝑠 form concentric ellipsoids with focal points (−𝛼, 0) and (𝛼, 0), whilst 

lines of constant 𝑡 represent hyperbolae. A diagram of the elliptic coordinate system is show in 

Figure 2.11. We can calculate 𝛼 utilizing that the sum of the distances between the focal points 

and a point on the ellipse is a constant. By taking two points on the ellipse in cartesian 

coordinates 𝑃1 = (𝑎, 0) and 𝑃2 = (0, 𝑏) we can equate both distances and rearrange to find 

that 𝛼 = 𝑏√Λ2 − 1 where Λ = 𝑎/𝑏. We can also define an elliptical distance 𝑠 = 𝑠0 which 

represents the contour of an ellipsoid of aspect ratio Λ by substituting 𝑃1 and 𝑃2 into Equation 

(2.16, dividing the results an rearranging to find that 𝑠0 = coth
−1 Λ. For contact angles close to 
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90° the contact line only deviates slightly from an ellipse defined by 𝑠0 and therefore in these 

cases, a close approximation to the contact line.52 By solving equation (2.9) in this coordinate 

system we obtain an expression for the interfacial height as a function of 𝑠 and 𝑡, where for 

the quadrupolar mode, the interfacial deformation given by 

ℎ(𝑠, 𝑡) = 𝐻𝑒 exp(−2(𝑠 − 𝑠0)) cos(2𝑡). (2.17) 

Here 𝐻𝑒 is the amplitude of the quadrupolar interfacial deformation at an ellipse defined by 

𝑠0. By using two elliptical coordinate systems, each centred around one of the identical 

ellipses, the interaction energy can be calculated using the linear superposition approximation, 

in the same way that Stamou et al64 performed their calculations in the polar coordinate 

system. 

 

Figure 2.12: Interaction potential as a function of separation 𝐿 between elliptical quadrupoles with Λ =
3. The blue line represents and end-to-end or tip-to-tip configuration (i.e., 𝜙𝐴 = 𝜙𝐵 = 0°), and the red 
dashed line represents a side-to-side configuration (i.e., 𝜙𝐴 = 𝜙𝐵 = 90°). The dashed black line 
represents a power law decaying as 𝐿−4 which in the far field, both configurations approach.50 

 The calculation for the interaction between two elliptical quadrupoles can be found 

later in Chapter 7 where we look at the assembly of a system of core-shell ellipsoids. In Figure 

2.12 we show the interaction potential for two elliptical quadrupoles with Λ = 3 for both the 

tip-to-tip (𝜙𝐴 = 𝜙𝐵 = 0°) and side-to-side (𝜙𝐴 = 𝜙𝐵 = 90°) configurations. We see that now 

for a fixed separation greater than the length of the particle the minimum energy orientation 

is now indeed tip-to-tip. However, the two-particle system can minimise its energy further by 

assembling side-to-side in the near field which agrees with the work presented in Section 2.2.  
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2.5 Particles at Curved Interfaces 

So far, we have considered the interaction of particles at flat liquid interfaces. In this 

section we look at the assembly and dynamics of particles at curved liquid interfaces like those 

formed by droplets. To start our discussion on this topic, we first quantify the geometry of the 

interface. 

 

Figure 2.13: Examples of osculating circles (blue) of a curve 𝑆 (black). For the large osculating circle, 
additional labels of the osculating circles radius 𝑟 (red) and tangent line at point 𝑃 (green). 

For any point 𝑃 on a surface 𝑆, we can define a surface normal unit vector 𝑛̂ which is 

perpendicular to the tangent plane at 𝑃, and define a normal plane which is any plane that 

contains 𝑛̂. There are infinitely many normal planes, and each one will intersect with 𝑆 

producing curves called normal sections. These curves will in general have different curvatures 

at point 𝑃 and can be parameterised using the radius of the osculating circle, which is a circle 

that is tangent to, and has the same curvature as, the curve at point 𝑃. In Figure 2.13 we 

illustrate this using one of the normal sections, where we see that small circles are used for 

sharp curves, and large ones for gentle curves. Whilst there are infinitely many normal 

sections, and therefore infinitely many osculating circles at point 𝑃, only two of these are of 

interest, that is the osculating circles with the largest, and smallest radius at point 𝑃. The two 

radii of the osculating circles 𝑟1 and 𝑟2 corresponding to either the maxima or minima normal 

sections are referred to the principal radii of curvature. At point 𝑃 if 𝑟1 = 𝑟2 we refer to this as 

an umbilic point and every normal section can be considered as containing the principal radii 

of curvature. However, if 𝑟1 ≠ 𝑟2 there are distinct normal planes which contain the normal 

sections with curvature 𝑟1 or 𝑟2 at point 𝑃 and the normal planes are always orthogonal to 

each other.68  
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Defining the principal curvatures as 𝜅1 =
1

𝑟1
 and 𝜅2 =

1

𝑟2
 where 𝜅1, 𝜅2 correspond to 

the maximum and minimum curvatures respectively, we can define the Gaussian curvature, 

mean curvature and deviatoric curvature at point 𝑃. The Gaussian curvature is simply the 

product of the principal curvatures 𝐾 = 𝜅1𝜅2 and contains information about whether the 

point is dome like (if 𝐾 > 0), plane like (if 𝐾 = 0), or saddle like (if 𝐾 < 0). The Gaussian 

curvature of a surface also does not change upon bending (without stretching), and therefore 

the Gaussian curvature is an intrinsic invariant of a surface.69 The principal curvatures also 

allow us to define the mean curvature as 

𝐻 =
1

2
(𝜅1 + 𝜅2) (2.18) 

which allows us to write Equation (2.7) as Δ𝑃 = 𝛾2𝐻. For a deformable surface in equilibrium 

and with no external forces, the pressure must be uniform and therefore 𝐻 = 𝑐𝑜𝑛𝑠𝑡.70 A 

special subset of these constant mean curvature surfaces are minimal surfaces where 𝐻 = 0,71 

e.g., a planar interface. A counterpart to the mean curvature 𝐻 is the deviatoric curvature 𝐷 

given by 

𝐷 =
1

2
(𝜅1 − 𝜅2) (2.19) 

Note that unlike 𝐻, the deviatoric curvature 𝐷 (which is always positive) is not necessarily 

constant over the equilibrium surface.72 As we will see later in this section, the deviatoric 

curvature is very important in regards to self-assembly of particles on curved surface, as 

particles migrate to regions of high deviatoric curvature.17 

Whilst previously in Section 2.1 we looked at a spherical particle on a flat interface and 

found that the three-phase contact line could be satisfied without deforming the interface, at 

a curved interface generally this is no longer possible. For example, consider the simple curved 

surface of a cylinder. Here the two principal curvatures are 𝜅1 = +𝑐𝑜𝑛𝑠𝑡 and 𝜅2 = 0, which lie 

perpendicular and parallel with the long axis of the cylindrical interface respectively. The 

cylindrical interface therefore has a Gaussian curvature 𝐾 = 0 just like a plane but has a 

constant mean curvature of 𝐻 =
𝜅1

2
. When a spherical particle is adsorbed to the interface, the 

height and angle of which the unperturbed interface contacts the particle is different along 

both principal curvature directions. This means that to satisfy the constant contact angle 

condition, the interface must deform. Just like in our previous discussions in Sections 2.2 and 

2.4, the leading order deformation is quadrupolar, with its positive and negative deformation 

axes aligned with the axes of principal curvature.70 Note however, that this only applies to 
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interfaces with distinct axes of principal curvature. If an interface has equal curvatures (𝜅1 =

𝜅2), firstly, the axes of principal curvature are undefined. Secondly, the angle at which the 

unperturbed interface meets the spherical particle is the same from any direction, allowing the 

constant contact angle condition to be satisfied without deforming the host interface. 

 

Figure 2.14: Particle assemblies achieved with spherical particles by Ershov et al on oil/water interfaces 
of different shapes. (A) flat interface, (B) spherical interface, (C) dumbbell-shaped droplet, (D) droplet 
pinned to a square patch (only one corner is shown), (E) toroid-shaped droplet, and (F) a prolate 
ellipsoid. Inset in (F) shows square lattice organization. Green lines in C–F indicate the directions of 
principal curvature.72 

The quadrupolar deformations caused by the curvature of the interface provide a way 

for spheres to assemble via capillary interactions. In Figure 2.14 we show the assemblies of 

spherical particles at various constant mean curvature surfaces used by Ershov et al.72 To 

create these curved surfaces they hydrophobized different shaped patches on a glass 

substrates, added oil to the patches and then covered these with water. The shape and 

curvature of the drops is then defined by only the shape of the patch and the volume of oil 

added. In Figure 2.14A they show that at a flat interface there is no attraction between the 

spherical microparticles, and therefore the particles have no intrinsic deformation. In Figure 

2.14B they show that on a hemispherical drop, (i.e., no distinct axes of curvature) the spherical 

particles still do not assemble. However, in Figure 2.14C-F they absorb the microspheres on 

surfaces with distinct axes of principal curvatures, and the microspheres assemble into a 
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“square” lattice formation. More specifically, the particles assemble into lattices that follow 

the axes of principal curvature, which are marked by green lines in Figure 2.14C-F.  

We can also see that particles migrate to specific regions in Figure 2.14C-E, which can’t 

be regions of high or low mean curvature 𝐻, because these are all surfaces with constant 

mean curvature. Nor can it be high or low Gaussian curvature 𝐾 because in Figure 2.14C and 

Figure 2.14F we see particles assemble at either. Instead, the particles migrate to regions of 

high deviatoric curvature 𝐷 which is also an intrinsic invariant of the surface.72 

 

Figure 2.15: Cylinders rotate to align their positive rise axis with the interfaces, whose curvature is 
changed dynamically from concave-up to concave-down and back. (Top) Images of experimental 
cylinders aligned in stable states and (bottom) corresponding schematic of a cross section of the plane 
parabolic interface, showing the interface shape and the particle alignment (not to scale). 

The next step is to look at how anisotropic particles assemble at curved interfaces. In 

Figure 2.15, we show experimental work performed by Lewandowski et al that showed that by 

controlling the concavity of a plane-parabolic curved interface (𝜅1 = 0, 𝜅2 < 0), cylindrical 

particles (length 25𝜇m, radius 7𝜇m) would rotate so that their intrinsic quadrupolar rise axis 

(the axis along the particle which is responsible for the positive deformation) would align with 

the principal rise axis of the interface.73 They showed that not only can they control the 

orientation of the cylinders with respect to the interface, but they could also supress the tip-

to-tip assembly typically seen between cylindrical particles (at a flat interface), in favour of side 

to side-to-side assembly. Later in Chapter 4, we theoretically study a similar system, where 

instead we use a cylindrical sessile drop to supress the typical side-to-side assembly of 

ellipsoids (at a flat interface) and other rod-like particles, in favour of tip-to-tip assembly. 
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Figure 2.16: (A) Top view of particle migration near an elliptical micropost. Contours of constant 𝑠 
(ellipses) and 𝑡 (hyperbolae) indicate the principal axes at each location. The trajectory of four particles 
(red, green, blue, and orange), are tracked as they assemble at the micropost. Along each trajectory, 
particles align with their major axes tangent to contours of constant 𝑠. (B) Particle assembly near a 
square micropost where complex structures form near the corners of the micropost. (C) Schematic 
illustrating particle rotation and migration. Left to right, the particle rotates to orient its saddle-like 
contact line on the saddle-like host interface. Thereafter, the particle migrates to minimise the 
difference between the curvature of the particle-induced deformation and that of the host interface.17 

Cavallaro et al, also exploited the nature of curved interfaces to act as external fields 

orientating and directing the self-assembly of cylindrical particles. In Figure 2.16, Cavallaro et 

al assemble cylindrical particles at curved interfaces created by using microposts with elliptical 

(Figure 2.16A) and square (Figure 2.16B) profiles by pinning the interface to the top of the 

micropost. They found that the cylindrical particles would first orientate themselves so that 

the rise axis aligned with the interfaces principal rise axis with positive curvature and then 

migrate along curvature gradients to regions of high deviatoric curvature (Figure 2.16C). In 

both examples in Figure 2.16 we see that the cylinders migrate to the tips or corners of the 

microposts and assemble into a tip-to-tip configuration. More specifically in Figure 2.16B we 

see that the cylinders assemble into tip-to-tip configurations whilst following the curvature of 

the interface, creating curved assemblies of cylinders. As more cylinders are added, some 

assemble in a side-to-side orientation based upon their starting position and availability of 

space in the regions of high deviatoric curvature.  

Cavallaro et al, additionally derived an expression for the energy of a capillary 

quadrupole on a curved interface given by 

𝐸(𝑿, 𝜙𝑝) ≅  −𝜋𝛾𝐻𝑐𝑟𝑐
2𝐷(𝑿) cos(2[𝜙𝑝 − 𝜙(𝑿)]) (2.20) 

where 𝐷(𝑿) is the deviatoric curvature tensor at the position vector of the particle 𝑿, 𝜙𝑝 

defines the orientation of the principal rise axes of the particle with respect to the lab-frame 𝑥-

axis, and 𝜙(𝑿) defines the orientation of the principal axis of the interface with positive 

curvature at position 𝑿 with respect to the lab frame 𝑥-axis. The energy in Equation (2.20) is 

minimised at regions of high deviatoric curvature, where the particles rise axis 𝜙𝑝 aligns with 

the interface rise axis 𝜙(𝑿). Therefore, the curved interface not only provides a capillary force 
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driving particles to regions of high deviatoric curvature, but also a capillary torque aligning the 

particles rise axis with the interface’s positive principal axis. In fact, for the work produced by 

Cavallaro et al, the interfaces are minimal surface or near minimal surfaces (𝜅1 ≅ −𝜅2) and 

therefore equation (2.20) can be written in terms of just one curvature 𝜅(𝑿) as 

𝐸(𝑿, 𝜙𝑝) ≅  −𝜋𝛾𝜅(𝑿)𝐻𝑐𝑟𝑐
2 cos(2[𝜙𝑝 − 𝜙(𝑿)]) (2.21) 

Furthermore, Cavallaro et al used equation (2.21) to calculate the trajectories in Figure 2.16, as 

in this regime, the particles have negligible inertia, and therefore the particles translational 

and rotational velocities are proportional to the gradient of energy with respect to 𝑿 and 𝜙 

respectively. In Chapter 4 and Chapter 5 we consider the orientation and position of 

anisotropic particles absorbed at a curved cylindrical interface, i.e., where 𝜅(𝑿) = 𝑐𝑜𝑛𝑠𝑡. 
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 Simulation Techniques 

In this chapter we outline the simulation methods in which we use throughout the 

thesis to generate our results. For static energy calculations, we utilise an open-source 

software called Surface Evolver, this interactive program specialises in modelling liquid 

surfaces subject to various forces and constraints. For self-assembly simulations of many 

particles, we use Monte Carlo simulations to allow the system to explore phase space with a 

weighting dictated by the rules of statistical physics.  

3.1 Surface Evolver 

Surface Evolver is a finite element method which minimises the area (and therefore 

energy) of a deformable interface subject to forces and constraints. The interface is modeled 

as a mesh of triangles to approximate the geometry of the interface, and the denser the mesh, 

the more accurate the approximation. At each of the mesh’s vertices on a free surface, Surface 

Evolver displaces the point in 3D space using the steepest decent method to reduce the 

energy, ultimately approaching the surface with minimum energy.  

In the case of a simple interface the energy is proportional to the area and is 

calculated using 

𝐸 = 𝛾∑
1

2
|(𝑭𝐵 − 𝑭𝐴) × (𝑭𝐶 − 𝑭𝐴)|

𝐹=𝑓

𝐹=0

 (3.1) 

where 𝑭𝐴, 𝑭𝐵, 𝑭𝐶  are the three position vectors for the vertices that define a triangular facet 𝐹 

and therefore the total energy contribution is the sum over all these facets. To reach the 

minimum energy surface, the vertices of the mesh must be moved to reduce the overall area 

of the surface. To achieve this Surface Evolver evolves the surface using a gradient decent 

algorithm similar to 

𝑽𝑛+1 = 𝑽𝑛 − 𝑅𝛁𝐸(𝑽𝑛) (3.2) 

where 𝑽𝑛+1, 𝑽𝑛 are the new, and current positions of all the vertices that make up the mesh 

respectively, 𝛁𝐸(𝑽𝑛) is the gradient of the energy as a function of all the vertices, and 𝑅 is the 

learning rate, a parameter that defines how far to move in configurational energy space. The 

choice of 𝑅 is critical in obtaining effective simulations that reach energy minima, as if 𝑅 is too 

large the system will jump over global and local minima and struggle to converge. On the other 

hand, if 𝑅 is too small, convergence takes a long time and is susceptible to getting trapped in 

local minima, rather than the global minima. Surface Evolver calculates a learning rate 𝑅 for 
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each gradient decent step by halving or doubling the current 𝑅 until an energy minimum is 

bracketed, at which point quadratic interpolation is used to calculate the best learning rate.74 

A Surface Evolver script can be broken down into two sections, at the top of the file we 

give information about the geometry and constraints of the system, and in the bottom of the 

file (referred to as the read section) we define a protocol for energy minimisation. Additionally, 

in the read section we may tweak parameters to evolve the model and perform external 

commands such as writing data to another file. We will discuss both these sections in turn with 

an example script (given in Appendix 1) for a spherical particle adsorbed at a flat liquid 

interface. 

 

Figure 3.1: Top-down view of initial geometry for the Surface Evolver script given in Appendix 1. Black 
dots and corresponding black numbers represent the vertices, green arrows (representing direction) and 
corresponding numbers are the edges, and blue looped arrows (right hand rule definition) and 
corresponding numbers represent the faces. 

To start a Surface Evolver script, we must first define the geometry of the interface or 

interfaces. We do this by creating vertices (black dots in Figure 3.1) in 3D space by specifying 

the x, y, z co-ordinates. These vertices are then joined by edges (green lines in Figure 3.1) by 

specifying a start and end vertex, which gives these edges an inherent direction. We then 

specify the facets of the interface (blue circular arrows in Figure 3.1) making sure that the 

surface normal (as given by the right hand rule) points out of the interface by following three 

or more edges (it is important to make sure that the tip of one arrow meets the tail of the 

next). We can then define a body, which is a collection of facets and allows control over forces 

or conserved quantities associated with volume. 
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Once we have created our geometry, we need to allow Surface Evolver to distinguish 

between the deformable interface and the rigid body for the particle. We do this by applying a 

constraint to the vertices, edges and faces corresponding to the particle, requiring all these 

points to lie on the surface of the sphere, i.e., 

𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2 (3.3) 

where r is the radius of the sphere defined as rad in the script in Appendix 1 using the 

parameter declaration. There are two ways to declare variables in Surface Evolver, either as a 

‘parameter’ or using the ‘#define’ prompt. Parameters are fixed throughout the simulation but 

can be manually changed at run time, but the ‘#define’ declarator updates throughout the 

simulation but cannot be manually changed at run time.  

 

Figure 3.2: Schematic depicting the components of the gap energy, including the constraint (grey), the 

edge vector 𝑆 (blue), the tangent plane to the constraint of the vertex at the tail of 𝑆 (red), and the 

projection of 𝑆 to the tangent plane 𝑄⃗⃗(green). 

Additional arguments can be added to constraints for example in Appendix 1 we 

declare the Sphere constraint as being convex. This adds an associated energy called the gap 

energy with associated user defined gap constant ‘𝑘’. The gap energy 𝐸𝐺𝑎𝑝 is defined as 

𝐸𝐺𝑎𝑝 =
𝑘| 𝑆 × 𝑄⃗⃗|

6
 (3.4) 

where 𝑆 is the edge vector and 𝑄⃗⃗ is the projection of 𝑆 onto the tangent plane of constraint 

(equation (3.3)) at the tail vertex of 𝑆, see Figure 3.2. Without the gap energy, during 

minimisation Surface Evolver is incentivised to move vertices closer together as this minimises 

area but increases the distance between edges and the constraint, which ultimately leads to a 

worse approximation of the constraint.74 The grouping of vertices in this way increases the 

angle between, and magnitude of 𝑆 and 𝑄⃗⃗ causing a large gap energy; therefore by adding the 

gap energy this promotes an even distribution of vertices. 
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 We now have a deformable interface with a solid spherical particle adsorbed to it. 

However, if the simulation is used as it currently is, the edges of the simulation would collapse 

towards the centre to minimise interfacial energy. To avoid this, we apply other constraints to 

those vertices and edges that lie on the interface parameter. This constraint requires us to fix 

the x or y, co-ordinates of each edge of the simulation (depending on which edge we are 

pinning). Importantly we do not fix the z position as we need to allow the interface to change 

its equilibrium height to minimise the interfacial energy; this is equivalent to allowing the 

particle to adjust its height relative to the liquid interface. 

We can also add additional properties to the particle that contribute to the interfacial 

energy of the system, such as contact angle 𝜃𝑤. The contact angle for the system given by the 

Young’s equation, equation (2.1) and Surface Evolver will return the correct contact angle 

provided we apply the correct interfacial tensions in the system. However, in equation (2.1), 

the contact angle is determined by three different interfacial tensions which creates some 

redundancy, i.e., we can achieve the same contact angle using different combinations of 

interfacial tensions. For our system, we choose to only simulate one of the particle-fluid 

interfaces, in this case the particle-oil interface (top), and neglect interfacial energy arising 

from the particle-water interface (i.e., 𝛾𝑝𝑤 = 0). We can also work in reduced units for the 

surface tensions, i.e., 𝛾𝑜𝑤 = 1, which allows us to rewrite Young’s equation (equation (2.1)) as 

cos 𝜃𝑤 =
𝛾𝑝𝑜−0

1
 therefore 𝛾𝑝𝑜 = cos 𝜃𝑤. By default, interfaces in Surface Evolver are already 

set to have an interfacial tension of 1, so all we need to do is make sure that every vertex, edge 

and face that is either on (or on the boundary) of the particle is set to have interfacial tension 

of cos 𝜃𝑤.  

The interface at the boundaries of the simulation by default have an effective contact 

angle of 90° with the simulation box wall. This does not however, imply that the edges of the 

interface have identical z values, but instead the simulation is reflected across the boundary. 

This can be very useful when looking at interactions between particles in mirror symmetric 

configurations, as we are only required to simulate one half of the interaction. We utilise these 

reflecting boundary conditions extensively throughout this thesis in Chapter 4, Chapter 5 and 

Chapter 7, as it allows the simulation domain to be halved, leading to much lower 

computational requirements. It’s also possible to instead represent the boundaries of the 

simulation as periodic boundaries which we will cover more in Chapter 8, where we use 

periodic boundaries to calculate the interfacial energy of a lattice cell containing one or two 

particles.  
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 Up to now, we have covered the top section of the datafile responsible for the 

definitions of geometry and quantities. The bottom section of the datafile or read section is 

responsible for evolving the simulation through interfacial refinement and gradient decent 

through the energy landscape.  

 

Figure 3.3: System evolution for a rigid spherical particle (yellow) with 𝜃𝑤 = 70° at a flat deformable 
interface (green). (a) Initial starting geometry as specified by the Surface Evolver script. (b-d) Refinement 
of the mesh at different stages. (e) Part way through the energy minimisation. (f) Final result. 

 The geometry we have defined in the top section of the datafile is typically a very 

coarse representation of our surface with very minimal features (Figure 3.3a). To more 

accurately capture the geometry of our surface we can refine it (main command r). Refining 

bisects each edge by placing a vertex in the centre and connecting the new vertices to each 

other by new edges, an example of this can be seen in Figure 3.3a,b. Upon refinement we see 

that the interface now more closely resembles the surface we are attempting to model (sphere 

at a flat interface), and as we continue to refine the simulation, the particle becomes more 

spherical. However, because our initial geometry has triangular tessellations of varying size, as 

we continue to refine the mesh (Figure 3.3c) we find that there become regions that are made 

up of very thin or small area triangles. To help even out the mesh we can additionally apply an 

“equiangulation” step (main command ‘u’), which attempts to make neighbouring facets have 

triangles of equal angles. This step checks to see if an edge (which is joining two facets), which 

is treated as the diagonal of the quadrilateral made up by two adjacent faces produces more 

equiangular triangles if the triangular mesh was instead created using the other diagonal of the 

quadrilateral. Additionally, we can also apply a vertex averaging step (main command ‘V’), 

which moves vertices to a new position based upon area-weighted average of the centre of 

mass of adjacent faces. In the example script given in Appendix 1 we package all these steps, 

along with a minimum length for refinement (to stop the mesh getting too small) into a 

function called ‘groom’ and use this to refine the surface. 
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 Refining the surface alone, however, does not take into consideration any energy 

contributions, and therefore will not reach equilibrium. To traverse the energy landscape, we 

perform a step down the energy gradient (main command ‘g’), which calculates the gradient of 

total energy at each vertex and moves them one step in the opposite direction.74 Typically, a 

Surface Evolver simulation requires hundreds if not thousands of these gradient decent steps, 

but performing all of these at once can lead to surface instabilities as the triangular mesh can 

get stretched if our initial geometry is far away from equilibrium. In practice this means 

defining a minimisation procedure (user defined ‘run’ in Appendix 1) in the bottom section of 

the datafile to be used at runtime.  

However, using gradient decent alone to evolve the surface down the energy gradient 

can take a long time, especially when there are many vertices. To speed up this process we can 

apply a Newton-Raphson method to the gradient to get the surface to converge quickly (main 

command ‘Hessian_seek’). This uses a second order Taylor expansion to model the energy of 

the surface at a new position based upon a small perturbation and then solves for the 

direction of perturbation that makes the energy gradient zero and then performs a line search 

along this direction to find the minimum. Essentially this is like the gradient decent, except this 

uses the second order derivatives (Hessian) rather than the first order derivatives.74 The 

downside to using this, however, is that for a surface far away from a minimum the second 

order approximation is not valid, and the direction of the move may not be towards a 

minimum, so we must use this technique in combination with the gradient decent in order to 

achieve quick convergence. Note: in the script in Appendix 1 before we perform a 

‘Hessian_seek’ we set the gap constant ‘𝑘’ to 0 as this energy does not have a Hessian 

calculation. 

 There is no one size fits all when it comes to the energy minimisation procedure, and 

in general different geometries require their own energy minimisation procedure to balance 

the speed and effectiveness of the minimisation. The Surface Evolver simulations are 

deterministic and therefore running two identical simulations will produce the same results, 

for this reason it is important when drawing comparisons between simulations to use the 

same minimisation procedure where possible.   

We now look to use our simulation to study some equilibrium properties of the 

system, for example the change in the height of the spherical particle relative to the interface 

as a function of contact angle, or equivalently and more conveniently, the height of the 

interface relative to the spherical particle. We know that based upon topic discussed in 

Chapter 2.1, the interface should remain flat, but to satisfy the constant contact angle 
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condition, the height at which the sphere intersects the interface changes. In our simulation 

the particle position is fixed, but the interface can move to satisfy the condition imposed by 

constant contact angle, specifically the interface should move by −𝑟 cos 𝜃𝑤 where in the 

simulation we choose to use 𝑟 = 1.  

𝜃𝑤 (degrees) Δℎ𝐼 (Surface Evolver) −cos 𝜃𝑤 %deviation 

70 -0.3408 -0.3420 -0.35% 

80 -0.1723 -0.1736 -0.75% 

90 0.0018 0 - 

100 0.1757 0.1736 1.21% 

110 0.3447 0.3420 0.79% 

Table 3.1: Change in interfacial height of the liquid interface at the contact line (Δℎ𝐼) calculated using 
Surface Evolver and theoretical change in interfacial height −cos 𝜃𝑤  as a function of contact angle 𝜃𝑤, 
and %deviation from the theoretical value. 

In Table 3.1 we show the average z value of vertices on the contact line of the 

simulation Δℎ𝐼 compared to the predicted value and the percentage deviation. We see that 

the percentage deviation is around 1% using this minimisation scheme, these deviations arise 

partly because even though in our minimisation procedure we switch to using quadratic 

approximations for our edges (main command M 2) it is still only an approximation for a 

sphere, and partly because the minimisation procedure doesn’t quite reach the minimum 

energy state. It is also interesting to note that the Surface Evolver simulations underpredict the 

change in height for contact angles less than 90°, and overpredicts the change in height for 

contact angles greater than 90°. This is likely due to our choice of particle surface we model 

(i.e., the top surface), as for contact angles less than 90° the interface moves down and we 

simulate most of the particle’s surface, whereas for greater than 90° we simulate the minority 

surface. 

 The simulation we have discussed above is centred around the particle reference 

frame which can be useful for many applications. However, it is often more intuitive to work in 

the lab frame, e.g., when rotating an asymmetric particle or working at curved interfaces. To 

change our reference frame, we first need to fix the edges of our interface to lie at z = 0, which 

can be done by adding an additional constraint to the edges of the simulation boundary.  

Now the interface is constrained to z = 0, but currently the particle is also in a fixed 

position. For the simulation to reach a physical equilibrium, we need to allow the height of the 

particle to be minimised during the minimisation procedure. To do this we create a new 

parameter which represents the height of the particles centre of mass and declare this 
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parameter as an optimising parameter by unfixing the parameter as part of our minimisation 

procedure. Optimising parameters are parameters that will also be subject to our minimisation 

procedure, i.e., an additional dimension in parameter space to perform the gradient decent 

upon. Whilst we can declare the optimising parameter at the start of the simulation, it is often 

better to allow the surface to refine and evolve a little bit first. Additionally, we can also 

control how much the parameter is optimised with respect to the rest of the surface as a form 

of impedance matching with the optional pscale value. 

We now must attach the particle centre of mass parameter with the constraint that 

governs the ridged particle body. In general, we do this by defining a particle reference frame 

and calculating the particle centred co-ordinates using reference frame transformations (which 

we will cover in more detail in Chapter 4) and using these co-ordinates to define the 

constraint. However, in our case as we only are translating the particle vertically, we can 

encode this directly into the constraint by subtracting the height of the particles centre of 

mass from the z values on the surface of the sphere. 

𝜃𝑤 (degrees) Δℎ𝑃 (Surface Evolver) cos 𝜃𝑤 %deviation 

70 0.3405 0.3420 -0.44% 

80 0.1728 0.1736 -0.46% 

90 0.0002 0 - 

100 -0.1725 -0.1736 -0.63% 

110 -0.3411 -0.3420 -0.26% 

Table 3.2: Change in particle centre of mass (Δℎ𝑃) calculated using Surface Evolver and theoretical 
change in centre of mass cos 𝜃𝑤 as a function of contact angle 𝜃𝑤, and %deviation from the theoretical 
value. 

We can then perform the same experiment looking instead at the change in particle 

centre of mass Δℎ𝑝 with respect to contact angle. In Table 3.2 we show the change in height of 

the centre of mass of the particle Δℎ𝑝 compared to the theoretical value 𝑟 cos 𝜃𝑤 where 𝑟 =

1, and the percentage deviation from the theoretical value. We see that we obtain similar 

results to the fixed particle simulations, except in almost all cases Surface Evolver under 

predicts the change in height, and the percentage deviation is less than 1%. 
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Figure 3.4: Surface Evolver simulations for a spherical particle with contact angle 110° at a curved 
interface of height 2. a) Initial geometry, b) refining and gradient decent before optimisation of the 
height of the centre of mass of the particle, c) part way through the energy minimisation procedure, d) 
final surface. 

 Now we have a model for a fixed interface we can perform simulations where the 

interface itself is curved, for example a cylindrically curved interface which we will use 

extensively in Chapter 4 and Chapter 5. Firstly, we should update our geometry so that the 

initial starting configuration is as close as possible to where we think equilibrium will be. This 

requires first creating a parameter which controls the height of the cylindrical interface ℎ, and 

removing the 𝑧 = 0 constraints on the vertices and edges which will represent the curved 

sides of the cylindrical interface. We should also set those vertices initial z value, as well as the 

particles vertices and centre of mass optimising parameter to ℎ. This leads to a starting 

geometry shown in Figure 3.4a that approximates a spherical particle adsorbed to a cylinder.  

At this point however, the simulation would just collapse back to a flat interface if it 

were minimised because there is no force keeping the interface inflated. Recall back to 

equation (2.7) where we describe the Laplace pressure at a curved interface between two 

immiscible fluids. We can apply this pressure to the interface by first defining a body which in 

our case is every face in the simulation and applying a pressure equal to 
1

𝑟1
+

1

𝑟2
 where 𝑟1 and 𝑟2 

are the principal radii of curvature. For a cylinder (like we discussed in Chapter 2.5) 𝑟2 = 0 and 

𝑟1 = 𝑅 which is the radius of a circle related to ℎ by 

𝑅 =
ℎ2 + (

𝑊
2 )

2

2ℎ
 (3.5) 

where 𝑊 is the width of the simulation along the direction of the curved edge.  
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 The simulation is now set up with all the necessary forces and constraints to model the 

interface correctly, and by evolving the surface we see in Figure 3.4b-d that the curved 

interface is stable because of the applied Laplace pressure. Figure 3.4b shows the evolution of 

the curved interface simulation before allowing the height of the particle to be an optimising 

parameter, and Figure 3.4c shows that after the optimising parameter is unfixed, the particle 

quickly moves to minimise interfacial distortion. Figure 3.4d shows the final state of the 

simulation. 

3.2 Monte Carlo Simulation 

 Whilst Surface Evolver allows us to study equilibrium properties using a quasi-static 

approximation, it doesn’t allow us to study our system in a dynamic way to so if it is able to 

reach the minimum energy configurations that Surface Evolver predicts. To do this we study 

systems of hundreds of particles using a Monte Carlo Metropolis method, which is a way to 

explore the phase space of a many body system in a way that obeys a probability distribution 

derived from Statistical Physics (in our case the Boltzmann distribution), i.e., an efficient 

simulation method for sampling the equilibrium distribution of system configurations. 

 All our simulations are performed in the canonical ensemble (NVT) where the number 

of particles 𝑁, the total volume 𝑉, and the temperature 𝑇 are fixed. The canonical partition 

function 𝑄 describes the statistical properties of the system in thermodynamic equilibrium 

which for 𝑁 identical particles is calculated by  

𝑄 = 𝑐∬exp (−
𝐻(𝒑𝑁, 𝒓𝑁)

𝑘𝐵𝑇
)𝑑𝒑𝑁𝑑𝒓𝑁 (3.6) 

where 𝑐 is a constant of proportionality (which we omit the explicit calculation of in order to 

simplify our discussion, and as we shall see later is not relevant for this discussion), 𝒑𝑁 

represents the momentum vector for all 𝑁 particles, 𝒓𝑁 represents the position vector for all 

𝑁 particles, and 𝐻(𝒑𝑁 , 𝒓𝑁) represents the Hamiltonian that corresponds to the total energy of 

the system. The Hamiltonian can be broken down into 𝐻 = 𝐾 + 𝑉 where 𝐾 is the kinetic 

energy of the system and 𝑉 is the potential energy of the system. Under the assumption that 

the potential energy is not dependent on the momentum of the particles (which is almost 

always the case), the double integral in equation (3.6) can be separated into 

𝑄 = 𝑐∫exp (−
𝐾(𝒑𝑁)

𝑘𝐵𝑇
)𝑑𝒑𝑁∫exp(−

𝑉(𝒓𝑁)

𝑘𝐵𝑇
)𝑑𝒓𝑁  (3.7) 

Since the kinetic energy is quadratic in the particle momenta, the integration over the 

momentum can be carried out analytically and absorbed into 𝑐, and hence, kinetic information 
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cannot usually be explicitly extracted from Monte Carlo simulations. However, as we shall 

show later, Monte Carlo simulations can be used to generate kinetic simulations with the 

addition of three fundamental conditions. The difficult part of evaluating 𝑄 is evaluating the 

configurational integral over all 𝐷𝑁 particle position variables where 𝐷 is the number of spatial 

dimensions.75,76 We note here that this only applies to isotropic interactions, if the interactions 

are angularly dependent there will be up to 
𝐷2(𝐷−1)𝑁

2
 variables, for example in Chapter 7 and 

Chapter 8 we consider a 2D system with angularly dependant interaction potentials, leading to 

a total of 3𝑁 variables. 

 We are not necessarily interested in explicit evaluation of the configurational integral 

itself, but instead we interested in average properties of the system, for example the average 

potential 〈𝑉(𝒓𝑁)〉, which can be calculated by 

〈𝑉(𝒓𝑁)〉 =
∫𝑉(𝒓𝑁) exp (−

𝑉(𝒓𝑁)
𝑘𝐵𝑇

)𝑑𝒓𝑁

∫ exp (−
𝑉(𝒓𝑁)
𝑘𝐵𝑇

)𝑑𝒓𝑁
 (3.8) 

where the constant term 𝑐 is cancelled. We could now attempt to evaluate this integral but 

even a coarse integration method over the 𝐷𝑁- dimensions would be a massive number of 

calculations. The key insight that was realised when developing the metropolis algorithm is 

that many of the configurations contributed very little to the integral, and a better way to 

approximate the integral is to only generate configurations that make a large contribution.76 

This method of only generating important configurations is also referred to as importance 

sampling and is the basic premise behind the Monte Carlo Metropolis method. Typically, states 

with high probability 𝑃 will contribute greatly to the integral, and therefore, by moving to 

configurations which make a large contribution, we eventually end up in configurations that 

have high probability, i.e., low free energy states caused by self-assembly. 

 

Figure 3.5: Example plots of pair-wise potential 𝑉(𝑟) as a function of the interparticle separation 𝑟. a) is 
a repulsive piecewise short-ranged potential where 𝑉(𝑟 < 𝑟1) = ∞ (overlapping particles), 
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𝑉(𝑟1 < 𝑟 < 𝑟2) = 𝜀
𝑟−𝑟2

𝑟1−𝑟2
, and 𝑉(𝑟 > 𝑟2) = 0 (short ranged). b) is an attractive long-ranged piecewise 

potential where 𝑉(𝑟 < 𝑟1) = ∞ (overlapping particles), and 𝑉(𝑟 > 𝑟1) = −𝜀 (
𝑟1

𝑟
)
2

 (long-ranged). 

 Now that we have discussed why the Monte Carlo Metropolis method is useful for our 

purposes of obtaining minimum free energy states, let us now discuss the key quantity in 

equation (3.8), the interaction potential 𝑉(𝒓𝑁). To find the equilibrium states that maximise 

the integral in equation (3.8), we need to find some way of measuring the potential of the 𝐷𝑁 

position variables. To simplify our task, we assume that the potential is pairwise additive, i.e., 

the potential for the whole system can be approximated by a sum over all the pair interactions 

between particles 𝑉(𝒓𝑁) = ∑ 𝑉(𝒓𝑖, 𝒓𝑗)
𝑁
𝑖≠𝑗 .  

In Figure 3.5 we look at two examples of pair interaction potentials which only depend 

on the centre-to-centre distance between two isotropic particles (2D circular particles, or 3D 

spheres). In Figure 3.5a, we show an example of a two length-scale interaction potential which 

has no interaction between particles that are far apart, and some repulsive distance 

dependant potential when particles are close to each other. At first sight, this might look like a 

strange potential for achieving self-assembly as the system actively wants to avoid being close 

to one and other, but as we shall see later in Chapter 6 the system gives rise to a whole variety 

of interesting assemblies when compressed. In Figure 3.5b we show an example of an 

attractive interaction potential that has a finite value for greater than particle contact so is 

long ranged. The interaction potentials are defined by both their shape (potential profile) and 

there well depth 𝜀. Comparing the well depth 𝜀 with the thermal energy of a system (𝑘𝐵𝑇) can 

immediately give us insights into the equilibrium structure at that finite temperature. For 

example, if 𝑘𝐵𝑇 ≫ 𝜀 then any order induced by the potential will be destroyed by thermal 

fluctuations, mimicking a ‘hot’ system and leading to disorder. For systems where 𝑘𝐵𝑇 ≪ 𝜀, 

the system evolves slowly, causes irreversible assemblies, and is very dependent on its initial 

starting configuration like a ‘cold’ system. To achieve good mixing, reasonable computation 

times, and self-assembly, we need to work in a regime that isn’t too ‘hot’ or ‘cold’ but is 

somewhere in between. To capture the influence of temperature and well depth we define a 

normalised temperature 𝑇∗ such that 𝑇∗ =
𝑘𝐵𝑇

𝜀
, which allows us to couple the potential and 

the temperature together simplifying our system parameters. 

 When initialising the simulation, particles need to be placed inside the simulation box 

without overlapping each other, an easy way to ensure this is to arrange the particles in a 

regular lattice. In situations where the concentration of particles is low, a square or cubic 

lattice will suffice. In contrast, when simulating high density systems, it is better to use a 

hexagonal lattice as this configuration maximises the interparticle distance for a given particle 
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concentration, allowing higher initial concentrations to be simulated. For the 2D colloidal 

systems studied in this thesis, we measure the concentration of the system in terms of the 

area fraction 𝜂, which is the ratio of particle area (𝜋𝑟2 for spherical particles) to simulation 

area (𝐿𝑥𝐿𝑦 where 𝐿𝑥 and 𝐿𝑦 are the length of the simulation box in the 𝑥 and 𝑦 directions 

respectively), which with hexagonal packing can go up to 𝜂0 = 0.9069. For non-spherical 

particles (e.g., the ellipsoid particles we study in Chapter 7), we use the area the particle 

sweeps out when performing a full rotation about its centre as a ‘pseudo particle area’ and 

ensure that the ‘pseudo area fraction’ does not exceed 𝜂0 so that the system remains in the 

dilute regime. After the initialisation of the simulation, the system is disordered to remove any 

bias from the initial configuration by performing many Monte Carlo moves at high normalised 

temperature (𝑇∗ ≫ 1). 

 The basics of the Monte Carlo move starts by selecting a particle at random and 

performing a trial move which can be translational, rotational, or both. For example, a trial 

translational move in three dimensions consists of updating the location of the particle 

according to 

𝑥𝑛 = 𝑥𝑜 + (2𝑋1 − 1)𝑑𝑀𝑎𝑥 

𝑦𝑛 = 𝑦𝑜 + (2𝑋2 − 1)𝑑𝑀𝑎𝑥 
(3.9) 

where the subscript (𝑛 and 𝑜) on the position variables 𝑥, 𝑦 represent the new or old position 

respectively, 𝑋 is a random number between 0 and 1 (𝑋~𝑈([0,1])) (the subscript denotes 

different random numbers), and 𝑑𝑀𝑎𝑥 is the maximum displacement along a cartesian axis. 

Here the (2𝑋 − 1) ensures that both positive and negative displacements are equally likely to 

ensure the condition of detailed balance is met. Detailed balance requires the attempt 

probability of going from the old state to the new state (𝑃(𝑜 → 𝑛)) to be equal to that of going 

from the new state to the old state (𝑃(𝑛 → 𝑜)), and obeying detail balance guarantees non-

biased simulations.  

 Once the trial move has been performed, we then calculate the change in potential 

energy from its previous state. If the energy of the system has decreased, we accept the move, 

however, if the system energy increases, we accept the move based upon the Boltzmann 

distribution. Specifically, we accept a move based upon the probability 𝑃 = exp (−
𝑉̅(𝑛)−𝑉̅(𝑜)

𝑇∗
), 

where 𝑉̅(𝑜) and 𝑉̅(𝑛) represent the normalised potential, e.g., 𝑉̅(𝑜) =
𝑉(𝑜)

𝜀
. To decide within 

the simulation if on a given move we accept the new position, we check to see if a random 

number is less than the probability, i.e., 𝑋 < 𝑃. We can see here that if the change in energy is 
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very large 𝑃 → 0, and the move will have a high chance of being rejected, and if the 

normalised temperature 𝑇∗ is very high 𝑃 → 1 and any non-overlapping moves will almost 

always be accepted (this is why after initialisation we can create a system with a random 

distribution of particles using a high 𝑇∗). This then completes a single move, and typically when 

we talk about Monte Carlo moves, we refer to an average of one attempted move per particle, 

i.e., 𝑁 single Monte Carlo moves attempted. 

 The choice over parameters 𝑑𝑀𝑎𝑥 and 𝑡𝑀𝑎𝑥 is also important to efficiently reach an 

equilibrium state. If they are too large, then any attempted move will likely end up in an 

unfavourable state, increasing the probability of rejecting the move, and if it is too small, the 

change in energy will be small so the probability the move will be accepted is high, but the 

system will explore phase space very slowly. Instead, we start with reasonable guesses for the 

values of these parameters and update their values as the system evolves to achieve a certain 

target percentage for moves that are accepted. For hard-core interactions, where overlapping 

of particles leads to rejection of the Monte Carlo move, it is believed that the optimum 

acceptance percentage for efficient exploration of phase space is closer to 20% though many 

simulation studies use 50%.77 In our simulations we use a target acceptance percentage of 

30%. To achieve this target, every few hundred Monte Carlo moves we check to see how many 

attempts were successful and increase the value of the parameters by 5% if the acceptance 

percentage is too high or reduce the value of the parameters by 5% if they are too low. For 

simulations of very dilute systems, sometimes 𝑑𝑀𝑎𝑥 can increase to be larger than the 

simulation box size, so it is useful as a fail-safe to set an upper bound to  𝑑𝑀𝑎𝑥 and 𝑡𝑀𝑎𝑥 to 

avoid this from happening.  

 Typically, simulations consist of a few hundred to a few thousand particles due to 

limitation of computation resources. The number of particles is still very far away from the 

thermodynamic limit, and we need to consider how particles interact with the boundary of the 

simulation box to minimise finite size effects to observe bulk behaviour. For example, we could 

reject any move that places a particle outside of the simulation domain, but a hard wall 

represents a very strong perturbation to the system so that we must go to a very large number 

of particles for the simulation to approximate bulk behaviour well. To reduce finite size effects, 

minimize boundary effects, and reduce the number of particles needed for bulk behaviour, we 

implement periodic boundary conditions. Periodic boundary conditions handle particles 

leaving the simulation box by making the particle re-appear on the opposite side (keeping 𝑁 

constant), this is also equivalent to our simulation being effectively a unit cell in a larger scale 

simulation. For example, a particle leaving the simulation via the right-hand cell wall means a 
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new particle will enter from the left-hand cell wall with an equal 𝑦 value and an 𝑥 value 

calculated by 

𝑥|𝑛| = 𝑥𝑛 − 𝐿𝑥 ⌊
𝑥𝑛
𝐿𝑥
⌋ (3.10) 

where 𝑥|𝑛| is the new 𝑥 coordinate of the particle after it has been translated, and ⌊ ⌋ is the 

floor function (rounding down).  

 The periodic boundaries also effect interactions across the boundary. For example, if a 

particle is close to one of the edges after a move, the particles at the opposite side of the 

simulation box have a ‘mirror’ particle (one that is in the neighbouring unit cell) that is much 

closer to the newly moved particle, which dramatically changes the interaction energy. To 

calculate the smallest distance between two particles (Δ𝑥𝑀𝑖𝑛) we use the minimum image 

convention, which for example can be calculated for the 𝑥 coordinate by   

Δ𝑥𝑀𝑖𝑛 =
Δ𝑥

|Δ𝑥|
(Δ𝑥 − 𝐿𝑥 ⌊

2|Δ𝑥|

𝐿𝑥
⌋) (3.11) 

where Δ𝑥 is the signed distance from the newly moved particle to the interacting particle 𝑥𝑖 in 

the same simulation cell (𝑥𝑖 − 𝑥|𝑛|). Equation (3.11) ensures that |Δ𝑥𝑀𝑖𝑛| ≤
𝐿𝑥

2
 and calculates 

which direction the minimum image particle is in relative to the newly moved particle. For 

example, if Δ𝑥𝑀𝑖𝑛 is negative, the interacting particle is to the left of the newly moved particle. 

This is important for particles where their interaction potential is not isotropic, but instead 

angularly dependant e.g., quadrupolar capillary interactions from ellipsoids adsorbed to a flat 

liquid interface, which we will cover in Chapter 7.   

 When dealing with potentials which have a non-zero interaction potential at large 

Δ𝑟𝑀𝑖𝑛 (minimum image separation in 𝐷-dimensional space), i.e., long-range interactions, the 

computation time of potential energy calculations per particle scales with N, even though the 

number of nearest neighbours which contribute the most energy stays the same. To reduce 

computation time, we could consider only interactions with particles within a certain cutoff 

radius 𝑟𝑐 of a given particle. The cutoff radius is only applicable to systems where the 

interaction potential decays more rapidly than the increasing number of particles. For 

example, for a 2D system, the number of additional particles increases linearly with increasing 

𝑟, and therefore even potentials which decrease as 𝑟−2 can have a non-negligible contribution 

to the total potential energy for some 𝑟𝑐 values. Fortunately, in Chapter 6 we consider a short-

range finite potential which has its own natural cutoff length, and in Chapter 7 and Chapter 8 
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we consider a long-range interaction potential which decays very rapidly with 𝑟−4 to a first 

approximation, which allows 𝑟𝑐 to be relatively small.  

 As discussed earlier the kinetic part of the partition function can be analytically 

computed and therefore when we perform our Monte Carlo simulations, we usually cannot 

obtain kinetic information. However, it has been shown in the literature that if additional 

criteria are satisfied, both static and dynamic properties of a system can be obtained using 

Monte Carlo simulations.78 These criteria are: (1) a "dynamical hierarchy" of transition 

probabilities is created which also satisfy the detailed-balance criterion; (2) time increments 

upon successful events are calculated appropriately; and (3) the effective independence of 

various events comprising the system can be achieved.78  

 The first criteria require the creation a “dynamic hierarchy”, that is, a list of all possible 

transitions along with transition probability, ensuring that detail balance is obeyed for all 

transitions. A transition is then picked according to its probability and the list is then updated 

with all new transitions and transition probabilities and the process is repeated.79 As discussed 

earlier, all Monte Carlo moves in the Metropolis scheme obey detailed balance. In addition, 

whilst we do not explicitly calculate the transition probability for possible Monte Carlo moves 

but displace particles at random up to a maximum range, all of our moves are physical, i.e., 

they involve small spatial or rotational displacements with no cluster or random high 

temperature moves. In this case, previous studies have shown that in the limit of small 

displacements, Metropolis Monte Carlo simulations are approximately equivalent to Brownian 

dynamic simulations which do include kinetic information.80,81 

 The second criteria require us to map a Monte Carlo step to some physical time 

interval. This mapping is physically related to the average transition rate of local moves in the 

system, which in turn can be calculated from the dynamic hierarchy discussed above.79 For our 

Monte Carlo simulations, we are more interested in studying the kinetic pathways rather than 

the absolute times for different kinetic processes and therefore do not need to explicitly 

calculate the time interval for Monte Carlo moves. 

 Finally, by using a large enough system, the independence of events can be achieved 

because we consider systems where the range of interactions is small (see Chapters 6 -8) and 

the small step sizes we use in our simulations.78 Specifically, the movement of particles only 

affects the local region around the particle and not Monte Carlo moves that happen 

elsewhere. 
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In summary, we believe that our Monte Carlo simulations satisfy all three criteria listed 

above, and therefore that it is possible to extract kinetic information about the systems we 

study from our simulations. In the rest this thesis, we will use both Surface Evolver and Monte 

Carlo simulations to study the self-assembly of both isotropic and anisotropic particles at liquid 

interfaces. 
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 Capillary Assembly of Anisotropic Particles at 
Cylindrical Fluid Interfaces – Floatation Regime 

4.1 Introduction 

In this Chapter, we study the self-assembly of anisotropic rod-shaped particles at a 

cylindrical interface formed by a sessile liquid drop. Specifically, using the finite element 

method Surface Evolver,74 we study the assembly of single and multiple rods as a function of 

drop curvature and particle properties such as shape (ellipsoid, cylinder, spherocylinder), 

contact angle, aspect ratio and chemical heterogeneity (homogeneous and triblock patchy). 

The simple curved geometry of cylinders (constant finite curvature transverse to the cylinder, 

zero curvature along the cylinder) allows us to elucidate the interplay between interfacial 

curvature and particle properties in determining the configuration of single and multiple rods. 

Surprisingly, we find that, although the lateral dimension of the cylindrical drop is larger than 

the length of the rods in all cases studied, the curved interface allows us to effectively control 

the orientation of the rods so that they lie parallel, perpendicular or oblique, with respect to 

the cylindrical drop. In addition, by tuning particle properties to achieve parallel alignment of 

the rods, we show that the cylindrical drop geometry favours tip-to-tip assembly for two rods, 

not just for cylinders, but also for ellipsoids and triblock patchy rods. Finally, although there 

are no curvature gradients in the host interface that can be used to control particle position, 

we can still achieve some degree of spatial confinement of the rods transverse to the 

cylindrical drop by using the capillary repulsion from the pinned contact lines of the sessile 

drop.82,83  

 In other studies,84–86 the assembly of 20 − 50nm width nanorods into tip-to-tip 

configurations have been achieved by patterning a substrate with trenches with dimensions so 

that two rods may not assemble side to side and three rods in a tip-to-tip configuration will not 

assemble. The nanorods are then assembled into these trenches through the use of the 

“squeegee” method,85 which relies on a combination of evaporation of a colloidal drop (which 

causes accumulation at the three phase contact line) and immersion forces to drive the 

particles into the trenches.84,86 However, these methods require using electron beam 

lithography to pattern the substrates in order to achieve features in the 20 − 70nm range, 

which requires the use of expensive specialist equipment. The method we propose in this 

Chapter relies on utilising the curvature of a liquid drop that is much larger than the 

dimensions of the nanorods to obtain tip-to-tip assembly. Not only does our method allow us 

to assemble rods that are much smaller (10nm width), but it also allows us to use 

photolithography to create a patterned substrate, providing a low-cost, high throughput 

method for assembling nanoscale particles. 
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4.2 Theoretical Methods 

In this section, we describe the geometry and thermodynamics of the composite system 

consisting of rod-like particles adsorbed at a sessile cylindrical liquid drop and the Surface 

Evolver method used to study this system theoretically.  

 

Figure 4.1: (a) Geometry of the simulated rod-like particles; (b) Geometry of a rod-like particle adsorbed 
at a cylindrical sessile drop.  

For rod-like particles, we consider three different particle shapes, namely, ellipsoids, 

cylinders, and spherocylinders (Figure 4.1). For ellipsoids and cylinders, we use the super-

ellipsoid equation49,83 

(
𝑥′ 2

𝑎2
) + (

𝑦′ 2 + 𝑧′ 2

𝑏2
)

𝜂

= 1 (4.1) 

to define the particle shape, where 𝑥′, 𝑦′, 𝑧′ are the Cartesian coordinates in the particle 

reference frame (see below in this section), a, b are the semi-major and semi-minor lengths of 

the rod, respectively, and 𝜂 is a sharpness parameter that defines the sharpness of the super-

ellipsoid edge. We use 𝜂 = 1 for ellipsoids and 𝜂 = 4 for cylinders (i.e., we consider cylinders 

with rounded edges; see Figure 4.1a). For spherocylinders, we use 

𝑓(𝑥′, 𝑦′, 𝑧′) = {

𝑦′
 2
+ 𝑧′

 2
= 𝑏2, |𝑥′| < 𝑎 − 𝑏

(𝑥′ −
𝑥′

|𝑥′|
(𝑎 − 𝑏))

2

+ 𝑦′2 + 𝑧′2 = 𝑏2, |𝑥′| ≥ 𝑎 − 𝑏
 (4.2) 

Note that in all cases, the particle aspect ratio is 𝑎/𝑏.  
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In terms of surface chemistry, we consider ellipsoids, cylinders, and spherocylinders 

with homogeneous surface chemistry, as well as spherocylinders with triblock patchy surface 

chemistry (Figure 4.1a).  

For the cylindrical sessile drop, we consider a drop with a rectangular base of width 

𝑊 =  20𝑏 and length 𝐿 =  2𝑎 +  10𝑏. For convenience, we refer to the top and bottom fluid 

phases as oil and water, respectively (i.e., the fluid making up the drop is water), though our 

model is in fact general and applies to any fluid−fluid interface. Assuming the origin of the lab 

frame in Cartesian coordinates to be at the centre of the base with 𝑧 perpendicular to the base 

and 𝑥, 𝑦 parallel and perpendicular to the long axis of the cylinder, respectively, we assume 

that the contact lines of the cylindrical drop at 𝑦 =  ±10𝑏 are pinned and apply reflecting 

boundary conditions for the interface at 𝑥 =  ±(𝑎 +  5𝑏) (see Figure 4.1b). Note that the 

width of the drop is greater than the particle length for all cases studied in this work (𝑊 >

2𝑎), and we have chosen 𝐿 to be large enough so that for a particle positioned at the centre of 

the drop (𝑥, 𝑦 =  0), the effect of the reflecting boundary conditions is small and the particle 

is effectively isolated. We fix the curvature of the cylindrical drop by applying a Laplace 

pressure of 𝛾𝑜𝑤/𝑅 across the interface, where 𝛾𝑜𝑤 is the oil−water interfacial tension and 𝑅 is 

the radius of the cylinder in the absence of any adsorbed particles. Although the behaviour of 

adsorbed rods is controlled by the curvature of the cylindrical drop,18,73 it is easier to control 

and measure the height of the drop experimentally. For convenience, we therefore 

parameterize the curvature of the drop using the drop height in the absence of adsorbed 

particles, ℎ, which is related to 𝑅 and 𝑊 according to 𝑅 = ℎ/2 +𝑊2/8ℎ . Note that we 

consider drop heights ℎ >  𝑏, so that the substrate does not play a critical role in determining 

particle behaviour, that is, the adsorbed particles are in the flotation rather than the 

immersion regime.14,87  

 

Figure 4.2: Degrees of freedom of a rod adsorbed at the cylindrical interface; the red dot represents the 
centre of mass of the rod. (a) Cylindrical polar coordinates used to specify the position of the rod; (b) 
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Bond angle 𝜃𝑏 and tilt angle 𝜃𝑡 (defined with respect to the interfacial frame 𝑢, 𝑣, 𝑤) used to specify the 
orientation of the rod. 

In order to specify the centre-of-mass position of the adsorbed particle, we use 

cylindrical polar coordinates, where the position transverse to the cylindrical drop is given by 

the polar angle 𝜃𝑝, the radial distance from the long axis of the cylindrical drop is given by 𝑟𝑝 =

 𝑅 +  𝛥𝑟, and the position along the long axis is given by 𝑥𝑝 (see Figure 4.2a). 

In order to specify the orientation of the adsorbed particle, we first define a Cartesian 

coordinate system in the interfacial frame (𝑢, 𝑣, 𝑤), with the origin coinciding with the particle 

centre and 𝑢, 𝑣, 𝑤 pointing in the directions of change for the cylindrical coordinates 𝑥, 𝜃, 𝑟, 

respectively (see Figure 4.2a); the interfacial frame coordinates are related to the lab frame 

coordinates (𝑥, 𝑦, 𝑧) by 

(
𝑢
𝑣
𝑤
) = (

1 0 0
0 cos 𝜃𝑝 −sin𝜃𝑝
0 sin 𝜃𝑝 cos 𝜃𝑝

)(

𝑥 − 𝑥𝑝
𝑦 − 𝑦𝑝
𝑧 − 𝑧𝑝

) (4.3) 

where 𝑦𝑝 = 𝑟𝑝 sin𝜃𝑝 , 𝑧𝑝 = 𝑟𝑝 cos𝜃𝑝 are the centre-of-mass coordinates of the particle in the 

lab frame. Since we are considering axisymmetric rod-like particles, the orientation of the 

particle can be specified relative to (𝑢, 𝑣, 𝑤) using two angles that we call the bond angle 𝜃𝑏 

and the tilt angle 𝜃𝑡, as defined in Figure 4.2b. 

Finally, we can define a Cartesian coordinate system in the particle frame (𝑥′, 𝑦′, 𝑧′), 

with 𝑥′ aligned along the semi-major axis of the particle and 𝑦′, 𝑧′ aligned along the semi-

minor axes of the particle. These coordinates are related to the interfacial frame (𝑢, 𝑣, 𝑤) 

coordinates by the following rotational transformations88 

(
𝑥′
𝑦′

𝑧′

) = (
cos𝜃𝑡 0 − sin 𝜃𝑡
0 1 0

sin𝜃𝑡 0 cos 𝜃𝑡

)(
cos 𝜃𝑏 sin𝜃𝑏 0
− sin𝜃𝑏 cos𝜃𝑏 0

0 0 1

)(
𝑢
𝑣
𝑤
) (4.4) 

For micron or sub-micron particles, which is the focus of this Chapter, gravity is 

negligible, and the energy of the composite system is primarily due to the interfacial energy, 

which is given by equation (2.2)53,89 Again, we have neglected line tension contributions in 

equation (2.2) because these are sub-dominant compared to interfacial tensions for the 

particles that we are considering, where 𝑎, 𝑏 > 10 nm.41 For a given particle configuration, the 

energy given by equation (2.5) is calculated using Surface Evolver.74 We work with length and 

energy units such that 𝑏 = 1, 𝛾𝑜𝑤 = 1 and we use a variable triangular mesh edge length 

between 0.02𝑏 to 0.1𝑏 and quadratic edges, to capture the shape of the fluid-fluid interface 

and three-phase contact line more accurately. 
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In this Chapter, we only consider particles with aspect ratio 𝑎/𝑏 ≥ 2.5, where the 

equilibrium tilt angle at a flat interface is 𝜃𝑡 = 0°, i.e., particles are in the ‘side-on’ state.53 For 

the curved cylindrical interfaces and representative rod-shaped particles we are considering in 

this Chapter, we have checked that this result remains true, independent of the bond angle 𝜃𝑏; 

we have therefore set 𝜃𝑡 = 0
° in all simulations. In a typical simulation, we specify the position 

variables 𝜃𝑝, 𝑥𝑝, and the bond angle 𝜃𝑏 of the rod-like particles but allow the radial coordinate 

Δ𝑟 to equilibrate for a given particle configuration.  

4.3 Results and Discussion  

4.3.1 Single Rods at a Flat Interface 

 

Figure 4.3: Contour plot of meniscus deformation around rod-like particles with aspect ratio 2.5 and 
homogeneous surface chemistry, adsorbed at a flat fluid-fluid interface for different particle shapes and 
contact angles. 

To establish a baseline for our simulations of particles at cylindrical interfaces, we first 

analyse the behaviour of single rods with homogenous surface chemistry at a flat interface (we 

consider the behaviour of patchy rods in Section 4.3.5 below). In Figure 4.3 we show contour 

plots of the meniscus deformation for particles with aspect ratio 𝑎 𝑏⁄ = 2.5, for different 

particle shapes (ellipsoids, cylinders and spherocylinders) and contact angles (𝜃𝑤 =

70°, 90°, 110°). As expected, no meniscus deformations are observed for spherocylinders or 

neutrally wetting ellipsoids or cylinders (𝜃𝑤 = 90°). On the other hand, for non-neutrally 

wetting ellipsoids and cylinders, we see quadrupolar meniscus deformations, in agreement 

with the literature.50–52 Good agreement with the literature is also obtained for the direction of 

the contact line curvature, relative to the long axis of the particle. For ellipsoids, the 

quadrupolar rise axis lies parallel and perpendicular to the long axis, for hydrophobic (𝜃𝑤 =
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110°) and hydrophilic (𝜃𝑤 = 70°) particles, respectively. In contrast, for cylinders the 

quadrupolar rise axis lies parallel and perpendicular to the long axis, for hydrophilic and 

hydrophobic particles respectively. This means that the contact line curvature can be 

controlled by tuning particle shape and wettability, providing an effective way to control the 

orientation of rod-like particles at a cylindrical drop.  

4.3.2 Single Rods at a Cylindrical Interface – Particle Orientation 

Having studied the behaviour of single rods with homogenous surface chemistry at a 

flat interface, we next analyse their behaviour at a cylindrical interface. Specifically, in this 

section we study the impact of particle shape, contact angle, aspect ratio and droplet 

curvature on particle orientation, as specified by the bond angle 𝜃𝑏. As discussed in Section 

4.2, since we are considering particles with aspect ratio ≥ 2.5, we set the tilt angle to 𝜃𝑡 =

0°.53 In addition, since we are interested in the effect of interfacial curvature on the orientation 

of isolated rods, we set 𝜃𝑝 = 0
°, 𝑥𝑝 = 0 (i.e., particle at apex of cylindrical drop, in the centre 

of simulation box) to minimise the impact of the pinned contact line and reflecting boundary 

conditions of the cylindrical drop. We then calculate the energy of the system as a function of 

bond angle from 𝜃𝑏 = 0
° to 90° in increments of 1°, noting that the energy only needs to be 

calculated within this range due to the symmetry of the energy with respect to 𝜃𝑏.  

 

Figure 4.4: Interfacial energy as a function of bond angle for relatively short rods with different contact 
angles, adsorbed at a cylindrical interface, for: (a) ellipsoids; (b) cylinders; (c) spherocylinders. All rods 
have θp = 0°, xp = 0, θt = 0°. Note that in (c), the curve for θw = 70° is not visible as it lies 

underneath the curve for θw = 90°. 

We first discuss the effect of contact angle on the orientation of rods with different 

shapes for relatively short rods (aspect ratio = 2.5) and a cylindrical drop height ℎ = 5𝑏. In 

Figure 4.4a, we plot interfacial energy (relative to the minimum energy state) as a function of 

bond angle 𝜃𝑏 for ellipsoids with contact angles 𝜃𝑤 = 70°, 90°, 110°.  The equilibrium 

orientation of the ellipsoids (i.e., 𝜃𝑏 corresponding to the energy minimum) clearly depends on 

contact angle: for hydrophilic ellipsoids (𝜃𝑤 = 70°), the particles are aligned perpendicular to 

the cylindrical drop, i.e., 𝜃𝑏 = 90°, whereas for hydrophobic ellipsoids (𝜃𝑤 = 110°) the 
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particles are aligned parallel to the cylindrical drop, i.e., 𝜃𝑏 = 0°. This result can be readily 

understood from the fact that, when particles with a capillary quadrupole are adsorbed at a 

curved interface, the particle will rotate to try to align its quadrupolar rise axis to the principal 

axis of curvature of the host interface (where the interface is concave up) to minimize the 

distortion to the host interface.17,73 Since hydrophilic and hydrophobic ellipsoids have their rise 

axis perpendicular and parallel to the long axis, respectively (see Figure 4.3), but the principal 

axis of curvature for a cylindrical drop is parallel to its long axis, it is not surprising that 

hydrophilic ellipsoids align perpendicular to the cylindrical drop whereas hydrophobic 

ellipsoids align parallel to it.  

We additionally found (Figure 4.4a) that neutrally wetting ellipsoids (𝜃𝑤 = 90°) 

preferentially align parallel to the cylindrical drop. Since these ellipsoids do not possess an 

intrinsic capillary quadrupole (see Figure 4.3), the primary driving force for such an alignment 

is not contact line curvature but shape anisotropy. Specifically, because of the curvature of the 

cylindrical interface, an anisotropic particle such as an ellipsoid removes a larger area of the 

energetically unfavourable oil-water interface when it is parallel, rather than perpendicular, to 

the cylindrical drop and therefore the parallel orientation has a lower energy. Shape 

anisotropy also has an impact on the orientational energy of the non-neutrally wetting 

ellipsoids (Figure 4.4a). For hydrophobic ellipsoids, where both contact line curvature and 

particle anisotropy favour parallel alignment, i.e., where the two effects are synergetic, both 

the depth and curvature of the energy minima (the latter being proportional to the ‘spring 

constant’ of the potential confining the rod to its equilibrium orientation) are greater 

compared to the case of hydrophilic ellipsoids, where contact line curvature favours 

perpendicular alignment but particle anisotropy favours parallel alignment, i.e., where the two 

effects are antagonistic.  

In Figure 4.4b, we plotted the interfacial energy as a function of bond angle for 

cylinders with contact angles 𝜃𝑤 = 70°, 90°, 110°. In this case, the dependence of particle 

orientation on contact angle is opposite to that for ellipsoids, with hydrophilic and 

hydrophobic cylinders aligning parallel and perpendicular to the cylindrical drop, respectively. 

This difference is not surprising because the orientation of the quadrupolar rise axis relative to 

the long axis of the particle is opposite for cylinders compared to ellipsoids for a given contact 

angle (see Figure 4.3). However, like ellipsoids, the depth and curvature of the energy minima 

are greater for cylinders in the parallel orientation, compared to those in the perpendicular 

orientation, due to the synergistic effect of contact line curvature and shape anisotropy. 

Unexpectedly, we see that neutrally wetting cylinders preferentially align perpendicular to the 

cylindrical drop. We believe that this counterintuitive result is due to the short cylinders 
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considered here (𝑎 𝑏⁄ = 2.5) removing a larger area from the oil-water interface in the 

perpendicular orientation than in the parallel orientation; as discussed in this section below, 

for longer cylinders, particle anisotropy always favours the parallel orientation.  Note that in 

Figure 4.4, the energy scale for the orientational energy is slightly larger for cylinders 

compared to ellipsoids and we attribute this difference to the larger amplitude for contact line 

undulations in cylinders compared to ellipsoids. For example, for the particles shown in Figure 

4.3, the difference between maximum and minimum height of the contact line is 

approximately 0.15𝑏 for cylinders and 0.11𝑏 for ellipsoids.  

In Figure 4.4c, we plot interfacial energy as a function of bond angle for 

spherocylinders with contact angles 𝜃𝑤 = 70°, 90°, 110°. For all contact angles, 

spherocylinders are found to lie parallel to cylindrical drop. This is not surprising since 

spherocylinders do not possess an intrinsic capillary quadrupole (Figure 4.3) and particle 

orientation is therefore primarily determined by particle anisotropy, which favours the parallel 

orientation. We also note that the energy scale of the orientational energy for spherocylinders 

is almost one order of magnitude smaller than that for ellipsoids and cylinders. This effect is 

again due to spherocylinders not possessing an intrinsic capillary quadrupole, so that the only 

interfacial deformations are those induced by the curvature of the host interface, which are 

much weaker.  

 

Figure 4.5: Interfacial energy as a function of bond angle for ellipsoids with different aspect ratios and 
contact angles, adsorbed at a cylindrical interface. All rods have 𝜃𝑝 = 0°, 𝑥𝑝 = 0, 𝜃𝑡 = 0°. 

Next, we study the effect of aspect ratio on the orientation for particles of different 

shapes and contact angles. In Figure 4.5 we plot the orientational energies for ellipsoids for a 

cylindrical drop of height ℎ = 5𝑏. When the contact line curvature favours parallel alignment 

(𝜃𝑤 = 110°), increasing the aspect ratio of the ellipsoids only leads to an increase in the 

energy scale of the potential well, but does not change the equilibrium orientation. This is as 



55 

we would expect because the effect of particle anisotropy on particle orientation is synergistic 

to the effect of contact line curvature in this case.   

However, when the contact line curvature favours perpendicular alignment (𝜃𝑤 =

70°), particle anisotropy is antagonistic to contact line curvature. As the aspect ratio of the 

ellipsoid is increased from 𝑎 𝑏⁄ = 2.5 to 5 and 7.5, particle anisotropy simultaneously leads to 

the formation of high energy barriers at 𝜃𝑏 = 90°, 270° and suppresses the energy barrier due 

to contact line curvature at 𝜃𝑏 = 0°, 180°, 360°. Intriguingly, the competition between particle 

anisotropy and contact line curvature means that the ellipsoid does not align either parallel or 

perpendicular in this case, but instead aligns obliquely to the long axis of the cylindrical drop, 

where the bond angle of the oblique orientation is determined by the length of the particle 

relative to the radius of curvature of the drop.  

 

Figure 4.6: Interfacial energy as a function of bond angle for cylinders with different aspect ratios and 
contact angles, adsorbed at a cylindrical interface. All rods have 𝜃𝑝 = 0°, 𝑥𝑝 = 0, 𝜃𝑡 = 0°. 

For cylindrical particles (Figure 4.6), we see the same trends as those for ellipsoids, 

except that the parallel orientation is now observed for 𝜃𝑤 = 70° (where particle anisotropy 

and contact line curvature are synergistic), whereas the novel oblique orientation is observed 

for 𝜃𝑤 = 110° (where particle anisotropy and contact line curvature are antagonistic). Note 

that the effect of particle anisotropy is stronger for cylinders compared to ellipsoids, so that 

the energy barrier at 𝜃𝑏 = 0°, 180°, 360° is strongly suppressed for 𝑎 𝑏⁄ = 5 and essentially 

disappears for 𝑎 𝑏⁄ = 7.5.  
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Figure 4.7: Interfacial energy as a function of bond angle for spherocylinders with different aspect ratios 
and contact angles, adsorbed at a cylindrical interface. All rods have 𝜃𝑝 = 0°, 𝑥𝑝 = 0, 𝜃𝑡 = 0°. 

For spherocylinders (Figure 4.7), which do not have an intrinsic capillary quadrupole so 

that contact line curvature essentially plays no role in determining particle orientation, we find 

that the particles are in the parallel orientation for both 𝜃𝑤 = 70° and 110° but the depth of 

the confining potential well increases with increasing particle aspect ratio. 

It should be noted that the oblique orientations seen for ellipsoids and cylinders in 

Figure 4.5 and Figure 4.6 only arise when the particle is long enough relative to the radius of 

curvature of the host interface. For example, in Figure 4.5 the oblique orientation is observed 

for rods with aspect ratios 𝑎 𝑏⁄ = 5 and 7.5, where 2𝑎 𝑅⁄ = 0.8, 1.2, respectively, but not for 

particles with aspect ratio 2.5, where 2𝑎 𝑅⁄ = 0.4. This explains why the oblique orientation 

was not observed in previous studies, for example in Lewandowski et al.73 for cylindrical 

particles adsorbed at a plane-parabolic interface, where 2𝑎 𝑅⁄ = 6 × 10−3. 
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Figure 4.8: Interfacial energy as a function of bond angle for ellipsoids adsorbed at a cylindrical interface 
with different contact angles and drop heights at fixed W = 20b. All ellipsoids have 𝜃𝑝 = 0°, 𝑥𝑝 = 0, 

𝜃𝑡 = 0°. 

Next, we study the effect of changing droplet curvature (parameterised by droplet 

height at fixed 𝑊 = 20𝑏) on the orientation of rod-shaped particles. For simplicity, we only 

present results for ellipsoids, but the same trends were observed for cylinders (results not 

shown). In Figure 4.8, we show the orientational energy for ellipsoids with aspect ratio 𝑎 𝑏⁄ =

2.5 and contact angles 𝜃𝑤 = 70° (top row) and 𝜃𝑤 = 110° (bottom row) for cylinder drop 

heights ℎ = 2.5𝑏, 5𝑏, 7.5𝑏. For 𝜃𝑤 = 110°, where parallel alignment of the ellipsoids is 

favoured (particle anisotropy and contact line curvature are synergistic), increasing interfacial 

curvature by increasing ℎ leads to an increase in the depth of the potential well, but otherwise 

does not change the equilibrium orientation of the ellipsoid. On the other hand, for 𝜃𝑤 = 70°, 

where perpendicular alignment of the ellipsoids is favoured (particle anisotropy and contact 

line curvature are antagonistic), a similar increase in the interfacial curvature causes an initial 

flattening of the minima at 𝜃𝑏 = 90°, 270° (for ℎ = 5𝑏), followed by emergence of a small 

energy barrier (for ℎ = 7.5𝑏), resulting in the novel oblique orientation of the ellipsoid that 

was also observed for hydrophilic ellipsoids in Figure 4.5.  

In general we find that increasing drop height (and hence interfacial curvature) at fixed 

rod length (Figure 4.8) produces the same trend for the orientation of the rods as increasing 

rod length at a fixed interfacial curvature (Figure 4.5, Figure 4.6, and Figure 4.7). This result can 

be readily understood by recognising that, the competition between particle anisotropy and 

contact line curvature depends primarily on the ratio between particle length and interfacial 

radius of curvature so that increasing particle length is essentially equivalent to decreasing the 

radius of curvature (i.e., increasing curvature). However, for the parameter ranges explored in 



58 

this Chapter, we find that changing particle aspect ratio (Figure 4.5) has a much bigger impact 

on orientational energy compared to changing droplet height (Figure 4.8). 

Note that, even though the lateral dimension of the cylindrical drop is larger than the 

length of the rods in all cases studied above (𝑊 > 2𝑎), the potential energy well confining the 

orientation of rods is very large. For example, for a hydrophobic ellipsoid with aspect ratio 

𝑎 𝑏⁄ = 5 and cylindrical height ℎ = 5𝑏, the potential energy well depth is Δ𝐸𝑖𝑛𝑡 𝛾𝑜𝑤𝑏
2⁄ ≈ 0.8 

(Figure 4.5). For an oil-water interface with 𝛾𝑜𝑤 = 30 mN/m, this translates into Δ𝐸𝑖𝑛𝑡 ≈

6 × 106𝑘𝑇 for a micron-sized rod with 𝑏 = 1 m, and Δ𝐸𝑖𝑛𝑡 ≈ 600𝑘𝑇 for a nanorod with 𝑏 =

10 nm. This result is consistent with what has been found by Lewandowski et al. who were 

able to control the orientation of a cylindrical microparticle using a curved interface which has 

radius of curvature much greater than the particle length.73 

4.3.3 Single Rods at a Cylindrical Interface – Spatial Confinement 

Having studied particle orientation in the previous section, in this section we study the 

impact of the cylindrical interface on the spatial confinement of rod-like particles. Although no 

curvature gradients are present in a cylindrical sessile drop, which could provide control over 

particle position,17spatial confinement of the rods transverse to the cylindrical drop can still be 

achieved due to steric repulsion from the substrate and capillary repulsion from the pinned 

contact lines.82,83 Both effects will be considered in this section. We restrict our analysis to rods 

in the parallel alignment as this is the most favourable alignment toward achieving the tip-to-

tip assembly considered in the next section.  
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Figure 4.9: (a) Simplified model for calculating the maximum displacement of adsorbed rods lateral to a 
cylindrical drop, due to steric repulsion from the substrate. (b) Interfacial energy as a function of lateral 
displacement for adsorbed rods with different shapes and surface chemistry, which are aligned parallel 
to the cylindrical drop. The dashed black line indicates maximum lateral displacement allowed by steric 
repulsion with the substrate. 

To estimate the spatial confinement due to steric repulsion from the substrate, we 

make the simplifying assumption that the fluid-fluid interface is the unperturbed cylindrical 

interface and that this interface goes through the centre of the rod. In this case, from simple 

geometry, the maximum displacement of the rod from the origin in the 𝑦 direction, 𝑦𝑠, is given 

by (see Figure 4.9a) 

𝑦𝑠 = √𝑅
2 − (𝑅 − ℎ + 𝑏)2 (4.5) 

Substituting 𝑅 in terms of 𝑊 and ℎ from (3.5) into equation (4.5), we can rewrite equation 

(4.5) as  

𝑦𝑠 =
1

2
√(1 − 𝑏 ℎ⁄ )(𝑊2 + 4𝑏ℎ) (4.6) 

Note that in the limit where the short axis length of the rod 𝑏 → 0, we recover 𝑦𝑠 = 𝑊 2⁄  as 

expected. From equation (4.6), we find that 𝑦𝑠 decreases as we reduce the drop height ℎ, i.e., 

the rods become increasingly confined laterally, and indeed 𝑦𝑠 = 0 for ℎ = 𝑏. However, for the 
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relatively large drop heights considered here, 𝑦𝑠 is close to 𝑊 2⁄ , i.e., the degree of lateral 

confinement due to steric repulsion from the substrate is insignificant. This point is illustrated 

in Figure 4.9b for the case ℎ = 5𝑏, where ±𝑦𝑠 is represented by the vertical dashed lines.  

Next, we consider the lateral confinement due to capillary repulsion from the pinned 

contact line of the sessile drop. This repulsion arises because the meniscus around the particle 

would like to deform because of the particle’s contact line undulations, but this deformation is 

suppressed when the particle approaches the pinned contact line, causing the energy of the 

system to increase.82,83 To calculate this effect, we set 𝜃𝑡 = 0°, 𝑥𝑝 = 0, 𝜃𝑏 = 0°, and calculate 

the energy of the system as a function of the polar angle, from 𝜃𝑝 = 0
° to 𝜃𝑚𝑎𝑥, in increments 

of 1°, where 𝜃𝑚𝑎𝑥 is approximately the polar angle corresponding to 𝑦 = 𝑊 2⁄ . Note that we 

only need to calculate the energy for positive 𝜃𝑝 because the energy is symmetric about 𝜃𝑝 =

0°. 

In Figure 4.9b, we plot the energy of the system (relative to the energy at 𝜃𝑝 = 0°) as a 

function of 𝑦𝑝 = 𝑅 sin𝜃𝑝, for ellipsoids with 𝜃𝑤 = 110°, cylinders with 𝜃𝑤 = 70°, and 

spherocylinders with 𝜃𝑤 = 90°, where the contact angles have been chosen to ensure that the 

rods are in the parallel orientation (triblock patchy rods will be discussed in Section 4.3.5 

below). All particles have an aspect ratio of 𝑎 𝑏⁄ = 5 and the drop height is ℎ = 5𝑏. We see 

that all particles are repelled by the pinned contact line at 𝑦 = 𝑊 2⁄ . The repulsion is strongest 

for the ellipsoidal particle because this shape has the largest contact line undulation at the 

sides (see Figure 4.3). The repulsion is smaller for the cylindrical particle because the contact 

line undulation at the side is smaller, but the repulsion is weakest for spherocylinders which do 

not have an intrinsic capillary quadrupole (see Figure 4.3).  

However, our main conclusion from Figure 4.9b is that, for rod-shaped particles with 

homogeneous surface chemistry, the potential well around 𝑦𝑝 = 0 is very flat so that the 

lateral spatial confinement due to capillary repulsion from the pinned contact lines is weak. 

For example, for ellipsoids with 𝑏 = 10 nm, the range of 𝑦𝑝 values for which Δ𝐸𝑖𝑛𝑡 < 3𝑘𝑇 is 

−8.4𝑏 ≤ 𝑦𝑝 ≤ 8.4𝑏 (3𝑘𝑇 is a reasonable estimate for the point where the confining potential 

starts to become significant compared to thermal energy), which corresponds to 91% of 2𝑦𝑠, 

the maximum lateral spatial range available to the ellipsoid due steric repulsion by the 

substrate (i.e., the range between the dashed vertical lines in Figure 4.9).  The spatial 

confinement for cylinders and spherocylinders with 𝑏 = 10nm is even weaker, with Δ𝐸𝑖𝑛𝑡 <

3𝑘𝑇 at 𝑦𝑝 = ±𝑦𝑠. We therefore conclude that the lateral spatial confinement due to capillary 

repulsion from the pinned contact lines of the sessile drop is weak for rods with homogeneous 

surface chemistry.  
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4.3.4 Capillary interaction and self-assembly of rods at a cylindrical interface 

Having considered the orientation and spatial confinement of single rods at a 

cylindrical interface in previous sections, we now consider the interaction and self-assembly of 

two rods at a cylindrical interface. We restrict our analysis to rods with parallel alignment and 

primarily consider the tip-to-tip assembly of such rods. However, we point out that it is also 

possible to use our method to orient the rods perpendicular to the cylindrical drop, which 

would favour side-to-side assembly.  

For the sake of simplicity, we first consider the case where the long axes of the two 

parallel rods are aligned to each other, and they are both at the apex of the cylindrical drop, 

i.e., 𝜃𝑏, 𝜃𝑝 = 0°; later in this section, we will consider the case where the rods are not aligned 

to each other. We also exploit the fact that the energy of one rod approaching the reflecting 

boundary of the simulation cell is equal to half the energy of a two-particle system where both 

rods are approaching each other. When calculating the tip-to-tip interaction between two 

rods, we therefore just need to consider a one-rod simulation where we vary the distance of 

the rod to the reflecting boundary. Note that when two rods in the tip-to-tip orientation are 

close to each other, they may induce a capillary dipole in each other so that 𝜃𝑡 is no longer 

zero. To check the size of this effect, we performed Surface Evolver simulations of two 

ellipsoids in a mirror symmetric configuration at the smallest surface-to-surface separation we 

studied and calculated the interfacial energy of the system as a function of the tilt angle of the 

rods 𝜃𝑡. We found that the equilibrium tilt angle 𝜃𝑡 < 1°, suggesting that this capillary 

polarization effect is very small. We therefore set 𝜃𝑡 = 0° for both interacting rods in our 

calculations.  
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Figure 4.10: Tip-to-tip capillary interaction for adsorbed rods with different shape and surface chemistry, 
which are aligned parallel to the cylindrical drop. 

In Figure 4.10, we plot the tip-to-tip interaction energy between two rods (i.e., energy 

relative to the energy of the two rods at maximum separation) as a function of the surface-to-

surface separation between the two rods, for ellipsoids with 𝜃𝑤 = 110°, cylinders with 𝜃𝑤 =

70°, and spherocylinders with 𝜃𝑤 = 90° (triblock patchy rods will be discussed in Section 4.3.5 

below). The contact angles have been chosen so that all rod shapes are in the parallel 

alignment since, as explained at the start of this section, we are primarily interested in the tip-

to-tip assembly of rods. All particles have an aspect ratio of 𝑎 𝑏⁄ = 5 and the drop height is 

ℎ = 5𝑏. We observe that tip-to-tip attraction is strongest for cylindrical particles and weakest 

for spherocylinders. These results are like what has been observed at flat interfaces49 and is 

due to cylinders having the largest contact line undulation around their tips, compared to 

ellipsoids and spherocylinders (see Figure 4.3). Specifically, for nanoscale rods with 𝑏 = 10 nm, 

at an oil-water interface with 𝛾𝑜𝑤 = 30 × 10
−3 N/m, the interaction energy for tip-to-tip 

contact is 25𝑘𝑇 for cylinders, 8𝑘𝑇 for ellipsoids and 0.05𝑘𝑇 for spherocylinders. The capillary 

interaction for nanoscale cylinders and ellipsoids is therefore significant, whereas that for 

spherocylinders is negligible compared to thermal energy.  

Note that, at a flat interface, ellipsoids tend to approach each other tip-to-tip initially, 

then ‘roll-over’ into the side-to-side configuration because of its lower energy (see Section 

2.2).49,52,90 However, for ellipsoids at a cylindrical interface, the reduction in capillary 

interaction energy when going from the tip-to-tip to the side-to-side configuration is generally 

much smaller than the increase in orientational energy incurred in making this transition. For 

example, for ellipsoids with aspect ratio 𝑎 𝑏⁄ = 3, contact angle 𝜃𝑤 = 80° or 100°, studied in 

Botto et al.,49 the reduction in capillary interaction energy is ≈ 0.001𝛾𝑜𝑤𝑏
2, whereas the 

increase in the orientational energy for a similar ellipsoid at a cylindrical interface in Figure 4.5 
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(𝑎 𝑏⁄ = 2.5, 𝜃𝑤 = 110°) is ≈ 0.1𝛾𝑜𝑤𝑏
2. Therefore, for two ellipsoids aligned tip-to-tip at a 

cylindrical interface of high enough curvature, the roll-over into the side-to-side configuration 

is suppressed and the ellipsoids remain assembled tip-to-tip. A similar phenomenon has also 

been observed in Lewandowski et al.73 for cylinders where for high enough curvatures of the 

host interface, the cylinders assemble side-to-side because the reorientation of the cylinders 

that would allow them to assemble tip-to-tip is suppressed.  

 

Figure 4.11: Energy barrier for the roll-over transition ∆𝐸𝑏  versus interfacial curvature 1 𝑅⁄  for ellipsoids 
with aspect ratio 𝑎 𝑏⁄ = 2.5, contact angle 𝜃𝑤 = 110° adsorbed at a cylindrical interface. The data 

points are calculated from the data in Figure S2, along with the limiting case 0,0 (i.e., at a flat interface 
there is no energy barrier) while the straight line is the best fit of the data to the scaling form ∆𝐸𝑏 =

𝐴 𝑅⁄ .   

We can estimate the minimum cylindrical drop height (and hence interfacial curvature) 

required to suppress the roll-over transition by equating the energy barrier for the roll-over 

transition ∆𝐸𝑏 to the reduction in capillary energy achieved by this transition. We illustrate this 

point by considering ellipsoids with aspect ratio 𝑎 𝑏⁄ = 2.5 and contact angle 𝜃𝑤 = 110°, for 

the three data sets we have generated based on the rotational energy landscape for different 

drop heights (Figure S2, bottom row), and the limiting case at a flat interface (0,0). Using the 

data in Figure 4.8, we can calculate the energy barrier from ∆𝐸𝑏 = 𝐸𝑖𝑛𝑡(𝜃𝑏 = 90°) −

𝐸𝑖𝑛𝑡(𝜃𝑏 = 0°) and the radius of curvature of the cylinder from 𝑅 = (ℎ2 +𝑤2 4⁄ ) 2ℎ⁄ . From 

the leading order multipole expansion of the interfacial energy, we expect ∆𝐸𝑏 = 𝐴 𝑅⁄ , where 

𝐴 is a prefactor that depends on the characteristics of the capillary quadrupole such as contact 

line radius and the amplitude of the contact line undulation.17 By fitting this scaling form to the 

∆𝐸𝑏 versus 1 𝑅⁄  data in Figure 4.11, we find 𝐴 = 1.32𝛾𝑜𝑤𝑏
3. As discussed in the previous 

paragraph, we estimate the reduction in the capillary energy achieved by the roll-over 

transition for this system to be ≈ 0.001𝛾𝑜𝑤𝑏
2. By equating ∆𝐸𝑏 from the straight-line fit in 

Figure 4.11 to 0.001𝛾𝑜𝑤𝑏
2, we find that the roll-over transition is suppressed for 𝑏 𝑅⁄ >

8 × 10−4 which corresponds to ℎ > 0.04𝑏. Whilst we can obtain a more accurate linear fit by 
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generating intermediate datasets, this condition is easily satisfied in the flotation regime ℎ > 𝑏 

we are considering in this chapter and therefore there is sufficient evidence for us to safely 

neglect the roll-over transition when studying the self-assembly of rod-like particles at a 

cylindrical interface.  

Up to now, we have considered the capillary interaction between two parallel rods 

which are already aligned tip-to-tip. However, from our previous discussion we know that rods 

with homogeneous surface chemistry are only weakly confined transverse to the cylindrical 

drop. Therefore, the most usual case is in fact where the two interacting rods are not aligned 

initially. We now consider this more general case. Since the energy scale for rotating the rods 

away from their preferred parallel alignment is so high, we set 𝜃𝑡, 𝜃𝑏 = 0° for both particles. 

However, even with this restriction on particle configuration, a full analysis of the two-particle 

problem is very expensive in Surface Evolver as it would require us to calculate the capillary 

interaction for different lateral positions of one of the rods and different positions of the 

second rod relative to the first. To make the problem numerically tractable, we therefore fix 

the position of the first rod and study the trajectory of the second rod at different starting 

positions relative to the first one. Specifically, to obtain an upper bound estimate for the effect 

of non-alignment on self-assembly, we fix the position of the first rod to be close to the edge 

of the cylindrical drop (roughly one rod diameter away, along the interface, from the pinned 

contact line of the cylindrical drop).  

 

Figure 4.12: Capillary interaction energy of a two-particle system as a function of the position of the 
second particle relative to the first one, which is positioned at the edge of the cylindrical drop. The black 
lines are the trajectories of the second particle for different starting positions, the red curve is the 
separatrix that separates trajectories ending up in the tip-to-tip or side-to-side configurations, and the 
yellow lines are the dynamical attractors to which the trajectories converge at the later stages of their 
evolution. The energy landscape and trajectories are shown for: (a) ellipsoids with 𝑎 𝑏⁄ = 2.5, 𝜃𝑤 =
110°; (b) cylinders with 𝑎 𝑏⁄ = 2.5, 𝜃𝑤 = 70°. The shaded-out white region on the bottom left of each 
plot represents the region excluded to the second particle due to steric repulsion with the first particle 
(coloured yellow). 
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In Figure 4.12, we plot the interaction energy of the two-particle system (i.e., energy 

relative to the energy of the two rods at maximum separation) as a function of the position of 

the second particle, expressed in terms of the coordinates 𝑋 = 𝑥𝑝, 𝑌 = 𝑅𝜃𝑝, for ellipsoids with 

𝑎 𝑏⁄ = 2.5, 𝜃𝑤 = 110° (Figure 4.12a) and cylinders with 𝑎 𝑏⁄ = 2.5, 𝜃𝑤 = 70° (Figure 4.12b) 

on a cylindrical drop with height ℎ = 5𝑏. The shaded-out region on the bottom left of each 

plot represents the region excluded to the second particle due to steric repulsion with the first 

one. Note that the energy landscape in Figure 4.12 was obtained by first calculating the energy 

for 𝑋, 𝑌 values on an approximately 30 x 30 grid. Since the capillary interaction between the 

rods is small, the resultant discrete energy landscape was quite noisy. Therefore, to obtain the 

full energy landscape for any 𝑋, 𝑌, we use a radial basis function to interpolate the data with 

the Python package SciPy. Using the radial basis function allows us to use a smoothing 

parameter that makes the interpolation smoother by not insisting that it fits each discrete data 

point exactly. This procedure resulted in a smoother energy landscape, which we could use to 

calculate the trajectory of the second particle.   

Assuming that the trajectory of the second particle follows paths of steepest descent 

in the interaction energy landscape,91,92 we plot the trajectories of the second particle for 

different initial positions on the edge of a rectangular region around the first one (black lines in 

Figure 4.12). We see that, for initial positions closer to the tip of the first particle, the final 

state of the system is the tip-to-tip configuration, whereas for initial positions closer to the 

side of the first particle, the final state of the system is the side-to-side configuration. The red 

line shown in Figure 4.12 is the ‘separatrix’ which demarcates the boundary between two 

different types of trajectories;92,93 all trajectories originating from points to the left of the 

separatrix will flow towards the side-to-side configuration but all trajectories originating from 

points to the right of the separatrix will flow towards the tip-to-tip configuration. Interestingly, 

trajectories on either side of the separatrix each converge to their own ‘dynamical attractor’ in 

the later stages of their evolution (yellow lines), a feature that is commonly seen in many 

dynamical systems.91–93 To draw the separatrix we use two trajectories that follow the same 

path to the dynamical attractor but end up in different configurations. To find these 

trajectories, we take two points on the outer perimeter, and two points on the inner exclusion 

region perimeter that end up in opposite configurations. Then by moving the starting 

trajectories on the perimeters closer together we can effectively bound a small region in which 

trajectories follow the same path to the dynamical attractor. These two pairs of paths (one 

from the outer perimeter, and one from the exclusion zone perimeter) are used together to 

illustrate the separatrix in Figure 4.12. 
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Since the adsorption of rods onto the cylindrical drop is essentially a random process, 

the probability that an adsorbed rod will end up in the side-to-side or tip-to-tip configuration 

relative to a fixed rod at the edge of the cylindrical drop is proportional to the areas of the 

‘domain of influence’ of the fixed rod that are on either side of the separatrix (we define the 

domain of influence as the region where the capillary interaction energy ≳ 𝑘𝑇). In the far-field, 

we can approximate the capillary interaction energy between two rods with centre-to-centre 

separation 𝑟 using (2.12) or (2.13) as 𝑉𝑐𝑎𝑝(𝑟) ≈ −𝛾𝑜𝑤𝐻𝑐
2(2𝑟𝑐 𝑟⁄ )4,15,50,52 where 𝐻𝑐 is the 

amplitude of the contact line undulation and 𝑟𝑐 ≈ (𝑎 + 𝑏) 2⁄  is the average radius of the 

contact line. It is useful to estimate the radius of the rod 𝑏 where the domain of influence of 

the fixed rod extends across the entire width of the cylindrical drop, i.e., where 

|𝑉𝑐𝑎𝑝(𝑊 = 20𝑏)| ≈ 𝑘𝑇. For a typical rod-like particle, e.g., an ellipsoid with aspect ratio 

𝑎 𝑏⁄ = 2.5 and contact angle 𝜃𝑤 = 110° where 𝐻 ≈ 0.05𝑏 (see Figure 4.3), we find this radius 

to be 𝑏 ≈ 50 nm. This means that for rods with 𝑏 ≳ 50 nm, the domain of influence of the 

fixed rod extends beyond the width of the cylindrical drop, and the drop width acts as a cut-off 

length limiting the area to the left of the separatrix. In contrast, there is essentially no such 

cut-off along the length of the cylindrical drop and the area to the right of the separatrix 

therefore increases indefinitely as we increase 𝑏. These results show that for rods with 𝑏 ≳ 50 

nm, the cylindrical drop geometry favours the tip-to-tip assembly of both ellipsoids and 

cylinders, even when the long axes of the two interacting rods are not lined up initially. Finally, 

if more than two rods are present at the cylindrical interface, our analysis suggests that 

capillary interaction will lead to the formation of a long chains of rods that are connected to 

each other tip-to-tip.  

4.3.5 Triblock Patchy Rods 

Up to now, we have considered rod-like particles with homogeneous surface chemistry 

and controlled contact line undulations through particle shape. In this section, we consider the 

assembly of patchy rods which have heterogeneous surface chemistry. To minimise the effect 

of particle shape on self-assembly, we consider patchy spherocylinders. As discussed in the 

introduction, diblock patchy rods (i.e., Janus rods) have hexapolar contact line 

undulations.18,28,94 In order to compare the results in this section with those in the previous 

sections on particles with capillary quadrupoles, we therefore consider spherocylinders with 

triblock patchy geometry as this is the simplest patchy-particle geometry that possesses a 

capillary quadrupole; with advances in synthetic chemistry, such patchy particles can now be 

readily synthesised.27 In order to achieve parallel alignment of the rods, we consider 

spherocylinders with hydrophilic hemispherical caps (𝜃𝑤 = 70°) and hydrophobic cylindrical 
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sides (𝜃𝑤 = 110°), so that the contact line is concave upwards along the long axis of the 

particle (Figure 4.1a). 

 

Figure 4.13: Contour plot of meniscus deformation around a triblock patchy particle with aspect ratio 5 
adsorbed at a flat fluid-fluid interface. 

In Figure 4.13, we show a contour plot of the meniscus deformation around the patchy 

particles at a flat plane. We can see that despite the spherocylinder shape, the triblock patchy 

particle has much larger contact line undulations both at the sides and the tips compared to 

rods with homogeneous surface chemistry (compare the range of interfacial heights in Figure 

4.3 and Figure 4.13). We anticipate that these large undulations will lead to much stronger 

spatial confinement and the tip-to-tip capillary interactions for the patchy rod compared to the 

non-patchy rods.  

In Figure 4.9b, we plot the energy as a function of 𝑦𝑝 = 𝑅 sin𝜃𝑝 for the triblock patchy 

rods with aspect ratio 𝑎 𝑏⁄ = 5 at a cylindrical drop with height ℎ = 5𝑏 compared to the 

corresponding non-patchy rods. As anticipated, the patchy rod experiences a much stronger 

spatial confinement lateral to the cylindrical drop. For example, the potential well depth is 

Δ𝐸𝑖𝑛𝑡 ≈ 0.14𝛾𝑜𝑤𝑏
2 for the patchy rod but only Δ𝐸𝑖𝑛𝑡 ≈ 0.02𝛾𝑜𝑤𝑏

2 for non-patchy ellipsoids; 

for 𝛾𝑜𝑤 = 30 × 10
−3 N/m, these well depths correspond to 100𝑘𝑇 and 15𝑘𝑇 respectively for 

nanoscale particles with 𝑏 = 10 nm.  

In Figure 4.10, we plot the tip-to-tip interaction energy as a function of separation 

between two patchy rods with aspect ratio 𝑎 𝑏⁄ = 5 at a cylindrical drop with height ℎ = 5𝑏 

compared to the corresponding non-patchy rods. Once again, as anticipated, the capillary 

interaction is much greater for patchy rods compared to the non-patchy rods. For example, the 

interaction energy at contact is −0.08𝛾𝑜𝑤𝑏
2 for the patchy spherocylinder but only 

−0.04𝛾𝑜𝑤𝑏
2 for non-patchy cylinders; for 𝛾𝑜𝑤 = 30 × 10

−3 N/m, these contact energies 



68 

correspond to −50𝑘𝑇 and −25𝑘𝑇 respectively for nanoscale particles with 𝑏 = 10 nm. In 

addition, the range of the interactions is much greater for the patchy rod (≈ 6𝑏) compared to 

the non-patchy rods (≈ 2𝑏 for the non-patchy cylinder). Since both lateral spatial confinement 

and tip-to-tip attraction are much greater for patchy rods, we conclude that tip-to-tip 

assembly at a cylindrical interface is much more likely for triblock patchy rods compared to 

non-patchy rods. 

4.4 Conclusions 

We have used the finite element method Surface Evolver to study the capillary assembly 

of rod-shaped particles adsorbed at a sessile liquid drop with cylindrical geometry. We 

considered the flotation regime where the drop height is greater than the diameter of the rods 

and studied the assembly of rods as a function of interfacial curvature, particle shape 

(ellipsoid, cylinder, spherocylinder), contact angle, aspect ratio and chemical heterogeneity 

(homogeneous and triblock patchy).  

For rods with homogeneous surface chemistry, we can achieve very strong localisation 

of particle orientation using cylindrical drops with a lateral width much greater than the length 

of the rods. By changing particle shape, contact angle and aspect ratio, we can tune the 

interplay between interfacial curvature, particle contact line curvature and particle anisotropy, 

and control the rod not only to align parallel or perpendicular to the long axis of the cylindrical 

drop, but also to align in novel oblique orientations. In contrast, we can only achieve weak 

spatial confinement of the rods transverse to the cylindrical drop because of the weak 

repulsion between the capillary quadrupole of the particle and the pinned contact lines of the 

sessile drop.  

For ellipsoids and cylinders oriented parallel to the cylindrical drop, the capillary 

interaction is strong when the rods are oriented tip-to-tip, even at the nanoscale. In contrast, 

the capillary interaction between spherocylinders in the parallel orientation is extremely weak 

because these particles do not possess an intrinsic capillary quadrupole. Since in the confined 

geometry of the cylindrical drop rods in the parallel orientation are more likely to approach 

each other in a tip-to-tip orientation, whereas interfacial curvature suppresses the transition 

from the tip-to-tip to the side-to-side configuration, the cylindrical drop favours the tip-to-tip 

assembly of rod in the parallel orientation, not only for cylinders but also for ellipsoids.  

Finally, for triblock patchy rods which possess much larger contact line undulations 

compared to non-patchy rods, the stronger capillary quadrupole leads to stronger lateral 

spatial confinement and tip-to-tip capillary attraction, resulting in an even stronger tendency 
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for patchy rods in the parallel orientation at a cylindrical interface to assemble tip-to-tip 

compared to non-patchy rods. 

The proposed capillary assembly mechanism allows us to manipulate the configuration of 

single and multiple rod-like particles and therefore offers a facile strategy for organising such 

particles into useful functional materials. 
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 Capillary Assembly of Anisotropic Particles at 
Cylindrical Fluid Interfaces – Immersion Regime 

5.1 Introduction 

In the previous Chapter, we explored the self-assembly of anisotropic rod-like particles 

at a curved interface formed by a cylindrical sessile drop, where the width of the drop was 

much larger than the length of the rods, and the height of the drop was much greater than the 

radius of the rods so that we are in the flotation regime. The advantage of using a cylindrical 

drop is that the geometry of the curved interface is very simple (constant finite curvature 

transverse to the cylinder, zero curvature along the cylinder), allowing us to elucidate the 

interplay between interfacial curvature and particle properties in determining the behaviour of 

single and multiple rods. Using this curved geometry, we showed that it was possible to 

control the rods to align parallel, perpendicular or obliquely with respect to the long axis of the 

sessile drop by tuning the contact angle and particle shape. We also showed that the 

orientational confinement of the rods in the flotation regime was strong (e.g., orientational 

confining potential of 100s of 𝑘𝐵𝑇 for nanoscale rods). However, we also found that the 

spatial confinement of the rods transverse to the long axis of the cylindrical drop and the 

capillary interaction between rods was much weaker compared to the orientational 

confinement (e.g., spatial confining potential and capillary interaction of 10s of 𝑘𝐵𝑇 for 

nanoscale rods), limiting the degree to which we can control particle self-assembly in this 

regime.   

To overcome these limitations, in this Chapter we study the self-assembly of rod-shaped 

particles at a cylindrical sessile drop in the immersion regime, i.e., where the height of the 

drop is comparable to or smaller than the radius of the rods. Specifically, we use the finite 

element method Surface Evolver74 to study the self-assembly of single and multiple rods as a 

function of drop height, particle shape (ellipsoid, cylinder, spherocylinder) and particle contact 

angle. As we will see later in the Chapter, although working in the immersion regime leads to 

slightly weaker orientational confinement of the rods due to a decrease in the curvature of the 

cylindrical interface, we can still achieve strong orientational confinement even for rods on the 

nanoscale. More importantly, we show that it is now possible to achieve very strong spatial 

confinement of the rods lateral to the cylindrical drop because the confining potential is a 

strong function of drop height in the immersion regime and drop height varies with lateral 

position. We also show that the capillary interactions between the rods in the immersion 

regime are much stronger and longer ranged because they are monopolar rather than 

quadrupolar in nature. Working in the immersion regime thus gives us good control over the 
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orientation, position and self-assembly of rod-like particles adsorbed on a cylindrical drop, 

providing a facile method for creating to functional nanoclusters.  

The rest of this Chapter is organised as follows. In Section 5.2, we describe the geometry 

and thermodynamics of the system as well as the finite element method (Surface Evolver) we 

use to study the system. In Section 5.3, we present and discuss results for the orientation and 

spatial confinement of single rods and the self-assembly of two rods at a cylindrical liquid drop 

as a function of drop height, particle shape and contact angle. Finally in Section 5.4, we 

present our conclusions.  

5.2 Theoretical Methods 

In this section, we discuss the geometry and thermodynamics of the system, which 

consists of rod-like particles adsorbed at a sessile cylindrical drop, as well as the Surface 

Evolver method we use to study this system theoretically. 

 

Figure 5.1: (a) Geometry of the rod like particles studied in our simulations. All particles have aspect ratio 
𝑎 𝑏⁄ = 2.5. (b-d) Geometry of an ellipsoidal particle adsorbed to the simulation interface with views from 
the (b) side, (c) end, and (d) top. 

For the rod-like particles, we consider the same homogeneous particles described in 

Chapter 4, i.e., ellipsoids, cylinders and spherocylinders (Figure 5.1a). However, in this Chapter 

we only consider rods with aspect ratio 𝑎 𝑏⁄ = 2.5.  

For the cylindrical sessile drop, we consider a drop with a rectangular base with 

identical width 𝑊 = 20𝑏 (i.e., 4 times the length of the rods) as in Chapter 4, but increased 

length 𝐿 = 2𝑎 + 25𝑏 (i.e., 6 times the length of the rods). Again, for convenience, we refer to 

the top and bottom fluid phases as oil and water, respectively (i.e., the fluid making up the 

drop is water), though our model is in fact general and applies to any fluid-fluid interface. 
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Assuming the origin of the lab frame in Cartesian coordinates to be at the centre of the base 

with 𝑧 perpendicular to the base and 𝑥, 𝑦 parallel and perpendicular to the long axis of the 

cylinder, respectively, we assume that the contact lines of the cylindrical drop are pinned at 

𝑦 = ±𝑊 2⁄  and apply reflecting boundary conditions at the ends of the cylindrical drop at 𝑥 =

±𝐿 2⁄  (Figure 5.1b,d). We chose 𝐿 to be as large as possible to minimise finite size effects due 

to the reflecting boundaries at the cylindrical drop ends while still being computationally 

feasible. When dealing with large monopolar deformations which arise in the immersion 

regime, it is important to quantify and minimise finite size effects (within the constraints of 

computation time and memory) since monopolar deformations are very long range and can 

lead to significant finite size effects.  

 

Figure 5.2: Interfacial energy (relative to energy minimum) as a function of bond angle for an ellipsoidal 
particle with contact angles 𝜃𝑤 = 70°, 90°, 110°at a drop height of 0.5ℎ𝑡 for: (a) a simulation box with 
width 𝑊 = 20𝑏 and length 𝐿 = 2𝑎 + 25𝑏, and (d) larger simulation box with length 𝐿 = 2𝑎 + 40𝑏 (b) 
and comparison between the two systems (c). 

 In Figure 5.2 we plot the interfacial energy (relative to the energy minimum) as a 

function of bond angle 𝜃𝑏 (see later in this section) for ellipsoidal particles in the centre of the 

cylindrical drop with contact angles 𝜃𝑤 = 70°, 90°, 110° for a drop height of 0.5ℎ𝑡, which is 

deep within the immersion regime, where ℎ𝑡 is the transition height between the flotation and 

immersion regimes (see later in this section). To quantify the finite size effects for this system, 

we calculate the interfacial energy curves using a simulation box with width 𝑊 = 20𝑏 and 

length 𝐿 = 2𝑎 + 25𝑏 (Figure 5.2a), and a larger box with the same width but 50% larger length 

𝐿 = 2𝑎 + 40𝑏 (Figure 5.2b). We see that both simulations have similar energy curves visually 

for all the contact angles considered. To compare the two simulations more quantitatively, we 

plot in Figure 5.2c the ratio of change in energies between both systems as a function of bond 

angle 𝜃𝑏. We see that the differences between the two simulations are relatively large (around 

5%) at 𝜃𝑏 = 0°, 180°, 360° where the interfacial energy is close to zero. These relatively large 

differences are to be expected since the signal-to-noise ratio is very small when the interfacial 

energy is small. A more representative assessment of the impact of system size comes from 

comparing the peaks in energy at 𝜃𝑏 = 90°, 270° between the two simulations. In the case, 
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the smaller box size leads to an increase in the peak energy of 1.5%, 2%, 2.5% compared to 

the larger box size for contact angles 𝜃𝑤 = 70°, 90°, 110° respectively. We therefore conclude 

that the systematic error due to finite size effects is <3% for the simulation box size we use in 

this Chapter. In Section 5.3.3, we consider much lower drop heights down to values of 0.1ℎ𝑡 

where finite size effects will be even more severe. However, in this case, the closer reflecting 

boundary is used to essentially double our system size and the finite size error comes only 

from the farther reflecting boundary, which because it is twice as far away compared to the 

simulations in Figure 5.2a, at least partially mitigates for the more severe finite size effects.  

We control the curvature of the sessile drop by applying a Laplace pressure of 𝛾𝑜𝑤 𝑅⁄  

across the interface in our simulations, where 𝑅 is the radius of curvature of the cylindrical 

interface in absence of any adsorbed particles, and 𝛾𝑜𝑤 is the oil-water interfacial tension. 

Although the behaviour of adsorbed rods is controlled by the curvature of the cylindrical drop, 

it is easier to control and measure the height of the drop experimentally. For convenience, we 

therefore parameterise the curvature of the drop using the drop height in the absence of 

adsorbed particles, ℎ (Figure 5.1c), which is related to 𝑅 and 𝑊 according to 𝑅 = ℎ 2⁄ +

𝑊2 8ℎ⁄  as described in Section 4.3.3.  

Contact angle / Shape Ellipsoid Cylinder Spherocylinder 

70° 1.1b 1.2b 1.2b 

90° 1.0b 1.0b 1.0b 

110° 0.75b 0.7b 0.7b 
Table 5.1: Values for ℎ𝑡, the flotation to immersion transition height, for the particle shapes and contact 
angles studied in this Chapter. 

In this Chapter, we focus on the immersion regime, and it is therefore important to 

calculate ℎ𝑡, the value of ℎ where an adsorbed rod in its equilibrium configuration just touches 

the solid substrate, since ℎ𝑡 demarcates the boundary between the immersion and flotation 

regimes. To calculate the transition height between the flotation and immersion regimes ℎ𝑡, 

we perform simulations for each shape and contact angle at various cylindrical drop heights ℎ, 

with the particle fixed at the centre of the cylindrical drop but allowing the height of the 

particle centre above ℎ (i.e., Δ𝑟 as discussed in Chapter 4) to find its equilibrium value in the 

absence of a solid substrate. As the cylindrical interface is curved, particles orientated parallel 

to the long axis of the cylindrical drop (i.e., bond angle 𝜃𝑏 = 0°) need not have the same 

equilibrium height as particles orientated perpendicular (𝜃𝑏 = 90°). For this reason, we 

perform simulations for particles in both orientations for all values of the drop height ℎ. 
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Figure 5.3: Simulations to determine ℎ𝑡 for each shape and contact angle combination. Each graph 
includes simulations for particles parallel (blue) and perpendicular (orange) to the long axis of the 
cylindrical drop. The black line represents the point at which the particle is just touching the substrate. 

 In Figure 5.3 we plot (Δ𝑟 + ℎ), the height of the particle above 𝑧 = 0, i.e., the position 

of the substrate if it were present, for particles with parallel (blue) and perpendicular (orange) 

orientation against ℎ for all the particle shapes and contact angles we study. The transition 

height ℎ𝑡 is the value of ℎ where the bottom of the adsorbed rod is at 𝑧 = 0, i.e., the value of 

ℎ that satisfies the condition ℎ + ∆𝑟 = 𝑏. In Figure 5.3, ℎ𝑡 for each case is therefore the value 

of ℎ where the blue or orange curves intersect the horizontal black line which represents the 

height 𝑏. We note that in some cases, it was only possible to obtain the Δ𝑟 + ℎ vs. ℎ curves for 

one particle orientation as simulations for the other orientation were not numerically stable 

(e.g., for ellipsoids). However, in cases where results for both orientations are available, we 

see that ℎ𝑡 values obtained from both particle orientations are quite close, and we can 

therefore obtain a reasonable estimate of ℎ𝑡 even if we only have simulation data for one of 

the orientations. We therefore define ℎ𝑡 to be the average value obtained from data for both 

rod orientations (where both are available) or from one of the orientations (where data only 

exists for that orientation), and these are the values listed in Table 5.1. Note that as expected, 
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the value of ℎ𝑡 for any given particle shape decreases as we go from hydrophilic to neutral to 

hydrophobic particles. The immersion regime is defined as the case where ℎ < ℎ𝑡.  

 

Figure 5.4: Coordinates characterising single and two particle configurations: (a) lateral displacement, (b) 
bond angle, (c) tip-to-tip separation, (d) roll-over angle. 

For rod-like particles in the immersion regime, the rods sit on the solid substrate with 

their long axis parallel to the solid substrate and their centre heights fixed to be 𝑧𝑝 = 𝑏. To 

specify the position of the rods on the substrate, we use the position of the rod centre parallel 

and perpendicular to the long axis of the cylindrical drop which we denote as 𝑥𝑝 and 𝑦𝑝 

respectively (Figure 5.4a, 𝑥𝑝 not shown). To specify the orientation of the adsorbed rods, we 

use the angle of their long axis to the long axis of the cylindrical drop which we denote as the 

bond angle 𝜃𝑏 (Figure 5.4b). Note that we only need one angle to specify orientation since all 

the rod shapes we consider in this Chapter are axisymmetric. Later, we also compare the 

immersion regime to some simulations for particles in the flotation regime (ℎ > ℎ𝑡), where we 

also allow the height of the particle relative to the interface to be equilibrated for a given 

particle configuration. We define the particle reference frame (𝑥′, 𝑦′, 𝑧′) such that its origin 

coincides with the centre of the rod, 𝑥′ lies along the semi-major axis of the rod while 𝑦′ and 𝑧′ 

lie along the semi-minor axes of the rod with 𝑧′ parallel to substrate normal. The particle frame 

coordinates (𝑥′, 𝑦′, 𝑧′) are readily related to the lab frame coordinates (𝑥, 𝑦, 𝑧) using equation 

(4.3). 

When studying the capillary interaction and self-assembly of two rods later, we will 

primarily focus on rods in the tip-to-tip configuration (with 𝑦𝑝 = 0) and we specify the 



76 

separation of the two rods in this case by their surface-to-surface separation 𝑑 (Figure 5.4c). As 

we shall see later in Section 5.3.3, in some regions of system parameter space, the immersion 

capillary forces are so strong that they drive two rods in the tip-to-tip configuration to first 

come into tip-to-tip contact, then ‘roll-over’ into side-to-side contact.18,22 To study this roll-

over transition, we define the roll-over angle 𝜃𝑟, which is the angle that two mirror-symmetric 

rods make to the long axis of the cylindrical drop as shown in Figure 5.4d. Note that the two 

particles are in contact with 𝑦𝑝 = 0 throughout the transition.  

The energy of the adsorbed rod system is primarily due to the interfacial energy and is 

given by equation (2.2)53,95 Again, we have neglected line tension contributions in equation 

(2.2) because these are sub-dominant compared to interfacial tensions for the particle sizes we 

are considering where 𝑎, 𝑏 ≥ 10 nm.41 For a given particle configuration, the interfacial energy 

of the system given by equation (2.5) is calculated using Surface Evolver.74 In the simulations, 

we work with length and energy units such that 𝑏 = 1, 𝛾 = 1 (we use 𝛾 to denote the oil-

water surface tension for simplicity) and use a variable triangular mesh edge length between 

0.02𝑏 to 0.1𝑏 and quadratic edges to capture the shape of the liquid interface and three-

phase contact line more accurately. 

5.3 Results and Discussion 

5.3.1 Orientational Transition of Single Rods 

In this section, we consider the impact of particle shape, contact angle and cylindrical 

drop height on the orientation of single adsorbed rods in the immersion regime, as specified 

by the bond angle 𝜃𝑏 (Figure 5.4b). As we shall see later in Section 5.3.2, adsorbed rods are 

strongly confined to lie along the centre line of the cylindrical drop in the immersion regime 

and we therefore set 𝑦𝑝 = 0 in our simulations. In addition, since we are interested in studying 

the behaviour of isolated adsorbed rods in this section, we set 𝑥𝑝 = 0, i.e., the particles are 

situated at the centre of simulation box to minimise the impact of the reflecting boundary 

conditions at the cylindrical drop ends. We then calculate the energy of the system as a 

function of bond angle from 𝜃𝑏 = 0° to 90° in increments of 1°, noting that the energy only 

needs to be calculated for this range due to the symmetry of the energy with respect to 𝜃𝑏.  
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Figure 5.5: Interfacial energy (relative to the minimum energy state) as a function of bond angle 𝜃𝑏 for 
different particle shapes, drop heights and contact angle 𝜃𝑤. 

In Figure 5.5 we plot the orientational energy curves, i.e., interfacial energy (relative to 

the minimum energy state) as a function of bond angle 𝜃𝑏, for ellipsoids, cylinders and 

spherocylinders (first, second and third row respectively), drop heights ℎ = ℎ𝑡 , 0.75ℎ𝑡, 0.5ℎ𝑡 

(first, second and third column respectively), and contact angles 𝜃𝑤 = 70°, 90°, 110° (i.e., 

hydrophilic, neutral and hydrophobic rods respectively), with the value of ℎ𝑡 for the different 

cases given in Table 5.1.   

  We first consider the orientation of the rods at the transition height ℎ = ℎ𝑡, i.e., first 

column of Figure 5.5. We see that in this case, the equilibrium orientation of the different rod 

shapes (i.e., 𝜃𝑏 corresponding to the energy minimum) can be engineered to lie either parallel 

(𝜃𝑏 = 0°) or perpendicular (𝜃𝑏 = 90°) to the long axis of the cylindrical drop by tuning the 

contact angle. In particular, we see that hydrophilic ellipsoids lie perpendicular, while neutral 

and hydrophobic ellipsoids lie parallel to the cylindrical drop (Figure 3a); on the other hand, 

hydrophilic cylinders lie parallel, while neutral and hydrophobic cylinders lie perpendicular to 

the cylindrical drop (Figure 5.5b). These results are similar to those covered in Chapter 4.3.2 

for ellipsoids and cylinders in the flotation regime (ℎ > ℎ𝑡). This fact is not surprising since for 

ℎ = ℎ𝑡, we expect the monopolar deformation of the liquid meniscus due to the protrusion of 

the rod above the cylindrical drop to be relatively weak so that the orientational behaviour of 

the rods is determined by the quadrupolar deformation of the liquid meniscus, similar to the 

flotation case (see Chapter 4 and later in Figure 5.6). Specifically, the capillary quadrupole will 
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align its rise axis with the principle axis of curvature of the cylindrical interface (where the 

interface is concave up) in order to minimize the distortion to the host interface.17,73,96 This is 

why hydrophilic ellipsoids align perpendicular since they have a rise axis at their sides, while 

hydrophobic ellipsoids align parallel since they have their rise axis at their tips. The trend is 

reversed for cylinders since the curvature of their capillary quadrupole is opposite to that of 

ellipsoids for a given contact angle as seen in Chapter 4. 

Interestingly, the dependence of particle orientation on contact angle for 

spherocylinders is different at ℎ = ℎ𝑡 (Figure 5.5c) compared to the behaviour in the flotation 

regime. Specifically, spherocylinders are always aligned parallel regardless of contact angle in 

the flotation regime while at ℎ = ℎ𝑡, hydrophilic and neutral spherocylinders are aligned 

parallel while hydrophobic spherocylinders are aligned perpendicular. This difference is not 

surprising since spherocylinders do not possess an intrinsic capillary quadrupole, so the 

dependence of particle orientation on contact angle is more subtle and harder to predict a 

priori. The absence of an intrinsic capillary quadrupole in spherocylinders is also evidenced by 

the fact that the energy scales in the orientational energy curves for spherocylinders (Figure 

5.5g) are significantly smaller than that for ellipsoids and cylinders (Figure 5.5a,d).  

In addition to the curvature of the capillary quadrupole, another important factor 

determining the orientation of rods at a cylindrical interface is particle anisotropy. For ℎ ≥ ℎ𝑡, 

the effect of particle anisotropy arises from the fact that, because of the curvature of the 

cylindrical interface, a rod-like particle removes a larger area of the energetically unfavourable 

oil-water interface when it is parallel rather than perpendicular to the cylindrical drop. Particle 

anisotropy therefore favours the parallel orientation compared to the perpendicular 

orientation. This effect explains why for non-neutrally wetting rods in Figure 5.5a,d,g, the 

potential energy well depth for the parallel orientation is significantly greater than for the 

perpendicular orientation. Specifically, for non-neutrally wetting rods in the parallel 

orientation, both contact line curvature and particle anisotropy favour parallel alignment, i.e., 

the two effects are synergetic. On the other hand, for non-neutrally wetting rods in the 

perpendicular orientation, contact line curvature favours perpendicular alignment, but particle 

anisotropy favours parallel alignment, i.e., the two effects are antagonistic. 

We next consider the effect of decreasing cylindrical drop height below ℎ𝑡 on the 

orientation of the rods, starting with the case of ellipsoids and spherocylinders (first and third 

row in Figure 5.5). We see that as we decrease drop height to ℎ = 0.75ℎ𝑡 and 0.5ℎ𝑡, ellipsoids 

and spherocylinders align parallel to the cylindrical drop regardless of contact angle. The 

parallel alignment of these rods comes from the fact that as we decrease ℎ, there is now 



79 

significant monopolar deformation of the liquid meniscus so that the orientation of the rods is 

now controlled by monopolar deformations rather than by the capillary quadrupole of the 

rods. Specifically, the shape anisotropy of the rods means that they create larger monopolar 

deformations when they are in the perpendicular orientation compared to the parallel 

orientation since their ends protrude above the cylindrical interface more in the perpendicular 

orientation, making the parallel orientation more energetically favourable. Not surprisingly, 

this effect becomes stronger as we decrease ℎ, as can be seen from the fact that the potential 

energy well depth for the parallel orientation increases for both ellipsoids and spherocylinders 

as we go from ℎ = 0.75ℎ𝑡 to ℎ = 0.5ℎ𝑡.  

While particle anisotropy plays the dominant role in determining particle orientation in 

the immersion regime, the effect of contact line curvature is still significant. This can be seen 

from the fact that for ℎ = 0.75ℎ𝑡, 0.5ℎ𝑡, the potential energy well depth for parallel 

orientation is largest for hydrophobic ellipsoids and hydrophilic spherocylinders, i.e., where 

contact line curvature and particle anisotropy both favour the parallel orientation so that the 

two effects are synergetic. On the other hand, the potential energy well depth is smallest for 

hydrophilic ellipsoids and hydrophobic spherocylinders, i.e., where contact line curvature 

favours the perpendicular orientation, but particle anisotropy favours the parallel orientation 

so that the two effects are antagonistic.  

We next consider the case of cylinders (second row in Figure 5.5). As we decrease the 

drop height to ℎ = 0.75ℎ𝑡 and 0.5ℎ𝑡, we see that particle anisotropy again drives the rods 

towards the parallel orientation, so that both hydrophilic and neutral cylinders now have 

parallel orientation, while the potential energy well depth for perpendicular orientation for 

hydrophobic cylinders is significantly reduced. However, hydrophobic cylinders are still in the 

perpendicular orientation even at ℎ = 0.5ℎ𝑡, and we have to decrease ℎ below 0.4ℎ𝑡 before 

this system transitions to the parallel orientation (see later in Figure 5.9). We believe that the 

much lower values of ℎ required to drive hydrophobic cylinders into the parallel orientation 

arises from the fact that for cylinders are in the perpendicular orientation, their flat ends allow 

them to accommodate different interfacial heights more readily compared to particles with 

rounded ends such as ellipsoids and spherocylinders. This means that we need to go to much 

lower values of ℎ before the system can generate large enough monopolar deformations to 

drive cylinders into the parallel orientation.  
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Figure 5.6: (a) Meniscus deformation around an ellipsoidal particle with contact angle 𝜃𝑤 = 70° adsorbed 
at a cylindrical drop for drop heights of (a) 2ℎ𝑡  (flotation regime), (b) ℎ𝑡  (transition height), (c) 0.5ℎ𝑡 
(immersion regime). The long axis of the cylindrical drop is in the 𝑥 direction and the ellipsoid is in its 
equilibrium orientation at each height. 

 In the preceding discussion, we have assumed that the orientation of the adsorbed 

rods is primarily determined by quadrupole deformations of the liquid meniscus for ℎ = ℎ𝑡 

and by monopolar deformations of the liquid meniscus for ℎ < ℎ𝑡. To confirm that this is 

indeed the case, we analyse in more detail how the multipolar character of the liquid meniscus 

changes as we change the drop height across ℎ𝑡. In Figure 5.6a,b,c, we plot the deformation of 

the liquid interface (relative to the unperturbed cylindrical interface) around an adsorbed 

hydrophilic ellipsoid (contact angle 𝜃𝑤 = 90°) for ℎ = 2ℎ𝑡 , ℎ𝑡 , 0.5ℎ𝑡 respectively; note that this 

ellipsoid has a perpendicular orientation for ℎ = 2ℎ𝑡 , ℎ𝑡 and a parallel orientation for ℎ =

0.5ℎ𝑡 (see Figure 5.5). From Figure 5.6, we see that the interfacial deformation is quadrupolar 

for ℎ = 2ℎ𝑡 (Figure 5.6a), monopolar for ℎ = 0.5ℎ𝑡 (Figure 5.6c) and a combination between 

the two for ℎ = ℎ𝑡, specifically quadrupolar in the near-field but monopolar in the far-field 

(Figure 5.6b). These results confirm that quadrupolar deformations are only significant for ℎ ≥

ℎ𝑡, while monopolar deformations become dominant for ℎ < ℎ𝑡. 

 In Figure 5.5, we saw that as we decrease ℎ, rods that were initially in the 

perpendicular orientation at ℎ = ℎ𝑡 undergo a transition to the parallel orientation due to 

monopolar interfacial deformations becoming increasingly dominant over quadrupolar 

deformations. We now study this transition in more detail. However, the energy scales of 

orientational energy curves become quite small close to an orientational transition and the 

energy curves can therefore be quite noisy due to the reduced signal-to-noise ratio. To obtain 

smooth energy curves so that we can identify minima and maxima accurately, we therefore 

use a filter to reduce the noise from the simulations. Specifically, we use the Savitzky-Golay 

filter which is a convolution method which fits a subset of 𝑁 datapoints with a low-level 

polynomial of order 𝑀 using a least-squares algorithm.97 We chose this method because of its 

availability in the Python package SciPy, its ability to maintain the original data trends and its 

simplicity. For the filtered data, we found that to ensure that the filtered curve captures the 
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key features in the original data, it is best to use the full data as the subset, essentially fitting 

the whole dataset with a low order polynomial of order 𝑀. 

 

Figure 5.7: Orientational energy curves for ellipsoids, cylinders, and spherocylinders with 𝜃𝑤 =
70°, 110°, 110°respectivly for different drop heights around the orientational transition: (a,c,e) before 
and (b,d,f) after post processing with the Savitzky-Golay filter with polynomial order 𝑀 = 5. 

 In Figure 5.7 we plot the orientational energy curves (relative to the minimum energy 

state) for ellipsoids, cylinders, and spherocylinders with 𝜃𝑤 = 70°, 110°, 110° respectively (i.e., 

shape and contact angle conditions that favour perpendicular alignment at ℎ = ℎ𝑡) for ℎ 

values around the orientational transition. We present both the raw Surface Evolver data 

(Figure 5.7a,c,e) and the postprocessed data using the Savitzky-Golay filter with polynomial 

order M = 5 (Figure 5.7b,d,f). We see that the filtering process we use allows us to capture the 

key features of the raw data faithfully and allows us to numerically identify key features such 

as the minima.  
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Figure 5.8: Comparison between the raw Surface Evolver data and filtered data for orientational energy 
curves for a spherocylinder with contact angle 𝜃𝑤 = 110° for: (a) ℎ = ℎ𝑡, 0.9ℎ𝑡 and (b) ℎ = 0.96ℎ𝑡 
where the signal to noise ratio is low particularly low. The filtering is achieved using a Savitzky-Golay 
filter with polynomial order 𝑀 = 5. 

 As a more direct comparison, in Figure 5.8 we plot the interfacial energy (relative to 

the minimum energy state) as a function of bond angle 𝜃𝑏 for a spherocylinder with contact 

angle 𝜃𝑤 = 110° (as it has the lowest signal to noise ratio) at for different values of ℎ around 

the orientational transition of the rod from the perpendicular to the parallel orientation. 

Specifically, Figure 5.8a shows the comparison between the raw Surface Evolver data and 

filtered data for drop heights at either end of the transition, i.e., ℎ = ℎ𝑡, where the rod has 

parallel orientation, and ℎ = 0.9ℎ𝑡, where the rod has perpendicular orientation. For the 

filtered data, we found that a polynomial order 𝑀 = 5 was sufficient to capture the key 

features of the raw data faithfully. In Figure 5.8b we again compare the raw Surface Evolver 

data with the filtered data, but this time for ℎ = 0.96ℎ𝑡 which is the raw data set with the 

lowest signal to noise ratio. We can see that even in this case the Savitzky-Golay filter still 

performs well in capturing the key features of the raw data faithfully. 

From Figure 5.7 we see that each orientational energy curve only has one minimum 

and the position of this minimum decreases continuously from 𝜃𝑏 = 90° (perpendicular 

orientation) to 𝜃𝑏 = 0° (parallel orientation) as ℎ is decreased. We therefore conclude that the 

orientational transition for ellipsoids, cylinders and spherocylinders are a second order (or 

continuous) transition.  
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Figure 5.9: Equilibrium bond angle as a function of cylindrical drop height for ellipsoids with 𝜃𝑤 = 70°, 
cylinders with 𝜃𝑤 = 110° and spherocylinders with 𝜃𝑤 = 110°. 

The results for all three orientational transitions are summarised in Figure 5.9 where 

we plot the equilibrium bond angle as a function of cylindrical drop height for each of the 

three rods. As expected, as we decrease ℎ, the equilibrium bond angle decreases continuously 

from the perpendicular orientation to the parallel orientation for all three rods. Interestingly, 

the transition for cylinders occurs at significantly lower drop heights compared to ellipsoids or 

spherocylinders. As discussed earlier, we believe that this difference is due to the fact that 

when the rods are in the perpendicular orientation, the flat ends of the cylinder allow it to 

accommodate different interfacial heights more readily compared to particles with rounded 

ends such as ellipsoids and spherocylinders. This means that we need to go to much lower 

values of ℎ before the energy penalty from the monopolar deformations are large enough to 

drive cylinders into the parallel orientation.  

The results in Figure 5.5 and Figure 5.9 show that for low enough cylindrical drop 

heights, all adsorbed rods will orientate themselves parallel to the long axis of the cylindrical 

drop, regardless of the shape or contact angle of the rods. Working with adsorbed rods in the 

immersion regime thus provides a robust method for preparing rods in the parallel orientation.  

5.3.2 Orientation and Spatial Confinement of Single Rods 

In the previous section, we studied how we can control the orientation of adsorbed 

rods in the immersion regime by changing particle shape, contact angle and cylindrical drop 

height. In this section, we study how the strength of the orientational confinement and spatial 

confinement of the adsorbed rods changes as we go from the flotation regime (ℎ > ℎ𝑡) to the 
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immersion regime (ℎ < ℎ𝑡). To simplify our discussion, we focus on the case where the 

adsorbed rods are aligned parallel to the cylindrical drop as this is the most favourable 

alignment for achieving the tip-to-tip assembly considered in the next section. Specifically, we 

consider the behaviour of ellipsoids with 𝜃𝑤 = 110°, cylinders with 𝜃𝑤 = 70°, and 

spherocylinders with 𝜃𝑤 = 70° in this section.   

 

Figure 5.10: Interfacial energy (relative to energy at 𝜃𝑏 = 0°) as a function of bond angle 𝜃𝑏 for different 
cylindrical drop heights for: (a) ellipsoids with 𝜃𝑤 = 110°, (b) cylinders with 𝜃𝑤 = 70°, (c) spherocylinders 
with 𝜃𝑤 = 70°. 

 In Figure 5.10a,b,c we plot the orientational energy curves from 𝜃𝑏 = 0° to 90° for 

hydrophobic ellipsoids, hydrophilic cylinders and hydrophilic spherocylinders respectively, for 

drop heights of ℎ = 2ℎ𝑡, ℎ𝑡 and 0.5ℎ𝑡. Note that for the results in Figure 5.10, we set 𝑥𝑝, 𝑦𝑝 =

0 as in the previous section, and the equilibrium orientation is the parallel orientation 𝜃𝑏 = 0° 

in all cases. For ellipsoids and cylinders (Figure 5.10a,b), we see that the well depth for the 

orientational energy curves is greater for ℎ = 2ℎ𝑡 compared to ℎ = 0.5ℎ𝑡, i.e., the 

orientational confinement of the rods is stronger in the flotation regime compared to in the 

immersion regime. This is not surprising since the confining potential due to interfacial 

curvature is proportional to the product of the deviatoric curvature of the host interface and 

the capillary quadrupole of the adsorbed particle (refer to Chapter 2.5) and the deviatoric 

curvature of the cylindrical drop decreases as we reduce ℎ. 

From Figure 5.10a,b, we note that there is a slight increase in the orientational 

confinement of ellipsoids and cylinders when we reduce the drop height from ℎ = ℎ𝑡 to ℎ =

0.5ℎ𝑡. As discussed in the previous section, this increase comes from the fact that in the 

immersion regime, particle orientation is determined not only by interfacial curvature, but also 

by monopolar deformations of the interface. Specifically, since larger monopolar deformations 

are generated in the perpendicular orientation compared to in the parallel orientation, 

monopolar forces drive the rods into the parallel orientation, and this effect becomes stronger 

as we reduce ℎ. Once again, the increase in the confining potential is smaller for cylinders 

compared to ellipsoids because the flat ends of the cylinder allow it to accommodate different 
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interfacial heights more readily when it is in the perpendicular orientation compared to 

ellipsoids, thus reducing the monopolar driving force for the parallel orientation. 

Interestingly, from Figure 5.10c, we see that for hydrophilic spherocylinders, the 

orientational confinement is stronger for ℎ = 0.5ℎ𝑡 (immersion regime) compared to for ℎ =

2ℎ𝑡 (flotation regime). This result can be understood from the fact that spherocylinders do not 

have an intrinsic capillary quadrupole so that the orientational confinement due to interfacial 

curvature is weak, as evidenced by the fact that the confining potential at ℎ = 2ℎ𝑡 is 

significantly smaller for spherocylinders compared to ellipsoids and cylinders. This means that 

the dominant contribution to orientational confinement for spherocylinders comes from 

monopolar immersion forces, which increase as we decrease ℎ.   

It is important to emphasise that although the orientational confinement of the rods is 

weaker in the immersion regime for some rod shapes, the confinement is still significant for all 

the rods studied above. Specifically, the well depth of the confining potential at ℎ = 0.5ℎ𝑡 is ≈

0.02𝛾𝑏2 for the ellipsoid, ≈ 0.05𝛾𝑏2 for the cylinder and ≈ 0.03𝛾𝑏2 for the spherocylinder. 

For nanoscale rods with 𝑏 = 10 nm adsorbed at an oil-water interface with 𝛾 = 30 × 10−3 

N/m, this translates to well depths of ≈ 15𝑘𝐵𝑇, ≈ 40𝑘𝐵𝑇 and ≈ 20𝑘𝐵𝑇 respectively. This 

means that the orientational confinement is significant in the immersion regime even for 

nanorods.  

 

Figure 5.11: Interfacial energy (relative to value at 𝑦𝑝 = 0) as a function of lateral displacement 𝑦𝑝 for 

different cylindrical drop heights for (a) ellipsoids with 𝜃𝑤 = 110° , (b) cylinders with 𝜃𝑤 = 70° , (c) 
spherocylinders with 𝜃𝑤 = 70°. Note that the ℎ = 2ℎ𝑡 line in (a) cannot be seen as it lies underneath the 
ℎ = ℎ𝑡 line. 

In order to study the spatial confinement of the rods lateral to the cylindrical drop, in 

Figure 5.11 we plot interfacial energy (relative to the value at 𝑦𝑝 = 0) as a function of lateral 

displacement 𝑦𝑝 for hydrophobic ellipsoids, hydrophilic cylinders and hydrophilic 

spherocylinders respectively, for drop heights of ℎ = 2ℎ𝑡 , ℎ𝑡 and 0.5ℎ𝑡. For the results in 

Figure 5.11, we set 𝜃𝑏 = 0° since all rods have a parallel equilibrium orientation, and we set 

𝑥𝑝 = 0 to minimise the impact of the reflecting boundary conditions at the cylindrical drop 
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ends in our simulations. We see that for all the rods, the spatial confinement of the adsorbed 

rods to the centre line of the cylindrical drop (𝑦𝑝 = 0) in the flotation regime (i.e., for ℎ =

2ℎ𝑡 , ℎ𝑡) is very weak compared to in the immersion regime (i.e., for ℎ = 0.5ℎ𝑡). As discussed in 

0, the very weak spatial confinement in the flotation regime is due to the fact that cylindrical 

drops have no curvature gradients which we can use to control particle position, and the 

spatial confinement comes only from the capillary repulsion between the capillary quadrupole 

of the rods and the pinned contact lines of the sessile drop which is weak and short ranged.82,83 

In contrast, the spatial confinement is very strong in the immersion regime because the 

confinement is due to monopolar deformations of the liquid interface that come from the 

mismatch in the height of the rod three-phase contact line compared to the local height of the 

cylindrical drop, and this mismatch becomes greater for larger lateral displacements of the 

rod. 

Interestingly, from Figure 5.11 we see that confining potential for both cylinders and 

spherocylinders (Figure 5.11b,c) is significantly greater compared to ellipsoids (Figure 5.11a). 

We believe that this difference is due to the tips of the ellipsoid being much more rounded 

compared to cylinders and spherocylinders. This means that for ellipsoids, the monopolar 

deformations of interface only occur along the middle portion of the rod as the bottom surface 

of the tips lie above the cylindrical interface, while for cylinders and spherocylinders, the 

monopolar deformations essentially occur along the whole length of the rod. Notwithstanding 

this difference, the spatial confinement for all the different rod shapes in Figure 5.11 is very 

strong in the immersion regime. Specifically, for ℎ = 0.5ℎ𝑡 the well depth of the spatial 

confining potential (i.e., the potential at 𝑦𝑝 = 9𝑏, the largest value of 𝑦𝑝 that we could access 

numerically, compared to at 𝑦𝑝 = 0) is 0.25 𝛾𝑏2, 1.3 𝛾𝑏2 and 1.2 𝛾𝑏2 respectively for the 

ellipsoids, cylinders and spherocylinders, which translates to 180 𝑘𝐵𝑇, 920 𝑘𝐵𝑇 and 860 𝑘𝐵𝑇 

for 𝑏 = 10nm and 𝛾 ≈ 30 × 10−3N/m. In summary, by working in the immersion regime, we 

can achieve strong orientational and spatial confinement of the adsorbed rods, even in the 

case of nanorods. 

5.3.3 Capillary Interaction and Self-Assembly for Two Rods 

Having considered both the orientational and lateral confinement of single particles at 

a cylindrical interface in the previous section, in this section we consider the interaction and 

self-assembly of two rods at the cylindrical interface in the immersion regime. To simplify our 

discussion, we focus on the tip-to-tip interaction and assembly of adsorbed rods and therefore 

we restrict our analysis to rods with parallel alignment, specifically ellipsoids with 𝜃𝑤 = 110°, 

cylinders with 𝜃𝑤 = 70° and spherocylinders with 𝜃𝑤 = 70°. Since our focus is on two-particle 

configurations that are mirror symmetric (see Figure 5.4c,d), we can simplify our calculations 
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by exploiting the fact that the energy of the two-particle system where both rods are 

approaching each other is equal to twice the energy of one rod approaching the reflecting 

boundary of cylindrical drop end. We therefore calculate the energy of the two-rod system by 

considering a one-rod simulation where we vary the distance of the rod from the reflecting 

boundary like we covered in Chapter 3.1. Since, as we saw in the previous section, the 

adsorbed rods are strongly confined to the centreline of the cylindrical drop in the immersion 

regime, we set 𝑦𝑝 = 0 in our simulations. 

 

Figure 5.12: Capillary interaction energy between two particles in the tip-to-tip configuration as a function 
of surface-to-surface separation 𝑑  for different drop heights for: (a) ellipsoids with 𝜃𝑤 = 110° , (b) 
cylinders with 𝜃𝑤 = 70°, (c) spherocylinders with 𝜃𝑤 = 70°. Note that the curve for ℎ = 2ℎ𝑡 in (a) cannot 
be seen as it lies beneath the curve for ℎ = ℎ𝑡. 

 We first consider the capillary interactions between two rods in the tip-to-tip 

configuration (see Figure 5.4c), i.e., we set 𝜃𝑏 = 0° in our simulations. In Figure 5.12a,b,c, we 

plot the tip-to-tip capillary interaction energy (i.e., energy relative to the energy of the two 

rods at maximum separation) as a function of the surface-to-surface separation between the 

rods 𝑑 for the ellipsoid, cylinder and spherocylinder respectively for ℎ = 2ℎ𝑡, ℎ𝑡 and 0.5ℎ𝑡. We 

see that in all cases, the strength and range of the capillary interaction increases dramatically 

as we go from ℎ = 2ℎ𝑡 (flotation regime) to ℎ = 0.5ℎ𝑡 (immersion regime). This is not 

surprising since particle interactions in the flotation regime covered in Chapter 4 are 

quadrupolar and therefore weak and short ranged (negligible beyond one rod length away), 

while those in the immersion regime are monopolar and therefore strong and long ranged 

(significant up to 4 – 5 rod lengths away).14,48  

 Interestingly, we see from Figure 5.12 that the strength of the capillary interactions in 

the immersion regime decreases as we go from cylinders to spherocylinders to ellipsoids. We 

believe that this trend is due to the increasingly rounded nature of the particle tips for this 

sequence of particle shapes which means that the monopolar deformations near the tips occur 

over a smaller and smaller effective cross-sectional area. Notwithstanding this fact, the 

capillary bond energy at contact is very large for all the particles in the immersion regime. 

Specifically, for ℎ = 0.5ℎ𝑡, the capillary bond energy is 0.11 𝛾𝑏2, 0.52 𝛾𝑏2 and 0.38 𝛾𝑏2 



88 

respectively for the ellipsoids, cylinders and spherocylinders, which translates to 78 𝑘𝐵𝑇, 

380 𝑘𝐵𝑇 and 270 𝑘𝐵𝑇 for 𝑏 = 10nm and 𝛾 ≈ 30 × 10−3N/m.  

 For parallel rods in the immersion regime, the strong spatial confinement transverse to 

the cylindrical drop and tip-to-tip capillary interactions between the rods provide a strong 

driving force for them to form tip-to-tip clusters. However, from the preceding discussion, we 

see that as we decrease the cylindrical drop height ℎ in the immersion regime, the capillary 

interaction increases dramatically (Figure 5.12) but the orientational confinement does change 

significantly (Figure 5.10). We therefore anticipate that if we decrease ℎ too much, we may 

destabilise the tip-to-tip clusters that are formed since the system can lower its energy by 

undergoing a roll-over transition to the side-to-side configuration which has a smaller centre-

to-centre separation between the rods at contact; note that this transition is also seen for 

ellipsoids at a flat interface.49,52 In what follows, we consider the mechanical stability of tip-to-

tip clusters in our system against the roll-over transition as we change ℎ in the immersion 

regime.   

 We note that the roll-over transition occurs when the two rods in the cluster pivot 

about their contacting tips in a mirror-symmetric configuration as shown in Figure 5.4d, where 

the configuration of the cluster during the transition is characterised by the roll-over angle 𝜃𝑟. 

Our first task is therefore to calculate the perpendicular distance of each rod centre from the 

mirror plane 𝑟𝑟 as a function of 𝜃𝑟. For spherocylinders, 𝑟𝑟 can be calculated from simple 

geometry to be 𝑟𝑟 = (𝑎 − 𝑏) cos 𝜃𝑟 + 𝑏. For superellipsoids given by equation (4.1) 𝑟𝑟 can be 

calculated as follows. We first set 𝑧′ = 0 in equation (4.1) since the contact point lies in the 

𝑧′ = 0 plane. We next note that the surface normal vector for the rod is given by 𝛁𝑓, where 

𝑓(𝑥′, 𝑦′, 𝑧′) is given by equation (4.1) and 𝛁 is the 3D grad vector in the lab frame. Since the 

surface normal vector points in the 𝑥 direction at the contact point by symmetry, the contact 

point coordinate satisfies 𝜕𝑓 𝜕𝑦⁄ = 0. This equation, together with equation (4.1) give us two 

simultaneous equations which we can solve to find the contact point coordinate (𝑥𝑐 , 𝑦𝑐) and 𝑟𝑟 

is then given by 𝑟𝑟 = 𝑥𝑐 − 𝑥𝑝. In the case of ellipsoids (𝜂 = 1), we can obtain an analytical 

expression for 𝑟𝑟 as a function of 𝜃𝑟 using this procedure.88 In the case of cylinders (𝜂 = 4), we 

can calculate 𝑟𝑟 as a function of 𝜃𝑟 numerically using this procedure. Having found 𝑟𝑟 for the 

different rod shapes, we fix 𝑥𝑝 such that the rod centre is a distance 𝑟𝑟 + ∆ away from the 

reflecting boundary, where we include a thin exclusion zone of thickness ∆= 0.05𝑏 around 

each rod to avoid the numerical issues that occur when the rod is in contact with the reflecting 

boundary. 
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Figure 5.13: (a,c,e) Interfacial energy curves for two particles in contact as a function of the roll-over angle 
𝜃𝑟  (relative to the energy at 𝜃𝑟 = 0°) for different drop heights around the roll-over transition for (a) 
ellipsoids with 𝜃𝑤 = 110°, (c) cylinders with 𝜃𝑤 = 70°, (e) spherocylinders with 𝜃𝑤 = 70°. The filled black 
circles represent the maxima for each curve. (b,d,f) Locally stable values of 𝜃𝑟 as a function of ℎ (red curve) 
and the value of 𝜃𝑟 corresponding to the energy barrier maxima as a function of ℎ (black curve) for (b) 
ellipsoids with 𝜃𝑤 = 110°, (d) cylinders with 𝜃𝑤 = 70°, (f) spherocylinders with 𝜃𝑤 = 70°. The vertical 
dashed curve denote the thermodynamic roll-over transition at the binodal point ℎ = ℎ𝑏 , while the 
vertical arrows pointing up or down denote the actual roll-over transitions that occur at the spinodal 
points ℎ = ℎ𝑠1, ℎ𝑠2. 

In Figure 5.13a, we plot the interfacial energy (relative to the value at 𝜃𝑟 = 0°) as a 

function o𝑓 𝜃𝑟 for hydrophilic ellipsoids for different drop heights ℎ around the roll-over 

transition. The Savitzky-Golay filter used in Section 5.3.1 is also use in Figure 5.13 in order to 

smooth out the data and allow us to numerically access information such as the minima or 

maxima. In this case, the energy scales (and therefore signal-to-noise ratio) is an order of 

magnitude larger and therefore we opt for a larger order polynomial 𝑀 = 10 for the filter. The 

higher order polynomial allows the postprocessed data to fit the smoother raw energy curves 

better and therefore allows us to identify the local minima and maxima more accurately. From 
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Figure 5.13a, we see that at large ℎ (e.g., the blue curve), there is a single minimum at 𝜃𝑟 = 0° 

corresponding to the tip-to-tip configuration, but as we decrease ℎ below a critical value, the 

energy curve develops a local minimum at 𝜃𝑟 = 90° corresponding to the side-to-side 

configuration, which is separated from the primary minimum at 𝜃𝑟 = 0° by an energy barrier. 

As ℎ is decreased further to ℎ𝑏 = 0.36𝑏 (green curve), the energy of the side-to-side 

configuration becomes equal to that of the tip-to-tip configuration. At this point, the primary 

minimum switches from 𝜃𝑟 = 0° to 𝜃𝑟 = 90°, and the system in principle undergoes a first 

order (i.e., discontinuous) transition from the tip-to-tip state to the side-to-side state. The 

height ℎ𝑏 therefore corresponds to the binodal point of the roll-over transition. However, in 

practice, because the energy barrier between the two minima is typically much larger that 

𝑘𝐵𝑇, even for rods on the nanoscale, there is significant hysteresis in the roll-over transition. 

Specifically, for decreasing ℎ, the system only undergoes an irreversible transition from the tip-

to-tip state to the side-to-side state when ℎ = ℎ𝑠1 = 0.27𝑏 (purple curve), where the maxima 

of the energy barrier shifts to 𝜃𝑟 = 0° and the local minimum at 𝜃𝑟 = 0° disappears. On the 

other hand, for increasing ℎ, the system only undergoes an irreversible transition from the 

side-to-side state to the tip-to-tip state when ℎ = ℎ𝑠2 = 0.45𝑏 (blue curve), where the 

maxima of the energy barrier shifts to 𝜃𝑟 = 90° and the local minimum at 𝜃𝑟 = 90° 

disappears. The heights ℎ𝑠1, ℎ𝑠2 therefore correspond to the spinodal points of the roll-over 

transition.     

The key features of the roll-over transition for hydrophobic ellipsoids are summarised 

in Figure 5.13b where we plot the locally stable values of 𝜃𝑟 as a function of ℎ (red curve) and 

the value of 𝜃𝑟 corresponding to the energy barrier maxima as a function of ℎ (black curve). 

We see that at large ℎ, the system is initially in the tip-to-tip state 𝜃𝑟 = 0°.  As we decrease ℎ 

to the binodal point ℎ𝑏, thermodynamically the system will undergo a first order transition 

from the tip-to-tip state to the side-to-side state (dashed vertical line). However, as discussed 

earlier, in practice, it is only when we decrease ℎ to the spinodal point ℎ𝑠1 that the system 

undergoes an irreversible transition from the tip-to-tip state to the side-to-side state (solid 

vertical line pointing up). Similarly, when the system is initially in the side-to-side state 𝜃𝑟 =

90° at low values of ℎ, it is only when we increase ℎ to the spinodal point ℎ𝑠2 that the system 

undergoes an irreversible transition from the side-to-side state to the tip-to-tip state (solid 

vertical line pointing down). Note that the spinodal points ℎ𝑠1 and ℎ𝑠2 are the values of ℎ 

where the energy maxima curve (black curve) first meets 𝜃𝑟 = 0° and 𝜃𝑟 = 90° respectively. 

Note also that points to the right of the binodal point on the bottom branch of the red curve 

and to the left of the binodal point on the top branch of the red curve are equilibrium states 

while all other points on the red curve are metastable states.  
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In Figure 5.13c, we plot the interfacial energy (relative to the value at 𝜃𝑟 = 0°) as a 

function o𝑓 𝜃𝑟 for hydrophilic cylinders for different drop heights ℎ. Once again, we see that at 

large ℎ (e.g., the blue curve), there is a single minimum corresponding to the tip-to-tip 

configuration, but as we decrease ℎ, the energy curve develops a local minimum at 𝜃𝑟 = 90° 

which is separated from the primary minimum at 𝜃𝑟 = 0° by an energy barrier. As ℎ is 

decreased further to the binodal point ℎ𝑏 = 0.42𝑏 (green curve), the energy of the side-to-

side configuration becomes equal to that of the tip-to-tip configuration and 

thermodynamically, the system should undergo a first order transition from the tip-to-tip state 

to the side-to-side state at this point. However, this transition does not occur in practice 

because the energy barrier between the two minima is generally too large. Interestingly, for 

cylinders, the local minima at 𝜃𝑟 = 0° does not disappear, or equivalently the maximum of the 

energy barrier does not shift to 𝜃𝑟 = 0°, even at the lowest drop height we studied at ℎ =

0.1ℎ𝑡 (red curve). This means that cylinders effectively do not have a lower spinodal point ℎ𝑠1 

so that they do not undergo a roll-over transition from the tip-to-tip state to the side-to-side 

state even for small ℎ. Interestingly, cylinders adsorbed at flat interfaces also do not undergo a 

roll-over transition because they are prevented from doing so by the capillary ‘hinges’ between 

contacting cylinders created by the sharp edges of the cylinders.49 The significant and 

persistent energy barrier we see in Figure 5.13c is presumably due to the same effect. The key 

features of the roll-over transition for hydrophilic cylinders discussed above are summarised in 

Figure 5.13d where all the lines have the same meaning as in Figure 5.13b. 

 Finally, in Figure 5.13e we plot the interfacial energy (relative to the value at 𝜃𝑟 = 0°) 

as a function o𝑓 𝜃𝑟 for hydrophilic spherocylinders for different drop heights ℎ. Interestingly, 

we see that even at ℎ = ℎ𝑡 (blue curve), while the primary minimum is at 𝜃𝑟 = 0°, there is 

already a local minimum at 𝜃𝑟 = 90°, suggesting that spherocylinders do not have an upper 

spinodal point ℎ𝑠2. As ℎ is decreased to the binodal point ℎ𝑏 = 0.85𝑏 (orange curve), the 

energy of the side-to-side configuration becomes equal to that of the tip-to-tip configuration. 

Thermodynamically, the system undergoes a first order transition from the tip-to-tip state to 

the side-to-side state at this point, but in practice this transition only occurs when we decrease 

ℎ further to the lower spinodal point ℎ𝑠1 = 0.62𝑏, where the maxima of the energy barrier 

shifts to 𝜃𝑟 = 0° and the local minimum at 𝜃𝑟 = 0° disappears. The key features of the roll-

over transition for hydrophilic spherocylinders discussed above are summarised in Figure 5.13f 

where all lines have the same meaning as in Figure 5.13b.  

We note that the effective roll-over transition height ℎ𝑠1 is significantly greater for 

spherocylinders (ℎ𝑠1 ≈ 0.62ℎ𝑡) compared to ellipsoids (ℎ𝑠1 ≈ 0.27ℎ𝑡) and cylinders (ℎ𝑠1 ≈ 0). 

Since the strong lateral spatial confinement needed to align the rods into the tip-to-tip 
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configuration requires us to work in the immersion regime ℎ < ℎ𝑡, this means that it is easier 

to use our capillary assembly method to prepare tip-to-tip assemblies of ellipsoids and 

cylinders compared to spherocylinders because the drop height window over which we can 

prepare tip-to-tip assemblies (ℎ𝑠1 < ℎ < ℎ𝑡) is much wider for the former compared to the 

latter. Finally, we note that the results in this section provide insights into how the structure of 

clusters of rods adsorbed at cylindrical drops evolve during the drying of the droplet. 

5.4 Conclusions 

We have used the finite element method Surface Evolver to study the capillary assembly 

of rod-shaped particles adsorbed at a sessile liquid drop with cylindrical geometry. Specifically, 

we considered the immersion regime where the drop height is less than the radius of the rods 

and the lateral width of the cylindrical drop is much greater than the length of the rods, and 

we studied the configuration of single and multiple rods as a function of drop height, particle 

shape (ellipsoid, cylinder, spherocylinder) and contact angle.  

We found that for low enough drop heights, regardless of the shape or contact angle of 

the rods, all rods orientate themselves parallel to the long axis of the cylindrical drop and are 

strongly confined laterally to be at the centre line of the cylindrical drop. We also found that 

the rods experience strong and long-range immersion capillary forces which assemble the rods 

tip-to-tip at larger drop heights and, in the case of ellipsoids and spherocylinders, side-to-side 

when we reduce the drop height, for example through drying. We note that the capillary 

forces discussed above are very strong, allowing us to order rods even on the nanoscale.  

The fact that we can control the self-assembly of rods using cylindrical drops whose 

lateral dimensions are much greater than the length of the rods allows us, for example, to 

control the configuration of nanorods using near micron-scale droplets, greatly simplifying the 

task of fabricating the liquid templates required to realise this assembly method. Our capillary 

assembly method therefore provides a facile method for organising micro- and nanoscale 

objects into complex cluster structures and we hope that our study will stimulate future 

experiments in this direction.  
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 Self-Assembly of Spherical Core-Shell Particles at Flat 
Fluid Interfaces 

6.1 Introduction 

In the previous two chapters, we considered the self-assembly of non-spherical particles 

at a liquid interface. In this chapter, we will consider the self-assembly of spherical particles. 

The structural motifs accessible to 2D colloidal assembly are typically determined by the shape 

of the particles via their most efficient packing. In particular, the general propensity of 

spherical particles to assemble into hexagonal lattices limits the versatility of using spherical 

building blocks to create complex structures. However, an elegant solution to directly 

decouple particle shape from the resulting self-assembled phases has been theoretically 

proposed decades ago. In 1998, Jagla showed that a simple addition of a soft repulsive shell 

surrounding a hard sphere introduces a second length scale in the interaction potential, which 

allows for the creation of nonhexagonal minimum energy configurations (MECs) such as 

chains, squares, and rhombic phases.98 The formation of such counterintuitive phases results 

from the competition between the two length scales in the interaction: when the core–shell 

particles are compressed such that their shells begin to touch, the system can minimize its 

energy by fully overlapping neighbouring shells in some directions to prevent the overlap of 

shells in other directions.99–101 Jagla further showed that through the use of a ‘generic’ 

potential (see Section 6.2.1), controlled by a single parameter 𝑔 (where 𝑔 = 1 produces a 

linear potential profile (as seen in Figure 3.5a), 𝑔 < 1 results in a concave down potential 

(similar to Figure 3.5b), and 𝑔 > 1 results in a concave up potential), that he could tune the 

resultant self-assembly behaviour. In particular, the minimum energy phase in such core–shell 

systems is determined by three parameters: the ratio of the shell-to-core diameter (𝑟1/𝑟0), the 

shape of the soft repulsive potential, and the area fraction of the system 𝜂, which determines 

the total amount of shell overlap.98,102 Since this initial discovery, many theoretical reports 

have shown that dozens of different structures can originate from simple spherical particles 

interacting via such Jagla-like ‘generic’ potentials, including honeycombs, or quasicrystals of 

various symmetries for relative small shell-to-core ratios (𝑟1/𝑟0 ≲ 2),101–104 as well as defined 

particle clusters and complex chains phases at higher shell-to-core ratios (𝑟1/𝑟0 ≳ 2).99,105–108  

In contrast to this theoretical understanding, the experimental progress of such systems 

has remained largely elusive. The fundamental bottleneck that has impeded the experimental 

realization of such complex assembly phases is the difficulty of engineering suitable interaction 

potentials. For a system to form Jagla phases, two stringent requirements need to be met. 

First, the particle interaction potential requires two distinct length scales as described earlier 

and, in particular, a soft repulsive shell with a concave down shape,98,100,101 meaning that the 
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repulsion should have at least a linear ramp profile (𝑔 ≲ 1). Second, the interaction potentials 

need to be strictly pairwise additive (i.e., many-body effects where the interaction between 

two core–shell particles is influenced by the presence of other neighbouring particles need to 

be avoided).  

In principle, interaction potentials satisfying the two length scale criteria can be 

implemented experimentally using core–shell particles consisting of a solid, incompressible 

core and a compressible shell. Microgels109 are ideally suited as shell material because of their 

soft nature and their ability to deform under the influence of surface tension.110–113 In 

particular, when adsorbed at a liquid interface, microgels with and without a solid core exhibit 

a pronounced, very thin corona at the periphery, which is formed by the interfacial spreading 

of dangling chains.114–118 This corona acts as a compressible spacer between the cores, 

effectively introducing a repulsive shoulder to the interaction potential.  

 

Figure 6.1: a) 3D representation of crosslinked core-microgel particle at the air water interface during i) 
shell-to-shell contact, ii) during shell overlap, and iii) at core-to-core contact. b) 3D representation of the 
uncrosslinked core-microgel particles studied in this Chapter at the air water interface during i) shell-to-
shell contact, ii) during shell overlap, and iii) at core-to-core contact. c) potential profile of core-shell 
particles with a linear potential profile as one of the examples proposed by Jagla (𝑔 = 1) and potential 
profiles for the crosslinked and uncrosslinked core-microgel particles assuming that the potential is 
proportional to the area/volume of overlap. 

However, despite their interfacial core–corona morphology, for pure microgels25,119 and 

typical core–microgel shell systems,26,120,121 only an isostructural hexagonal non–close packed 

to hexagonal close-packed transition is observed. This behaviour has been rationalized by the 

quasi–three-dimensional shape that these particle systems retain despite their deformation at 

the interface (Figure 6.1a). Due to their crosslinked nature, the shell protrudes significantly 

into the water subphase.111 This interfacial morphology causes a rapid increase in shell overlap 

upon compression. If the energy penalty associated with the compression of the polymer shell 

scales with the overlap volume, this interfacial morphology therefore can be assumed to form 

a concave down shape for the interaction potential (See Appendix 2, Figure 6.1c). 

This results in a potential profile similar to a Jagla potential with a 𝑔 parameter much 

less than 1, which is not sufficient for observing complex assembly phases.100–102 In contrast, 

the only reports of anisotropic chain phases to date were observed in interfacial systems with 
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extremely flat coronae, formed by binary mixtures of polystyrene microspheres and very small 

microgels,100 and core–shell particles with a pronounced crosslinker gradient.122 These 

examples indicate that the ideal interfacial morphology to achieve Jagla-type interaction 

potentials with sufficiently large 𝑔-parameters is a core–shell system with an effectively 2D 

shell, where the overlap volume increases nearly linearly with compression. Again, assuming 

that the overlap volume is proportional to the resultant energy penalty, this results in a near-

linear ramp potential (i.e., 𝑔 ≈  1) (see Appendix 2, Figure 6.1b,c).  

 

Figure 6.2: Cartoons of uncrosslinked microgel core-shell particles in the bulk, and at the interface 
where the chains spread to form a 2D corona. 

The interconnected nature of a crosslinked microgel shell not only limits the interfacial 

spreading but also forces the polymer chains in the corona to react in a concomitant manner. 

Specifically, upon compression, cross-linked shells are forced to distribute stress across the 

entire shell. Consequently, a collapse of the shell with one neighbouring particle also facilitates 

the collapse of the same shell with other neighbouring contacts. It has been shown that such 

many-body interactions destabilize the formation of anisotropic Jagla phases and bias the 

system toward the conventionally observed isostructural phase transitions.122  

To circumvent the problems associated with conventional core–shell, in this Chapter, we 

consider core-shell particles consisting of an inorganic silica core functionalized with individual, 

noncrosslinked, and surface-active polymer chains (Figure 6.2). As we will see, at a liquid 

interface, the polymer chains in these hairy particles spread very efficiently and form an 

effectively 2D corona, which as we argued earlier translates into a near-linear repulsive 

potential. By completely avoiding any crosslinking in the shell, we also ensure that mechanical 

stress, arising from a local shell collapse upon compression, is not translated throughout the 

entire microgel shell. This, in turn, facilitates the partial and anisotropic collapse of a single 

shell in the vicinity of a neighbouring particle. In the Jagla terminology, this behaviour reflects 

a pairwise-additive character of the interaction potential. The experimental particle system 

thus fulfils both the stringent conditions required for the formation of Jagla phases. As we will 
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see later, upon compression, these particles indeed form a series of complex 2D phases. In this 

chapter, we will study the self-assembly of such core-shell hairy particles at a liquid interface 

using minimum energy calculations and Monte Carlo simulations. 

6.2 Theoretical Methods 

6.2.1 Jagla Potential 

 

Figure 6.3: (a) Jagla potential for different values of 𝑔. The dotted lines on the Left and the Right 
correspond to 𝑔 = 0 (no shoulder) and 𝑔 = ∞ (square shoulder), respectively. (b) Two-particle unit cell 
used in the minimum energy calculations, where 𝒂, 𝒃 are the lattice vectors, 𝜙 is the unit cell angle, and 
the thick and thin circles represent the particle core and shell, respectively. 

As mentioned in the introduction Jagla proposed a ‘generic’ two length scale potential 

which is given by the piecewise function 

𝑉(𝑟) =

{
 
 

 
 

∞ , 𝑟 < 𝑟0

𝜀

𝑔 + ((
𝑟/𝑟0 − 1
𝑟1/𝑟0 − 1

)(𝑔 − 𝑔−1) − 𝑔)

−1

𝑔 − 𝑔−1
, 𝑟0 ≤ 𝑟 ≤ 𝑟1

0 , 𝑟 > 𝑟1

 (6.1) 

where 𝑟 is the separation between the interacting particles, 𝑟0, 𝑟1 are the range of the hard-

core and soft-shell repulsion, respectively, 𝜀 is the height of the soft-shell potential, and the 

parameter 𝑔 controls the profile of the soft-shell interactions. Specifically, 𝑔 > 1 leads to 

concave up potentials, 𝑔 < 1 leads to concave down potentials and 𝑔 = 1 leads to linear ramp 

potentials (see Figure 6.3a). 

6.2.2 Minimum Energy Calculations 

In order to determine the equilibrium structures formed by core-shell particles when 

they are compressed in two dimensions, we calculate the minimum energy configurations 

(MECs) of the system, i.e., the equilibrium structure at zero temperature. The zero-

temperature regime is relevant so long as the energy scale of the soft-shell repulsion is much 

greater than the thermal energy, i.e. 𝑇∗ ≪ 1 (Appendix 3). As we shall see later in Section 
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6.3.3, we perform a comprehensive exploration of all two-dimensional structures containing 

(up to) two particles per unit cell for core-shell particles with 𝑟1/𝑟0 = 4. Specifically, we can 

define the unit cell as a parallelogram spanned by two lattice vectors 𝒂 = 𝑎(1,0), 𝒃 =

𝑎𝛾(cos𝜙 , sin𝜙), where 𝜙 is the angle between the lattice vectors, 𝛾 = 𝑏/𝑎 is the aspect ratio 

of the unit cell and 𝑎, 𝑏 are the lattice constants (see Figure 6.3b). Within this unit cell, the first 

particle is at (0,0) (without loss of generality) while the second particle is at 𝒓 = 𝛼𝒂 + 𝛽𝒃, 

where 𝛼, 𝛽 ∈ (0, 1) are the coordinates of the second particle in the lattice basis set.  

When calculating the zero-temperature phase diagram, it is convenient to work in the 

NPT ensemble where the area per particle is variable. This is because the system exists as a 

single phase in the NPT ensemble except at the coexistence pressure between two or more 

phases. Specifically, parameterising the area per particle as √3ℓ2/2, where ℓ is the lattice 

constant of the system in the hexagonal phase, and noting that the area per unit cell is 

𝑎2𝛾 sin𝜙, for two particles per unit cell, the lattice constant 𝑎 is fixed by the condition 

(𝑎2𝛾 sin𝜙)/2 = √3ℓ2/2. We can therefore express 𝑎 as a function of ℓ, 𝛾 and 𝜙 as 𝑎 =

ℓ (
√3

𝛾 sin𝜙
)

1

2
. Note that the number density of core-shell particles (i.e., number of particles per 

unit area) is given in terms of the parameter ℓ by 𝜌 = 2/(√3ℓ2) while the core area fraction is 

given by 𝜂 = 𝜋𝑟0
2/(2√3ℓ2).  

 

Figure 6.4: Schematics for lattice sum calculations. In a,d) particle 1-particle1 interactions, b,e) particle 
2-particle 2 interactions, and c,f) particle 1-particle 2 interactions. The two rows (a-c and d-f) correspond 
to using a different unit cell to form the basis of our lattice sum. The parallelograms bounded by blue 
lines represent the unit cells in the crystal and the parallelogram bounded by thicker blue lines 
represents the specific unit cell we are using as the ‘starting’ unit cell when performing the lattice sum 
calculation (see main text). The green, orange and blue particles represent particle 1, particle 2 and the 
origin particle in the highlighted unit cell respectively. The red arrow represents an interaction of the 
origin particle with a neighbour. 
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In the NPT ensemble, the equilibrium state is found by minimising the Gibbs free 

energy, or more specifically by minimising the enthalpy when we are at zero temperature. To 

simplify the calculation of the 𝑁 bodied system it is convenient for us to derive an expression 

in terms of total enthalpy per particle. To calculate this, we first look at the interaction energy 

per unit cell between all identical particles, i.e., particle 1–particle 1 and particle 2-particle 2. 

The interaction energy per unit cell for particle 1 within the unit cell interacting with all other 

particle 1’s (see Figure 6.4a) is 

𝐸11 = ∑ 𝑉(|ℎ𝒂 + 𝑘𝒃|)

ℎ,𝑘≠0,0

 
(6.2) 

The particle 2-particle 2 interactions can be calculated in a similar way, in fact, if we move our 

origin to be the centre of particle 2, we can see that Equation (6.2) also describes the particle 

2-particle 2 interactions (see Figure 6.4a,b). Therefore, the interaction per unit cell between 

like particles is just double that of equation (6.2). In addition, to calculate the total energy of 

the system from interactions between like particles, we need to sum the interaction energy 

above over all 𝑚 unit cells in the system, so equation (6.2) becomes 

𝐸𝑙𝑖𝑘𝑒
𝑡𝑜𝑡 = ∑ ∑ 2 𝑉(|ℎ𝒂 + 𝑘𝒃|)

ℎ,𝑘≠0,0𝑚 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙𝑠

 (6.3) 

However, as can be seen from Figure 6.4a,d and Figure 6.4b,e when calculating the 

interactions starting from different unit cells, we double count each pair interaction. By 

including a factor of 1/2 to remove double counting and summing and recognising that the 

interaction per unit cell is the same regardless of which unit cell we start from, we have  

𝐸𝑙𝑖𝑘𝑒
𝑡𝑜𝑡 = 𝑚 ∑ 𝑉(|ℎ𝒂 + 𝑘𝒃|)

ℎ,𝑘≠0,0

 
(6.4) 

 Next, we calculate the interaction energy per unit cell between all unlike particles, i.e., 

particle 1-particle 2 interactions (Figure 6.4c) which is calculated by  

𝐸𝑢𝑛𝑙𝑖𝑘𝑒 =∑𝑉(|ℎ𝒂 + 𝑘𝒃 + 𝛼𝒂 + 𝛽𝒃|)

ℎ,𝑘

 
(6.5) 

To obtain the total interaction energy from unlike particles, we once again need to consider 

the interactions starting from different unit cells. However, as can be seen in Figure 6.4c,f, 

when calculating the interactions from other unit cells, there is no double counting of the 
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interactions in this case. This means that the total energy of the system from the interaction of 

unlike particles is 

𝐸𝑢𝑛𝑙𝑖𝑘𝑒
𝑡𝑜𝑡 = 𝑚∑𝑉(|ℎ𝒂 + 𝑘𝒃 + 𝛼𝒂 + 𝛽𝒃|)

ℎ,𝑘

 
(6.6) 

The sum of equation (6.4) and (6.6) give the total interaction energy due to all particle 

interactions. In order to find the interaction energy per particle in this system we need to 

divide by 2𝑚 (as there are two particles per 𝑚 unit cells) making the total interaction energy 

per particle 

𝐸 =
1

2
[ ∑ 𝑉(|ℎ𝒂 + 𝑘𝒃|)

ℎ,𝑘≠0,0

+∑𝑉(|ℎ𝒂 + 𝑘𝒃 + 𝛼𝒂 + 𝛽𝒃|)

ℎ,𝑘

] (6.7) 

Finally, to calculate the enthalpy per particle (𝐻 = 𝐸 + 𝑃𝑉) for crystals containing two 

particles per unit cell we add the product of the surface pressure 𝑃 and area per particle as 

discussed earlier to obtain   

𝐻 =
1

2
[ ∑ 𝑉(|ℎ𝒂 + 𝑘𝒃|)

ℎ,𝑘≠0,0

+∑𝑉(|ℎ𝒂 + 𝑘𝒃 + 𝛼𝒂 + 𝛽𝒃|)

ℎ,𝑘

] +
√3

2
𝑃ℓ2 (6.8) 

Both summations run over all integer values of ℎ, 𝑘 satisfying |ℎ𝒂 +  𝑘𝒃| ≤ 𝑟𝑐 (except 

for ℎ, 𝑘 =  0,0 in the first sum), where 𝑟𝑐 is the cut-off radius for interactions. Since we are 

considering interactions with a finite range of 𝑟1, we are able to use a short cut-off length of 

𝑟𝑐/𝑟0 = 𝑟1/𝑟0 + 1. 

In order to calculate the zero-temperature phase diagram, we determined the MECs of 

the system as a function of 𝑔 and 𝑃 (the parameter 𝜀 is irrelevant at zero temperature) by 

minimising 𝐻 given in equation (6.8) with respect to the lattice parameters 𝜙, 𝛾, ℓ, 𝛼 and 𝛽. 

Since this is a relatively high dimensional minimisation, the minimisation proceeded via several 

stages. We first minimised 𝐻 over a relatively wide range of values for the lattice parameters 

to obtain an initial estimate for their equilibrium values. We then further minimised 𝐻 over a 

much smaller range around these initial estimates to obtain more refined estimates for the 

equilibrium lattice parameters.  

6.2.3 Monte Carlo Simulation – Slow Cool Simulations 

In this Chapter we use Monte Carlo simulations as covered in Section 3.2 to study the 

self-assembly of core-shell particles as a function of area fraction 𝜂. Specifically, for the slow 

cool MC simulations used to scan phases formed at different 𝑔 values, we used 1,024 core–



100 

shell particles interacting via the Jagla potential (equation (6.1)) in a fixed rectangular 

simulation box with aspect ratio of 2: √3 starting with particles in a hexagonal lattice at the 

desired area fraction. The particles were first disordered at the reduced temperature of 𝑇∗ =

100, then brought to the final temperature 𝑇∗ = 0.005 through a slow cool process by 

successively quenching to 𝑇∗ = 0.5, 0.3, 0.2, 0.1, 0.08, 0.06, 0.04, 0.03, 0.02, 0.01, and 0.005. 

We use this slow cooling procedure to reduce computation time, whilst still allowing the 

simulation to be ergodic. For example, at 𝑇∗ = 0.5 the system will still move into more 

energetically favourable states, but this is easily reversible, whereas at 𝑇∗ = 0.005 the system 

evolves very slowly, and the system will almost always only move to more energetically 

favourable states. Note that even though 𝑇∗ is changing as the system evolves, we are still in 

the NVT ensemble as we are effectively simulating at fixed 𝑇∗ where the starting particle 

distribution is the final evolution from the previous 𝑇∗. The system was equilibrated for 105 

attempted moves per particle at each temperature.  

6.2.4 Monte Carlo Simulations – Compression Simulations 

As we shall see later in this Chapter, in the experiments, the different area fractions of 

the core-shell system were accessed by subjecting the system to a uniaxial compression in a 

Langmuir trough. In order to match the experimental system more accurately and capture the 

kinetic history of the system, in addition to the slow cool simulations described above, we also 

perform compression MC simulations. Specifically, we use an elongated rectangular simulation 

box with aspect ratio 8: √3 was used instead. The particles were initially set out in a low 

density (no shell overlaps) hexagonal lattice at an area fraction of 𝜂 = 𝜋𝑟0
2/(2√3𝑟1

2) through 

the slow cool protocol described in the Results section. Higher area fractions were then 

accessed by slowly reducing the length of the simulation box along its long dimension by steps 

of 𝑟0/5 and affinely displacing all particles at each compression step. The system was 

equilibrated by 3 × 104 attempted moves per particle between each compression. A reduced 

temperature of 𝑇∗ = 0.005 was used throughout these simulations, as this represents a good 

compromise between satisfying the experimental condition that 𝜀 ≫ 𝑘𝐵𝑇 (see Appendix 3) 

while still being computationally accessible in terms of system equilibration times. A higher 

temperature of 𝑇∗ =  0.02 was used for the thin shell case 𝑟1/𝑟0  =  2.5 to account for the fact 

that in the experimental system, attractive capillary forces cannot be ignored in the thin shell 

regime, and these lead to a softening of the thin shell repulsion. Multiple compression runs 

(around 10) were carried out to increase the effective sample size from which to identify the 

different defined phases. To remove any core overlaps arising from the affine displacement of 

the particles, the hard-core region 𝑟 <  𝑟0 of the potential in equation (6.1) was replaced with 

a very high inverse power law potential 𝜀(𝑟/𝑟0)
−30, which led to a very efficient removal of 
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core overlaps when the Metropolis acceptance criteria was applied. Note that the compression 

MC simulations produced severe finite size effects at high compressions as the uniaxial 

compression from low-density results in very small dimensions of the simulation box along the 

compression axes. 

6.2.5 Cluster Analysis  

In order to categorise particle aggregates for colouring and statistics we use a clustering 

algorithm. In both experiments and simulations, particle cores which according to visual 

inspection are in contact generally have particle separations greater than 𝑟0. To correctly 

capture particle aggregates from the snapshots, we therefore define a threshold separation 

below which cores are considered to be in contact. For our MC simulations, we define this 

threshold separation to be 1.4𝑟0 for the particles with thicker shells (𝑟1/𝑟0  =  4.0, 5.0) and 

1.25𝑟0 for the particles with thinner shells (𝑟1/𝑟0  = 2.5). For the experimental data, we define 

this threshold separation to be 1.4𝑟0 for particles with thin shells (20-min irradiation). For 

particles with thicker shells (i.e., 80- and 320-min irradiation), a fixed threshold separation did 

not accurately capture clusters since with increased area fraction, there is a greater proportion 

of collapsed polymer chains between contacting cores leading to a larger core–core 

separation. To account for this effect, we define the threshold separation to be (1.4 + 2𝜂)𝑟0 

for the thicker shell experimental systems. Having defined the threshold separation, we define 

an aggregate as a group of particles where each particle is in contact with at least one other 

particle in the group. For aggregates containing five or more particles, we differentiate 

between chains and clusters by calculating the gyration tensor of the aggregate  

𝑺𝑚𝑛 =
1

2𝑁𝑎
2∑∑(𝒓𝑚

(𝑖) − 𝒓𝑚
(𝑗)
)(𝒓𝑛

(𝑖) − 𝒓𝑛
(𝑗)
)

𝑁𝑎

𝑗=1

𝑁𝑎

𝑖=1

 (6.9) 

where 𝑁𝑎 is the number of particles in the aggregate, and 𝑟𝑛
(𝑖)

 is the x or y coordinate of the 

𝑖𝑡ℎ particle in the aggregate (𝑛 =  𝑥, 𝑦). The eigen values of the symmetric 2 × 2 gyration 

tensor give the mean squared separation of particle pairs in the aggregate along the long and 

short axes of the aggregate (i.e., along the eigen vectors). We define an aggregate to be a 

chain if the ratio of the eigen values exceeds 10 (i.e., long axis/short axis ≥ √10). For the 

compression MC simulations, this scheme for classifying chains and clusters breaks down at 

high compressions when the length of chains become comparable to the shortest dimension of 

the simulation box and periodic boundary conditions start to interfere with the calculation of 

the gyration tensor. To get around this problem, we classify any aggregate containing more 

than 100 particles to be a chain, as we observe from our MC simulations that there are no 

clusters containing more than 100 particles. The resulting particle categorization is used for 
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statistical analysis of the phases and for the creation of colorized monolayer representations, 

where the cores are represented by circles with a radius of 𝑟0/2 in simulation and 85 nm in 

experiment. 

6.3 Results and Discussion 

6.3.1 Summary of Experimental Data 

The computational work in this chapter was motivated and guided by experimental 

results generated by our colleagues at the Friedrich-Alexander University in Germany. To 

provide context for our theoretical study, in this Section, we report the key experimental data 

produced by our experimental colleagues as this is the data that we will seek to model in this 

Chapter. Further details about the experiments can be found in Menath, J. et al. Defined core–

shell particles as the key to complex interfacial self-assembly. Proc. Natl. Acad. Sci. 118, 1–10 

(2021). 

 To fabricate the particles, silica core particles (𝑑 =  170 nm) were functionalized with 

the iniferter using silane chemistry (56, 57).123,124 Subsequently, they graft poly(2-

dimethylaminoethyl) methacrylate (PDMAEMA) polymer chains from these cores in an 

ultraviolet (UV) light (𝜆 =  365nm) using initiated controlled radical polymerization. The key 

advantage of this reaction is that it allows a convenient yet precise control of the shell 

thickness via the exposure time. This is important as the length of the polymer chains controls 

the interfacial dimensions of the particles and, therefore, the radius of the repulsive shell (𝑟1) 

in the assumed interaction potential.  
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Figure 6.5: Shell growth for PDMAEMA@SiO2 core–shell particles. (A) Photographs of core–shell 
particles after centrifugation. An increase in mass and particle dimensions can be observed from the 
colour change with increasing irradiation time. (B–G) SEM images of the core–shell particles transferred 
to a solid substrate from the air/water interface at a surface pressure of 5 mN/m. The distance between 
two particles is marked in red. (H) Dimension of the core–shell particles with increasing irradiation time, 
measured by dynamic light scattering in the bulk (i.e., the hydrodynamic diameter 𝑑𝐻, polydispersity 
index width as error bars) and by determination of the NND from SEM images (standard deviation 𝜎 as 
error bars). (I and J) AFM height (Top) and phase (Bottom) images of particles irradiated for 80 (I) and 
320 (J) min. (K) Surface pressure-area isotherms for the different core–shell particle systems (Scale bar: 
500 nm). 

Figure 6.5A shows photographs of dispersions of hairy particles after increasing UV 

exposure time up to 320 min. The increase in shell thickness can be directly observed by the 

colour change of the colloidal crystal formed upon centrifugation (Figure 6.5A).125,126 The 

photonic stop band shifts through the visible spectrum as the spacing of the silica cores in the 

formed crystal increases. The shell growth can also be seen in the increase in hydrodynamic 

diameter (𝑑𝐻 measured by dynamic light scattering in Figure 6.5H. The diameter increases 

from 170 nm at 0 min of irradiation to 550 nm at 320 min of irradiation, corresponding to a 

shell thickness of 190 nm in bulk. 

Subsequently, colloidal monolayers were formed by spreading the particles at an 

air/water interface and investigate the resulting interfacial morphologies using the 

simultaneous compression–deposition technique on a Langmuir trough.127 Stable non-close 

packed phases with increasing interparticle distance emerge from irradiation times of 10 min 

or more (Figure 6.5 D–G), indicating that the corona reliably separates the individual cores at 

the liquid interface. Note that the absence of particles in direct contact indicates that the 

transferred colloidal monolayer retains its interfacial arrangement as immersion capillary 
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forces upon drying would inherently push particles together, as is the case for shorter 

irradiation. These findings corroborate previous reports and demonstrate that this ex-situ 

analysis can yield an accurate picture of their interfacial morphology and phase 

behaviour.25,116,117,122 Using image analysis, the experimentalists extract the average nearest-

neighbour distance (NND), which they take as a proxy for the interfacial corona dimensions, 

since the particles can be assumed to be in corona–corona contact at the interface at this 

surface pressure (Figure 6.5H).113,118 

Atomic force microscopy (AFM) phase contrast images, shown in Figure 6.5I and Figure 

6.5J for core–shell particles from irradiation times of 80 and 320 min, respectively, give direct 

evidence of the interfacial morphology. The solid core is surrounded by a pronounced, 

extended 2D corona. The very thin, quasi-2D nature of this corona is obvious from the fact that 

it is revealed in phase contrast but not visible in the height image. The star-shaped appearance 

of core–shell particles with longer polymer chains (Figure 6.5F, G, I, and J) indicates a bundling 

of polymer chains close to the core, presumably by collapse of polymer chains protruding into 

the water subphase upon drying. The increasing dimensions of the coronae is also reflected in 

the surface pressure-area isotherms shown in Figure 6.5K, which show a continuous shift to 

larger areas per particle and an increasing compressibility of the interfacial assembly for 

samples with increasing exposure times.  
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Figure 6.6: Phase behaviour of the core–shell system upon compression in experiment and MC 
simulations based on particles interacting via a Jagla potential with a linear ramp potential and shell-to-
core ratio 𝑟1/𝑟0 = 4. (A–G) Representative SEM image of characteristic phases observed in experiment 
(Top row) and snapshots of the MC simulations (Bottom) at different area fractions specified in the 
images. (H) Surface pressure-area fraction isotherm indicating the regions in which the phases are 
observed (Scale bar: 1 μm). 

Next, the interfacial phase behaviour as a function of the particle area fraction was 

investigated using a Langmuir trough. We will use the example of core–shell particles from 80 

min irradiation (Figure 6.5 F and I) as an example. Experimentally, the 𝑟1/𝑟0 ratio was 

determined from the NND at the interface (Figure 6.5H) and the core diameter to be 𝑟1/𝑟0  =

 4.1. The core–shell particles form a hexagonal non–close packed monolayer at surface 

pressures below 5mN/m. Upon compression, both surface pressure and the area fraction of 

the particles (𝜂) increases, as seen in Figure 6.6H. The hexagonal non–close packed phase 

prevails up to 𝜂 = 0.11, and the compression only results in a decreasing lattice constant 

(Figure 6.6A). Above this area fraction, the system undergoes phase transitions into cluster 

phases. First, lattices of defined particle dimers are observed (Figure 6.6B), which are 

increasingly replaced by trimers (Figure 6.6C) and tetramers (Figure 6.6D). At even higher area 

fractions, the lattices of small clusters collapse into larger clusters and complex chain phases 

with characteristic morphologies. These morphologies include well-defined zig-zag chains 

(Figure 6.6E), observed around 𝜂 = 0.2, and braided chains (Figure 6.6F) which emerge at 𝜂 =
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0.25. At 𝜂 >  0.3, the chains and clusters merge to form a less defined network of very large 

clusters at the highest compressions achievable in experiments (Figure 6.6G). 

 

Figure 6.7: a-j) Statistical evaluation of the phase transitions in experiment for 20 min and 320 min 
irradiation. a) Fraction of particles in different phases as a function of area fraction for 10 min 
irradiation. b-e) Post-processed SEM images with color-coded cores (d = 170 nm) detected in image 
analysis for 20 min irradiation (corresponding to 𝑟1/𝑟0  = 2.5). Scale bar: 2µm. f) Fraction of particles in 
different phases as a function of area fraction for 320 min irradiation. g-j) Post processed SEM images 
with color-coded cores (d = 170 nm) detected in image analysis for 320 min irradiation (corresponding 
to 𝑟1/𝑟0  = 5). Scale bar: 2µm. 

Finally, a major limitation in existing experimental approaches based on 

microgel/microsphere mixtures100 and shells with a pronounced crosslinker gradient122 is the 

inability to accurately control the dimensions and structure of the shell. These limitations 

prevent the formation of more complex Jagla phases and limit the system to the formation of 

single chains. In contrast, the iniferter-based controlled radical polymerization scheme 

produces hairy polymer chains with tailored dimensions (Figure 6.5) and affords shells with 

large dimensions. The ability to engineer the shell dimensions allowed them to also study the 

impact of varying the shell-to-core ratio on interfacial phase behaviour. In Figure 6.7 key 

phases are shown for both the 20min irradiated particles (𝑟1/𝑟0 = 2.5) and the 320min 

irradiated particles (𝑟1/𝑟0 = 5), the colour and statistics are generated based upon our cluster 

analysis (see Section 6.2.5). As expected, the onset of phase transitions is shifted to larger area 
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fractions for smaller 𝑟1/𝑟0 ratios and to smaller area fractions for larger 𝑟1/𝑟0 ratios (Figure 

6.7). 

6.3.2 Monte Carlo Simulations 

In order to elucidate the driving force behind these phase transitions, we perform MC 

simulations of core–shell particles interacting via the Jagla potential (equation (6.1)). The 

shape of the soft repulsive shoulder and hence the value of 𝑔 is not known a priori. However, 

from our arguments in the introduction (Figure 6.1, Appendix 2), we hypothesize that the 

repulsion for the effectively 2D soft shells in the experimental system should be reasonably 

approximated by a linear ramp, and we therefore choose 𝑔 = 1. We will discuss the soft-shell 

interaction profile in more detail in Section 6.3.4 and show that by comparing the self-

assembled structure obtained from simulations and minimum energy calculations with 

experiments, we can narrow the Jagla 𝑔-parameter of the system to between 0.9 and 2, which 

is consistent with our assumption of 𝑔 = 1 here. 

Additionally, to more closely mimic the kinetic history of the experimental system, the 

different area fractions 𝜂 were accessed through a slow uniaxial compression of the simulation 

box starting from the hexagonal non–close packed phase at a reduced temperature of 𝑇∗ =

 𝑘𝐵𝑇/𝜀 = 0.005 (see Section 6.2.4). Snapshots of the phase behaviour resulting from the MC 

simulations are shown in Figure 6.6A–F below their experimental counterparts. The size of the 

soft shell (𝑟1) is shown as a grey circle surrounding the black hard cores to help visualize the 

degree of shell overlap in the different phases. Our compression MC simulations accurately 

reproduce all the characteristic phases observed in the experiments. There is also excellent 

agreement between simulation and experiment in the area fractions for the cluster phases but 

slightly larger discrepancies in the area fractions for the complex chain phases. The close 

agreement between experiment and simulation provides evidence that the complex self-

assembly observed experimentally can indeed be rationalized by Jagla-type interactions. Note 

that the highest-density simulation data shown in Figure 6.6G was obtained using the slow 

cool equilibration protocol to avoid finite size effects in the simulation box occurring during 

the uniaxial compression.  
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Figure 6.8: Large area snapshots of different phases obtained from compression Monte Carlo 
simulations of core-shell particles with 𝑟1/𝑟0 = 4, 𝑔 = 1. Note that the snapshot for 𝜂 =  0.58 was 
obtained from slow cool MC simulations as the area fraction was too high to be reached using 
compression MC simulations. 

In the evolution of the experimental interfacial assembly, characteristic phases often 

coexist, in lower-magnification SEM images, and similarly, larger area simulation snapshots 

show the presence of multiple phases in the MC simulations (Figure 6.8). This behaviour is 

expected for area-controlled experiments (i.e., a canonical or NVT ensemble) but also hints at 

small energetic differences between the different phases. We use image analysis to detect and 

analyse the characteristic phases as the system evolves with increasing compression.  
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Figure 6.9: Statistical evaluation of the phase transitions in experiment and simulation. (A) Fraction of 
particles in different phases as a function of area fraction in experiment. (B–E) Postprocessed SEM 
images with color-coded cores (d = 170 nm, Scale bar: 2 μm). (F) Fraction of particles in different phases 
as a function of area fraction in compression-type MC simulation. (G–J) Simulation snapshots with color-
coded phases detected in image analysis. 

Figure 6.9 shows the statistical evaluation of the phase behaviour as well as snapshots 

of characteristic area fractions where different phases are dominant for both experiment 

(Figure 6.9 A–E) and simulation (Figure 6.9 F–J) with 𝑟1/𝑟0 = 4. Considering the complexity of 

the phase behaviour and the experimental system and the simplicity of the theoretical model, 

the qualitative agreement between the statistical analysis for experiment and simulations is 

surprising. In particular, the statistical data from both experiment and simulation supports the 

qualitative picture shown in Figure 6.6 and clearly shows that with increasing compression, the 

system evolves from a non–close packed hexagonal phase, via defined clusters to chains and 

large clusters in both experiments and simulation. 



110 

 

Figure 6.10: Distribution functions for the different phases and representative complex chain structures 
obtained from slow cool MC simulations (a-c) and compression MC simulations (d-f) of core shell 
particles with 𝑟1/𝑟0 = 4, 𝑔 = 1. Note that both zig-zag chains and braided chains could only be obtained 
from the compression MC simulations (right snapshots, e,f) but not the slow cool MC simulations (left 
snapshots, b,c). 

Interestingly, using the slow cool MC simulations reliably reproduces the cluster 

phases but not the zig-zag chains or braided chains (Figure 6.10b,e and  Figure 6.10c,f 

respectively), suggesting that these complex chain phases are sensitive to the kinetic history of 

the sample and can only be accessed via specific kinetic pathways. This sensitivity is confirmed 

by the fact that in both the compression MC simulations and experiments, the complex chains 

are aligned along the compression axis. We note that the general phase behaviour with chain 

and cluster formation agrees with literature results using similar potentials,99,128 with the 

important exception of the complex zig-zag and braided chains. Additionally using the slow 

cool protocol instead of the compression protocol in our MC simulations led to much poorer 
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agreement of the distribution of the different phases compared to experiment (Figure 

6.10a,d). 

 The nonergodic nature of the system provides a post-hoc justification for using our 

compression MC method rather than a MC method that is more efficient at finding the ground 

state in a rugged energy landscape (e.g., parallel tempering, simulated annealing, etc.)75 since 

the former mimics the kinetic history of the experimental system more accurately. 

Interestingly, we did not find any evidence of a glass transition either in our simulations or 

experiments, and we therefore conclude that the soft shells in our system are soft enough to 

allow local rearrangements of the colloidal particles into (at least locally) ordered structures so 

that they are not trapped in an amorphous, glassy state.  

 

Figure 6.11: a-j) Statistical evaluation of the phase transitions in simulation for r1/r0-ratios of 2 and 5. a) 
Fraction of particles in different phases as a function of area fraction for 𝑟1/𝑟0  = 2.5. b-e) Simulation 
snapshots with color-coded phases detected in image analysis for 𝑟1/𝑟0  = 2.5. f) Fraction of particles in 
different phases as a function of area fraction for 𝑟1/𝑟0  = 5. g-j) Simulation snapshots with color-coded 
phases detected in image analysis for 𝑟1/𝑟0  = 5. 

To match all the experimental data, we also used our Monte Carlo simulations to study 

core-shell particles with 𝑟1/𝑟0 = 2.5, 5. Similar to the 𝑟1/𝑟0 = 4.0 case, the observed phase 
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behaviour agrees between experiment and simulations for 𝑟1/𝑟0  = 2.5 and 𝑟1/𝑟0  = 5 (Figure 

6.11). One small discrepancy that occurs for the thin shell case 𝑟1/𝑟0  = 2.5 is that simulations 

show that chain phases start to appear together with the trimer phase, which is not seen in 

experiments (Figure 6.11). We hypothesize that this discrepancy is due to the fact that 

attractive capillary forces cannot be completely ignored in thin shell experimental systems, 

and these may suppress the emergence of the chain phase until we reach higher area 

fractions. Indeed, for even thinner shells—or larger core particle dimensions— capillary forces 

dominate over the soft-shell repulsion and lead to aggregation and the formation of close-

packed structures. In contrast, we can safely ignore capillary forces for thicker shells because 

the cores are separated by much larger distances, leading to increasingly better agreement 

between experiment and simulation as we increase shell thickness. 

While our compression MC simulations capture the key features of the phase 

distribution, a closer examination of Figure 6.9 A and F reveals subtle differences between 

experiment and simulations. First, the area fraction range over which the phase transitions 

take place is larger, and the peaks for the individual phases are better separated in the 

simulations compared to in the experiments. This difference can be attributed to an 

underestimation of the experimentally determined area fraction, which is based on the 

nominal area of the silica cores and ignores the presence of highly compressed polymer chains 

between cores in contact. Secondly, the peak population of the particles in the different 

phases is higher in the simulations (dimers 93%, trimers 83%, and tetramers 52%) compared to 

in the experiments (dimers 43%, trimers 30%, and tetramers 42%). This difference may be 

attributed to particle polydispersity and the presence of minor amounts of impurities in the 

experimental system.129 
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Figure 6.12: Compression MC simulations of core-shell particles with polydispersity, using 𝑟1/𝑟0  =  4, 
𝑔 = 1, where 𝑟1, 𝑟0 refer to the average shell and core diameter respectively. We assume that the core 
and shell diameters of the simulated particles follow a Gaussian distribution, with the standard 
deviation in the core diameter approximately equal to the uncertainty measured by the experimentalists 
using the zeta-sizer method and the standard deviation in the shell diameter equal to the uncertainty in 
the SEM measured nearest neighbour distance (see Figure 6.5h) in the data on the left side. On the 
right, the same simulations are shown with an increased polydispersity of twice the experimental values. 
a,b) Distribution functions for the populations of the different phases for 4 % core and 7 % shell 
polydispersity (a) and 8 % core and 14 % shell polydispersity (b); c,d) Snapshots of representative phases 
for 4 % core and 7 % shell polydispersity (c) and 8 % core and 14 % shell polydispersity (d). 

To assess the effect of polydispersity, we included the experimental polydispersities 

for both the core and shell diameters in our MC simulations and further increased these values 

to probe the evolution of the system (Figure 6.12). These simulations reveal that polydispersity 

does not change the phase behaviour of the system qualitatively, though it suppresses the 

peak population for clusters. The latter result confirms that the smaller peak populations for 

the different phases observed in the experiments compared to the simulations of 

monodisperse particles is at least partially due to polydispersity. Finally, at high area fractions, 
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the dominant phase is observed to be large clusters in the experiments but predicted to be 

chains in the simulations. The latter is in fact an artifact due to finite size effects in the 

simulations at high compressions. Specifically, for large area fractions above 𝜂 ≳ 0.25, the 

largest chain length in the simulation is equal to the dimension of the simulation box along the 

compression axis. At higher area fractions, periodic boundary conditions start to connect 

clusters into chains, artificially driving up the proportion of chains relative to clusters. 

6.3.3 Minimum Energy Calculations 

In order to gain a deeper understanding of the phase transitions occurring in our 

system, we calculate the zero-temperature phase diagram and MECs for an ensemble of core–

shell particles interacting via the generic core–shell potential proposed by Jagla equation (6.1). 

Note that although our core–shell system is not globally ergodic as discussed earlier, we are 

justified in using minimum energy calculations to determine the local structure of the different 

phases since the experimental system is effectively in the zero-temperature regime (𝜀 ≫ 𝑘𝐵𝑇) 

as demonstrated in Appendix 3.  

 

Figure 6.13: Minimum energy calculations for 𝑟1/𝑟0 = 4. (a) Zero-temperature phase diagram for the 
core–shell particles in the 𝑔 − 𝑃 plane, where 𝑃 is surface pressure. The vertical dashed line represents 
𝑔 =  1. The region for zig-zag phases (i.e., ZZN and ZZ) is highlighted in yellow in the phase diagram. (b) 
Minimum energy configurations (MECs) containing two particles per unit cell and their corresponding 
area fractions 𝜂 for 𝑟1/𝑟0  =  4. In order of increasing 𝜂 these include: low density hexagonal phase 
(HEXL), dimers (DIM1, DIM2, DIM3), non-close packed and close packed wavy chains (WCN, WC), 
straight chains (SC), non-close packed and close packed zig-zag chains (ZZN, ZZ1, ZZ2), non-close packed 
and close packed double chains (DCN1, DCN2, DC1, DC2, DC3), a series of higher density compact 
structures and finally close-packed hexagonal phase (HEXH). 

Following the experiments in Figure 6.6, we fix 𝑟1/𝑟0  = 4. To simplify the discussion, 

we only consider 2D structures containing up to two particles per unit cell (Figure 6.13B) as 

this model is simple enough to allow us to perform a comprehensive exploration of the all the 

MECs but complex enough to generate the representative phases and their approximants seen 

in the experiments and simulations such as clusters (i.e., dimers) and complex chains (e.g., zig-

zag chains and double chains). Working in the NPT (i.e. isobaric-isothermal) ensemble, we 
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calculate the MECs for each value of 𝑔 and reduced pressure 𝑃∗ = 𝑟0
2𝑃/𝜀 by minimizing the 

enthalpy per particle 𝐻 with respect to the lattice parameters.101 Note that the value of 𝜀 is not 

relevant to the phase behaviour in the low-temperature regime 𝑇∗ = 𝑘𝐵𝑇/𝜀 ≪  1 that we are 

considering here.  

Figure 6.13a shows the phase diagram in the 𝑔 − 𝑃 plane, while Figure 6.13b shows 

the low area faction MECs together with their area fractions. The dashed line in Figure 6.13a 

corresponds to 𝑔 = 1 considered in our simulations. With increasing pressure, corresponding 

to increasing 𝜂 in the experiments and simulations, the system evolves from a low-density 

hexagonal phase (HEXL), via defined dimers (DIM) to a series of distinct chain phases, including 

non–close packed and close-packed wavy chains (WCN, WC), straight chains (SC), non–close 

packed and close-packed zig-zag chains (ZZN, ZZ), non–close packed and close-packed double 

chains (DCN, DC), and finally a series of higher-density compact structures culminating in the 

close-packed hexagonal phase HEXH. Note that within the framework of our two-particle 

calculation, trimer and tetramer clusters and braided chains cannot be formed and are 

therefore absent in the MECs. However, if we consider the double-chain phases as 

approximants for the braided chain phase, the evolution of the minimum energy phases in our 

simplified model closely mimics the phases observed in the experiments and simulations 

(Figure 6.6), going from the non–close packed hexagonal phase, to defined clusters, zig-zag 

chains, and complex double chains. There is also excellent agreement in the area fractions of 

these phases between theory and simulation. 

6.3.4 Determination of the Soft-Shell Interaction Potential 

The agreement between experiment, simulation, and theory on the observed phases 

and their evolution suggests that the developed particle system with its tailored interfacial 

morphology indeed exhibits an interaction potential that can be described via pairwise-

additive Jagla potentials. Unfortunately, the small particle dimensions prevent the direct 

measurement of the interfacial interaction potential to confirm this conclusion. An alternative 

method for determining the interaction potential from first principles is to use monomer-

resolved simulations,130,131 but such a calculation is nontrivial and requires a separate and 

substantial study, which lies outside the scope of this Thesis. 

However, while it is not possible to determine the experimental interaction potential 

directly, it is possible to constrain the effective values of 𝑔 for these particles by comparing the 

experimentally observed morphology of the different characteristic phases with those 

predicted by theory and simulation. Our minimum energy calculations predict that the zig-zag 

chain phases (ZZN and ZZ) are only stable for 𝑔 ≤ 2 (Figure 6.13a, yellow highlighted region). 
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At first sight, this seems to contradict the minimum energy calculation results of Fornleitner 

and Kahl, who observed a zig-zag chain phase for core–shell particles with a square shoulder 

profile 𝑔 = ∞ and 𝑟1/𝑟0  =  5.108 However, a closer examination of bond angles and density of 

the phase reveals that the zig-zag chain phase found by Fornleitner is in fact essentially 

equivalent to what we have called the double-chain phase (DC1) in Figure 6.13b. Therefore, 

the experimental observation of zig-zag chains therefore puts an upper boundary of 𝑔 ≈ 2 for 

the 𝑔 parameter. The lower boundary for 𝑔 is more difficult to access via minimum energy 

calculations because the complex energy landscape when 𝑔 < 1 makes the calculation of the 

zero-temperature phase diagram challenging.101,102 We therefore determine the lower bound 

for 𝑔 by performing slow cool MC simulations for 𝑔 values varying between 0.85 and 1 and 

comparing the resultant phase behavior to our experimental observations (Figure 6.14). 

 

Figure 6.14: Using Monte Carlo (MC) simulations to bracket the value of 𝑔 in the experimental systems. 
Successive rows show the evolution of phases with increasing area fraction 𝜂 obtained from slow cools 
MC simulations of core-shell particles with 𝑟1/𝑟0 = 4 and 𝑔 = 0.85, 0.9, 1.0. 

These simulations reveal that the characteristic dimer phase at low area fractions, 

which is pronounced in experiments, is absent for 𝑔 <  0.9. Based on these indirect 

evaluations from theory and simulation, we therefore bracket the effective 𝑔 parameter for 

our experimental system to be 0.9 ≤  𝑔 ≲ 2. This range is consistent with our simple model of 

overlapping 2D shells, which suggests that the soft shoulder repulsion should be reasonably 

approximated by a linear ramp profile (i.e., 𝑔 = 1 (Figure 6.1)). 
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Figure 6.15: Compression Monte Carlo simulations of core-shell particles interacting via potentials 
derived from previous monomer-resolved simulations on systems similar to our core-shell particles 
instead of the linear ramp potential. (a) Plot of the Gaussian potential130 given by 𝑉𝑔(𝑟) =

𝜀𝑔 exp(−𝑟/𝜎𝑔)
2
 and the Hertzian potential131 given by 𝑉𝐻(𝑟) =

𝜋𝑌𝜎𝑒𝑓𝑓
2 (1−𝑟/𝜎𝑒𝑓𝑓)

2

2 ln(
2

1−𝑟/𝜎𝑒𝑓𝑓
)

 compared to the linear 

ramp Jagla potential. We choose 𝜎𝑔 = 𝑟1/2, 𝜎𝑒𝑓𝑓 = 𝑟1 and 𝑟1/𝑟0 = 4 so that the range of both 

potentials is approximately the same as the Jagla potential, and we choose 𝜀𝑔 and 𝑌 so that the 

magnitude of both potentials is 𝜀 at 𝑟 = 𝑟0. (b,c) Snapshots of characteristic phases for core-shell 
particles interacting via the Gaussian and Hertzian potentials respectively. None of the characteristic 
cluster phases are observed for these potentials. 

It is important at this point to compare the Jagla potentials we have used in our MC 

simulations with those derived from previous monomer-resolved simulations on similar 

systems. For example, Schwenke et al. found the interaction potential between polymer-

coated colloids at a liquid interface to be a Gaussian,130 while Camerin et al. found the 

interaction potential between microgels at a liquid interface to be a Hertzian.131 Both these 

potentials clearly have a concave downward shape (effective 𝑔 < 1) which is qualitatively 

different from the linear ramp Jagla potential (𝑔 = 1) we have used in this Chapter (Figure 

6.15A). In order to assess whether these concave downward potentials are applicable to our 

experimental system, we used them in place of the Jagla potential in our MC simulations and 

compared the resultant phase behaviour with what we find in our experiments (Figure 6.15). 

We see that neither the Gaussian potential nor the Hertzian potential could reproduce the 

phase behaviour seen in our experiments, indicating that our experimental system does not 

interact via these potentials. 

We believe the reason why the effective potential for the experimental polymer-

coated colloids is different from that studied by Schwenke et al. is because although the two 

systems appear to be similar, they are in fact in different regimes.130 Specifically, in the 

simulations that gave rise to Gaussian interaction potentials, both bulk phases were assumed 

to act as a good solvents for the grafted polymer chains, so the majority of the polymer chains 
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were stretched out into the bulk and only a small fraction are stretched out along the interface 

(i.e., those grafted close to the equatorial plane).130 In addition, the polymer chains along the 

interface are only stretched out slightly more compared to the chains that are stretched out 

into the bulk. As a result, the interactions in their system are dominated by the swollen chains 

in the bulk rather than the interfacial chains, leading to Gaussian interactions, as predicted for 

dilute polymer solutions in the bulk.132–134 In contrast, the experimental polymer-coated 

particles we are studying are at an air–water interface, where all the polymer chains on the air 

side and presumably a significant fraction of the polymer chains on the water side are 

adsorbed at the interface. In addition, the polymer chains along the interface are stretched out 

around 60% more compared to polymer chains in the bulk (Figure 6.5H). As a result, the 

interactions in the experimental system are dominated by interfacial chains rather than 

swollen chains in the bulk, which as we have argued earlier, leads to a ramp-like potential 

(Figure 9.1).  

 

Figure 6.16: Compression Monte Carlo simulations of core-shell particles interacting via a composite 
potential consisting of a Gaussian potential and a linear ramp potential with different relative 
contributions. (a) Plot of the composite potential given by 𝑉(𝑟)  =  𝑤𝑉𝑔(𝑟)  +  (1 −  𝑤)𝑉𝑙𝑖𝑛(𝑟) for 

various values of 𝑤, where 𝑤 is the weighting of the Gaussian potential (0 ≤ 𝑤 ≤ 1), 𝑉𝑔(𝑟) is the 

Gaussian potential given the caption for Figure 6.15 and 𝑉𝑙𝑖𝑛(𝑟) is the Jagla potential given by equation 
(6.1) with 𝑔 = 1. Note that following the experimental data in Figure 6.5h, we choose 𝜎𝑔/𝑟0 = 1.25 and 

𝑟1/𝑟0 = 4 so that the range of the linear ramp potential (i.e., due to polymer chains along the interface) 
is approximately 1.6 times the range of the Gaussian potential (i.e., due to polymer chains swollen into 
the bulk). (b-e) Snapshots of characteristic phases for core-shell particles interacting via the composite 
potential with 𝑤 =  0.05, 0.1, 0.2, 0.5 respectively. Cluster and chain phases are only observed for 𝑤 =
 0.05. 

In order to gain further insight into the relative contribution of the different terms to 

the total interaction, we performed MC simulations using a composite potential consisting of a 
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Gaussian potential (with weighting 𝑤, 0 ≤ 𝑤 ≤ 1) and a linear ramp potential (with weighting 

1 − 𝑤) (Figure 6.16). We find that cluster formation, which is pronounced in the experimental 

system, only occurs when 𝑤 < 10%. This behaviour suggests that the interactions in the 

experimental system we are studying are dominated by the pronounced and extended corona 

formed by the interfacially adsorbed polymer chains.  

6.4 Conclusions 

We use Monte Carlo simulations and minimum energy calculations to study the phase 

behaviour of core-shell particles at a liquid interface under compression.  Assuming a linear 

ramp potential and that particle interactions are pairwise-additive, the phases produced by the 

MC simulations and minimum energy calculations agree well with the experimentally observed 

phases for defined core-shell particles consisting of a hard silica core functionalised with 

uncross-linked polymer chains. The good agreement between experiment, simulation and 

theory indicates that control of the interfacial morphology of soft particles can be used to 

realize Jagla-type phases, provided the experimental particles follow the following criteria:  

1. The particles have a two-length scale interaction consisting of a hard core with a soft 

shell which forms a 2D corona at the interface. The 2D corona allows for interaction potentials 

with sufficiently large 𝑔 parameters.  

2. The interaction between particles are pair-wise additive, i.e., interactions between two 

particles do not affect neighbouring interactions, enabling the formation of anisotropic 

structures.122 This has been achieved by ensuring the polymer chains that make up the shell 

are not crosslinked and therefore allow different degrees of shell overlap with neighbouring 

particles.  

3. The interactions are isotropic, requiring the polymer shell to be uniform to produce a 

regular interfacial structure in all directions. 

This demonstration of a single component, spherical system to form a series of defined, 

anisotropic interfacial assembly phases provides a paradigm to experimentally realize the vast 

variety of theoretically predicted Jagla phases. The combination of available predictive 

theoretical models with the ability to use functional core materials and to tailor the chemical 

nature, chain architecture, density, structure, and dimensions of the polymer shell will spark 

discoveries in functional, self-assembled materials. 
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 Self-Assembly of Ellipsoidal Core-Shell Particles at Flat 
Fluid Interfaces 

7.1 Introduction 

In the previous Chapter, we modeled the self-assembly of spherical core-shell particles 

in an experimental system. In this Chapter, we will model the self-assembly of core-shell 

ellipsoids. As discussed in Section 2.2, for ellipsoidal particles at liquid interfaces, the 

deformation of the meniscus along the long axis differs from that along the short axes, 

resulting in capillary forces with quadrupolar symmetry that greatly exceed the thermal energy 

𝑘𝐵𝑇.15 The saddle-like distortion field around the ellipses causes them to attract each other 

either tip-to-tip or side-to-side, while repelling each other in the side-to-tip configuration.15,51,65 

Both of these configurations have been found experimentally. Sterically stabilized 

ellipsoids at an air/oil interface assembled into a side-to-side configuration, corroborated by 

calculations and simulations as the energetically most stable configuration.49,135 Selectively 

removing the steric stabilizer from the tip of the ellipsoids changed the self-assembly into tip-

to-tip configurations.136 The self-assembly behaviour of charge-stabilized ellipsoids is less 

understood. At an air/water interface, side-to-side137–139 and tip-to-tip15,139–141 arrangements 

have been reported. In one study, ellipsoids with low aspect ratios assembled preferentially 

side-to-side, while a tip-to-tip arrangement was found for higher aspect ratios.140 Another 

study reported "flower-like" tip-to-tip arrangements at the air/water interface, whereas the 

same particles formed a "chain-like" tip-to-tip arrangement at a decane/water interface.141 

This difference was rationalized by the different contact angle of the ellipsoids adsorbed at the 

air/water and decane/water interface, respectively.141 Additionally, core-shell ellipsoids 

consisting of an incompressible core and a hydrogel shell initially self-assembled into a side-to-

side assembly, which transitioned over time into a tip-to-tip assembly.142 Furthermore, the 

shell thickness of these core-shell ellipsoids was reported to affect their assembly, with thicker 

shells resulting in a tip-to-tip arrangement, while thinner shells led to a side-to-side 

assembly.143 To summarize, both tip-to-tip and side-to-side arrangements for seemingly similar 

ellipsoids have been observed experimentally. However, the origin of the preference for either 

structure is not yet fully understood and deterministic control of their self-assembly thus 

remains challenging. 

The synthesis of ellipsoidal particles is more challenging compared to isotropic spheres. 

A convenient method to produce such anisotropic particles with controlled aspect ratios is the 

thermo-mechanical stretching technique.144,145 In this process, spherical polymer particles are 

embedded in a water-soluble polymer film. This composite film is subsequently heated above 
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the glass transition temperature of the particles and stretched. After cooling, the elongated 

particles can be released by dissolution of the matrix in water, yielding polymer ellipsoids with 

an aspect ratio determined by the degree of stretching.  

It was recently discovered that the fabrication process and cleaning protocol 

significantly impact the behaviour of ellipsoidal particles due to residual polymer chains that 

remain on their surfaces after dissolution of the matrix.146 These polymer residues impact the 

behaviour of both the individual particle and the particle dispersion. Contrary to the previous 

belief that the anisotropic shape of ellipsoidal particles prevents the coffee ring effect, it was 

found that it is actually the presence of polymeric residues adsorbed on the particle surface 

that leads to homogeneous drying.146 When these polymer residues are properly removed 

using an appropriate solvent,41 the ellipsoidal particles exhibit the coffee ring effect.146 They 

therefore hypothesize that the potential presence of polymer residues, an artifact of the 

synthesis, fabrication or cleaning process, may similarly affect the interfacial self-assembly and 

thus explain the variety of different assembly structures reported for ellipsoidal particles. 

Here, we work with our experimental colleagues to investigate the interfacial self-

assembly behaviour of core-shell ellipsoids, focussing on the role of the shell provided by 

water-soluble polymer chains adsorbed to the particle surface. By meticulously controlling the 

fabrication process and cleaning protocol, they synthesize either pure ellipsoids or core-shell 

ellipsoids with polymeric hairs on their surfaces. These polymers significantly influence the 

self-assembly behaviour of the ellipsoids. Pure ellipsoids consistently assemble into a side-to-

side arrangement, independent of their aspect ratio. In contrast, core-shell ellipsoids exhibit a 

transition from a tip-to-tip assembly at lower aspect ratios to a side-to-side assembly at higher 

aspect ratios, with the onset of this transition shifting to higher aspect ratios as the relative 

shell size (i.e. the ratio of shell to core) increases. We support the experimental observations 

with theoretical calculations and Monte Carlo simulations, mapping out the phase diagram for 

core-shell ellipsoids as a function of aspect ratio and shell thickness, which accurately 

reproduces the experimental results.  

7.2 Theoretical Methods 

7.2.1 Surface Evolver 

As discussed in the introduction, the main driving force behind the assembly of the 

core-shell ellipsoids are capillary interactions. Whilst in Section 2.4 and indeed later on in 

Section 7.2.2.2 we discuss a general elliptical quadrupolar interaction, it is useful to verify the 

analytical interaction (see Section 7.2.2.2) with an exact calculation from Surface Evolver.74 An 

adjustable triangular mesh between 0.02𝑏 − 0.1𝑏 with quadratic edge lengths was used to 
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capture the shape of the interface near the contact line more accurately. Since the interactions 

between the ellipsoids of aspect ratio 𝑎/𝑏 are essentially quadrupolar and fall off rapidly with 

separation, a relatively small simulation box with reflecting boundary conditions at 𝑥 = ±6𝑎 

and 𝑦 = ±6𝑎 was used. To calculate the capillary interaction potential between two ellipsoids, 

the reflecting walls to calculate the interfacial energy of a single ellipsoid interacting with its 

image at a reflecting wall was exploited, varying the particle surface-to-reflecting wall distance 

from 0.1𝑏 to 3𝑎 and using the ellipsoid at the centre of the simulation box to represent the 

‘infinite’ separation case. 

7.2.2 Monte Carlo Simulation 

In order to simulate the self-assembly, we use NVT Metropolis simulations on an 

ensemble of 625 core-shell ellipsoids with periodic boundary conditions using a fixed 

rectangular box with aspect ratio 2:√3. The particles are initially arranged in a hexagonal array 

with random azimuthal orientations and a core area fraction 𝜂 = 𝜋𝑎𝑏 8(𝑎 + ℎ)2⁄  to ensure 

that the system is in the dilute regime. Each MC move consisted of a simultaneous translation 

and rotation move, with an adjustable maximum translational distance of 𝑑𝑚𝑎𝑥 and azimuthal 

rotation angle of 𝑑𝑚𝑎𝑥/𝑎 about the particle centre to ensure an acceptance probability of 30% 

for the MC moves. The particles were initially randomized at a high temperature of 𝑇∗ = 100 

for 103 attempted moves per particle, then quenched to 𝑇∗ = 0.2 for a further 106 attempted 

moves per particle. To reduce computation time, particle interactions for separations greater 

than a cutoff distance of 2𝑎 + 10𝑏 were neglected. 

7.2.2.1 Steric Interactions between Core-Shell Ellipsoids 

As discussed in the introduction, the steric interactions between core-shell particles in 

our Monte Carlo (MC) simulations arise from the shell of the particles which we assume are 

impenetrable and treat the core-shell particles at liquid interfaces as hard ellipses with long 

and short axis lengths of 𝑎′ = 𝑎 + ℎ and 𝑏′ = 𝑏 + ℎ respectively, where ℎ is the 

experimentally measured shell thickness, 𝑎 = 𝑅0AR
2 3⁄ , 𝑏 = 𝑅0AR

−1 3⁄  are the long and short 

axis lengths of the ellipsoidal core respectively derived from the conservation of core volume, 

𝑅0 is the radius of the original unstretched spherical core and AR = 𝑎 𝑏⁄  is the aspect ratio of 

the final stretched ellipsoidal core. This approach for modelling steric repulsions requires us to 

know the contact separation 𝜎𝑐 between hard ellipses, which is given in the Berne-Pechukas 

model147 by  

𝜎𝑐(𝒖̂1, 𝒖̂2, 𝒓̂) = 𝜎⊥ (1 −
1

2
[
(𝒓̂ ∙ 𝒖̂1 + 𝒓̂ ∙ 𝒖̂2)

2

1 + 𝜒𝒖̂1̂ ∙ 𝒖̂2
+
(𝒓̂ ∙ 𝒖̂1 − 𝒓̂ ∙ 𝒖̂2)

2

1 − 𝜒𝒖̂1̂ ∙ 𝒖̂2
])

−1 2⁄

 (7.1) 
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where 𝒖̂1, 𝒖̂2 are the unit vectors along the long axis of the two interacting ellipsoids, 𝒓̂ is the 

unit vector along the line joining the particle centres, 

𝜒 =
𝜎∥
2 − 𝜎⊥

2

𝜎∥
2 + 𝜎⊥

2 

and 𝜎∥ = 2(𝑎 + ℎ), 𝜎⊥ = 2(𝑏 + ℎ) are the length and width of the hard ellipse respectively. 

Note that for prolate ellipsoids, the Berne-Perchukas model for 𝜎𝑐 is accurate to within 2%.148 

7.2.2.2 Cappillary Interactions between Core-Shell Ellipsoids 

 

Figure 7.1: The coordinates specifying the configuration of two interacting ellipsoids at a liquid interface. 
The ellipses represent the projection of the contact line on each ellipsoid on the interfacial plane while 
𝑃1, 𝑃2 denote the centres of the two ellipsoids on the interfacial plane. 

In this Chapter, we assume that the capillary interactions between the core-shell 

ellipsoids are due to quadrupolar contact line undulations on the ellipsoidal cores and this 

interaction is a function of  the centre-to-centre separation of the interacting ellipsoids 𝑟12 and 

the azimuthal angle that the long axis of each particle makes to the centre-to-centre 𝜑1, 𝜑2 as 

shown in Figure 7.1. In this section, we continue our discussion from Section 2.4 following 

Lewandowski et al,50 and calculate the capillary interaction energy between two ellipsoid cores 

𝑉(𝑟12, 𝜑1, 𝜑2) by treating the contact line undulations on the cores as capillary quadrupoles in 

elliptical coordinates.  

A key parameter in calculating the capillary interaction is the position of the centre of 

particle 2 (P2) in a coordinate system where the centre of particle 1 (P1) is the origin. If we 

denote the position of P2 in Cartesian coordinates as (𝑥′, 𝑦′), from Figure 7.1, we see that 

𝑥′ = 𝑟12 cos𝜑1, 𝑦′ = −𝑟12 sin𝜑1. Substituting this result into equation (2.16) and rearranging, 

we can write the position of P2 in elliptical coordinates (𝑠∗, 𝑡∗) in terms of 𝑟12 and 𝜑1 as 

𝑠∗ = sinh−1 [{
1

2
(
𝑟12
2

𝛼2
− 1) +

1

2
[(
𝑟12
2

𝛼2
− 1)

2

+
4𝑟12

2 sin2𝜑1
𝛼2

]

1 2⁄

}

1 2⁄

] (7.2) 
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𝑡∗ = sin−1 [
−𝑟12 sin𝜑1

𝛼
{
1

2
(
𝑟12
2

𝛼2
− 1) +

1

2
[(
𝑟12
2

𝛼2
− 1)

2

+
4𝑟12

2 sin2𝜑1
𝛼2

]

1 2⁄

}

−1 2⁄

] 

Finally, the interaction energy between the two elliptical quadrupoles is given by50  

𝑉(𝑟12, 𝜑1, 𝜑2) = −2𝛾𝜋𝛼
2𝐻𝑒 cosh(𝑠0) sinh(𝑠0) [𝐶11

′ cos(2𝜑1 − 2𝜑2)

− 𝐶21
′ sin(2𝜑1 − 2𝜑2)] 

(7.3) 

where 𝛾 is the interfacial tension of the fluid interface, 𝐻𝑒 is the amplitude of the elliptical 

quadrupole and  

𝐶11
′ =

𝐻𝑒𝑒
2𝑠0𝑒−2𝑠

∗

𝑟12
2 cos2𝜑1 (tanh

2 𝑠∗ − tan2 𝑡∗)2
[4 cos(2𝑡∗)(tanh2 𝑠∗ − tan2 𝑡∗)

− 8 sin(2𝑡∗) tan 𝑡∗ tanh 𝑠∗

+ 2(tanh2 𝑠∗ + tan2 𝑡∗)(cos(2𝑡∗) tanh 𝑠∗ − sin(2𝑡∗) tan 𝑡∗)

−
2 cos2𝑡∗ tanh 𝑠∗

cosh2 𝑠∗
−
2 sin 2𝑡∗ tan 𝑡∗

cos2 𝑡∗

+
4(cos(2𝑡∗) tanh 𝑠∗ − sin(2𝑡∗) tan 𝑡∗)

tanh2 𝑠∗ + tan2 𝑡∗
(
tanh2 𝑠∗

cosh2 𝑠∗
−
tan2 𝑡∗

cos2 𝑡∗
)] 

(7.4) 

𝐶21
′ =

𝐻𝑒𝑒
2𝑠0𝑒−2𝑠

∗

𝑟12
2 cos2𝜑1 (tan

2 𝑡∗ + tanh2 𝑠∗)2
[4 sin(2𝑡∗)(tanh2 𝑠∗ − tan2 𝑡∗)

+ 8 cos(2𝑡∗) tan 𝑡∗ tanh 𝑠∗

+ 2(tanh2 𝑠∗ + tan2 𝑡∗)(sin(2𝑡∗) tanh 𝑠∗ + cos(2𝑡∗) tan 𝑡∗)

−
2 sin 2𝑡∗ tanh 𝑠∗

cosh2 𝑠∗
+
2cos 2𝑡∗ tan 𝑡∗

cos2 𝑡∗

+
4(sin(2𝑡∗) tanh 𝑠∗ + cos(2𝑡∗) tan 𝑡∗)

tanh2 𝑠∗ + tan2 𝑡∗
(
tanh2 𝑠∗

cosh2 𝑠∗
−
tan2 𝑡∗

cos2 𝑡∗
)] 

(7.5) 

where 𝑠∗, 𝑡∗ are given by equation (7.2).  

Note that in equations (7.3)-(7.5), we have corrected some typographical errors in the 

corresponding equations presented by Lewandowski et al.50 Specifically, in equation (7.3), 

there is a minus between the two terms inside the square bracket (not a plus),50 while in 

equations (7.4), (7.5), the denominator on the right hand side contains an extra factor of 

cos2𝜑1.50 Note also that, in spite of this extra factor, 𝐶11
′ , 𝐶21

′  do not diverge for 𝜑1 ⟶±𝜋 2⁄  

but tend towards finite limiting values. To avoid any numerical instabilities in our calculations, 

we therefore set 𝐶11
′ , 𝐶21

′  to be equal to these limiting values for 𝜑1 very close to ±𝜋 2⁄ .  
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7.2.3 Statistical Analysis of Clusters 

In order to observe and quantify different particle assemblies, the particles were 

classified as belonging to side-to-side chains or tip-to-tip triangular clusters based on their 

separation and orientation relative to other particles in the system, with the criteria based on 

these quantities chosen to ensure that the classification coincides with the classification based 

on visual inspection. For this analysis, the centre-to-centre separation between two nearest-

neighbour core-shell ellipsoids in contact was 𝑑𝐶 = 2𝑏
′ and 𝑑𝑇 = √𝑎

′2 + 3𝑏′2 respectively for 

the side-to-side chains and tip-to-tip triangular lattices,88 where 𝑎′ = 𝑎 + ℎ, 𝑏′ = 𝑏 + ℎ. For 

the simulation system, a particle was classified as belonging to a side-to-side chain if its centre-

to-centre separation to any other particle satisfied the condition 𝑟12 < 1.3𝑑𝐶  and the relative 

orientation of the two particles satisfied the condition |𝑎̂1 ⋅ 𝑎̂2| ≥ 0.9, where 𝑎̂1, 𝑎̂1 are the 

unit vectors along the semi-major axes of the two particles. On the other hand, a particle as 

belonging was classified to a tip-to-tip triangular cluster if its centre-to-centre separation to 

any other particle satisfied 0.7𝑑𝑇 ≤ 𝑟12 ≤ 1.15𝑑𝑇 and the relative orientation of the two 

particles satisfied |𝑎̂1 ⋅ 𝑎̂2| < 0.9. If a particle belonged to both a chain and a triangular cluster, 

we classified it as belonging to a triangular cluster.  

For the experimental system, a neural network was used to analyse the experimental 

micrographs to capture the position of the ellipsoid centres, the long and short axes lengths 

and the orientation of the long axis relative to one of the lab frame axes. We then filtered the 

data by eliminating any particles whose long axis length is smaller than 60% of the mean or 

two standard deviations greater than the mean. Further, by assuming that all ellipsoids have a 

long and short axes length equal to the mean, all particle pairs whose centre-to-centre 

separation is smaller than the contact separation predicted by the Berne-Pechukas model147 

were also removed from the analysis (see Section 7.2.2.1). We note that the neural network 

used by the experimentalists underpredicts the aspect ratio of the ellipsoidal particles 

compared to values obtained from direct measurements of the experimental micrographs but 

fortunately this discrepancy does not have a significant impact on our statistical classification. 

Having filtered the experimental data as described above to remove any artefacts of the 

ellipsoid identification process, an ellipsoid was classified as being part of a side-to-side chain if 

its separation and orientation relative to any other particle satisfied the conditions 𝑟12 <

1.3𝑑𝐶, |𝑎̂1 ⋅ 𝑎̂2| ≥ 0.9 and |𝑎̂1 ⋅ 𝑟̂12| < 0.5, where 𝑟̂12 unit vector along the centre-to-centre 

line connecting the two particles. On the other hand, an ellipsoid was classified as being part of 

a tip-to-tip triangular cluster if its separation and orientation relative to any other particle 

satisfied the conditions 0.5𝑑𝑇 ≤ 𝑟12 ≤ 0.8𝑑𝑇, |𝑎̂1 ⋅ 𝑎̂2| < 0.9 and |𝑎̂1 ⋅ 𝑟̂12| > 0.2. If an 

ellipsoid belonged to both a chain and a triangular cluster, we classified it as belonging to a 
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triangular cluster. The statistical classification above was carried out for 4 – 20 experimental 

micrographs for each aspect ratio and shell thickness. 

7.3 Results and Discussion 

7.3.1 Summary of Experimental Data 

In this Chapter we seek to understand the self-assembly behaviour of core-shell 

ellipsoids found in experimental results generated by our colleagues at the Friedrich-Alexander 

University in Germany. To provide context and motivation for our theoretical study, in this 

Section, we report the key experimental finding produced by our experimental colleagues. 

However, we did perform statistical analysis of some of the experimental images, to highlight 

the different assemblies and to provide quantitative analysis (see Section 7.2.3). 

 

Figure 7.2: The self-assembly behaviour of ellipsoids at the air/water interface depends on their 
fabrication process. a-c) Schematic illustration of the fabrication process: a) Colloidal polystyrene (PS, 
radius R0 = 0.55 µm) particles are embedded in a PVA or PVP foil, followed by (b) thermo-mechanical 
stretching. c) The ellipsoidal particles are recovered by dissolving the foil in H2O followed by cleaning 
using centrifugation and redispersion in either pure H2O or IPA/H2O mixtures. d-f) Schematic illustration 
and optical microscopy images of the interfacial self-assembly at an air/water interface for ellipsoidal 
particles prepared by different fabrication procedures. d) Ellipsoids prepared in a PVA foil and cleaned in 
an IPA/H2O mixture assemble in direct contact in a "chain-like" side-to-side arrangement. e) The same 
ellipsoids but cleaned solely with H2O assemble in a mixture of side-to-side and tip-to-tip configurations 
and retain a non-close packed arrangement. f) Ellipsoids prepared in a PVP foil assemble in a "flower-
like" tip-to-tip configuration with non-close packed arrangement, even when cleaned with an IPA/H2O 
mixture. Scale bars: 20 µm. 

In Figure 7.2, we show experimental data from our colleagues for the self-assembly of 

polymeric polystyrene (PS) ellipsoids with a similar aspect ratio (AR) of 3 at the air/water 

interface, produced using the thermo-mechanical stretching technique145 with different 
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fabrication protocols. In the fabrication process, spherical PS colloidal particles (radius R0 = 

0.55 µm) are embedded in either a poly(vinyl alcohol) (PVA) or poly(vinyl pyrrolidone) (PVP) 

foil (Figure 7.2a).145 This composite foil is stretched in an oil bath above the glass transition 

temperature of the polymeric particles, deforming them into ellipsoids (Figure 7.2b). The 

resulting anisotropic particles were subsequently retrieved by dissolving the foil in water, 

followed by cleaning in either an isopropanol (IPA)/water mixture or pure water (Figure 7.2c). 

The synthesized ellipsoids were then spread at an air/water interface, and their self-

assembly behaviour is observed in situ using optical microscopy. A striking difference was 

observed depending on the fabrication protocol. Ellipsoidal particles prepared following the 

original work by Ho et al.,145 using a PVA foil and cleaning in IPA/water mixtures, self-assemble 

into a "chain-like" structure, where the ellipsoids are in direct contact in a side-to-side 

configuration (Figure 7.2d). The same ellipsoids but cleaned using dissolution and subsequent 

centrifugation/redispersion in water, self-assemble into a non-close-packed structure where 

the ellipses are visibly separated from each other. They assume both side-to-side and tip-to-tip 

configurations (Figure 7.2e). Ellipsoids prepared in a PVP foil, on the other hand, assemble into 

a "flower-like" tip-to-tip configuration (Figure 7.2f), but also visibly separated and non-close-

packed.  

We attribute the difference in self-assembly behaviour to the presence of polymeric 

chains adsorbed onto the particle surface during the fabrication process. An IPA/water mixture 

is required to sufficiently remove PVA from the ellipsoid surfaces.145,146 In contrast, using pure 

water for the centrifugation/redispersion leaves a layer of PVA chains on the particle surface 

with a swollen thickness of roughly 40 nm, as determined by dynamical light scattering.146 

These PVA chains extend at the liquid interface to reduce the surface energy and thereby form 

a 2D corona around the ellipsoidal particles, which is even visible in situ using cryo-scanning 

electron microscopy (SEM).41 This prevents the particles from coming into close contact and, as 

we will discuss later in Section 7.3.3, affects the energy landscape of the tip-to-tip and side-to-

side configurations. 

Assembling PVA-coated ellipsoids at liquid interfaces is challenging. To overcome this 

challenge, the PVA matrix used in the stretching process is replaced with PVP 

(polyvinylpyrrolidone). In bulk liquid, both PVA and PVP chains produce a similar shell 

thickness of around 40 nm. However, ellipsoids with a PVP shell appear more separated at the 

air/water interface compared to those with a PVA shell (cf. Figure 7.2e, Figure 7.2f). We 

hypothesize that PVP chains extend further at the liquid interface, leading to a more extended 

corona around the ellipsoids than PVA chains. Although the exact mechanism is not yet fully 
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understood, this data suggest that the physicochemical properties of the polymer shell 

significantly influence corona formation at liquid interfaces, which, in turn, affects the self-

assembly behaviour of the ellipsoidal particles.  

 

Figure 7.3: Interfacial self-assembly behaviour of core-shell ellipsoids as a function of aspect ratio (AR). 
Microscopy images of the self-assembly behaviour of (a) spherical particles and (b-h) ellipsoids with 
increasing aspect ratio. We observe a transition from a "flower-like" tip-to-tip assembly (b-d) to a 
"chain-like" side-to-side assembly (e-h). Scale bars: 50 µm. 

Next, the variation of the self-assembly behaviour of these ellipsoids with aspect ratio 

was investigated (Figure 7.3). Spherical polymethyl methacrylate (PMMA) particles (radius 𝑅0 = 

1.65 µm) remain fully separated (Figure 7.3a), indicating predominant repulsive interactions. In 

contrast, when stretched into ellipsoidal particles they exhibited attractive interactions at the 

liquid interface (Figure 7.3b-h). At low aspect ratios, ellipsoids primarily formed a "flower-like" 

tip-to-tip assembly (Figure 7.3b-d). As the aspect ratio increases, "flower-like" and "chain-like" 

structures with side-to-side arrangement coexist (Figure 7.3d-f). These ellipsoids form 

network-like structures where tip-to-tip triangles form branching points of individual side-by-

side chains. The length of the chains continuously increases, until, at the highest aspect ratios 

(AR>6), the predominant assembly is in the form of chains. 
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Figure 7.4: Shell thickness ℎ as a function of aspect ratio. The shell thickness ℎ is determined 
experimentally by measuring the center-to-center distance for ellipsoids in a side-to-side arrangement 
from optical microscopy images and subtracting the corresponding short-axis measurements obtained 
from SEM images. 

Motivated by the interfacial spreading of the PVP and PVA chains leading to different 

assemblies, the interfacial self-assembly behaviour of the ellipsoidal particles as a function of 

their shell-to-core ratio and aspect ratio was quantified. Experimentally, the shell-to-core ratio, 

h/R0, was varied by stretching colloidal particles with different initial radii (R0=0.55 µm and 

R0=1.65 µm), while maintaining the same PVP shell polymer. The interfacial shell thickness h 

formed by the PVP polymer chains stretched at the liquid interface is quantitatively 

determined by averaging over the distances between ellipsoids in the side-to-side 

configuration. This model assumes that the ellipsoidal particles in this configuration are in shell 

contact, which seems reasonable as capillary forces will tend to bring the particles into the 

closest possible configuration. The thickness of the shell as a function of aspect ratio was also 

measured to confirm that h/R0 remains independent of the aspect ratio (see Figure 7.4). It is 

important to note that the PVP shell thickness in bulk is roughly 40 nm, but once adsorbed to 

the liquid interface, the PVP polymer chains extend to form a micron-sized 2D shell, also 

termed a corona, along the interface as they spread out to reduce surface tension.146 
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Figure 7.5: Self-assembly of core-shell ellipsoids at the air/water interface as a function of shell thickness 
h and aspect ratio AR. a,f,k) Schematic illustration of the core-shell ellipsoids. b-e, g-j,l-m) Microscopy 
images (top) with colour-coded overlay and corresponding Monte Carlo simulations (bottom). Ellipsoids 
in tip-to-tip are colour-coded blue, in side-to-side red, unclassified cyan and ill-defined, removed ellipsoids 
in black. a-e) Ellipsoids with a shell thickness h = 2.2 R0 predominantly assemble in tip-to-tip configuration 
at low and intermediate aspect ratios (b,c) and coexistence of tip-to-tip and side-to-side at higher aspect 
ratio (d,e). f-j) Ellipsoids with a shell thickness h = 1.1 R0 assemble in a tip-to-tip configuration at low aspect 
ratio (g), a mixture of tip-to-tip and side-to-side at intermediate aspect ratio (h) and side-to-side at high 
aspect ratio (i,j). k-m) Ellipsoids without a shell (h = 0) only assemble side-to-side. 

The combined approach reveals that ellipsoids with the higher shell-to-core ratio (h = 

2.2 R0), produced using polystyrene particles with an initial radius R0 = 0.55 µm, predominantly 

assemble in a "flower-like" tip-to-tip structure at low and intermediate aspect ratios, with a 

notable coexistence with a "chain-like" side-to-side structure at high aspect ratios (see Figure 

7.5a-e). A similar pattern is observed for ellipsoids with a lower shell-to-core ratio (h = 1.1 R0), 

where tip-to-tip structures are present at low aspect ratios, coexistence is seen at 

intermediate aspect ratios, and side-to-side configurations dominate at higher aspect ratios 

(see Figure 7.5f-j). However, the transition to side-to-side configurations occurs at lower 

aspect ratios for these ellipsoids. For ellipsoids without a shell (h = 0), essentially only "chain-
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like" side-to-side assemblies are observed experimentally, irrespective of aspect ratio (see 

Figure 7.5k-m).  

 

Figure 7.6: Quantitative analysis of the self-assembly behaviour of core-shell ellipsoids. Probability of 
finding ellipsoids in a tip-to-tip (blue) or side-to-side (red) configuration. For core-shell ellipsoids (a,b), 
we find a continuous transition from a tip-to-tip assembly to a side-to-side assembly with increasing 
aspect ratio. c) Ellipsoids without a shell essentially only assemble into side-to-side configurations. 

To quantify the experimental system we perform statistical analysis (see Section 7.2.3) 

to obtain the probability per particle to be in a chain, triangular, or neither configuration 

(Figure 7.6). Specifically, we see that for a fixed shell thickness increasing the aspect ratio does 

indeed increase the likelihood of chain formation, and by comparing the two shell thicknesses 

(Figure 7.6a with Figure 7.6b) we see that the smaller shell thickness leads to increased 

probability of chain formation. 

7.3.2 Monte Carlo Simulations 

To gain a deeper understanding of the fundamental forces driving the self-assembly of 

core-shell ellipsoids at the liquid interface, we perform Monte Carlo (MC) simulations of core-

shell ellipsoids with aspect ratios and shell thicknesses h corresponding to the experimental 

system, including both steric and capillary interactions between the particles. For simplicity, 

we neglect electrostatic repulsions in our model.  

As discussed earlier, the PVP chains adsorbed to the ellipsoid particle core are 

stretched out more significantly along the liquid interface compared to the bulk. The steric 
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interactions between the core-shell ellipsoids are therefore dominated by the 2D shell formed 

by the interfacial PVP chains rather than the 3D shell formed by the bulk PVP chains. In 

Chapter 6, we studied the self-assembly of core-shell particles at liquid interfaces that were 

subjected to an external compression where it is sometimes energetically favourable for the 

shells of neighbouring particles to locally collapse so that their cores come into contact. In 

contrast, the core-shell particles we are studying here are not subjected to any external 

compression and the steric repulsion between the 2D shells is sufficient to prevent particles 

from coming closer than shell-shell contact, as experimentally evidenced by the formed non-

close-packed patterns (Figure 7.2 and Figure 7.3). In the experiments, it was also observed that 

this shell repulsion occurs at both the sides and the tips of particles and for simplicity, we 

assume that the shell thickness is the same at the sides and the tips. In our MC simulation, we 

therefore treat the core-shell ellipsoids as hard ellipses with long and short axis lengths of 𝑎′ =

𝑎 + ℎ and 𝑏′ = 𝑏 + ℎ respectively, where ℎ is the experimentally measured shell thickness 

which is independent of the aspect ratio AR (see Section 7.2.2.2).  

The capillary interactions between the core-shell ellipsoids come from the quadrupolar 

deformation of the three-phase contact line on the ellipsoid surface due to the constant 

contact angle requirement at the contact line.65 Note that the contact line resides on the PVP 

coated core rather than the boundary of the shell since we assume that the shell is essentially 

a 2D object formed by interfacially adsorbed polymer chains. In addition, it is reasonable to 

assume that the PVP shell renders the core more hydrophilic and we therefore assign a water 

contact angle of the core as 𝜃𝑤 = 40° in our model.137 As discussed in 7.2.2.2, we treat each 

ellipsoid core as a capillary quadrupole in elliptical coordinates.50,52 The advantage of working 

in elliptical coordinates is that it allows us to accurately model the capillary interactions 

between rod-like particles using a small number of capillary multipoles,52 in our case one 

multipole at quadrupolar order.  

 

Figure 7.7: Comparison of elliptical quadrupole model with Surface Evolver simulations for the capillary 
interaction energy as a function of centre-to-centre separation 𝑟12 for ellipsoids with no shells and contact 
angle 𝜃𝑤 = 40° with aspect ratio (a) AR = 2; (b) AR = 3; (c) AR = 4. Note that in all cases we plot −𝑉 in 
the vertical axis. We compare theory (solid lines) to simulations (data points) for ellipsoids in the side-to-
side configuration (red) and tip-to-tip configuration (blue). The red and blue vertical dashed lines 
represent the contact separation for the side-to-side and tip-to-tip configuration respectively while the 
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dashed black line represents the quadrupolar power law. The values of the fitting parameter 𝐻𝑒  used to 
fit theory to simulation for the different AR are given in Table 7.1. 

Aspect Ratio 

AR 

𝐻𝑒 𝐻0 𝑇∗ 

2 0.0205𝑏 0.0506𝑏 7.4 × 10−4 

3 0.0445𝑏 0.0878𝑏 2.1 × 10−4 

4 0.0690𝑏 0.115𝑏 1.0 × 10−4 

Table 7.1: The amplitude of quadrupolar contact line undulations for ellipsoids with 𝜃𝑤 = 40° and 
different aspect ratios AR obtained from fitting the elliptical quadrupole model to the Surface Evolver 
simulation data in Figure 7.7 (𝐻𝑒) and calculated directly from Surface Evolver simulations of isolated 
ellipsoids (𝐻0 = (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛) 2⁄ , where 𝑧𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛  are the maximum and minimum heights 
respectively of the contact line). We also list the normalized temperature 𝑇∗ = 𝑘𝐵𝑇 𝛾𝐻𝑒

2⁄  for the 
ellipsoids assuming 𝑅0 = 0.55𝜇m, 𝑇 = 300K and 𝛾 = 70mN·m-1. 

In Figure 7.7a,b,c, we compare our theoretical model, i.e., equations (7.2)-(7.5), with 

Surface Evolver simulations for the interaction energy as a function of 𝑟12 for ellipsoids with no 

shells and contact angle 𝜃𝑤 = 40°  which have aspect ratios AR = 2,3,4  respectively, see 

Section 7.2.1. Specifically, we compare theory (solid lines) to simulations (data points) for 

ellipsoids in the side-to-side (red) and tip-to-tip configuration (blue). We use 𝐻𝑒  as a fitting 

parameter to fit the theory to the simulation data and the fitted values of 𝐻𝑒 for the different 

AR are given in Table 7.1. We see that the theoretical model captures the key features of the 

numerical data almost quantitatively, including the far-field quadrupolar scaling of 𝑉~ − 1 𝑟12
4⁄  

(dashed black lines) and the near-field deviations from this scaling. In particular, the model 

correctly predicts that the lowest energy configuration for two ellipsoids with no shells is where 

the ellipsoids are in side-to-side contact rather than tip-to-tip contact (note that we plot −𝑉 in 

the vertical axis of Figure 7.7). 

The fitted values of 𝐻𝑒  also agree with the amplitude of contact line undulations 𝐻0 

calculated directly from Surface Evolver simulations of isolated ellipsoids to within a factor of 

around 2, where we define the amplitude to be 𝐻0 = (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛) 2⁄ , i.e., half the difference 

in the maximum height 𝑧𝑚𝑎𝑥 and minimum height 𝑧𝑚𝑖𝑛 of the contact line (see Table 7.1). The 

good agreement between theory and simulations in Figure 7.7 and Table 7.1 confirms that 

modelling the contact line undulations on the ellipsoid cores as elliptical quadrupoles is a good 

approximation. 

The MC simulations were performed at a core area fraction of 𝜂 = 𝜋𝑎𝑏 8𝑎′2⁄  to ensure 

that the system is in the dilute regime (i.e., core-shell ellipsoids on a hexagonal lattice can 

freely rotate about their centres without interfering with each other) like in the experiments. 

The energy scale for capillary interactions is 𝛾𝐻𝑒
2, where 𝛾 is the interfacial tension of the air-

water interface. The importance of capillary interactions relative to the thermal energy is 

characterized by the normalized temperature 𝑇∗ = 𝑘𝐵𝑇 𝛾𝐻𝑒
2⁄ . In Table 7.1, we list the values 
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of 𝑇∗ for ellipsoids with AR = 2,3,4 where we assume that 𝑅0 = 0.55𝜇m, 𝑇 = 300K and 𝛾 =

70mN · m−1, based off of the experimental system. We see that in all cases 𝑇∗ ≪ 1 and that 

𝑇∗ decreases with increasing AR. Since all the experimental ellipsoids have AR > 2.5 and 𝑇∗ 

will be lower for ellipsoids with larger 𝑅0 (since 𝐻𝑒 is proportional to 𝑅0), we conclude that all 

experimental systems we are studying in this Chapter are in the low temperature regime 

where 𝑇∗ ≪ 1. To model the experimental system, we therefore quench the system from a 

high initial temperature to a final temperature of 𝑇∗ = 0.2. The choice of the final 

temperature represents a good compromise between being low enough for the system to be 

in the low temperature regime while still being high enough for the MC simulation to 

equilibrate the system efficiently. 

From Figure 7.5,  we see that the MC simulation accurately reproduces the 

experimentally observed trends, namely that increasing aspect ratio favours the formation of 

"chain-like" side-to-side arrangements, while increasing shell thickness favours "flower-like" 

tip-to-tip configurations. We colour and quantitatively analyse the snapshots as discussed in 

Section 7.2.3. In Figure 7.6, we quantitatively compare the statistical classification of the 

different structures formed in the MC simulations as a function aspect ratio and shell 

thicknesses with their experimental counterparts. The data confirms that the MC simulation 

reproduces the experimentally observed trend that increasing aspect ratio favours the 

formation of "chain-like" side-to-side arrangements, while increasing shell thickness favours 

"flower-like" tip-to-tip formations. 

We note from the snapshots in Figure 7.5 that for each aspect ratio and shell 

thickness, the MC simulations not only reproduce the proportion of side-to-side chains versus 

tip-to-tip triangular lattices but also the local microstructure of the particle clusters and 

networks that are observed experimentally. One feature of the microstructure that is not 

captured so well by the simulations is that the cluster size of side-to-side chains tend to be 

smaller than what is observed experimentally, especially for the higher aspect ratio ellipsoids. 

We attribute this discrepancy to two reasons. Firstly, the interaction potential for side-to-side 

contacts is lower than for tip-to-tip contacts and this energy difference increases with 

increasing aspect ratio so that the relaxation time for side-to-side chains is much longer 

compared to tip-to-tip triangular lattices in the low temperature regime for larger aspect ratio 

ellipsoids. Secondly, the area fraction we use in the simulations roughly scales as ~AR−1 and 

therefore decreases with increasing aspect ratio AR. These factors mean that for the same 

overall simulation length, the higher aspect ratio systems are not as well equilibrated as the 

lower aspect systems, resulting in smaller side-to-side chain lengths and cluster sizes for higher 

aspect ratio systems. However, apart from this discrepancy, the agreement between 
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simulation and experiments for both the statistics and the local microstructure of the self-

assembled structures is remarkable, especially considering the simplicity of our theoretical 

model. The fact that our simulations capture the key features of the experiments suggests that 

the self-assembly of core-shell ellipsoids is primarily driven by a competition between steric 

repulsions from the shell and capillary interactions from the core, while electrostatic 

interactions seem to play a negligible role. 

7.3.3 Minimum Energy Calculations 

To assess the thermodynamics underpinning the observed self-assembled structures, 

we first consider how the interaction potential between core-shell ellipsoids varies with aspect 

ratio and shell thickness. As we increase the aspect ratio of the core-shell ellipsoids, side-to-

side contacts become increasingly more favourable energetically compared to tip-to-tip 

contacts, essentially because the difference in centre-to-centre separation for the two 

configurations increases. This explains why increasing aspect ratio favours the formation of 

side-to-side chains compared to tip-to-tip triangular lattices.  

 

Figure 7.8: Theoretical evaluation of interactions between core-shell ellipsoids at liquid interfaces. a) 
Capillary interaction energy between two bare ellipsoids (i.e., no shell) with aspect ratio 3 as a function 
of centre-to-centre separation 𝑟12 normalized by the length of the short axis of the ellipsoids, 𝑏, for 
ellipsoids oriented side-to-side (red) and tip-to-tip (blue). The solid lines are calculated analytically 
assuming the ellipsoids are elliptical quadrupoles while the points are calculated numerically using 
Surface Evolver. The dashed coloured lines represent the contact distance for each configuration, and 
the black dashed line represents a simple power law 𝑟12

−4. Note that we are plotting −𝑉 in the vertical 
axis. b) Ratio of capillary energies for core-shell ellipsoids in side-to-side vs. tip-to-tip contact as a 
function of shell thickness h calculated from analytical theory assuming the cores are elliptical 
quadrupoles. c) Zero temperature phase diagram for core-shell ellipsoids in the aspect ratio (AR) vs. 
shell to core ratio h/R0 plane. The experimental values of h/R0 are indicated by the blue, white and black 
dashed lines, respectively. d) Minimum energy configurations of side-to-side chains and tip-to-tip 
triangular lattice that are used to compute the phase diagram, where the energy per particle is 
calculated from the interaction between the yellow particle and its neighbouring blue particles. 
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We now focus on the role of shell thickness on the assembly process, using ellipsoidal 

particles with an aspect ratio of 3 as a model. We first note that as we increase the shell 

thickness ℎ, the fractional increase in the centre-to-centre separation 𝑟12 will be greater for 

ellipsoids in side-to-side contact compared to those in tip-to-tip contact. Since the capillary 

interaction between the ellipsoidal cores is to a first approximation an inverse power law in 𝑟12 

(black dotted line in Figure 7.8a), this means that the capillary bond energy (i.e., magnitude of 

the attractive potential at contact) for core-shell ellipsoids in side-to-side contact should drop 

more than those in tip-to-tip contact as we increase shell thickness. This point is confirmed in 

Figure 7.8b where we plot the ratio 𝑉𝑐
𝑆𝑆 𝑉𝑐

𝑇𝑇⁄  as a function of shell thickness ℎ for core-shell 

ellipsoids with aspect ratio AR = 3, where 𝑉𝑐
𝑆𝑆 and 𝑉𝑐

𝑇𝑇 are the capillary bond energies for 

side-to-side and tip-to-tip contacts respectively calculated from the elliptical quadrupole 

model. We see that the capillary bond energy for side-to-side contacts falls relative to that for 

tip-to-tip contacts as we increase ℎ. Despite this decrease, we note that 𝑉𝑐
𝑆𝑆 𝑉𝑐

𝑇𝑇⁄ > 1 for the 

shell thicknesses explored in this Chapter, i.e., the capillary bond energy for side-to-side 

contact is always greater than that for tip-to-tip contact, so that this effect alone is not enough 

to tip the balance in favour of the formation of tip-to-tip structures. 

However, in both the experiments and the simulations, the core-shell ellipsoids with 

large ℎ do not form tip-to-tip chains but "flower-like" tip-to-tip triangular lattices, where the 

number of capillary bonds per particle is greater than in the chain state. Specifically, the 

number of capillary bonds per particle is 1 for side-to-side chains and 5 for tip-to-tip triangular 

lattices, as schematically shown in Figure 7.8d by the interactions between a central particle 

(yellow) and its neighbours (blue). In Figure 7.8c, we quantify the total capillary interactions for 

side-to-side and tip-to-tip arrangements as a function of aspect ratio and shell thickness, taking 

into account both the evolution of 𝑉𝑐
𝑆𝑆 𝑉𝑐

𝑇𝑇⁄  with shell thickness, and the increased number of 

neighbours for triangular tip-to-tip lattices. These calculations are based on the elliptical 

quadrupole model (see Section 7.2.2.2), where the centre-to-centre separation between 

contacting nearest neighbours are given in Section 7.2.3. 

In our calculations, we assume the structures are infinite, i.e., we neglect defects and 

edge effects. We also neglect interactions of the yellow particle with particles beyond the blue 

particles, i.e., we assume an effective cutoff distance of ≈ 𝑎′ = 𝑎 + ℎ for particle interactions; 

this is a good approximation since we are considering quadrupolar interactions which fall off 

rapidly with separation. Finally, we assume that the equilibrium structure for any given 

geometry is the structure with the minimum energy per particle. This assumption is justified 

since the experimental system is in the low temperature regime 𝑇∗ ≪ 1 where entropic effects 
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are negligible. Figure 7.8c shows the resultant zero-temperature phase diagram for core-shell 

ellipsoids in the aspect ratio AR-shell thickness ℎ plane. 

This phase diagram accurately reproduces the trends observed in both experiments and 

simulation. Increasing the aspect ratio favours the formation of side-to-side chains, while 

increasing shell thickness favours the formation of tip-to-tip triangular lattices. In particular, it 

predicts that as we increase shell thickness from ℎ 𝑅0⁄ = 0, via ℎ 𝑅0⁄ = 1.1 to ℎ 𝑅0⁄ = 2.2 

(blue, white and black horizontal lines, respectively), the transition from tip-to-tip triangular 

lattices to side-to-side chains occurs at higher and higher aspect ratios. Note that we do not 

see pure phases but a coexistence of different phases in both the experiments and the 

simulations, indicating that the system is not globally ergodic. However, the fact that the 

equilibrium structures predicted by the zero-temperature phase diagram correlate well with 

the dominant structures seen in both experiments and simulations suggests that the structures 

shown in Figure 7.8d are kinetically accessible, and the experimental core-shell ellipsoid 

system is at least locally ergodic.  

7.4 Conclusions 

We use Monte Carlo simulations to investigate the self-assembly of polymeric ellipsoidal 

particles experimentally fabricated through thermo-mechanical stretching at a liquid interface, 

with a particular focus on the role of soft shells formed from polymeric residues during 

fabrication. When these polymers on the ellipsoid surface adsorb at a liquid interface, they 

spread under the influence of surface tension, forming a 2D shell around the ellipsoid that 

prevents direct contact between neighbouring ellipsoids. We demonstrate that this alteration 

in interfacial structure significantly changes the minimum energy landscape and, consequently, 

the self-assembly behaviour of these ellipsoidal particles. 

Using a combined experimental and simulation approach, we systematically explore the 

resultant self-assembly behaviour and identify two key trends: increasing the aspect ratio of 

the ellipsoids favours their assembly into a "chain-like" side-to-side configuration, while 

increasing the shell thickness promotes "flower-like" tip-to-tip configurations. A phase 

diagram, based on the total capillary interactions as a function of core separation and the 

number of neighbours, reveals a transition in minimum energy structures from side-to-side to 

tip-to-tip configurations with increasing shell thickness and decreasing aspect ratio, 

corroborating both experimental and simulation findings. 

Our results may explain contradictory reports on the self-assembly of elliptical particles by 

accounting for the significant effects of the often-overlooked polymer corona on interactions 
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at a liquid interface. The proposed framework is general and may provide a foundation for the 

predictive self-assembly of anisotropic particles into predetermined, complex arrangements. 

This can be achieved through the rational engineering of polymer coronae as two-dimensional 

spacers separating particles at a liquid interface. 
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 Capillary Assembly of Polygonal Plates with Undulating 
Edges at Flat Fluid Interfaces 

8.1 Introduction 

The aim of this Chapter is to use capillary interactions to create fully programmable two-

dimensional (2D) materials. While the studies we covered in Section 2.3 demonstrate the 

tremendous possibilities for controlling capillary assembly by tuning particle anisotropy, an 

important limitation in these systems is the fact that the position of the three-phase contact 

line is not fixed a priori but is determined indirectly by the constant contact angle condition. 

The indirect link between particle anisotropy and contact line position makes it difficult to gain 

full control over the capillary interactions in these systems. Furthermore, the complex patchy 

particle morphology used by Whitesides and co-workers covered in Section 2.3 is very 

challenging to scale down below the millimetre scale, limiting the system sizes that can be 

produced.62  

In order to overcome these important challenges, in this Chapter, we consider a novel 

particle geometry where our colloidal building blocks are polygonal plates with homogeneous 

surface chemistry and undulating edges. In terms of the aims of our study, this particle 

geometry possesses a number of game-changing advantages. Firstly, as we show later, 

provided the plates are thin enough and the amplitude of the undulations is small enough, the 

three-phase contact line is effectively pinned to the particle edge, giving us direct control over 

the position of contact line undulations and hence capillary interactions in the system. This 

control allows us to introduce selective interactions between polygon sides, favouring specific 

polymorphs over others and thus create 2D structures with much longer-ranged order than 

was possible with previous systems.  

Secondly, since we control capillary interactions through particle shape rather than 

surface chemistry, this considerably simplifies the fabrication of the colloidal building blocks, 

allowing us to increase throughput and reduce particle size. For example, relatively low 

throughput production of the required particle shapes (e.g., ~10s of particles) can be achieved 

using 3D printing,30,31 with sub-micron resolution achievable using two-photon polymerization 

techniques.32,33 Much higher throughput production (>100 particles) can be achieved by 

stamping defined surface textures onto a flat sheet and morphing the resultant flat objects 

into the required 3D shapes, for example through asynchronous swelling.149 

Thirdly, our novel particle geometry above gives us independent control over both 

short-ranged and long-ranged interactions using particle shape alone. Specifically, short-

ranged hard-core repulsions can be controlled by changing the shape of the polygonal plates in 
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the interfacial plane, while longer-ranged capillary interactions can be controlled by changing 

edge undulations normal to the interface. For colloidal polyhedra interacting only through 

hard-core repulsions, Glotzer and co-workers found that changing particle shape allowed them 

to access an incredibly rich variety of self-assembled structures, including crystals, liquid 

crystals, plastic crystals and quasicrystals.150 For our system, where we can use shape to fully 

control the interplay between short-ranged hard-core repulsions (which determine local 

packing) and longer-ranged capillary interactions (which determine directional aggregation), 

the possibilities for self-assembly are even richer.  

To illustrate the immense potential provided by our system for programming self-

assembly, in this Chapter we use both minimum energy calculations and Monte Carlo 

simulations to show how we can engineer the shape of the colloidal building blocks to create a 

variety of 2D structures, including hexagonal, honeycomb, open Kagome and quasi-crystalline 

lattices. Note that the complex structures we create arise from higher order multipole capillary 

interactions. These multipolar interactions would be overwhelmed if gravity-induced capillary 

interactions are present, as the latter are monopolar in nature and therefore have a much 

longer range (see Chapter 2).65,66 In our calculations, we assume that gravitational forces are 

negligible. Our calculations therefore apply to polygonal plates on the micron-scale, which are 

small enough for gravity to be negligible87 and Brownian motion to be significant, but large 

enough for the energy scale for capillary interactions to much greater than thermal energy 

𝑘𝐵𝑇, so that we are in the low temperature regime where minimum energy calculations are 

valid.56,57 However, our calculations are also applicable to larger particles (say on the 

millimetre-scale) if we ‘switch-off’ gravity by density-matching the adsorbed particles with the 

liquid subphase and introduce random motion by using external mechanical vibration.61,151 

The Surface Evolver simulations in this Chapter build on the preliminary work done by Dr 

Scott Morgan in his PhD thesis.152 However, apart from Figure 8.7, which is based on data from 

Dr Morgan’s PhD thesis, all other results in this chapter are original. 
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8.2 Theoretical Methods 

8.2.1 Particle Geometry 

 

Figure 8.1: Definitions of the azimuthal angle 𝜑, the polar angle 𝛼 and the rotation angle 𝛽 for a non-
axisymmetric plate. For the sake of clarity, we show a flat plate with no edge-undulations. Here (𝑥, 𝑦, 𝑧) 
and (𝑥′, 𝑦′, 𝑧′) are the lab frame and particle frame coordinates respectively. 

We consider a system of polygonal plate-like particles adsorbed at a flat fluid-fluid 

interface. We define the lab frame coordinates (𝑥, 𝑦, 𝑧) such that the 𝑧 axis is perpendicular to 

the fluid interface when no particles are adsorbed, and the fluid interface is in the 𝑧 = 0 plane. 

It is also convenient to define particle frame coordinates (𝑥′, 𝑦′, 𝑧′), where the 𝑧′ axis is 

perpendicular to the average plane of the polygonal plate and, depending on the orientation 

of the particle, they are related to the particle frame coordinates (𝑥′, 𝑦′, 𝑧′) via the following 

rotational coordinate transformations 

(
𝑥′
𝑦′

𝑧′

) = (
cos𝛽 sin𝛽 0
−sin𝛽 cos𝛽 0
0 0 1

)(
cos𝛼 0 −sin𝛼
0 1 0

sin𝛼 0 cos𝛼
)(

cos𝜑 sin𝜑 0
−sin𝜑 cos𝜑 0
0 0 1

)(

𝑥 − 𝑥𝑝
𝑦 − 𝑦𝑝
𝑧 − 𝑧𝑝

) (8.1) 

where (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) are the coordinates of the particle centre in the lab frame, and 𝛼, 𝛽, 𝜑 are 

the polar, rotation, and azimuthal angle as defined in Figure 8.1 respectively.  

To describe the geometry of the polygonal plate particles with undulating edges, we use 

the generalised super-ellipsoid equation 
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(
𝑥′ cos𝜓1 + 𝑦′ sin𝜓1 − Δ

𝑎
)

𝜁1

+ (
𝑥′ cos𝜓2 + 𝑦′ sin𝜓2 − Δ

𝑎
)

𝜁1

+ (
𝑥′ cos𝜓3 + 𝑦′ sin𝜓3 − Δ

𝑎
)

𝜁1

+ (
𝑧′ − 𝑧0(𝑟, 𝜃)

𝑏
)

𝜁2

= 1 

(8.2) 

where the exponents 𝜁1, 𝜁2 are even integers that determine the sharpness of the corners for 

the polygon and plate cross section respectively, with higher values leading to sharper corners. 

In our study, we use 𝜁1 = 20 and 𝜁2 = 2, i.e., relatively sharp polygon corners and rounded 

plate cross sections. The undulation of the plate edge is given by the function 

𝑧0(𝑟, 𝜃) = 𝐴𝑟 cos[𝑚(𝜃 − 𝜃0)] (8.3) 

where (𝑟, 𝜃) are circular polar coordinates in the (𝑥′, 𝑦′) plane, 𝐴 is a parameter that 

determines the amplitude of the edge undulations, 𝑚 is the multipole order of the edge 

undulations (with 𝑚 = 2, 3,…, corresponding to quadrupolar, hexapolar etc.) and 𝜃0 controls 

the phase shift between the edge undulations and polygon shape. 

To understand the particle geometry represented by equation (8.2), let us first 

consider a simplified version of the equation where we only include the first term on the left-

hand side, i.e.,  

(
𝑥′ cos𝜓1 + 𝑦′ sin𝜓1 − Δ

𝑎
)

𝜁1

= 1 (8.4) 

Since 𝜁1 is an even integer, equation (8.4) is equivalent to two equations 

𝑥′ cos𝜓1 + 𝑦
′ sin𝜓1 − Δ = ±a (8.5) 

The positive case for equation (8.5) represents a straight line in the 𝑥′ − 𝑦′ plane with 

perpendicular distance 𝑎1 = 𝑎 + Δ from the origin, where the perpendicular line makes an 

angle 𝜓1 to the positive 𝑥′ axis, while the negative case represents a straight line with 

perpendicular distance 𝑎2 = 𝑎 − Δ from the origin, where the perpendicular line makes an 

angle 𝛼1 to the negative 𝑥′ axis, see Figure 8.2a. Note that 𝑎 = (𝑎1 + 𝑎2) 2⁄  and Δ =

(𝑎1 − 𝑎2) 2⁄ . 
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Figure 8.2: (a) Plot of equation (8.5). (b-e) Plots of equation (8.6) to represent (b) a hexagon, (c) a 
truncated triangle, (d) an equilateral triangle and (e) a square, working in units where 𝐿 = 1. 

Generalising the discussion above, we can readily see that the superellipse equation  

(
𝑥′ cos𝜓1 + 𝑦′ sin𝜓1 − Δ

𝑎
)

𝜁1

+ (
𝑥′ cos𝜓2 + 𝑦′ sin𝜓2 − Δ

𝑎
)

𝜁1

+ (
𝑥′ cos𝜓3 + 𝑦′ sin𝜓3 − Δ

𝑎
)

𝜁1

= 1 

(8.6) 

represents a smooth curve which approximates a polygon formed by three pairs of parallel 

lines like those shown in Figure 8.2a, where the orientation for each pair of parallel lines is 

given by 𝜓1, 𝜓2, 𝜓3 respectively. On the other hand, the superellipsoid equation given by 

equation (8.2) represents a smooth surface which approximates the surface of a polygonal 

plate with undulating edges, where 𝑎, 𝑏 represent the average radius and half thickness of the 

plate, Δ allows us to control the distortion of the polygon away from a regular polygon and 

𝑧0(𝑟, 𝜃) given by equation (8.3) is the curve representing the edge undulations of the plate. In 

our study, we consider thin plates where 𝑎 𝑏⁄ ≫ 1.  

To illustrate how equation (8.6) works in practice, let’s consider how we can use it to 

generate the polygonal shapes considered in this Chapter. To obtain the hexagon shown in 

Figure 8.2b, we set 𝜓1 = 𝜋 2⁄ ,𝜓2 = 7𝜋 6⁄ , 𝜓3 = 11𝜋 6⁄ . Since 𝑎1 = 𝑎2 = 𝑎 in this case, we 

have Δ = 0. If we denote the side length of the hexagon as 𝐿, from simple geometry we have 

𝑎 = √3𝐿 2⁄ .  
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In order to obtain the truncated triangle shown in Figure 8.2c, we set 𝜓1 = 𝜋 2⁄ ,𝜓2 =

7𝜋 6⁄ , 𝜓3 = 11𝜋 6⁄  and 𝑎1 > 𝑎2. If we denote the long and short side lengths of the truncated 

triangle as 𝐿 and 𝑆 respectively, from calculating the height of the truncated triangle, we find 

𝑎1 + 𝑎2 = √3(𝐿 + 𝑆) 2⁄  and from calculating the distance between the centre and the corner 

of the truncated triangle, we find 𝑎1
2 + (𝑆 2⁄ )2 = 𝑎2

2 + (𝐿 2⁄ )2. Solving these two 

simultaneous equations, we find Δ = (𝐿 − 𝑆) (4√3)⁄  and 𝑎 = √3(𝐿 + 𝑆) 4⁄ .  

To obtain the equilateral triangle shown in Figure 8.2d, we set 𝜓1 = 𝜋 2⁄ ,𝜓2 =

7𝜋 6⁄ , 𝜓3 = 11𝜋 6⁄ . In this case we have 𝑎1 = 2𝑎2 which gives us Δ = 𝑎2 2⁄ , 𝑎 = 3𝑎2 2⁄ . If we 

denote the side length of the triangle to be 𝐿, from simple geometry we have 𝑎2 = 𝐿 (2√3)⁄  

so that Δ = 𝐿 (4√3)⁄  and 𝑎 = √3𝐿 4⁄ . 

In order to obtain the square shown in Figure 8.2e, we only need two terms on the 

left-hand-side of equation (8.6) and we set 𝜓1 = 0,𝜓2 = 𝜋 2⁄ . Since 𝑎1 = 𝑎2 = 𝑎 in this case, 

we have Δ = 0. If we denote the side length of the square as 𝐿, we have 𝑎 = 𝐿 2⁄ . 

To describe the shape and multipole undulation of the particles used in this paper, we 

have named them H0, H30, H30+, TT, Sq, and Tr. Here the letters refer to the specific in plane 

shape of the particles, I.e., H (Hexagon), TT (truncated triangle), Tr (triangle), and Sq (square) 

as shown in Figure 8.2. For in plane shapes where we use different out of plane undulations, 

i.e., H0, H30, and H30+ we use numbers to refer to the phase of the out of plane undulations 

in degrees with respect to the vertices of the hexagon, i.e., 𝜃0. For example, H0 and H30 refer 

to particles with a hexagonal in-plane shape where the out of plane undulation antinodes 

coincide with the vertices or edges of the hexagon respectively. Additionally, we differentiate 

between our hexapolar H30 particle and our hexapolar plus dodecapolar particle H30+ by 

using an addition sign to note it is a combination of multipoles.   

8.2.2 Surface Evolver 

As discussed in Section 8.1, the focus of our study is on adsorbed particle systems where 

gravity is negligible, e.g., micron-scale particles or larger particles which are density-matched 

with the fluid subphase. In this case, the energy of the system is primarily due to interfacial 

energy and is given by equation (2.5) To highlight the role played by particle shape in 

controlling self-assembly, in this Chapter, we assume 𝜃𝑤 = 90°, i.e., the adsorbed particles are 

neutrally wetting. In fact, the specific value of 𝜃𝑤 is not crucial since the fluid interface is 

pinned to the particle edge for the thin plate geometry we consider in this Chapter (see later). 

For a given configuration of adsorbed particles, the energy of the system, given by equation 

(2.5) is calculated using the finite element software Surface Evolver.74 
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In the Surface Evolver simulation, we work with length and energy units where the 

longest particle side length 𝐿 = 1 and the fluid-fluid interfacial tension 𝛾 = 1 and use a 

variable triangular mesh with edge length between 0.02𝐿 to 0.1𝐿 with quadratic edges to 

capture the shape of the fluid-fluid interface more accurately. When calculating pair capillary 

interactions, we use reflecting boundary conditions at the simulation box edge. Since we are 

considering higher order capillary multipoles whose interactions fall off rapidly with 

separation, finite size effects are less severe, and we can use relatively small simulation box 

sizes. Specifically, we use a simulation box with boundaries at 𝑥 = ±8𝑟0, 𝑦 = ±4𝑟0, the 

interacting particles are at (±2𝑟0, 0) at maximum separation, and at (±4𝑟0, 0) at ‘infinite’ 

separation, where 𝑟0 is the radius of the circle circumscribing the polygonal plates; in the case 

of squares and equilateral triangles, we use 𝑟0 for the square, i.e., the larger circumscribing 

circle.  

When calculating many-body capillary interactions to predict the minimum energy 

configurations we use periodic boundary conditions at the edge of the simulation, with a 

nearest neighbour separation of 𝑑 = 10𝐿 at ‘infinite’ separation. When calculating capillary 

interactions, the smallest surface-to-surface separation we consider is 0.1𝐿 for many-body 

interactions, 0.03𝐿 for pair interactions for binary mixtures of squares and triangles, and 

0.03𝑟0 for all other pair interactions. These separations are small enough to give a good 

approximation to the true contact energy, but large enough to avoid numerical problems in 

our finite element simulations. 

8.2.3 Monte Carlo Simulations 

NVT Metropolis simulations were performed on 400 polygonal plates interacting via 

both hard-core and capillary interactions with periodic boundary conditions (see Section 

8.2.3.1 and 8.2.3.2 respectively). We used a rectangular simulation box with aspect ratio of 

2: √3 starting with particles in a hexagonal lattice with an area fraction of 𝜂 = 0.3. In a MC 

move, particles were either translated or rotated (with equal probability) with adjustable step 

lengths or rotation angles to achieve an acceptance probability of 30% for each type of move. 

To ensure efficient equilibration, for hexagons and truncated triangles, the particles were first 

disordered at a temperature of 𝑇∗ = 100 for 103 attempted moves per particle, then brought 

to the final temperature 𝑇∗ = 0.05 through a slow cool process by successively quenching to 

𝑇∗ = 0.15, 0.12, 0.1, 0.09, 0.08, 0.07, 0.05, with 5 × 105 attempted moves per particle at 

each temperature. For the mixture of squares and equilateral triangles, we used a much 

slower cooling protocol to minimize the number of defects. Specifically, the system was first 

disordered at a temperature of 𝑇∗ = 100 for 103 attempted moves per particle then 

quenched to 𝑇∗ = 0.25. The temperature was then reduced by a factor of 0.95 every 3 × 105 



146 

attempted moves per particle until we reached 𝑇∗ = 0.1. Finally, the temperature was 

reduced by a factor of 0.95 every 105 attempted moves per particle until we reached a final 

temperature of 𝑇∗ = 0.05. For each composition of the squares and triangles, 10 simulation 

runs were carried out to increase the effective sample size from which to identify 

quasicrystalline structures. 

8.2.3.1 Hard-Core Interactions 

Hard-core repulsions were included in our MC simulations geometrically by rejecting 

any MC move that led to an overlap of the hexagonal plates, where the occurrence of overlap 

was determined using the Gilbert-Johnson-Keerthi (GJK) algorithm.153 The GJK algorithm is 

chosen simply for its ease of implementation and logical understanding. On a fundamental 

level, the GJK algorithm checks for collisions by firstly creating a new shape using the 

Minkowski difference. The Minkowski difference is the set of all points from one shape 

subtracted from the other. Computationally this shape is calculated by using opposite and 

counter rotating vectors at the centre of each shape and subtracting the vertices that are 

furthest in that direction. Doing so generates a new set of vertices which are the boundaries 

for the Minkowski difference. Since the Minkowski difference is the set of all points of one 

shape subtracted from the other, if this new shape contains the origin, at least one point on 

each shape must share the same co-ordinates, and therefore a collision has occurred. The rest 

of the GJK algorithm is then a way to efficiently determine whether the Minkowski difference 

contains the origin.  

For equilateral triangles and squares, we do not allow the surface-to-surface distance 

for triangles or squares in side-to-side contact to be less than δ = 0.03𝐿, i.e., we effectively 

add a steric barrier of thickness δ 2⁄  around the triangles and squares when applying the GJK 

algorithm. This procedure ensures that the side-to-side contact distance coincides with the 

grid point with the smallest distance that we calculate in the look-up table for capillary 

interactions, allowing us to capture the side-to-side contact energies between the squares and 

triangles more accurately in the look-up table (see discussion in the Capillary Interaction 

subsection below).  
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8.2.3.2 Capillary Interactions 

 

Figure 8.3: Definition of the azimuthal angles 𝜙1, 𝜙2 of two interacting capillary multipoles relative to 
the centre-to-centre line between the particles for the case of (a) H0 particles and (b) H30 particles. 

The capillary pair interaction between particle 1 and particle 2 for different relative 

orientations of the two particles as a function of their centre-to-centre separation 𝑑 is defined 

as 

𝑉2(𝑑, 𝜙1, 𝜙2) = 𝐸2(𝑑, 𝜙1, 𝜙2) − 𝐸2(∞) (8.7) 

where 𝐸2(𝑑, 𝜙1, 𝜙2), 𝐸2(∞) are the energies of the two-particle system at separation 𝑑 with 

orientation 𝜙1, 𝜙2 and at infinite separation respectively calculated from equation (2.5). 

Following Danov et al.,66 we define 𝜙1 as the angle between the vector going from the centre 

of particle 1 to a positive pole and the vector going from the centre of particle 2 to the centre 

of particle 1, and 𝜙2 to be the angle between the vector going from the centre of particle 2 to 

a positive pole and the vector going from the centre of particle 1 to the centre of particle 2, 

see Figure 8.3. From symmetry, the range of 𝜙1, 𝜙2 is 0° to 120° for H0, H30, H30+, TT and 

equilateral triangles and 0° to 90° for squares.  

In our MC simulations, we modelled the capillary interaction between two polygonal 

plates using a look-up table. Specifically, we first used Surface Evolver to calculate the capillary 

interaction given by equation (8.7) for 𝑑, 𝜙1, 𝜙2 values on a grid. For 𝜙1, 𝜙2, the range is given 

above, and we used an interval of 5° for 𝜙1, 𝜙2. Since we are considering high order capillary 

multipoles whose interactions fall off rapidly with separation, we can use a relatively small cut-

off distance of 𝑑𝑐 = 2𝑑0 for capillary interactions in our simulations, where 𝑑0 is the diameter 

of the circle circumscribing the polygonal plates. For example, for hexapolar interactions, the 

interaction energy at 𝑑 = 𝑑𝑐 is less than 2% of the contact energy, indicating that the 

truncation error associated with our choice of the cut-off distance is negligible. For H0, H30, 

H30+, TT, the range of 𝑑 goes from 𝑑𝑐 down to the smallest value of 𝑑 where the particles do 

not overlap for any given 𝜙1, 𝜙2, and we used an interval of 0.1𝑑0 for 𝑑.  

For equilateral triangles and squares, the range of 𝑑 goes from a surface-to-surface 

distance of 0.03𝐿 (which we define as criteria for side-to-side contact between squares and 

triangles, see Section 8.2.3.1 above), to the cut-off distance 𝑑𝑐 = 2𝑑0, where 𝑑0 is the 



148 

diameter of the circle circumscribing the square, and we calculated the capillary interaction for 

10 evenly spaced values of 𝑑 within this range. Although this discretization procedure means 

that the 𝑑 intervals are different for square-square, triangle-triangle and square-triangle 

interactions, it allows us to capture the side-to-side contact energies between the squares and 

triangles (i.e., the ground state capillary bond energies) more accurately in the look-up table 

since these energies are now exact as they do not involve either interpolation or extrapolation. 

As will be discussed later in Section 8.3.4, it is vital that we capture the ground state contact 

energies between squares and triangles accurately in our MC simulations if we are to obtain 

quasicrystals, since quasicrystals only exist over a very narrow range of relative contact 

energies.  

The above discretization procedure results in between around 4000 to 7000 grid 

points for each particle shape pair. We then used linear interpolation and (for 𝑑 values very 

close to contact) linear extrapolation to calculate the capillary interactions for 𝑑, 𝜙1, 𝜙2 values 

off-grid. 

 

Figure 8.4: Comparison between equation (2.15) (red curves) and the look-up table (blue curves and 
points) for the capillary pair interaction between H0 particles for (a) 𝑑 = 𝑑𝑐, 𝜙1 = 0° and variable 𝜙2 
and (b) 𝑑 = 𝑑𝑐, 𝜙1 = 30° and variable 𝜙2. The value of 𝐻𝑐  in equation (2.15) is set to 𝐻𝑐 = 0.0237𝐿. 

Note that analytical formulas for capillary interactions between capillary multipoles of 

arbitrary order we covered in Section 2.4 are only valid in the far-field regime. To illustrate the 

limitation of the analytical formulas, we compare the results of our look-up table for H0 with 

the analytical formula for two capillary hexapoles which is given by equation (2.15) where 𝐻𝑐 is 

the amplitude of the interfacial deformation around each hexagon at the radial coordinate 

𝑟𝑐 = 𝑅, and we set 𝑅 = 1.1𝑟0, where 𝑟0 is the radius of the circle circumscribing the polygon. 

Specifically, using 𝐻 as a fitting parameter, we first fitted equation (2.15) to the look-up table 

data for 𝑑 = 𝑑𝑐, 𝜙1 = 0° and variable 𝜙2 in order to obtain the effective value of 𝐻𝑐 for H0. 

The result of this fitting is shown in Figure 8.4a. Using the same value for 𝐻𝑐, we then 

compared equation (2.15) with our look-up table for the interaction potential as a function of 
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𝜙2 for 𝑑 = 𝑑𝑐, 𝜙1 = 30° (Figure 8.4b). We see that in this far-field regime, there is excellent 

agreement between equation (8.7) and the look-up table in Figure 8.4a and Figure 8.4b, 

providing independent confirmation that our look-up table has been calculated correctly.  

 

Figure 8.5: (a-e) Comparison between equation (2.15) (red curves) and the look-up table (blue curves 
and points) for the capillary pair interaction between H0 particles as a function particle separation 𝑑 for 
different relative orientations of the interacting particles. The value of 𝐻𝑐  in equation (2.15) is set to 
𝐻𝑐 = 0.0237𝐿. 

In Figure 8.5, we compare equation (2.15) with our look-up table for the interaction 

potential as a function of 𝑑 for different relative orientations of the two particles that equation 

(2.15) predicts should lead to attraction (Figure 8.5a,c) repulsion (Figure 8.5b,d) or zero 

interactions (Figure 8.5e). We see that while there is excellent agreement between the two 

results in the far field regime 𝑑 ≥ 3𝐿, quantitative and sometimes even qualitative 

discrepancies between the two appear in the near-field. This is not surprising since the 

analytical formula of Danov et al. is a far-field formula that is only valid for 𝑑 ≳ 1.5𝑑0. Since 

capillary assembly is dominated by the near-field interactions, we therefore model capillary 

interactions in our MC simulations using a look-up table instead of the analytical formulas 

covered in Section 2.4.  
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8.2.4 Structural Analysis of Quasicrystals 

To quantify if the binary mixture of squares and triangles do indeed for 12-fold 

quasicrystalline structures, we analyse the largest cluster by calculating the 𝑚-fold bond 

orientational order. To determine the largest cluster in the binary mixture of squares and 

triangles, we first connect all particles and their nearest neighbours into a tree data structure, 

where we define nearest neighbours as particles whose centre-to-centre separation is less 

than 1.2 times the minimum separation between the particles (i.e., when they are in side-to-

side contact). We then use a depth first search (DFS) algorithm to group particles and their 

nearest neighbours into clusters and analyse the structure of the cluster containing the most 

particles. Specifically, we calculate the 𝑚-fold bond orientational order parameter of the 

largest cluster using  

𝜒𝑚 = |
1

𝑁
∑

1

𝑁𝑗
∑𝑒𝑖𝑚𝜃𝑗𝑘

𝑁𝑗

𝑘=1

𝑁

𝑗=1

| (8.8) 

where 𝜃𝑗𝑘 is the angle between the bond vector from the 𝑗th particle to its 𝑘th nearest 

neighbour and the positive 𝑥-axis, 𝑁𝑗  is the number of nearest neighbors for the 𝑗th particle 

and 𝑁 is number of particles in the cluster. We also calculate the structure factor of the cluster 

using  

𝑆(𝒒) =
1

𝑁
|∑𝑒−𝑖𝒒⋅𝒓𝑗
𝑁

𝑗=1

|

2

 (8.9) 

where 𝒒 = (𝑞𝑥, 𝑞𝑦) = (
2𝑛𝜋

𝐿𝑥
,
2𝑚𝜋

𝐿𝑦
) is the scattering wave vector in the 𝑥-𝑦 plane, 𝑛,𝑚 =

0,±1,±2,⋯, 𝐿𝑥, 𝐿𝑦 are the simulation box lengths in the 𝑥 and 𝑦 direction respectively, and 

𝒓𝑗 is the vector position of the 𝑗th particle. 
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8.3 Results and Discussion 

8.3.1 Hexagons – Isolated Particles  

 

Figure 8.6: (a,b) Top view of particle geometry and contour plot of the liquid interface height 
(normalized to the hexagon side length 𝐿) around (a) H0 and (b) H30 hexagonal plates adsorbed at a 
liquid interface. The positive and negative signs denote the position of the positive and negative 
antinodes of the particle edge undulations respectively. (c,d) Side view of the system for (c) H0 and (d) 
H30 hexagonal plates. 

The first particle shape we consider is that of a thin hexagonal plate with hexapolar 

edge undulations. The shape parameters we use in equations (8.2) and (8.3) for this shape are 

𝜓1 = 𝜋 2⁄ , 𝜓2 = 7𝜋 6⁄ , 𝜓3 = 11𝜋 6⁄ , Δ = 0, 𝑎 𝑏⁄ = 10, 𝑚 = 3 and we work with length units 

where the side length of the hexagon 𝐿 = 1 so that 𝑎 = √3 2⁄ . We consider two types of 

hexagonal plates, H0 where the maximum displacement of the undulations coincides with the 

corners of the hexagon (i.e., 𝜃0 = 0 in equation (8.3), see Figure 8.6a,c), and H30 where the 

maximum displacement coincides with the middle of the hexagonal side (i.e., 𝜃0 = 𝜋 6⁄  in 

equation (8.3), see Figure 8.6b,d). As we shall see later, the subtle change in the phase angle 

between edge undulations and the hexagonal shape for these two types of particles leads to 

dramatic changes in their self-assembly behaviour.  
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Figure 8.7: Interfacial energy for H0 particles as a function of the angles 𝛼 and 𝛽, with the energy 
minimized with respect to the height of the particle 𝑧𝑝 for each particle orientation. The interfacial 

energy is normalized with respect to 𝛾ℓ2, where ℓ = √3𝐿 2⁄  and 𝐿 is the side length of the hexagon. 

We first consider the properties of isolated adsorbed particles. In general, we require 

six variables to fully specify the position and orientation of a non-axisymmetric plate,56,57 

namely the centre of mass coordinates  𝑥𝑝, 𝑦𝑝, 𝑧𝑝 of the plate in the lab frame, the azimuthal 

angle 𝜑 of the plate about the interface normal (i.e., 𝑧 axis), the polar angle 𝛼 between the 

plate normal and the interface normal and the rotation angle 𝛽 of the plate about its normal 

(i.e., 𝑧′  axis), see Figure 8.1. However, for an isolated adsorbed particle, the energy depends 

only on 𝑧𝑝, 𝛼 and 𝛽. In Figure 8.7, we plot the energy of a H0 particle as a function of 𝛼 and 𝛽, 

with the energy minimized with respect to 𝑧𝑝 for each particle orientation. We see that the 

equilibrium orientation of the hexagonal plate is 𝛼 = 0° (where 𝛽 becomes irrelevant). This 

result is in good agreement with our previous results for adsorbed cylindrical particles, where 

in the limit of thin cylindrical plates, the plate normal is perpendicular to the interface.53 The 

result is also in good agreement with the results of Whitesides and coworkers covered in 

Section 2.3 for patchy hexagonal plates,151 where plates with centrosymmetric arrangements 

for their patchy edges have plate normals that are perpendicular to the liquid interface. Since 

all the polygonal particles we consider in this study are thin and have centrosymmetric edge 

undulations, in what follows we set 𝛼 = 𝛽 = 0° in our calculations 

Next, we consider the degree to which the edge undulations of the particles control 

the deformation of the liquid meniscus around the particle. In Figure 8.6a,b we plot the top 

view of the particle and the height of the liquid meniscus around H0 and H30 respectively for 

edge undulations with amplitude parameter 𝐴 = 0.1𝐿 in equation (8.3); we use positive and 

negative signs to denote the positive and negative antinodes of the undulations in each case.  
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Figure 8.8: (a) The cross-section of an adsorbed H30 particle along the direction 𝜃 = 30° (see inset) for 
different values of 𝐴 𝐿⁄  shown in the top legend. The solid and dashed lines represent the cross sections 
of the solid and liquid interfaces respectively, and the filled circles denote the plate edge with height 𝑧0. 
(b) Deviation of the height of the contact line (𝑧𝑐) from the height of the plate edge (𝑧0), normalized 
with respect to the plate thickness 2𝑏, as a function of 𝐴. 

To study the pinning of the three-phase contact line to the polygonal plate edge in 

more detail, in Figure 8.8a we plot the cross-section of an adsorbed H30 particle along the 

direction where the polar angle 𝜃 = 30° (i.e., cutting through the middle of the hexagon side) 

as a function of 𝐴. We see that, the deviation of the contact line from the plate edge (which 

has height 𝑧0(𝑟, 𝜃) given by equation (8.3)) is small for small 𝐴. Specifically, from Figure 8.8b, 

the deviation is ≲ 10% of the plate thickness for 𝐴 ≤ 0.1𝐿. In this Chapter, we therefore set 

𝐴 = 0.1𝐿 for all our particles unless otherwise stated. Essentially, for 𝐴 = 0.1𝐿 we see that the 

liquid meniscus follows closely the deformation of the particle edge, and therefore the three-

phase contact line is effectively pinned to the plate edge. In the rest of the Chapter, we 

therefore simplify our Surface Evolver calculations by eliminating the particle surface and set 

the 𝑧′ coordinate of the contact line to satisfy equation (8.3), and the (𝑥′, 𝑦′) coordinates of 

the contact line to satisfy equation (8.2) but without the term containing 𝑧′ on the left-hand 

side. 

8.3.2 Hexagons – Many Particles 

Having established the equilibrium properties for isolated particles, we now study the 

pair interaction and self-assembly of many particles. Note that when calculating the energy of 

two- or many-particle systems, we fix 𝑧𝑝, 𝛼 and 𝛽 for each particle to their isolated-particle 

values since previous studies have shown that the height and polar orientation of adsorbed 

configuration of a system consisting of 𝑁 polygonal plates is specified by the set of variables 
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{𝑥𝑝𝑖, 𝑦𝑝𝑖 , 𝜑𝑖} with 𝑖 = 1,… ,𝑁, where 𝑥𝑝𝑖, 𝑦𝑝𝑖  are the 𝑥, 𝑦 centre of mass coordinates of the 𝑖-

th plate and 𝜑𝑖  is the azimuthal angle of the 𝑖-th plate (see Figure 8.1).  

 

 

Figure 8.9: (a,b) Attractive (top) and repulsive (bottom) capillary pair interactions as a function of 
centre-to-centre separation for different relative orientations of interacting particles for (a) H0 and (b) 
H30 particles. The solid and dotted vertical lines denote the separation for side-to-side and corner-to-
corner contact of the hexagons respectively. (c,d) The crystal structures we consider for (c) H0 and (d) 
H30. For each crystal structure, we show the lattice vectors 𝒂, 𝒃, the nearest neighbour separation 𝑑, 
and the unit cell used in the Surface Evolver calculations, where sides of the unit cell with the same 
colour have the same interface height. The yellow and purple spots in (a-d) denote positive and negative 
capillary poles respectively. (e,f) Plot of 𝜂𝑣∞ vs. 𝜂 for the different crystals structures shown in (c) and 
(d), where 𝜂 is the area fraction and 𝑣∞ is the many-body capillary interaction per particle given by 
equation (8.10). The data points are numerical results calculated from Surface Evolver and the solid lines 
are the fits to the numerical data using the form 𝐵𝜂𝐶, where the fitting parameters 𝐵, 𝐶 for each crystal 
phase are given in Table 8.1. The vertical dashed lines are the highest area fraction for each crystal 
phase and the black solid and dashed lines are the equilibrium lever rule lines. 

Shape Crystal B C 

H0 Hex 

 

-0.0522 2.97  

Rec 

 

-0.0643  3.32 

Hon 

 

-0.134 3.63 

H30 Kag 

 

-0.0499 3.56 

Rec 

 

-0.0511 3.40 

Hon 

 

-0.0683  3.33 

Table 8.1: Fitting parameters for the lever rule line plots shown in Figure 8.9e,f. Hex = hexagonal lattice, 
Rec = rectangular lattice, Hon = honeycomb lattice, Kag = Kagome lattice. 
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In Figure 8.9a,b, we show the capillary interaction for H0 and H30 respectively for 

different relative azimuthal orientations of the interacting particles. Note that the yellow and 

purple spots in Figure 8.9 indicate positive and negative interfacial deformations (or capillary 

poles) respectively. We see that particles attract each other when capillary poles of the same 

sign overlap (Figure 8.9a,b top), and they repel each other when capillary poles of opposite 

sign overlap (Figure 8.9a,b bottom). Specifically, following the terminology used by Soligno et 

al.,56,57 there are two types of particle orientations that are attractive: (i) dipole-dipole 

attraction, where one set of two capillary poles from one plate (one positive, one negative) 

overlap with the same set of two capillary poles from the other plate (red curves); (ii) tripole-

tripole attraction, where one set of three capillary poles from one plate (positive-negative-

positive or negative-positive-negative) overlap with the same set of three capillary poles from 

the other plate (blue curves). From Figure 8.9a,b, we see that for both H0 and H30, the 

interaction energy at the same particle separation is essentially the same for dipole-dipole and 

tripole-tripole attractions. For a given particle type, the minimum interaction energy is 

therefore given by the relative orientation that allows the two particles to come closest to 

each other, i.e., where the hexagons are in side-to-side contact. Since the orientation of the 

capillary hexapole relative to the hexagonal shape is different for H0 and H30, the lowest 

energy (i.e., strongest) capillary bond is the dipole-dipole bond for H0 (red curve in Figure 8.9a 

top) but the tripole-tripole bond for H30 (blue curve in Figure 8.9b top).  

The apparently subtle difference between H0 and H30 in the nature of their ground 

state capillary bonds have profound consequences for their self-assembly as we shall now 

discuss. When H0 or H30 are bonded to six nearest-neighbours via dipole-dipole bonds, they 

form a hexagonal lattice (Hex), specifically a hexagonal close-packed lattice for H0 (i.e., 

hexagons in edge to edge contact Figure 8.9c top left) and a Kagome lattice (Kag) for H30 (i.e., 

hexagons in vertex to vertex contact Figure 8.9d top left). On the other hand, when these 

particles are bonded to two opposite nearest-neighbours via dipole-dipole bonds and two 

other nearest-neighbours via tripole-tripole bonds, they form a rectangular lattice (Rec, Figure 

8.9c,d top right). Finally, when these particles are bonded to three nearest-neighbours via 

tripole-tripole bonds, they form a honeycomb lattice (Hon, Figure 8.9c,d bottom). Note that 

there are two versions of the honeycomb phase, namely where the primary overlapping 

capillary pole is positive (Hon+, Figure 8.9c,d bottom left) or negative (Hon-, Figure 8.9c,d 

bottom right). For the neutrally wetting particles we are considering in this Chapter (𝜃𝑤 =

90°), Hon+ and Hon- are degenerate in energy. Note also the honeycomb phase is not an 

incomplete hexagonal phase because the holes in the honeycomb lattice are surrounded by 
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capillary poles of the same sign (either negative for Hon+ or positive for Hon-), so that it is 

energetically unfavourable to insert hexapolar particles to fill these holes.56,57 

Since the ground state capillary bond is the dipole-dipole bond for H0 and the tripole-

tripole bond for H30, we anticipate that in the low temperature regime that we are 

considering in this Chapter, the equilibrium phase is the hexagonal close-packed structure for 

H0 but the honeycomb structure for H30. In order to check this prediction, we calculate the 

equilibrium state of the two particle shapes by plotting 𝜂𝑣∞ vs. 𝜂 for the different phases 

discussed above for H0 (Figure 8.9e) and H30 (Figure 8.9f), where 𝜂 is the area fraction of the 

hexagonal plates and 𝑣∞ is the many-body capillary interaction per particle for a given phase 

which is defined by 

𝑣∞(𝑑) = 𝜀∞(𝑑) − 𝜀∞(∞) (8.10) 

Here 𝑑 is the separation between nearest neighbours (shown in Figure 8.9c,d for the different 

phases) and 𝜀∞(𝑑), 𝜀∞(∞) is the energy per particle in a given phase at separation 𝑑 and at 

infinite separation respectively. These energies are obtained by using Surface Evolver to 

calculate the energy of a unit cell (shown in Figure 8.9c,d for the different phases) and applying 

periodic boundary conditions to the sides of the unit cell as indicated in Figure 8.9c,d.  

For H0 we consider 3 different periodic lattice geometries. The hexagonal close-packed 

lattice (Hex), the unit cell is a hexagon with vertex coordinates (0, 𝑑 √3⁄ ), (𝑑 2⁄ , 𝑑 2√3⁄ ), 

(𝑑 2⁄ ,−𝑑 2√3⁄ ), (0,−𝑑 √3⁄ ), (−𝑑 2⁄ ,−𝑑 2√3⁄ ) and (−𝑑 2⁄ , 𝑑 2√3⁄ ); the unit cell 

contains one particle with configuration (0,0, 𝜋 6⁄ ). The rectangular lattice (Rec), the unit cell 

is a rectangle with vertex coordinates (0,0), (0, 4𝑑 √3⁄ ), (𝑑, 4𝑑 √3⁄ ) and (𝑑, 0); the unit cell 

contains two particles with configurations (𝑑 2⁄ , 𝑑 √3⁄ , 𝜋 6⁄ ) and (𝑑 2⁄ , 3𝑑 √3⁄ , 7𝜋 6⁄ ). The  

honeycomb lattice (Hon), the unit cell is a rhombus with vertex coordinates (0,0), 

(√3𝑑 2⁄ , 3𝑑 2⁄ ), (3√3𝑑 2⁄ , 3𝑑 2⁄ ) and (√3𝑑, 0); the unit cell contains two particles with 

configurations (√3𝑑 2⁄ , 𝑑 2⁄ , 𝜋 6⁄ ) and (√3𝑑, 𝑑, 7𝜋 6⁄ ). 

For H30 we also consider 3 different periodic lattice geometries. The Kagome lattice 

(Kag), the unit cell is a hexagon with vertex coordinates (0, 𝑑 √3⁄ ), (𝑑 2⁄ , 𝑑 2√3⁄ ), 

(𝑑 2⁄ ,−𝑑 2√3⁄ ), (0,−𝑑 √3⁄ ), (−𝑑 2⁄ ,−𝑑 2√3⁄ ) and (−𝑑 2⁄ , 𝑑 2√3⁄ ); the unit cell 

contains one particle with configuration (0,0,0). The rectangular lattice (Rec), the unit cell is a 

rectangle with vertex coordinates (0,0), (0,2𝑑), (2𝑑 √3⁄ , 2𝑑), (2𝑑 √3⁄ , 0); the unit cell 

contains two particles with configurations (𝑑 √3⁄ , 𝑑 2⁄ , 0) and (𝑑 √3⁄ , 3𝑑 2⁄ , 𝜋). The 

honeycomb lattice (Hon), the unit cell is a rhombus with vertex coordinates 
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(0,0), (√3𝑑 2⁄ , 3𝑑 2⁄ ), (3√3𝑑 2⁄ , 3𝑑 2⁄ ), (√3𝑑, 0); the unit cell contains two particles with 

configurations (√3𝑑 2⁄ , 𝑑 2⁄ , 0) and (√3𝑑, 𝑑, 𝜋). 
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Table 8.2: The lattice vectors 𝒂, 𝒃 and the area fraction 𝜂 as a function of the nearest neighbor 
separation 𝑑, the nearest neighbor separation at contact 𝑑𝑐  and the area fraction at contact 𝜂𝑐 for the 
crystals structures shown in Figure 8.9c, Figure 8.9d for H0, H30 respectively. For H0, H30, 𝐿 is the side 
length of the hexagon. Hex = hexagonal lattice, Rec = rectangular lattice, Hon = honeycomb lattice, Kag = 
Kagome lattice. 

Note that the Hex and Kag phases contain one particle per unit cell, while the Rec and 

Hon phases contain two particles per unit cell, with one of the particles rotated azimuthally by 

180° relative to the other. Note also that since Hon+ and Hon- are degenerate, we only plot a 

single curve for the honeycomb phase in Figure 8.9e,f. In addition, the maximum area fraction 

for each phase 𝜂𝑐  (i.e., when nearest neighbours are in contact 𝑑 = 𝑑𝑐) is represented by 

vertical dashed lines in Figure 8.9e,f. The exact values of the lattice vectors, area fraction 𝜂, 

contact separation 𝑑𝑐 and maximum area fraction 𝜂𝑐 are given in Table 8.2 for all crystal 

structures considered. 

In fact, since the total number of particles in the system are conserved, when the 

system crystalises we effectively have two phase co-existence between a close packed crystal 

and vacuum. The total energy per unit area of such a two-phase system is therefore a 

weighted average of the energy per unit area of the vacuum phase and the crystal phase, 

where the contribution of each phase to the average is weighted by the fraction of the total 

area occupied by each phase. A simple graphical method for calculating this weighted average 

is called the lever rule.154 Specifically, since Figure 8.9e,f are essentially plots of energy per unit 

area versus density, the lever rule says that the energy per unit area for a specific crystal 

structure at a given area fraction can be calculated by joining the point corresponding to the 

empty phase 𝜂 = 0 and the highest density state of that crystal 𝜂 = 𝜂𝑐 with a straight line; and 

evaluating the straight line at the original area fraction.56,57 The equilibrium state of the system 
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for any given value of 𝜂 is then given by the lowest lever rule line at that value of 𝜂, and these 

lines are denoted by black solid or dashed lines in Figure 8.9e,f. From the lever rule analysis of 

Figure 8.9e, we see that (for small enough 𝜂) the equilibrium state for H0 is where the empty 

phase coexists with the hexagonal close-packed structure, while from Figure 8.9f, the 

equilibrium state for H30 is where the empty phase coexists with the honeycomb structure. 

These results confirm our earlier prediction that the ground state crystal structure for H0 and 

H30 are the hexagonal close-packed structure and the honeycomb structure respectively. 

Thus, by a subtle change in the orientation of the capillary hexapole relative to the hexagonal 

shape, we have changed the equilibrium crystal structure of the hexagonal plates dramatically.  

Shapes 𝑼𝟎/𝜸𝑳
𝟐 

H0-H0 

 

0.0248 

H30-H30 

 

0.0179 

H30+-H30+ 

 

0.0195 

TT-TT (𝐿 𝑆⁄ = 2) 

 

0.0078 

Square-Square 

 

0.0402 

Table 8.3: Ground state capillary bond energies between different particle shape pairs. 

To check whether the ground state crystal structures for H0 and H30 are accessible 

kinetically, we performed finite temperature Monte Carlo (MC) simulations for these particle 

shapes, including both hard-core and capillary interactions between the particles in our 

simulations. The MC simulations were performed at an area fraction of 𝜂 = 0.3. This area 

fraction was chosen since it is low enough for the system to be in the dilute regime (i.e., 

polygons on a hexagonal lattice can freely rotate about their centres without interfering with 

each other) but high enough for extended structures to be formed in reasonable simulation 

time. In Supplementary Information, we show that for particles on the micron-scale or larger, 

the system is in the low temperature regime 𝑇∗ = 𝑘𝐵𝑇 𝑈0⁄ ≪ 1, where 𝑘𝐵𝑇 is the thermal 

energy and 𝑈0 is the energy of the ground state capillary bond; values for 𝑈0 for the different 

particle shape pairs are given in Table 8.3. We see that the smallest value of 𝑈0 𝛾𝐿2⁄  above is 

0.0078 for the case of TT-TT interactions. For micron-scale particles at an air-water interface 

(i.e., 𝐿 ≈ 10−6 m, 𝛾 = 70 × 10−3 N ∙ m−1), this translates to 𝑈0 ≈ 10
5 𝑘𝐵𝑇, confirming that 

particles on the micron-scale or larger are in the low temperature regime 𝑇∗ = 𝑘𝐵𝑇 𝑈0⁄ ≪ 1.  

 For larger than micron-scale particles whose random motion is induced by external 

mechanical vibrations rather than thermal energy, motivated by the equipartition theorem, we 
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can define an effective temperature for the system 𝑇eff from the relation 𝑘𝐵𝑇eff ≈ 𝛾〈𝑢
2〉, 

where 𝛾 is the interfacial tension and 〈𝑢2〉 is the mean-squared vertical displacement of the 

fluid-fluid interface relative to its equilibrium height.155 The low temperature regime in this 

case therefore corresponds to the condition 𝑇∗ = 𝛾〈𝑢2〉 𝑈0⁄ ≪ 1. To ensure efficient 

equilibration of the system in our MC simulation, the system is slowly cooled from a high initial 

temperature to a final normalised temperature of 𝑇∗ = 0.05 (see Section 8.2.3). The choice of 

the final temperature represents a good compromise between being low enough for the 

system to be in the low temperature regime while still being high enough for the MC 

simulation to equilibrate the system efficiently.  

In our simulations, we assume that the capillary interactions are pair-wise additive and 

quasistatic. We therefore model capillary interactions by calculating 𝑉2 given by equation (8.7) 

for 𝑑, 𝜙1, 𝜙2 values on a grid and use this data to generate a look-up table. Note that the 

quasistatic approximation is accurate for 𝑇∗ ≪ 1, as evidenced by the fact that it is possible to 

accurately model the trajectory of micron-sized particles moving under the action of capillary 

forces by using this approximation.17,50 Note also that 𝑉2 represents the capillary interaction at 

zero temperature. At finite temperature, thermal fluctuations of the liquid interface induce 

additional interactions due to the Casimir effect.156–158 However, since such thermal Casimir 

interactions are proportional to 𝑘𝐵𝑇,156,157 we can safely neglect them in the low temperature 

regime 𝑘𝐵𝑇 ≪ 𝑈0 that are we considering here.  

 

Figure 8.10: (a-c) Final snapshots for Monte Carlo simulations of (a) H0, (b) H30 and (c) H30+ particles. In 
(b), we highlight small domains of Kagome (red) and Rectangular (black) structures and in the inset we 
show the linear structures that poison the formation of extended honeycombs. In the inset of (c), we 
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confirm that the honeycomb structures are Hon+. (d) Two options for adding a third H30 particle to an 
existing dimer of H30 particles. (e) Superposition of hexapole and dodecapole edge undulations to 
create H30+. (f) Top view of the particle geometry and contour plot of the liquid interface height 
(normalized to the hexagon side length 𝐿) around H30+. (g,h) The negative and positive tripole-tripole 
interaction potentials as a function of particle separation for (g) H30 and (h) H30+. The solid vertical 
lines denote the separation for side-to-side contact of the hexagons. The yellow and purple spots in (g,h) 
denote positive and negative capillary poles respectively. 

In Figure 8.10a and Figure 8.10b, we show the final snapshots from our MC simulations 

for H0 and H30 respectively. We see that H0 forms hexagonal close packed structures, in good 

agreement with the thermodynamic analysis in Figure 8.9e. However, rather surprisingly, H30 

forms a mixture of different structures, with only small domains of honeycomb order, even 

though the latter is predicted by Figure 8.9f to be the ground state structure. One reason for 

this surprising result is the fact that from Figure 8.9f, H30 has several competing metastable 

structures which are very close in energy to the honeycomb structure, i.e., the lever rule lines 

for the rectangular (Rec) and Kagome (Kag) structures in Figure 8.9f are very close to the 

ground state lever rule line. Indeed, as highlighted in Figure 8.10b, we do see small domains of 

Rec and Kag structures in the final snapshot.  

However, the absence of extended honeycomb structures in Figure 8.10b also arises 

from a deeper kinetic problem where the formation of the two degenerate honeycomb phases 

Hon+ and Hon- are antagonistic to each other. This point is illustrated in Figure 8.10d (Figure 

8.10c will be discussed later in this section). Consider a dimer consisting of two H30 particles 

which are attached to each other via a positive tripole-tripole bond. When a third H30 particle 

is introduced, this particle can either attach itself to the dimer via a tripole-tripole bond of the 

same sign to form a bent trimer which is compatible with the subsequent formation of a 

honeycomb structure (in this case Hon+), or it can attach itself to the dimer via a tripole-tripole 

bond of the opposite sign to form a linear trimer which blocks the further formation of the 

honeycomb structure. However, since positive and negative tripole-tripole bonds are 

degenerate in energy, both pathways are equally likely. This means that as successive H30 

particles are added to a growing cluster, the probability that all particles in the cluster are 

bonded to each other via tripole-tripole bonds of the same sign becomes vanishingly small. 

Thus, although Hon+ and Hon- are the thermodynamic ground states for H30, neither 

structure is accessible kinetically. The prevalence of the linear structures discussed above in 

Figure 8.10b (see for example the inset), confirms that the self-assembly process is indeed 

‘poisoned’ by the bottom pathway in Figure 8.10d, preventing H30 from forming extended 

honeycomb structures.  

To overcome this problem, we can make one set of alternate sides in H30 more ‘sticky’ 

than the other by adding a 𝑚 = 6 multipole (dodecapole) to the contact line undulations of 
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the hexapolar particle. This is illustrated in Figure 8.10e, where the dodecapole is oriented 

such that, it reinforces the positive poles and suppresses the negative poles of the hexapole. 

Specifically, we modify the edge undulation given by including both 𝑚 = 3 and 𝑚 = 6 

multipoles in equation (8.3), with 𝐴3, 𝐴6 = 0.05𝐿 and 𝜃03, 𝜃06 = 𝜋 6⁄ , where 𝐴𝑚, 𝜃0𝑚 are the 

amplitude and phase angle of the 𝑚th multipole, and we call this particle shape H30+. In 

Figure 8.10f, we plot the height of the liquid meniscus around an isolated H30+ particle and we 

see that the addition of the 𝑚 = 6 multipole amplifies the magnitude and range of the positive 

deformations of the liquid interface and suppresses the same for the negative deformations. In 

Figure 8.10g and 3h, we plot the positive and negative tripole-tripole interaction potential as a 

function of particle separation for H30 and H30+ respectively. We see that adding the 𝑚 = 6 

multipole indeed makes the positive tripole-tripole bonds much stronger than the negative 

tripole-tripole bonds for H30+. These results suggest that adding the 𝑚 = 6 multipole breaks 

the degeneracy between Hon+ and Hon-, causing Hon+ to be the thermodynamic ground state 

for H30+. 

The fact that the Hon+ structure is the kinetically accessible ground state structure for 

H30+ is confirmed in Figure 8.10c where we show the final snapshots from MC simulations for 

H30+. We see that, in contrast to H30, the H30+ particles are able to self-assemble into 

extended honeycomb structures, and the inset confirms that the honeycomb structures are 

Hon+ rather than Hon-. The good agreement in the ground state crystal structure between the 

Surface Evolver calculations in Figure 8.9 (which include all many-body interactions through 

the periodic boundary conditions) and the Monte Carlo simulations in Figure 8.10 (which 

include two-body interactions only) suggests that many-body interactions are negligible in this 

system. This fact is not surprising since the capillary interactions between high order 

multipoles are very short-ranged, and we therefore expect two-body interactions to be 

dominant over many-body interactions in this case.  

8.3.3 Truncated Triangles 

In the previous section, we saw that the Kagome lattice in Figure 8.9d (top left) is a 

metastable crystal structure for H30. However, we can also form a Kagome lattice using 

equilateral triangular plates instead of hexagonal plates by interchanging the role of particle 

and free space in the figure. Since the polygonal plates in all the lattice structures considered 

in this Chapter are bonded to each other by soft, flexible capillary bonds, the resultant open 

Kagome lattice is isostatic, i.e., it has marginal mechanical stability, and there has been 

growing interest in such lattices in recent years because of the unique mechanical properties 

they possess.159,160 
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Figure 8.11: (a) Superposition of hexapole and dodecapole edge undulations in the truncated triangle (TT) 
particles. (b) Top view of the particle geometry and contour plot of the liquid interface height (normalized 
to the long side length 𝐿) around the TT particles. (c) Capillary bond energy at contact 𝑉𝑐  as a function of 
𝐿 𝑆⁄  for short side-short side and long side-long side contact of the TT particles. (d) The crystal structures 
we consider for the TT particles. For each crystal structure, we show the lattice vectors 𝒂, 𝒃, the nearest 
neighbour separation 𝑑, and the unit cell used in the Surface Evolver calculations, where sides of the unit 
cell with the same colour have the same interface height. The yellow spots in (c,d) denote positive capillary 
poles. (e) Plot of 𝜂𝑣∞ vs. 𝜂 for the different crystals structures shown in (d), where 𝜂 is the area fraction 
and 𝑣∞ is the many-body capillary interaction per particle given by equation (8.10). The data points are 
numerical results calculated from Surface Evolver and the solid lines are the fits to the numerical data 
using the form 𝐵𝜂𝐶, where the fitting parameters 𝐵, 𝐶 for each crystal phase are given in Table 8.4. The 
vertical dashed lines are the highest area fraction for each crystal phase and the black solid and dashed 
lines are the equilibrium lever rule lines. (f) Final snapshots for Monte Carlo simulations of the TT particles. 

Shape Crystal B C 

TT (𝐿 𝑆⁄ = 2) Kag-O 

 

-0.512  4.60 

Kag-C 

 

-0.0816 3.91 

Rec 

 

-0.126  4.26 

Hex 

 

-0.0277 4.22 

Table 8.4: Fitting parameters for the lever rule line plots shown in Figure 8.11e. Hex = hexagonal lattice, 
Rec = rectangular lattice, Kag-O = open Kagome lattice, Kag-C = compact Kagome lattice. 

To create the open Kagome lattice, in principle we could use equilateral triangular 

plates with appropriate edge undulations to promote capillary bonding between the corners of 

the triangles. However, the relatively large separation between triangular plates when they are 

in corner-to-corner contact reduces the capillary bond strength significantly, making it 

challenging to stabilize the open lattice structure against collapse into compact lattice 

structures where the plates are in side-to-side contact. To address this problem, we reduce the 

particle separation for corner-to-corner contact by considering triangles with slightly truncated 
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corners (see Figure 8.11a). Denoting the long and short side lengths of the truncated triangle 

as 𝐿 and 𝑆 respectively, the shape parameters in equation (8.2) for this particle shape are 𝜓1 =

𝜋 2⁄ ,𝜓2 = 7𝜋 6⁄ , 𝜓3 = 11𝜋 6⁄ , Δ = (𝐿 − 𝑆) (4√3)⁄ , 𝑎 = √3(𝐿 + 𝑆) 4⁄  and we work with 

length units where 𝐿 = 1. In order to encourage the truncated triangles to associate with each 

other along their short sides rather than their long sides, we use the same strategy that was 

used to create honeycombs in the previous section, namely we include both hexapoles (𝑚 =

3) and dodecapoles (𝑚 = 6) in the edge undulations, orienting the hexapole so that it’s poles 

coincide with the middle of the short or long sides, and orienting the dodecapole so that it 

reinforces the poles on short sides and suppresses the poles on the long sides, see Figure 

8.11a. Specifically, we include both 𝑚 = 3 and 𝑚 = 6 multipoles in equation (8.3), with 

𝐴3, 𝐴6 = 0.05𝐿 and 𝜃03, 𝜃06 = 𝜋 2⁄ , where 𝐴𝑚, 𝜃0𝑚 are the amplitude and phase angle of the 

𝑚th multipole.   
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Table 8.5: The lattice vectors 𝒂, 𝒃 and the area fraction 𝜂 as a function of the nearest neighbor 
separation 𝑑, the nearest neighbor separation at contact 𝑑𝑐  and the area fraction at contact 𝜂𝑐 for the 
crystals structures shown in Figure 8.11d for truncated triangles (TT). 𝐿, 𝑆 are the long and short side 
lengths respectively of the truncated triangle. Hex = hexagonal lattice, Rec = rectangular lattice, Kag-O = 
open Kagome lattice, Kag-C = compact Kagome lattice.   

In Figure 8.11b, we plot the height of the liquid meniscus around an isolated truncated 

triangle (TT) with 𝐿 𝑆⁄ = 2 and we see that the addition of the 𝑚 = 6 multipole indeed 

amplifies the magnitude and range of interfacial deformations near the short sides and 

suppresses interfacial deformations near the long sides. In Figure 8.11c, we plot the capillary 

bond energy at contact 𝑉𝑐 as a function of 𝐿 𝑆⁄  for short side-short side (SS) contact (𝑉𝐶
𝑆𝑆, red 

curve) and long side-long side (LL) contact (𝑉𝐶
𝐿𝐿, blue curve). These results show that we can 

change the ground state capillary bond of the system by tuning the ratio 𝐿 𝑆⁄ . Specifically, the 

ground state capillary bond is SS for 𝐿 𝑆⁄  values below the crossover point 𝐿 𝑆⁄ = 2.23, and it 

is LL for 𝐿 𝑆⁄  values above the crossover point. 
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Figure 8.11c suggests that the ground state crystal structure for TT particles with 

𝐿 𝑆⁄ < 2.23 is the open Kagome lattice (Kag-O, Figure 8.11d, bottom left) while for 𝐿 𝑆⁄ >

2.23, it is the compact Kagome lattice (Kag-C, Figure 8.11d, bottom right). In order to check 

this prediction, in Figure 8.11e, we perform a lever rule analysis for TT particles with 𝐿 𝑆⁄ = 2 

by plotting 𝜂𝑣∞ against 𝜂 for all the crystal structures shown in Figure 8.11d. We consider 4 

different crystal structures for the truncated triangle TT shown in Figure 8.11d. For the open 

Kagome lattice (Kag-O), the unit cell is a rhombus with vertex coordinates (0,0), 

(√3𝑑 2⁄ , 3𝑑 2⁄ ), (3√3𝑑 2⁄ , 3𝑑 2⁄ ), (√3𝑑, 0); the unit cell contains two particles with 

configurations (√3𝑑 2⁄ , 𝑑 2⁄ , 𝜋) and (√3𝑑, 𝑑, 0). For the compact Kagome lattice (Kag-C), the 

unit cell is a rhombus with vertex coordinates (0,0), (√3𝑑 2⁄ , 3𝑑 2⁄ ), (3√3𝑑 2⁄ , 3𝑑 2⁄ ), 

(√3𝑑, 0); the unit cell contains two particles with configurations (√3𝑑 2⁄ , 𝑑 2⁄ , 0) and 

(√3𝑑, 𝑑, 𝜋). For the rectangular lattice (Rec), the unit cell is a rectangle with vertex 

coordinates (0,0), (0,
3(𝐿+𝑆)𝑑

𝐿+2𝑆
), (

√3(𝐿+𝑆)𝑑

𝐿+2𝑆
,
3(𝐿+𝑆)𝑑

𝐿+2𝑆
) and (

√3(𝐿+𝑆)𝑑

𝐿+2𝑆
, 0); the unit cell contains 

two particles with configurations (
√3(𝐿+𝑆)𝑑

2(𝐿+2𝑆)
,
𝑑

2
, 0) and (

√3(𝐿+𝑆)𝑑

2(𝐿+2𝑆)
,
(5𝐿+4𝑆)𝑑

2(𝐿+2𝑆)
, 𝜋). For the 

hexagonal lattice (Hex), the unit cell is a hexagon with vertex coordinates (0, 𝑑 √3⁄ ), 

(𝑑 2⁄ , 𝑑 2√3⁄ ), (𝑑 2⁄ ,−𝑑 2√3⁄ ),(0,−𝑑 √3⁄ ), (−𝑑 2⁄ ,−𝑑 2√3⁄ ) and (−𝑑 2⁄ , 𝑑 2√3⁄ ); the 

unit cell contains one particle with configuration (0,0,0).  

Note that in Figure 8.11d, we show the nearest neighbour separation 𝑑 and the unit 

cell for each crystal structure, while in Figure 8.11e, the vertical dashed lines represent the 

maximum area fraction 𝜂𝑐 for each crystal phase and the black solid and dashed lines are the 

equilibrium lever rule lines of the system. The exact values of the lattice vectors, area fraction 

𝜂, contact separation 𝑑𝑐 and maximum area fraction 𝜂𝑐 are given in Table 8.5 for all crystal 

structures considered. The results in Figure 8.11e confirm that Kag-O is indeed the ground 

state crystal structure for 𝐿 𝑆⁄ = 2. In Figure 8.11f, we show the final snapshot from MC 

simulations of TT particles with 𝐿 𝑆⁄ = 2 with area fraction 𝜂 = 0.3, where the system is slowly 

cooled from a high initial temperature to a final temperature of 𝑇∗ = 0.05. We see that the TT 

particles indeed self-assemble into open Kagome lattice structures, confirming that this 

structure is kinetically accessible to the system.  
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Figure 8.12: Difference in the capillary bond energy per particle between Kag-O and Kag-C, i.e., ∆𝑣𝑐 =

3(𝑉𝐶
𝑆𝑆 − 𝑉𝐶

𝐿𝐿) 2⁄ , as a function of 𝐿 𝑆⁄  for the TT particles (bottom middle panel) and final snapshots for 
Monte Carlo simulations for different 𝐿 𝑆⁄  values (surrounding panels). 

To study how the self-assembly of TT particles depends on the value of 𝐿 𝑆⁄  in more 

detail, in Figure 8.12, we show the final snapshot from MC simulations of TT particles with area 

fraction 𝜂 = 0.3 and a range of different 𝐿 𝑆⁄  values around the crossover point, where the 

system is slowly cooled from a high initial temperature to a final temperature of 𝑇∗ = 0.05. 

We also plot the difference in the capillary bond energy per particle between Kag-O and Kag-C, 

i.e., ∆𝑣𝐶 = 3(𝑉𝐶
𝑆𝑆 − 𝑉𝐶

𝐿𝐿) 2⁄ , as a function of 𝐿 𝑆⁄ , where the factor 3 2⁄  comes from the fact 

that there are 3 2⁄  capillary bonds per particle in the Kagome structures. As expected, the 

system forms Kag-O for 𝐿 𝑆⁄ = 2 where ∆𝑣𝐶 ≈ −3𝑘𝐵𝑇, while it forms Kag-C for 𝐿 𝑆⁄ = 2.5 

where ∆𝑣𝐶 ≈ +3𝑘𝐵𝑇. Interestingly, for 𝐿 𝑆⁄  values very close to the crossover point, i.e., 

where |∆𝑣𝐶| ≲ 𝑘𝐵𝑇, the system forms a mixture of Kag-O, Kag-C, Rec (Figure 8.11d top right) 

and intricate hybrid structures involving both SS and LL bonds, with a bias towards Kag-O 

below the crossover point, and towards Kag-C above the crossover point. The results in Figure 

8.12 demonstrate that the ground state structure is the one with the lowest capillary 

interaction energy per particle, and that we can exclusively select one polymorph over another 

by ensuring that the difference in this energy for the different polymorphs is significantly 

greater than 𝑘𝐵𝑇. This result provides a simple but powerful design principle for programming 

self-assembly in our system.  
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8.3.4 Binary Mixtures of Squares and Triangles 

So far, we have studied the self-assembly of one-component systems consisting of a 

single particle shape. However, we can access an even richer range of self-assembled 

structures if we consider mixtures of different particle shapes. In this section, we illustrate this 

point by using a binary mixture of squares and equilateral triangles to form randomly tiled 12-

fold quasicrystals (46,47).161,162 Specifically, we consider squares and equilateral triangle plates 

with side length 𝐿 where the shape parameters in equation (8.2) are 𝜓1 = 𝜋 2⁄ ,𝜓2 =

7𝜋 6⁄ , 𝜓3 = 11𝜋 6⁄ , Δ = 𝐿 (4√3)⁄ , 𝑎 = √3𝐿 4⁄  for the triangles and 𝜓1 = 0, 𝜓2 = 𝜋 2⁄ , Δ =

0, 𝑎 = 𝐿 2⁄  for the squares (we only need two sets of parallel sides to form squares) and we 

work in units of length where 𝐿 = 1. 

 

Figure 8.13: (a,b) Top view of the particle geometry and contour plot of liquid interface height (normalized 
to the side length 𝐿) around (a) triangular and (b) square particles. (c) Contact energies for the different 

shape pairs 𝑉𝑐
𝐼𝐽 (normalized to the square-square contact energy) as a function of 𝐴𝑡 𝐴𝑠⁄ , where 𝐴𝑠, 𝐴𝑡 

are the 𝐴 values in equation (8.3) for squares and triangles respectively. The vertical dotted and dashed 
lines correspond to the cases 𝐴𝑡 𝐴𝑠⁄ = 1.00  and 𝐴𝑡 𝐴𝑠⁄ = 1.48  respectively. (d) Final snapshots for 
Monte Carlo simulations of a mixture of squares and triangles for 𝐴𝑡 𝐴𝑠⁄ = 1.00. The largest cluster is 
highlighted. (e) The 𝑚-fold bond orientational order parameter 𝜒𝑚  as a function of 𝑚 for the largest 
cluster in (d). The inset shows the structure factor for the largest cluster. (f), (g) show the plots 
corresponding to (d), (e) for 𝐴𝑡 𝐴𝑠⁄ = 1.48. 

To promote random tiling, the edge undulations along the square and triangle sides 

need be commensurate with each other so that the capillary bond energies for square-square, 

triangle-triangle and square-triangle side-to-side contact are equal to each other.49 Having the 

same contact energies between the different species is important for two reasons. Firstly, the 

contact energy for triangle-square contacts needs to be at least as large as that for triangle-
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triangle and square-square contacts to suppress phase separation between the two 

species.162,163 Secondly, the triangle-triangle and square-square contact energies need to be 

the same to prevent the two species from crystallizing at different points as we cool the 

system which would lead to kinetic de-mixing (see later). In order to obtain commensurate 

edge undulations for squares and triangles, we use hexapolar edge undulations for the 

triangles and octopolar edge undulations for squares, with the multipoles oriented so that the 

positive poles coincide with the middle of each side, i.e., 𝑚 = 3, 𝜃0 = 𝜋 6⁄  for triangles and 

𝑚 = 4, 𝜃0 = 0 for squares in equation (8.3). In Figure 8.13a and Figure 8.13b respectively, we 

plot the interfacial deformations around an isolated square with 𝐴𝑠 = 0.200𝐿 and around a 

triangle with 𝐴𝑡 𝐴𝑠⁄ = 1.48, where 𝐴𝑠, 𝐴𝑡 are the 𝐴 values in equation (8.3) for squares and 

triangles respectively, and we see that the interfacial deformations conform well to the edge 

undulations in both cases. Note that we use slightly larger 𝐴 values for both squares and 

triangles compared to the other shapes we have studied in this Chapter to increase the signal-

to-noise ratio in our Surface Evolver simulations as the centre-to-side distances (relative to 𝐿) 

are smaller for triangles and squares compared hexagons and truncated triangles.  

Note that since the centre-to-side distance is different for squares and triangles, we 

need to use different 𝐴𝑡 and 𝐴𝑠 values to match the amplitude of interfacial undulations for 

the two shapes and hence match the contact energy between the different species. This point 

is illustrated in Figure 8.13c where we plot the contact energies for the different shape pairs 

𝑉𝑐
𝐼𝐽 (normalized to the square-square contact energy) as a function of 𝐴𝑡 𝐴𝑠⁄  for 𝐴𝑠 = 0.200𝐿, 

where 𝐼, 𝐽 = 𝑠 (square) or 𝑡 (triangle). We see that for 𝐴𝑡 𝐴𝑠⁄ = 1.00 (vertical dotted line), 

there is a large discrepancy in contact energies for the different shape pairs, while for 𝐴𝑡 𝐴𝑠⁄ =

1.48 (vertical dashed line), the contact energies for the different shape pairs are essentially 

equal.  
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Figure 8.14: Results of Monte Carlo simulations of a mixture of squares and triangles with 𝐴𝑡 𝐴𝑠⁄ = 1.48 
and square number fractions of (a) 0.27, (b) 0.30, (c) 0.36 and (d) 0.39. For each number fraction, on the 
left, we show the final snapshot of Monte Carlo simulation with the largest cluster highlighted. On the 
right, we show the 𝑚-fold bond orientational order parameter 𝜒𝑚  as a function of 𝑚 for the largest 
cluster. In the inset, we also show the structure factor of the largest cluster. 

To illustrate the importance of tuning 𝐴𝑡 𝐴𝑠⁄  in order to obtain 12-fold quasicrystals, 

we performed MC simulations of mixtures of squares and triangles with a total area fraction of 

𝜂 = 0.3, 𝐴𝑠 = 0.200𝐿 and different 𝐴𝑡 𝐴𝑠⁄  values. Theoretically, the optimum number ratio of 

squares to triangles to form randomly tiled 12-fold quasicrystals is √3 4⁄ , i.e., a square number 

fraction of √3 (4 + √3)⁄ ≈ 0.30.162,164 In fact, we found that the highest quality quasicrystals 

were obtained for a slightly higher square number fraction of 0.33, and we therefore report 

results for this composition in Figure 8.13d-g below. However, in Figure 8.14 we show that 

quasicrystals (albeit of poorer quality) are also formed for the compositions 0.27, 0.30, 0.36 

and 0.39, indicating that the formation of quasicrystals is relatively insensitive to composition 

for the composition range we have studied. Quasicrystals are very delicate structures that are 

easily destroyed by the presence of too many defects.162 We therefore cooled the mixture 
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much more slowly compared to the other systems studied in this Chapter (see Section 8.2.3), 

with a final temperature of 𝑇∗ = 0.05, allowing us to minimize defects and grow large enough 

crystal domains to produce clear diffraction patterns.  

In Figure 8.13d, we show the final snapshot from MC simulations of a mixture of 

squares and triangles with 𝐴𝑡 𝐴𝑠⁄ = 1.00 (i.e., dotted vertical line in Figure 8.13c). We see that 

no 12-fold quasicrystals are formed in this case as there is a clear phase separation between 

squares and triangles within the clusters, with the square crystals forming the core and the 

triangle crystals forming the corona. The observed core-corona cluster morphology is a 

consequence of the square-square capillary bond energy being significantly higher than the 

square-triangle and triangle-triangle bond energies. This means that as the system is slowly 

cooled during the MC simulation, the squares crystallize out of solution first, and act as the 

nuclei for the subsequent crystallization of the triangles. The dominance of square crystalline 

order, and absence of 12-fold quasicrystalline order, is confirmed in Figure 8.13e where we 

plot the 𝑚-fold bond orientational order parameter 𝜒𝑚 for different values of 𝑚 for the largest 

cluster (highlighted in Figure 8.13d). The order parameter 𝜒𝑚 ∈ [0,1] characterizes the degree 

of 𝑚-fold orientational order of the system (see Section 8.2.4), and we see that there is 

significant orientational order for 𝑚 = 4, 8, 12, consistent with the presence of 4-fold 

orientational order in the cluster. In the inset, we show the scattering structure factor for the 

largest cluster, which clearly shows strong square crystalline order in the sample.   

In Figure 8.13f, we show the final snapshot from MC simulations of a mixture of 

squares and triangles with 𝐴𝑡 𝐴𝑠⁄ = 1.48 (i.e., dashed vertical line in Figure 8.13c). In contrast 

to Figure 8.13d, there is now very good mixing between squares and triangles within the 

clusters. However, because the clusters consist of close-packed polygons, rearrangements are 

very restricted after structures are formed, making it very difficult to heal any defects in the 

interior or boundary of the cluster. The very slow structural relaxation limits the maximum 

crystalline domain size to just over 100 particles, even with the very slow cooling protocol we 

use. Notwithstanding this limitation, we can clearly see characteristic features of 12-fold 

quasicrystalline order in the largest cluster (highlighted in Figure 8.13f), for example the 

presence of complete or partially complete dodecagons consisting of 6 triangles in the core 

surrounded by 6 squares and 6 triangles.161,162  

The presence of 12-fold quasicrystalline order for the system with 𝐴𝑡 𝐴𝑠⁄ = 1.48 is 

more strikingly demonstrated in Figure 8.13g, where we plot the bond orientational order 

parameter 𝜒𝑚 for different 𝑚 for the largest cluster. We see that the cluster has significant 12-

fold orientational order (𝜒12 ≈ 0.95), but negligible orientational order for all lower 𝑚, in 
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particular for 𝑚 = 3, 4, 6, the factors of 12. In the inset we show the scattering structure 

factor of the cluster, and we clearly see 12 scattering peaks around each of the circles that 

have been highlighted. Furthermore, the wavenumber ratio between successive circles is 1.93, 

consistent with the presence of 12-fold quasicrystalline order in the system.165 

8.4 Conclusions 

We have used minimum energy calculations and Monte Carlo simulations to study the 

capillary assembly of a novel class of colloidal particles at a liquid interface, namely polygonal 

plates with homogeneous surface chemistry and undulating edges. This particle geometry 

gives us precise and independent control over both short-ranged hard-core repulsions 

(through the polygonal shape) and longer-range capillary interactions (through the edge 

undulations), allowing us to select specific polymorphs over others and providing essentially 

limitless possibilities for programming self-assembly in 2D. In addition, the fact that particle 

interactions are controlled by particle shape rather than surface chemistry considerably 

simplifies the task of fabricating the colloidal building blocks, allowing us to synthesise the 

required particle shapes down to the micron scale using currently available fabrication 

technologies.32,33,149 

To illustrate the immense potential provided by our system for programming self-

assembly, we used polygonal plates with different in-plane shapes and edge undulations to 

create a rich variety of complex 2D structures. Specifically, for hexagonal plates, we showed 

that a subtle change in the phase angle between the hexapolar edge undulations and the 

hexagon shape led to a dramatic change in the thermodynamic ground state from a hexagonal 

close packed structure to an open honeycomb structure. We also showed that by using a 

suitable superposition of hexapolar and dodecapolar edge undulations, we could selectively 

make some edges of a hexagon or truncated triangle more ‘sticky’ than others, allowing us to 

effectively create 2D patchy particles using shape alone. Using such particles allowed us to 

control both the thermodynamics and kinetics of self-assembly to create open structures such 

as honeycomb and Kagome lattices. Finally, by carefully tuning the multipole order and 

amplitude of edge undulations in triangles and squares, we were able to accurately tune the 

contact energies between the two shapes and create 12-fold quasicrystals.    

Since the particle shapes above can be readily fabricated experimentally, we can use our 

novel colloidal system to control the entire process chain for materials design, from initial 

design and fabrication of the building blocks to final self-assembled structure and emergent 

properties of the material. As such, our novel colloidal system could revolutionise colloidal 
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self-assembly in two dimensions, in the same way that DNA linker technology has 

revolutionised colloidal self-assembly in three dimensions.166 
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 Conclusions and Future Work 

Given that specific conclusions for each topic are at the end of the relevant chapters, in 

this chapter, we want to summarise the thesis as a whole, to draw out the broader 

implications and outline fruitful directions for future research. 

In the introductory chapter, we set out the aims and goals of the thesis. We aimed to 

examine the ways in which the interaction between interfacial forces and the anisotropic 

characteristics and morphologies of particles can be harnessed to influence the self-assembly 

of colloids at liquid interfaces, resulting in a wide range of complex two-dimensional 

structures. We believe that throughout this thesis we have largely succeeded in this ambitious 

aim. 

In the first part of the content chapters (Chapter 4 and Chapter 5), we demonstrated 

that it is possible to use interfacial curvature as a powerful external field to direct the assembly 

of anisotropic particles. In particular, the simple cylindrical drop geometry that we considered 

is amenable to experimental realisation for several reasons. Firstly, we showed that it is 

possible to direct the configuration and assembly of anisotropic particles using cylindrical 

drops whose width is much larger than the length of the particles, which allows the use of 

photolithography to create the necessary substrates to control particles on the nanoscale. This 

is a major advancement compared to the best current methods available, where controlling 

the configuration of nanoscale particles requires us to create topographic features on the 

substrate with length scales comparable to width of the particles which requires 

nanofabrication.84–86 Secondly, by varying drop height, we can work in either the flotation or 

immersion regime, where we have good control over particle orientation or good control over 

particle position and assembly respectively. We hope that our theoretical study will encourage 

future experiments in this direction. Specifically, it would be interesting to assemble micron to 

nanometre sized ellipsoidal or cylindrical particles at a cylindrical interface created by 

depositing water drops onto a long rectangular hydrophilic patch created using 

photolithography. By tuning the surface chemistry of the rods, it should be possible to cause 

the single rods to orient either parallel or perpendicular to the cylindrical drops, and if more 

than one particle is adsorbed to the same patch in near proximity, obtain a tip-to-tip or side-

to-side assembly of the rods. 

In the second part of the content chapters (Chapter 6, Chapter 7 and Chapter 8), we 

showed that the unique nature of particle interactions at liquid interfaces provide powerful 

handles with which to design and control self-assembly of colloidal particles. In Chapter 6, 

where we studied the self-assembly of core-shell spheres, we showed that the presence of the 
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interface created extremely flat coronae for the core-shell particles. We believe that this flat 

corona morphology is essential to cause soft-shell interaction potentials with a flat enough 

profile for achieving core-collapse morphologies such as cluster phases and braided chains. 

These core-collapse phases were predicted theoretically to exist for over two decades98,102 but 

were only observed experimentally for the first time in our study. In Chapter 7 and Chapter 8, 

we exploited capillary interactions to control self-assembly. Capillary forces are mediated by 

interfacial deformations and therefore do not have an analogue for colloids in the bulk. 

Specifically, in Chapter 7, we studied the self-assembly of core-shell ellipsoids and showed 

that, by tuning the interplay between capillary forces arising from the core, and steric forces 

caused by the flat corona, it was possible to achieve rational control over whether the 

ellipsoids assembled side-to-side or tip-to-tip. Prior to our study, both tip-to-tip and side-to-

side arrangements for seemingly similar ellipsoidal particles were observed experimentally.137–

141 However, the origin of the preference for either structure was not yet fully understood. For 

both core-shell spheres and core-shell ellipsoids, we achieved remarkably good agreement 

between our simulation results and experiments, demonstrating that we can use our 

simulations to guide experiments to achieve deterministic control of the self-assembly of these 

systems. 

In Chapter 8, we studied the self-assembly of polygonal plates with undulating edges 

and showed that we could use this geometry to create a rich variety of 2D structures. Similar 

structures were observed in the work of Whitesides and coworkers using flat polygonal plates 

with patchy edges.60,61 However, the patchy particle geometry made it difficult to scale down 

particle synthesis below the mm-scale.62 For our polygonal plate system, self-assembly is 

controlled by geometry rather than surface chemistry, which greatly simplifies the creation of 

particles that produce complex menisci. With modern advances in 3D printing and laser 

technology, the required 3D particle shapes can be achieved to sub mm resolution, and we 

hope that our theoretical study will stimulate future experiments to fabricate these particles 

and create the final 2D materials through self-assembly. 

In addition to the future experimental work discussed above, our thesis also suggests 

several directions for future theoretical work that would be fruitful to pursue. 

Firstly, the work presented in Chapter 4 and Chapter 5 suggests a way to assemble 

rod-like particles into side-to-side or tip-to-tip structures using cylindrical drops whose width is 

much larger than the length of the particles. In our calculations we assumed that the 

cylindrical drops had infinite length so that there is no rod migration owing to gradients in the 

deviatoric curvature,17 which is a good assumption for very long cylindrical drops where 
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assembly occurs near the middle of the drop. However, in practice, the deposition of rod-like 

particles on the cylindrical drop is a random process and particles could therefore adsorb and 

assemble near the ends of the drop where there may be strong gradients in deviatoric 

curvature. For future work, we therefore suggest studying the assembly of rod-like particles on 

a finite length sessile cylindrical drop. Additionally, it would be interesting to investigate other 

easy-to-fabricate patch geometries (in addition to the rectangular geometry) to supress or 

promote migration. These geometries could include ellipses and a 2D equivalent of the 

spherocylinder called a stadium. 

Secondly, the results in Chapter 6 suggest that the interaction potential between the 

experimentally fabricated uncrosslinked core-shell particles were close to a linear Jagla 

potential with pairwise-additive behaviour. However, the determination of the interaction 

potential profile was indirect. For future work, it would be interesting to perform monomer-

resolved simulations of the polymer ‘hairs’ in the soft-shell to calculate the soft-shell 

interactions between the particles directly.  

Finally, the work presented in Chapter 8 serves as a proof of principle and highlights 

the tremendous number of possibilities of self-assembled structures that could be created 

following these polygonal plates with undulating edges. The natural next step would be to use 

edge undulations to impose matching rules, i.e., rules that dictate which polygon sides may or 

may not be next to each other,49 allowing us to assemble deterministic quasicrystals which 

should form much larger clusters.164 The application of such matching rules may also allow us 

to utilise self-assembly to create the recently discovered quasicrystals made from a single tile 

shape.167 Without such matching rules, the concave shape of these tiles would greatly restrict 

structural rearrangements during self-assembly, potentially causing the system to be 

kinetically trapped in metastable states with many defects, therefore preventing the system 

from reaching its ground state. Additionally, because our system consists of polygonal plates 

connected to their neighbours via directional capillary bonds, we can exploit these bonds to 

act as soft ‘hinges’ and introduce ‘floppy modes’ into the system (i.e., low energy deformations 

that only involve rotations of the polygons about the hinges). These floppy modes can be used 

to create auxetic materials with negative Poisson ratio40 or thermal expansivities168 and 

mechanical metamaterials with transformable mechanical properties.159,160  

To conclude, the results of this thesis have the potential to impact and shape the 

future of material synthesis, allowing for the self-assembly of complex functional 2D materials 

with applications in fields such as photonics, phononics, and plasmonics.  
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Appendix 1: Sphere at a Flat Interface Surface Evolver Script 

//Define the half span of the interface 
parameter x_len = 4 
parameter y_len = 4 
 
parameter rad = 1 //Radius of sphere 
parameter Contact_angle = 70 
 
parameter gamma = -cos(Contact_Angle*pi/180) //Surface tension in simulation units 
 
constraint Sphere convex 
formula: x^2 + y^2 + z^2 = rad^2 
 
constraint Sphere_Contact_Line convex //Separate constraint only applied to the contact line 
formula: x^2 + y^2 + z^2 = rad^2 
 
//Constraints to make sure the interface edges are fixed in the x, y directions 
constraint x_min 
formula: x = -x_len 
 
constraint x_max 
formula: x = x_len 
 
constraint y_min 
formula: y = -y_len 
 
constraint y_max 
formula: y = y_len 
 
vertex  
//interface Perimeter 
// X      Y   Z  Constraints 
1   x_len    y_len   0 constraints x_max, y_max 
2   0              y_len   0 constraints y_max 
3  -x_len    y_len   0 constraints x_min, y_max 
4  -x_len     0   0 constraints x_min 
5  -x_len  -y_len   0 constraints x_min, y_min 
6   0   -y_len   0 constraints y_min 
7   x_len  -y_len   0 constraints x_max, y_min 
8   x_len    0   0 constraints x_max 
 
//particle perimeter set in generic hexagon which allows surface to easily morph to complex 
geometries 
9   rad*cos(0*pi/3)        rad*sin(0*pi/3)  0  constraints Sphere_Contact_Line 
10  rad*cos(1*pi/3)  rad*sin(1*pi/3)  0 constraints Sphere_Contact_Line 
11  rad*cos(2*pi/3)  rad*sin(2*pi/3)  0 constraints Sphere_Contact_Line 
12  rad*cos(3*pi/3)  rad*sin(3*pi/3)  0 constraints Sphere_Contact_Line 
13  rad*cos(4*pi/3)  rad*sin(4*pi/3)  0 constraints Sphere_Contact_Line 
14  rad*cos(5*pi/3)  rad*sin(5*pi/3)  0 constraints Sphere_Contact_Line 
 
//particle top 
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15  0     0   rad  constraints Sphere 
 
edges 
//interface perimeter 
1  1  2  constraints y_max 
2  2  3  constraints y_max 
3  3  4  constraints x_min 
4  4  5  constraints x_min 
5  5  6  constraints y_min 
6  6  7  constraints y_min 
7  7  8  constraints x_max 
8  8  1  constraints x_max 
 
//interconnecting lines (connects surface perimeter to particle) 
9  1  10 
10 2  10 
11 2  11 
12 3  11 
13 4  12 
14 5  13 
15 6  13 
16 6  14 
17 7  14 
18 8  9 
 
//particle perimeter 
19 9  10  constraints Sphere_Contact_Line 
20 10 11  constraints Sphere_Contact_Line 
21 11 12  constraints Sphere_Contact_Line 
22 12 13  constraints Sphere_Contact_Line 
23 13 14  constraints Sphere_Contact_Line 
24 14 9   constraints Sphere_Contact_Line 
 
//particle top 
25 9  15  constraints Sphere 
26 10 15  constraints Sphere 
27 11 15  constraints Sphere 
28 12 15  constraints Sphere 
29 13 15  constraints Sphere 
30 14 15  constraints Sphere 
 
faces 
//fluid-fluid interface    
1  1   10 -9  color green 
2  11 -20 -10 color green 
3  2   12 -11 color green 
4  3   13 -21 -12 color green 
5  4   14 -22 -13 color green 
6  5   15 -14 color green 
7  16 -23 -15 color green 
8  6   17 -16 color green 
9  7   18 -24 -17 color green 
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10 8   9  -19 -18 color green 
 
//particle fluid interface 
11 19  26 -25 color yellow tension gamma constraints Sphere 
12 20  27 -26 color yellow tension gamma constraints Sphere 
13 21  28 -27 color yellow tension gamma constraints Sphere 
14 22  29 -28 color yellow tension gamma constraints Sphere 
15 23  30 -29 color yellow tension gamma constraints Sphere 
16 24  25 -30 color yellow tension gamma constraints Sphere 
 
 
read 
 
//try to even out the mesh 
groom_length := 0.2; 
groom := { 
    refine edge where length > groom_length; 
    u;V; 
    delete edge where length < groom_length/5; 
} 
 
hess_loop := { 
 k 0; 
 fix vertex where on_constraint Sphere; 
 hessian_seek; hessian_seek; 
 unfix vertex where on_constraint Sphere; 
 k 1; 
} 
 
//Writes all vertices of surface around particle to a CSV 
Interface_Data :={recalc; 
 File_Name := sprintf "D:/Evolver/Myfiles/Sphere_Interface.csv"; 
 printf "x-posn,y-posn,z-posn,\n" >> File_Name; 
 foreach vertex where x < 2 and x > -2 and y > -2 and y < 2 and not on_constraint 
Sphere do {printf "%f,%f,%f,\n",x,y,z} >> File_Name 
} 
 
//Writes all vertices of the contact line around the particle to a CSV 
Sphere_Contact_Line_Line_Data :={recalc; 
 File_Name:= sprintf "D:/Evolver/Myfiles/Sphere_Sphere_Contact_Line Line.csv"; 
 printf "x-posn,y-posn,z-posn,\n" >> File_Name; 
 foreach vertex where x < 2 and x > -2 and y > -2 and y < 2 and on_constraint 
Sphere_Contact_Line do {printf "%f,%f,%f,\n",x,y,z} >> File_Name 
} 
 
//Allows the simulation to be reset easily 
reset := { 
 LOAD "D:/Evolver/Myfiles/Sphere at a flat interface.txt" 
} 
 
//Meshing, tessellation parameters and procedure 
gogo := {  



IV 
 

   groom 8; 
   {g 5; groom; update_txt} 20; 
   hess_loop; 
   { g 5; groom; } 5; 
} 
 
// standard tessellation and minimisation procedure (step 1) 
go_more := { 
   { recalc; M 1; 
     {g 5; groom } 10;  
      hess_loop; 
     {g 5; groom } 10;  
     M 2; {g 5; u; V;} 10; 
     refine edge where on_constraint Sphere; 
     u; V;   
     {g 5; u; V;} 50; 
      } 
} 
 
//Simulation function 
run:= {gogo 8;update_txt; go_more; update_txt; Interface_Data; Contact_Line_Data} 
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Appendix 2: Volume Overlap Between Two Core-Shell Particles 

 

Figure 9.1: Simplified geometry used to calculate the soft-shell repulsion for crosslinked shells (a,b) and 
uncrosslinked shells (c,d). The thick and thin circles represent the core and shell respectively. A 3D view 
of both cases is shown in Figure 6.1a,b. 

To simplify our calculations for the potential profile of crosslinked microgel core-shell 

particles in Chapter 6, we approximate the quasi three dimensional shape of the soft shell as 

two wide-based cones (base radius 𝑟1 ⁄ 2) with their bases stuck together and their axis of 

symmetry perpendicular to the liquid interface (Figure 6.1a,b and Figure 9.1a,b). From simple 

geometry, the angle 𝜓 is given by sin𝜓  =  𝑟0 ⁄ 𝑟1 while the height of the shell as a function of 

the radial distance 𝜌 is ℎ(𝜌) = tan𝜓 (
𝑟1

2
− 𝜌). We can approximate the interaction potential 

between two core-shell particles with separation 𝑟 as100 

𝑉(𝑟) ≈ 𝑃𝑐𝑜𝑟𝑜𝑛𝑎𝑉𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟) (9.1) 

where 𝑃𝑐𝑜𝑟𝑜𝑛𝑎 is the pressure exerted by the soft shell for typical microgel concentrations 

found in the interacting soft shells and 𝑉𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟) is the intersection volume between the 

two soft shells at separation 𝑟 (see Figure 9.1a,b). The volume of the volume element 𝑑𝑉 

corresponding the partial anulus shown in Figure 9.1b is given by  

𝑑𝑉 = 8𝜌𝜃ℎ(𝜌)𝑑𝜌 (9.2) 

where 𝜃 = cos−1(𝑟 ⁄ 2𝜌) so that the intersection volume is given by  
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𝑉𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟) = 2 tan(𝜓) ∫ cos−1 (
𝑟

2𝜌
)𝜌 (

𝑟1
2
− 𝜌) 𝑑𝜌

𝑟1/2

𝑟/2

 (9.3) 

Inserting equation (9.3) into equation (9.1) and defining 𝜀 as the interaction potential at 

core contact, we finally have  

𝑉(𝑟) = 𝜀
𝑉𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟)

𝑉𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟0)
 (9.4) 

which is plotted in Figure 6.1c for the case of 𝑟1/𝑟0 = 4 (red curve). 

However, for our calculations for the potential profile of the uncrosslinked core-shell 

particles in Chapter 6, we approximate the soft shells as circular disks with radius 𝑟1 ⁄ 2 (Figure 

6.1b and Figure 9.1c,d). In this case, we can approximate the interaction potential between 

two core-shell particles with separation 𝑟 as100 

𝑉(𝑟) ≈ 𝑃𝑐𝑜𝑟𝑜𝑛𝑎𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟) (9.5) 

where𝑃𝑐𝑜𝑟𝑜𝑛𝑎 is the surface pressure exerted by the soft shell for typical polymeric 

concentrations found in the interacting soft shells and 𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟) is the intersection area 

between the two soft shells at separation 𝑟 (see Figure 9.1c,d). From simple geometry, the 

intersection area is given by 

𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟) =
𝑟1
2

4
(2𝜃 − sin 2𝜃) (9.6) 

where 𝜃 = cos−1
𝑟

𝑟1
. Inserting equation (9.6) into equation (9.5) we finally have  

𝑉(𝑟) = 𝜀
𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟)

𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟0)
 (9.7) 

which is plotted in Figure 6.1c for the case of 𝑟1/𝑟0 = 4 (blue curve). 
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Appendix 3: Estimation of 𝜺 for experimental Core-Shell System 

This work was completed by my supervisor Dr D. Martin A. Buzza but is crucial for the 

assumptions we make within Chapter 6 to validate our approximations for our simulation. 

 

Figure 9.2: Unit cell and geometrical parameters for (a) HEXL phase; (b) DIM1 phase. The thick and thin 
circles represent the core and shell respectively. 

The height of the repulsive shoulder 𝜀 can readily be calculated by noting that at the 

phase boundary between the low-density hexagonal phase HEXL and the dimer phase 

(specifically DIM1, see Figure 6.13) the enthalpy per particle of both phases are equal, i.e.,  

𝜀

2
+ 𝑃𝑐𝑜𝑒𝑥𝐴𝐷𝐼𝑀1 = 𝑃𝑐𝑜𝑒𝑥𝐴𝐻𝐸𝑋𝐿 (9.8) 

where 𝑃𝑐𝑜𝑒𝑥 is the coexistence surface pressure and 𝐴𝐻𝐸𝑋𝐿 and 𝐴𝐷𝐼𝑀1 are the area per particle 

in the low-density hexagonal phase and DIM1 phase respectively. The left-hand side of 

equation (9.8) is the enthalpy per particle of the chain phase and the 
𝜀

2
 term comes from the 

fact that there is one soft shell overlap for every two particles in this phase. The right-hand 

side of equation (9.8) represents the enthalpy per particle in the low-density hexagonal phase 

and there is no energy term as there are no soft-shell overlaps in this phase. Rearranging 

equation (9.8) we obtain  

𝜀 = 2𝑃𝑐𝑜𝑒𝑥(𝐴𝐻𝐸𝑋𝐿 − 𝐴𝐷𝐼𝑀1) (9.9) 

From Figure 9.2a, we see that the area per particle for the HEXL phase is 𝐴𝐻𝐸𝑋𝐿 =

√3

2
𝑟1
2. From Figure 9.2b, we see that 𝜃1 = sin

−1(𝑟0 ⁄ 2𝑟1), 𝜃2 = (𝜋 − 2𝜃1 − 𝜋/3 )/2 = 𝜋/3 −

𝜃1, the unit cell angle is 𝜙 = 2𝜃1 + 𝜃2 = 𝜋/3 + 𝜃1, the unit cell aspect ratio is 𝛾 =

 2𝑟1 cos 𝜃2 /𝑟1  =  2 cos(𝜋/3 − 𝜃1) and the area per particle for the DIM1 phase is 𝐴𝐷𝐼𝑀1 =

𝑟1
2𝛾 sin𝜙/2 = 𝑟1

2 cos(𝜋/3 − 𝜃1) sin(𝜋/3 + 𝜃1). From Figure 6.6h, we determine the 
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coexistence pressure to be 𝑃𝑐𝑜𝑒𝑥 ≈ 25mN/m. Inserting this and 𝑟1/𝑟0  =  4, 𝑟0 = 170nm into 

equation (9.9), we find 𝜀 = 7 × 10−15J, i.e., 𝜀/𝑘𝐵𝑇 =  2 × 10
6, thus justifying our 

assumption in Chapter 6 that 𝜀 ≫ 𝑘𝐵𝑇. In order to check that this estimate for 𝜀 is reasonable, 

we can also independently calculate 𝜀 from the work done in compressing two polymeric 

corona to full overlap which from equation (9.5) is given by 

𝜀 ≈ 𝑃𝑐𝑜𝑟𝑜𝑛𝑎𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (9.10) 

where 𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑟0) =
𝑟1
2

2
(𝜃𝑐 −

𝑟0

𝑟1
sin𝜃𝑐) is the overlap area of two circular disk-

like coronas when their corresponding cores are in contact and 𝜃𝑐 = cos
−1 (

𝑟0

𝑟1
). From the 

plateau pressure in the surface pressure-area isotherm in Figure 6.5k, we estimate 𝑃𝑐𝑜𝑟𝑜𝑛𝑎 ≈

28mN/m. Inserting this into equation (9.10) yields 𝜀 = 7 × 10−15J, in excellent agreement 

with our estimate above based on the coexistence pressure. The agreement between the two 

results confirms that the soft repulsive shoulder in experimental the core-shell particles indeed 

arise from the elastic compression of the polymer corona around the microspheres. 
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