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Abstract 

The rapid microstructural evolution of gas atomised Ni superalloy powder compacts over 

timescales of a few seconds was studied using a Gleeble 3500 thermomechanical 

simulator, finite element based numerical model and electron microscopies. The study 

found that the microstructural changes are governed by the characteristic temperatures of 

the alloy. At a temperature below the ' solvus, the powders maintained the dendritic 

structures. Above the ' solvus temperature but in the solid-state, rapid grain 

spheroidisation and coarsening occurred, although the fine-scale microstructures were 

largely retained. Once over the incipient melting temperature of the alloy, microstructural 

change was rapid, and when the temperature was increased into the solid+liquid state, the 

powder compact partially melted and then re-solidified with no trace of the original 

structure, despite the fast timescales. The study reveals the relationship between short, 

severe thermal excursions and microstructural evolution in powder processed 

components, and gives guidance on the upper limit of temperature and time for powder-

based processes if desirable fine-scale features of powders are to be preserved. 
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1. Introduction 

Powders and particulates (or droplets when in the liquid or semi-liquid state) are used in 

a wide range of manufacturing processes to produce structural and functional components. 

These processes include sintering (of many different types such as field assisted sintering, 

spark plasma sintering, hot isostatic pressing, etc.), metal injection moulding, additive 

manufacturing techniques using lasers, electron beams and other heat sources, thermal 

spraying to produce coatings, and spray forming to produce bulk preforms. At some point 

in all of these processes, the powders are subjected to one or more rapid heating and 

cooling cycles, either in the solid-state (tens of seconds up to hours) to increase diffusion 

rates that facilitates the consolidation of a powder mass during sintering, or briefly in the 

liquid state (milliseconds to a few seconds) so the powders mix to some extent, and fuse 

together. In both cases, the elevated temperature excursion is a key part of the forming 

stage of the powders into the required component shape. In many metal powder based 

additive manufacturing processes, especially when a laser is used as the heating source, 

the metal powders are often subjected to many cycles of heating and cooling at rates of 

10 to 104 K s-1 [1, 2] before the component is fully formed. Most of the understanding of 

the microstructural changes that take place in those processes has been obtained from 

studying materials after the processing is complete, which has already experienced many 

heating/cooling cycles or long time exposure to high temperature [3-9]. Clearly, to fully 

understand the microstructural evolution of the powders that are subjected to many 
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heating/cooling cycles, the very important first step is to quantify and understand what is 

happening during a single heating/cooling cycle. Unfortunately, there are hardly any 

systematic studies in open literatures that report the rapid microstructural changes in a 

single rapid heating/cooling cycle (in the range of seconds and/or tens of seconds) for 

powders that are subject to a range of characteristic temperatures, such as temperatures 

around the solvus, solidus temperature, etc. This is the regime that encompasses many 

rapid materials sintering techniques, some types of additive manufacture and spray 

forming [10-14]. For example, in the many variants of additive manufacture of alloy 

powders, the initial transient heating experienced by powders under a laser or electron 

beam may reach ~104 K s-1, followed by many subsequent cycles (of progressively lower 

severity) as the scanning heat source returns to the same region after each application of 

another layer of powders, every few seconds depending on the programmed beam path 

[10].  

The dynamics of microstructural change are important because increasingly in these 

powder-based processes, conditions are manipulated to try and minimise microstructural 

change or coarsening since the powders often have attractive features (refined grains and 

secondary phases, metastable phases, low levels of elemental segregation, etc.) that are 

beneficial if retained into the bulk component.  

 

In this paper, we study the rapid microstructural change of atomised Ni superalloy 

powders during a single rapid heating and cooling cycle (~500 K s-1) with a short (~10 s) 

high temperature holding time. The holding temperatures selected are the key 

characteristic temperatures for the alloy, i.e. around (above or below) the solvus and 

solidus temperatures. A Gleeble 3500 thermomechanical simulator was used because it 
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can control precisely the heating rates, the targeted temperatures and holding times [15]. 

A finite element (FE) based model of heat flow in the Gleeble apparatus and the powder 

compact was also developed to simulate the powder compact internal temperatures, which 

were otherwise unavailable. The powder microstructures were investigated by various 

microscopies, including electron microprobe microanalysis (EPMA) and electron back-

scatter diffraction (EBSD) for elemental segregation and grain morphology changes, 

respectively. The novelty of this paper is that the relationships between rapid 

microstructural evolution in tens of seconds at temperatures from below the solvus to 

above the solidus temperatures are quantified for the first time for the Ni superalloy 

studied. Furthermore, the upper limit of temperature and time to retain the desirable fine-

scale microstructural features of the powders are also identified, which may provide 

general guidance for other similar alloys. 

 

2. Materials and experiments 

Ni superalloy with a composition of Ni-20.2Co-12.9Cr-2.0W-3.9Mo-2.3Ta-3.5Al-3.7Ti-

0.03B-0.05Zr-0.13Fe-1.0Nb-0.02C (wt.%) was prepared by vacuum induction melting 

(VIM). The alloy composition was based on the ME3 and low solvus high-refractory 

(LSHR) alloys - the 3rd generation Ni-based disk superalloys. The alloy was gas atomised 

using a close-coupled gas atomiser and high purity Ar at a gas pressure of 3 MPa. The 

melt temperature was 1760 K and the average metal flow rate was 25 kg min-1. The 

atomised powders were sieved and powders from the 63 - 100 μm diameter interval 

(encompassing the typical mass mean diameter of gas atomised Ni superalloys) were 

canned under argon atmosphere into cylindrical 304 stainless steel cans (200 mm long, 

10 mm inner diameter and 1 mm wall thickness). The cans were evacuated at room 
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temperature to 1.0 × 10-3 Pa, sealed and hot isostatically pressed (HIP) at 1183 ± 10 K 

and 120 MPa for 2 hours. The HIP was an essential step in producing a coherent powder 

compact suitable for mounting in the Gleeble apparatus and applying rapid Joule heating, 

but the HIP temperature and time were deliberately much lower than those used for full 

consolidation (temperatures needed to achieve a fully dense Ni superalloy power compact 

during HIP are typically >1373 K). A low temperature minimised microstructural change 

but nonetheless resulted in a sufficiently coherent Ni superalloy powder compact with 

close powder contact. Fig. 1a shows a backscattered scanning electron microscopy (SEM) 

image (taken by using a Zeiss EVO 60 SEM) of part of the cross-section of a typical 

HIPed powder compact. The average porosity is 19.4% ± 4.4% determined by the 

analyses of multiple SEM images using the open source software ImageJ. 

 

Fig. 1b shows the cross-sections of the deeply etched as-atomised powders prior to 

canning. The powders exhibit fine-scale dendritic structures (the typical secondary 

dendrite arm spacing is in the range of 1 – 5 µm) with the inter-dendritic contrast provided 

by the distinct micro-segregation (see later). Similar cross-sections of the powders after 

the HIP process in Fig. 1c show that while the relatively low temperature HIP conditions 

had restricted coarsening, there was nonetheless a morphological change as the dendrites 

became more rounded.  

 

The HIPed cans were cut into 50 mm long sections and clamped into the Cu grips of a 

Gleeble 3500 thermomechanical simulator. Direct current (DC) was discharged into the 

specimen through the Cu grips, generating Joule heating in the powder compact. A rapid 

increase in temperature to a pre-defined isothermal holding temperature was controlled 
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by a K-type thermocouple welded onto the external surface of the can mid-way along its 

length (Fig. 2a). In order to select the targeted isothermal holding temperatures (Table 1) 

below and above the alloy ' solvus and solidus temperatures, differential scanning 

calorimetry (DSC) investigations of the powders were carried out in a Netzsch 409C DSC 

operated at a heating rate of 0.17 K s-1 under a circulating Ar atmosphere. From a typical 

DSC heating cycle shown in Fig. 2b, the alloy ' solvus temperature (T	ᇲ ), incipient 

melting temperature (TIM) and liquidus temperature (TL) were determined as 1428 K, 

1483 K and 1612 K, respectively. The dissolution temperature of the ' precipitates in the 

DSC can be expected to differ from that during rapid Joule heating. Soucail and Bienvenu 

[16] studied the variation of T	ᇲ  for heat-treated Ar atomised Astroloy powders when 

subjected to Joule heating at different heating rates using a Smitweld simulator, showing 

that T	ᇲ  was dependent on both the heating rate and initial precipitate size. T	ᇲ  for 

powders with fine ' precipitates of an initial size of 0.05 μm increased by ~12 K when 

the heating rate was increased from 8 K s-1 to 300 K s-1 using a holding time of only 0.5 

s, but changed little with higher heating rates. In the present study, precipitates (including 

') actually started to form in the powders during the HIP process, moving the alloy phase 

fractions closer to equilibrium [17, 18]. Therefore, while some difference in T	ᇲ  from 

DSC measurements and during Joule heating and holding for 10 s of HIPed powders can 

be expected, it was likely less than the 12 K measured for the atomised powders over 

much shorter timescales.  

 

After reaching the target temperature and holding for ~10 s, the electric current flow was 

terminated and the specimens were quenched to room temperature via the water-cooled 

Cu grip/Gleeble apparatus steel frame. Fig. 3a shows the overall experimental 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



    7 

arrangement and Fig. 3b shows a schematic of a cross-section of the specimen and Cu 

grip arrangement. 

 

Although the thermocouple welded at the can surface was essential for controlling the  

heating and holding cycle, significant differences between the temperature on the can 

surface and that of the powders inside the can are expected. Therefore, as described later, 

a numerical model to simulate the transient heat flow for the entire arrangement 

(including the grip, can and powders) was constructed and then used to calculate the 

temperatures at the centre of the powder compact. 

 

Table 1: The isothermal holding temperatures and times for the powder compacts. 

Experiment case 

Holding temperature (K) 
Can surface temperature; 
(The modelled temperature at the 
centre of the powder compact) 

Holding time (s) 

T1 1373 (1390) 10 
T2 1423 (1441) 10 
T3 1473 (1495) 8 
T4 1523 (1549) 10 

 

The HIPed and rapidly heated specimens were cut at the mid-length (at the thermocouple 

position) and subsequently polished and etched using a solution of HCl (50 vol. %) + 

H2O2 (50 vol.%) for microstructure and elemental mapping analyses using SEM (Zeiss 

EVO 60), EBSD (JEOL JSM-6480) and EPMA (JEOL JXA-8800). Changes in grain 

morphology and size were investigated qualitatively in the SEM and quantitatively by 

EBSD respectively. For the polygonal grains, the grain size (D) of each sample was 

measured using the mean intercept length method assuming spherical grains [19]. At least 

~200 grains were counted for each sample to obtain sufficient statistics.  
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 D  = K 
L

N
  (1) 

where K  = 1.5 is a proportionality constant for spherical grains [20], L is the summation 

of chord length intercepting the grains and N is the number of grain boundary intercepts 

along the line. Grain sizes were also obtained from the EBSD orientation maps whenever 

possible, giving excellent agreements with the linear intercept measurements. 

 

3. Model development 

With reference to Fig. 3b, a 2D axis-symmetrical model for the heat flow in the 

grip/can/powder compact arrangement was constructed using the commercial, general 

purpose FE software Comsol Multiphysics. 

 

The electrical potential field generated by the DC current passing through the specimen 

is governed by the equations: 

‐ = J ∙ ׏ 
∂ρv

∂t
 (2) 

 J = ‐	σ ׏E (3) 

where J is the electrical current density vector, ρv is the electric charge density, t is time, 

 σ is the electrical conductivity and E is the electrical potential. 

 

The electrical potential distribution between the Gleeble Cu grips was simulated by 

prescribing E = 0 along the surface of the low electrical potential grip and an input current 

density (Jin) along the surface of the high electrical potential grip as indicated in Fig. 

3b.	Jin was given by: 
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 - J	·	n  = Jin  (4) 

where n is the local outward unit normal vector. Jin represents the energy input to the 

can/powder compact arrangement and thus has a dominant effect on all calculated 

temperatures, and was unavailable experimentally. Therefore, best-fitting of the 

calculated surface temperature profiles to the experimental profiles measured from the 

can surface at mid-length was used initially to estimate Jin at each incremental time step 

when the model was run to compute the transient heat flow. Although this approach 

restricted the broader applicability of the model, because the model could only be applied 

for conditions in which experimental data existed, it had the significant advantage that it 

eliminated the need for complex and probably inaccurate assumptions. For example, how 

much is the electrical contact resistance between the Ni superalloy powder compact and 

the Cu grip ? This restriction was acceptable in the context of the present work since the 

key information required was the internal temperature distribution at the mid-length of 

the can where the maximum temperature was achieved and from where microstructure 

analyses were performed.  

 

The temperature distribution in the powder compact and the can in 2D axis-symmetrical 

cylindrical polar coordinates (z, r) was governed by the heat flow equation: 

  ρC
∂T

∂t
= 

1

r
൤

∂

∂z
൬λ·r

∂T

∂z
൰+ 

∂

∂r
൬λ·r

∂T

∂r
൰൨+ ρLf ቆ

∂fS
∂T

·
∂T

∂t
ቇ+ QV	 (5) 

where ρ is the density, C is the specific heat capacity, T is the temperature, z is the axial 

coordinate, r is the radial coordinate, λ is the thermal conductivity, Lf is the latent heat, fS 

is the alloy solid fraction and QV ൌ J	2/	ߪ is the heat source term due to the current flux.  
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To account for any latent heat of melting, an alloy effective heat capacity (Ceff) was 

defined as:  

 Ceff = C - Lf ቆ
∂fS
∂T
ቇ	 (6) 

The volume fractions of the alloy liquid and solid phases during solidification were given 

by the Scheil function: 

 (1-fS) = ൬
T - TS

TL - TS
൰
ቀ	 1

1-k	ቁ

	 (7) 

where TS and TL	are the solidus and liquids temperature of the alloy respectively and ݇ = 

0.38 is the partition coefficient obtained by best-fit of Equation (7) to the DSC data 

between the solidus and liquidus temperatures. The Scheil approach was employed 

because it had been shown to yield reasonable estimates of the liquid fraction during 

solidification for a number of Ni-based superalloys [21].  

 

Fig. 4a shows the electrical conductivity of the Ni superalloy and stainless steel can as a 

function of temperature used in the model taken from [22] and [23], respectively. Because 

electrical conductivity as a function of temperature was not available for this alloy, the 

temperature-dependent electrical conductivity data of IN718 (up to 1700 K) was used 

here, which had previously been shown to be similar to that of the Waspaloy [24]. The 

composition of the Waspaloy is close to the alloy used in this research.  

 

Because the powder compact within the can was porous, the effect of porosity on the 

transport properties i.e. the thermal and electrical conductivity of the HIPed powders had 

to be taken into account. Carson et al. [25] studied the effective conductivity of porous 

materials and showed that the conductivity of materials with internal porosity (e.g. for a 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



    11 

powder compact) are within the Hashin-Shtrikman (H-S) and effective medium theory 

(EMT) bounds. Fig. 4b shows the effective electrical conductivity (σP) bounds calculated 

using the H-S bound in the Maxwell–Eucken model [26]: 

 	
σP

σ
ൌ		

2σ +	σair- 2(σ-σair) P

2σ +	σair+ (σ-σair) P
 (8) 

and EMT [27]: 

 (1 െ Pሻ
σ-σP

σ + 2σP
൅ 	P

σair-σP

σair + 2σP
ൌ 0 (9) 

where ܲ is porosity (=19.4%) and the electrical conductivity of air (σair) was assumed for 

the porosity. The differences between the H-S and EMT bounds are relatively small when 

porosity is <20% and thus, σP used in the model was averaged from the bounds at  ܲ = 

0.194.  

 

The temperature-dependent thermal conductivity and heat capacity of the alloy during 

solidification were determined by the rule-of-mixtures [11, 28]: 

	LߣS + fLߣfS = ߣ  (10) 

 C = fSCS + fLCL (11) 

 Ceff = C + Lf ቆ
∂fL
∂T
ቇ= fSCS + fLCL + ቎ቆ

1

൫1-kp൯(TL - TS)
ቇ ൬

T - TS

TL - TS
൰

k
1-k
቏ Lf (12) 

where subscripts “S” and “L” refer to the solid and liquid, respectively and fL is the alloy 

liquid fraction.  

 

Since inter-dendritic regions and grain boundaries are the last regions to freeze during the 

solidification of the atomised powders (relatively enriched in some of the alloying 
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elements that preferentially segregate to the liquid, see Fig. 1b), they can be expected to 

be the first regions to melt (incipient melting) during re-heating and coarsening 

accelerated in the presence of liquid at grain boundaries [3]. Sintering rates can also be 

expected to accelerate once liquid is formed, as is well-known from liquid phase sintering 

studies. Although sintering will give rise to shrinkage of the powder compact, due to the 

very short high temperature holding times and the added significant complexity, 

shrinkage effects were ignored in the model. 

 

Fig. 5a shows the calculated Ni superalloy liquid fraction using the best-fit value of k = 

0.38 and Eq. 7 with the incipient melting point assumed from the DSC data as the solidus 

temperature TS  = 1483 K and TL  = 1612 K, while Figs. 5b and 5c show the thermal 

conductivity and the effective heat capacity over the temperature range of 1100-1700 K 

from Eq.10 and 12 respectively. Other thermo-physical and electrical properties used in 

the model are shown in Table 2, based on ME3 and LSHR wherever possible, or IN718 

where data was unavailable. Actually, the differences in thermo-physical properties of 

Ni-based alloys with slightly different compositions are relatively small. A convective 

heat flux boundary was applied at the can surface. The rate of the heat loss due to 

convection per unit area (Qሶ con) is given by: 

 Qሶ con= h ሺ T - Tamb ሻ (13) 

where h = 15 W m-2 K-1 is the convective heat transfer coefficient, and Tamb is the ambient 

temperature. The heat transfer from the Cu grips to the water cooled steel frame (Fig. 3b) 

was controlled by a similar expression to Eq. 13, with an interfacial heat transfer 

coefficient of h  = 200 W m-2 K-1. Heat transfer coefficients were chosen based on 

previous work and numerical simulations (see below). 
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The rate of radiative heat loss per unit area (Qሶ rad) from the heated can surface was given 

by: 

 Qሶ rad= σSB · ε ( T4- Tamb
4  ) (14) 

where σSB is the Stefan-Boltzmann constant, and 0.65 = ߝ is the emissivity for steel [29]. 

 

Table 2: Thermophysical and electrical properties of the Ni superalloy [22, 30-33], 

stainless steel can [23] and the Cu grips [34]. 

Material Ni superalloy Stainless steel Cu 

ρ (kg m-3) 
-1.42 × 10-4 × T2 - 
0.12 × T + 8336 

-5.15 × 10-5 × T2 – 0.36 
× T + 8020 

8700 

Ceff (J  kg-

1 K-1) 

293 K < T < TS 0.1496 × T + 392.04 
5.77× 10-7 × T3 - 1.38 × 
10-3 × T2 + 1.21× T + 
206 

385 

T = TS 652.7 - - 

TS < T < TL  C + Lf ቆ
∂fL
∂T
ቇ - - 

T ≥ TL  720 - - 

λ (W m-1 
K-1) 

293 K < T < TS 0.0153 × T + 4.91 
-2.13 × 10-6 × T2 + 
0.0176 × T + 9.84 

400 

TS 29.4 - - 
TS < T < TL fSλS + fLλL 
T > TL 23.4 - - 

Lf (kJ kg-1) 256 -  - 

σ (S m-1) 
293 K < T ≤ TS 

0.11 × T2 - 239.12 × T 
+ 0.87 × 106 

-4.22 × 10-4 × T3 + 1.63 
× T2 - 2260 × T + 1.93 × 
106 

-9.91 × 10-2 × T3 + 
289 × T2 - 2.96 × 
105 × T + 1.21× 108 

TS < T < TL 
7.06 × 10-2 × T2 - 283 
× T + 1.01 × 106 

- - 

 

The powder-can interface was assumed to be perfectly conductive, i.e. the thermal contact 

resistance at the interface was assumed to be zero. This is justified because the 

microstructural examination of the powder-can interface after HIPing showed that the Ni 

alloy powders diffusion-bonded closely to the stainless steel can inner surface (Fig. 1a). 

A similar assumption was also made for the Cu grip-can interface. It is noteworthy that 

the uncertainty in the thermal contact resistance at the Cu grip-can interface does not 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



    14 

affect the validity of the simulated temperature distribution in the mid-length region of 

the specimen where the highest temperature was achieved and where microstructure 

analyses were performed. 

 

4. Results and discussion 

4.1 Specimen thermal history and validation 

Fig. 6a shows the measured and simulated specimen surface temperatures at the 

thermocouple measurement point as a function of time when heated to different 

isothermal holding temperatures. As described earlier, with all other parameters fixed in 

the heat flow simulation, the electric current fluxes were tuned in the simulation to 

achieve the best match between the simulated and the measured temperature profile for 

each case. For example, Fig. 6b shows the simulated temperature distribution across the 

powder compact cross-section for the T2 case immediately before cooling. The hottest 

region was at the mid-point of the length of the specimen, with temperature gradients 

along both the axial and radial directions. 

 

The simulated axial temperature gradient existed because of the current density 

distribution in the axial (Fig. 7a) direction during heating. The current density was the 

highest (up to ~33.1 MA m-2) at the mid-point of the specimen in the axial direction, 

resulting in the highest temperature in this region (Fig. 7b) under all conditions. Radial 

temperature gradients also existed due to heat loss from the specimen surface (Fig. 7c). 

The difference between the simulated maximum temperature in the central region of the 

specimen (Tcentre) and the temperature at the can surface (Tsurface) increased proportionally 

with the increase of the isothermal heat treatment temperature, as shown in Fig. 7d, i.e. 
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the temperature difference became larger as the target temperature increased. For the case 

of T1 , the Ni superalloy powder compact in the central region reached a maximum 

temperature of ~1390 K. While for T2, the powders were heated to ~1441 K (13 K above 

T	ᇲ). For T3, the powders were heated to ~1495 K (12 K above TIM) and a maximum 

temperature of ~1549 K (fL = 0.51) was reached for T4. The temperature gradients from 

the specimen mid-point were 2.7 – 4.3 K mm-1 and 52 – 59 K mm-1 in the radial and axial 

directions respectively, as shown in Figs. 7e and f. The radial temperature gradient was 

calculated from the specimen mid-point to the can surface, while the axial temperature 

gradient was determined from the specimen mid-point to the temperature plateau region 

at ~5 mm or ~45 mm along the central axis.  

 

4.2 Microstructural change  

Figs. 8a and b show the microstructures of the powders after HIP and heat treatment at 

T1 =1390 K (T1 to T4 are now the simulated temperatures at the centre of the powder 

compact rather than surface temperatures measured from the thermocouple, as clearly 

shown in Table 1). For the case T1, there was no significant change in the as-HIPed 

microstructure, with the remnants of the dendritic microstructure of the gas atomised 

powders retained after the low temperature HIP. For the case T2, the powders in the 

central region reached 1441 K (just above the T	ᇲ) in Fig. 8c, the relatively fine-scale 

primary -Ni dendrites transformed to polygonal, more equiaxed grains; and grain growth 

occurred even over a period of just 10 s. Residual dendritic structures co-existed with the 

newly formed equiaxed grains. For the case T3 (12 K above TIM) in Fig. 8d, the transition 

from the as-solidified fine-scale dendritic structures to equiaxed grains was complete in 

8 s or less; and grain growth and coalescence were widespread. This is a very important 
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finding, and it defines the lower temperature limit and the higher temperature limit that 

can be used in powder consolidation processes to maintain the beneficial microstructures 

of the original powders in a relative short period of high temperature exposure, i.e. the 

processing temperature has to be operated between the ' solvus temperature and the 

incipient melting temperature with a tolerance of about 12 degree centigrade. This is very 

useful for powder sintering or powder HIPing processes where normally the processing 

temperatures used are well below the alloy incipient melting temperature, and hence very 

long holding time (many hours). This study demonstrates that the desired microstructures 

can be realised with much shorter processing time by applying a carefully designed higher 

temperature between the ' solvus temperature and near or even slightly above the 

incipient melting temperature. For the highest heating case (T4 =1549 K) in Fig. 8e where 

melting was expected, any residual prior particle boundaries (PPBs) associated with the 

original powders had melted and a significantly more consolidated compact was formed, 

with a near-fully equiaxed, coarsened microstructure and newly formed porosity from the 

liquid. Dendritic structures now had a primary spacing in the 10 to 20 µm range.  

 

The grain size as a function of the holding temperature is shown in Fig. 8f, where the 

mean linear intercept estimates gave good agreement with the EBSD measurement. There 

was only slight coarsening (~2 μm) below the alloy ' solvus temperature, although 

absolute measurements of grain size by either technique in this regime were questionable 

since the fine-scale dendrite morphologies were far from spheroidal. Significant grain 

coarsening occurred when the powders were heated to just above the alloy ' solvus 

temperature, with a near doubling in grain size. The relatively slight grain coarsening 

below the ' solvus and much faster growth above the solvus suggested that even if 
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precipitation was relatively restricted during the HIP partial consolidation step, it was 

nonetheless sufficient to provide some grain morphology/size stabilisation (at least over 

short timescales). However, once dissolved, significant morphological changes and grain 

coarsening rapidly took place. As shown in Fig 8f, grain sizes increased more 

dramatically around the incipient melting temperature.  

 

Backscatter electron images in Figs. 9a to c for as-HIPed, T2 and T4 heat-treated powders, 

and the corresponding EBSD orientation maps in Figs. 9d to f, underline the rapid 

transition from the as-solidified fine-scale columnar dendritic structure to the coarser 

polygonal, equiaxed grains. The spheroidisation of the dendritic structure cannot be de-

convoluted from coarsening, both of which occurred in a number of seconds once 

temperatures beyond the alloy ' solvus and incipient melting point were achieved.  

 

The corresponding EPMA maps for Ti, W, Ta and Nb in Figs. 9g to i for as-HIPed, T2 

and T4 heat treated powders, taken from the red boxed regions, are shown in Figs. 9a to 

c. In the as-HIPed condition, the Ti, W, Ta and Nb maps showed micro-segregation into 

the inter-dendritic or dendritic regions, over length-scales of a few µm: Ti, Ta and Nb 

segregated into the inter-dendritic channels (binary partition coefficient with Ni < 1), W 

segregated to the primary -Ni dendritic core region (binary partition coefficient with Ni > 

1), and consistent with other work [35]. The zig-zag grains boundaries in Fig. 9a support 

the earlier inference of some limited precipitation in the low temperature HIP process, 

and the subsequent Joule heating cycle, was sufficient to provide a certain degree of grain 

morphology stabilisation by the Zener pinning effects. The element maps show that while 

some of the inter-dendritic solidification micro-segregation was likely reduced by HIPing 
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(acting as a homogenisation heat treatment), diffusion rates of these elements were too 

slow to eradicate the solidification micro-segregation entirely. In contrast, following a 

rapid heat treatment to a higher temperature at T2 , significant homogenisation of the 

microstructure occurred, due to faster solid-state diffusion in the localised regions and 

any incipient grain boundary melting in the regions of particularly strong micro-

segregation that provided a homogenising effect as liquid solute-rich regions mixed with 

solvent Ni-rich regions, although a “trace” of the starting elemental segregation was 

retained within the new, largely equiaxed microstructures. It is reasonable to assume that 

at T2 it is primarily the rapid dissolution of the ' (and possibly very fine MC-carbides not 

resolved in these techniques) and the loss of its grain stabilising effects that leads to the 

rapid grain spheroidisation and growth. 

 

At T4, the extent of re-melting was significantly greater so that any benefits of the fine-

scale dendritic structures, the short diffusion distances, and a microstructural scale 

constrained to the powder diameter were entirely lost - the powder compact re-solidified 

as a single bulky material. Although some solid remained at T4, and again spheroidised 

and coarsened, the re-solidification of the integral, relatively dense powder mass was 

comparatively slow so that a relatively coarse cellular/dendritic structure and significant 

inter-cellular micro-segregation resulted. As shown in the EMPA maps, micro-

segregation now led to the formation of distinct, comparatively coarse Ti, Ta and Nb-rich 

particles, which were most likely MC carbides [35, 36] in the inter-dendritic regions. The 

dendritic arm spacing of the newly formed dendrites was nearly an order of magnitude 

larger than of the original powders because of the relatively slow cooling rate of the now 

integrated, coherent and comparatively large powder compact. Overall the benefits of the 
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rapidly solidified powder microstructure were largely lost at T4 (51% liquid fraction). 

Again the finding here is very relevant to the layer-by-layer processing techniques or, in 

general, the powder-based additive manufacturing techniques involving the remelting of 

metal powders. If the remelting temperature applied is approaching or above 50% of 

liquid fraction when a layer is added on top of the other even in a time scale of ~10 s, 

generally, the beneficial fine microstructures of the original powders will be completely 

lost and microsegregation occurs. Subsequently appropriate thermomechanical 

processing methods are needed to regain the desired microstructures, if needed.       

 

In summary, even over short timescales of a few seconds, the presence of a minority 

fraction of liquid in the microstructure of powders has a profound effect on microstructure: 

this can be advantageous if homogenisation and faster consolidation are desired, but 

should be avoided if retaining the fine-scale microsegregation, grains and precipitates 

associated with rapidly solidified powders is important. In the case of Ni superalloys, the 

temperature interval between the solvus and solidus offers a compromise, allowing 

homogenisation of inter-dendritic micro-segregation, without excessive grain or carbide 

coarsening.  

 

5. Conclusions 

Rapid microstructural changes of gas atomised Ni superalloy powders were studied using 

a Gleeble 3500 thermomechanical simulator and finite element numerical model. 

Microstructural characterisation using SEM, EPMA and EBSD methods showed that 

temperature played a critical role in controlling the extent of microstructural evolution in 

the powders. At a temperature below the ' solvus temperature, the powders maintained 
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the original dendritic structure. Above the ' solvus temperature, grain spheroidisation 

and coarsening occurred rapidly. Once the temperature was above the incipient melting 

temperature of the segregated inter-dendritic regions, dramatic grain coarsening occurred. 

Consequently, the original dendritic microstructures with a characteristic length-scale 

restricted to the powder diameter disappeared. At a temperature of 1549 K (~0.51 liquid 

fraction), the powders were agglomerated with fast consolidation, and re-solidified as a 

coherent larger volume at a slower cooling rate and with a coarser cellular/dendritic 

structures and significant, coarser scale micro-segregation. The findings provide a more 

quantitative understanding of the relationship between thermal history and microstructure 

in powder processed components subject to short, severe thermal excursions, and give 

guidance on the upper limits of temperature and time that can be used in powder based-

material processes if desirable microstructural features of the powders are to be preserved 

into the bulk. 
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Fig. 1. (a) A backscattered electron image of the HIPed Ni superalloy powders in the 

stainless steel can (figure inset). (b) The microstructure of the deeply etched as-atomised 

powders, and (c) the microstructure of the powders after HIP at 1183 K and 120MPa for 

2 hours. 
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Fig. 2. (a) The measured temperature profiles at the stainless steel can surface. The 

temperature measurement position is marked by the red cross in the inset figure. (b) The 

measured γ' solvus, incipient melting and liquidus temperatures of the Ni superalloy 

powders determined by using DSC. 
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Fig. 3. (a) A general overview of the Gleeble rapid heating/cooling experimental 

arrangement. (b) A schematic of the cross-section of the experimental arrangement, 

showing the location of the thermocouple (TC), the boundary conditions, and 

assumptions used in the finite element heat flow model. 
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Fig. 4. (a) The electrical conductivity of the Ni superalloy and stainless steel as a function 

of temperature taken from [22] and [23], respectively. (b) The Hashin-Shtrikman (H-S) 

and effective medium theory (EMT) bounds of the effective electrical conductivity as a 

function of porosity. 
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Fig. 5. The calculated Ni superalloy (a) liquid fraction, (b) thermal conductivity and (c) 

effective heat capacity as a function of temperature. The measured data are marked by ×. 
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Fig. 6. (a) The measured and simulated specimen surface temperatures at the 

thermocouple measurement point for the four cases (T1, T2, T3 and T4 ). (b) The simulated 

specimen cross-sectional temperature distribution for the T2  case immediately before 

cooling. 
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Fig. 7. (a) The specimen axial current density distribution, (b) axial temperature 

distribution, (c) radial temperature distribution, (d) difference between the maximum 

temperature in the central region of the specimen (Tcentre) and the temperature at the can 

surface (Tsurface) for the four cases, (e) radial temperature gradient as a function of the 

target heating temperature and (f) axial temperature gradient as a function of the target 

heating temperature. 
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Fig. 8. The microstructures of the Ni superalloy powders in the central region of the 

specimen after (a) HIP (dendritic structure), thermally shocked to the temperatures of (b) 

T1  (dendritic structure), (c) T2  (dendritic and equiaxed structure), (d) T3  (equiaxed 

structure), and (e) T4 (equiaxed structure with newly formed porosity). (f) The grain size 

measured with respect to the simulated temperature in the central region of the specimen 

for the four cases. A uniform specimen temperature distribution during HIP was assumed. 
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Fig. 9. The SEM micrographs of the (a) HIPed and (b), (c) rapidly heated Ni superalloy 

powders to T2 and T4 respectively, (d-f) the corresponding EBSD orientation maps, and 

(g-i) the corresponding EPMA maps for Ti, W, Ta and Nb from the red bounded box 

regions marked in the SEM images. 
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