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Abstract 

Offshore wind farms form an important part of many countries strategy for 

responding to the threat of climate change but their development can conflict with 

other offshore activities.  Static gear fisheries targeting sedentary benthic species 

are particularly affected by spatial management that involves exclusion of 

fishers.  Here we investigate the ecological effect of a short-term closure of a 

European lobster (Homarus gammarus (L.)) fishing ground, facilitated by the 

development of the Westermost Rough offshore wind farm located on the north-

east coast of the United Kingdom. We also investigate the effects on the population 

when the site is reopened on completion of the construction.  We find that temporary 

closure offers some respite for adult animals and leads to increases in abundance 

and size of the target species in that area. Reopening of the site to fishing 

exploitation saw a decrease in catch rates and size structure, this did not reach 

levels below that of the surrounding area. Opening the site to exploitation also 

allows the fishery to recuperate some of the economic loss during the closure.  We 

suggest that our results may indicate that temporary closures of selected areas may 

be beneficial and offer a management option for lobster fisheries. 

Keywords: crustacean fisheries, offshore wind energy, rotational harvest, spatial 

management, static gear, temporary closure. 
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Introduction 1 

Globally there has been an increase in energy provided from the wind industry, 2 

surpassing 63 GW in 2015, an 18% increase since 2014 (Global Wind Energy 3 

Council, 2015). Wind energy developments are often the most used tool by national 4 

governments to meet their energy demands from renewable sources, seeing an 5 

increase in offshore wind developments in recent years. Offshore wind 6 

developments are often located to exploit the optimum wind energy and be able to 7 

transmit the energy to shore. For example, the United States is estimated to have a 8 

4000 GW capacity for wind energy (US Department of Energy 2012). The 9 

development of offshore wind farms can cause spatial conflicts with other sea users. 10 

For example, the eastern sea board of the US is prime location for both offshore 11 

wind energy and nationally important crustacean fisheries (Breton and Moe 2009, 12 

Brehme et al., 2015;). Co-location of marine users and spatial management of 13 

resources is being observed in the UK; one of the world leaders in offshore wind 14 

exploitation (Hooper and Austen, 2014, Kota et al., 2015). 15 

UK government has a target of 15% of its energy from renewable sources by 2020 16 

(European Commission, 2016). There are currently 25 offshore wind farms (OWF) 17 

operational or under construction within UK waters currently providing 18 

approximately 5% of the UK demand with a further 16 with development consent, 19 

(Crown Estates, 2017). There has been a steady increase in research into the 20 

impacts of OWF on the marine ecosystem. This increase in literature is largely 21 

review-based with the few empirical studies available, not being able to give a 22 

reliable assessment of the cumulative impact of offshore wind development 23 

(Lindeboom et al., 2015). The current empirical studies have largely focussed on 24 

the impact to seabird interactions (15 out of 78 publications reviewed by Hooper et 25 
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al., (2017), marine mammals (Madsen et al., 2006, Thomsen et al., 2008, Bailey et 26 

al., 2010, Brandt et al., 2011), substrate and infauna disturbance (De Backer et al., 27 

2014, Coates et al., 2014,Vandendriessche et al., 2015) and fish populations 28 

(Wahlberg and Westerberg 2005, De Troch et al., 2013, Bergman et al., 2014, 29 

Stenberg et al., 2015). Most empirical studies investigating effects on macrobenthic 30 

crustaceans form part of an environmental impact assessment or statutory 31 

monitoring programmes. 32 

To date the majority of OWF constructed in European waters are located in shallow 33 

water (typically less than 30 m) on sand based substrates. The introduction of 34 

individual turbines and associated stone protection (used to protect monopole 35 

bases from sand scour), can introduce a new hard substrate habitat to an area. This 36 

can increase shelter and hard substrate habitat in areas that it may not have 37 

previously existed. This introduced habitat has been found to increase biodiversity 38 

and biomass of associated fauna in some areas (Lindeboom et al., 2011, De Backer 39 

et al., 2014, Stenberg et al., 2015). Krone et al., (2017) observed over 5000 Cancer 40 

pagurus on individual monopoles with scour stone protection, which was more than 41 

double that found on monopoles without scour stone protection. However, this was 42 

observed in areas characterised by sandy substrate, the effect of scour stone 43 

protection on areas characterised by rock and cobble is yet to be understood. Using 44 

studies from sites that are not comparable to each other to understand effects of 45 

OWF installations can lead to misunderstanding of the processes involved 46 

(Lindeboom et al., 2015). 47 

OWF and individual turbines can act as fish aggregation devices, providing a refuge 48 

for fish species from predation and exploitation, although the effects can be spatially  49 

limited to the OWF (Griffin et al., 2016). An OWF can act as a quasi-marine 50 
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protected area (MPA) or no take zone (NTZ). This can be due to exclusion during 51 

construction or operation, to all fishing vessels or the physical presence of the 52 

turbines excluding certain gear types such as mobile gear (Bergman et al., 2014; 53 

Krone et al., 2017). There is potential for co-location of fisheries and OWF 54 

developments, however these are predominantly static fisheries (Christie et al., 55 

2014, Hooper and Austen 2014, Stelzenmüller et al., 2016). The effects of OWF on 56 

mobile benthic megafauna that are targeted by static gear fisheries are little 57 

understood (Hooper and Austen 2014; Lindeboom et al., 2015). The potential of 58 

spill-over effects of MPA/NTZ can be difficult to ascertain (Moland et al., 2013, 59 

Smyth et al., 2015, Vandendriessche et al., 2015), the temporal scale of studies can 60 

often not be of sufficient duration to observe the spill over.  However Goñi et 61 

al.,(2010) and Hoskin et al.,(2011) observed spill-over effects of different lobster 62 

populations within a closed area over a period of 10 and 4 years respectively. 63 

Homarus gammarus have been  shown to have  strong site fidelity and defined 64 

home ranges (Bannister and Addison, 1998; Smith et al., 1998; Moland et al., 2011) 65 

although there is a seasonal migration to deeper water during the colder months. 66 

Any spill-over effects of closed areas are likely to be only observed locally or during 67 

immigration/emigration from the site. The implementation of an MPA/NTZ has often 68 

been met with resistance by commercial fisheries. The potential for positive 69 

ecological and possible economic effects of closed areas are often met with 70 

scepticism from the fishing industry. This is due to the implementation of surveys 71 

not reflecting the way fishermen operate and the fact that data are not in the public 72 

domain (Hooper and Austen 2014, Hooper et al., 2015). 73 

The spill over effect can lead to the process of ‘fishing the line’, where fishing 74 

intensity is increased on the boundaries of a closed area (Kellner et al., 2007). 75 
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Spatial displacement of effort into another area can increase pressure on fisheries 76 

and lead to increased competition among fishers. This is especially the case in static 77 

gear fisheries where individual fishers can have a strong fidelity to specific sites 78 

(Hart et al., 2002, Turner et al., 2013). The implementation of closed areas can often 79 

be considered by industry and some in the scientific community to be conducted for 80 

political purposes as opposed to ecological. The use of MPA’s as a fisheries 81 

management tool should be treated as a rigorously designed experiment with 82 

accurate cost/benefit analysis (Kaiser 2005, Caveen et al., 2014). During 83 

construction of OWF the fishing industry are often excluded from the area for safety 84 

reasons; this can have a potential short-term positive effect on the local population 85 

due to the removal of fishing mortality. 86 

Here we investigate the short-term effects of construction of an OWF on a 87 

commercially exploited European Lobster (Homarus gammarus, Homaridae (L.) 88 

subsequently referred to as lobster) population. We also highlight the effects of 89 

reopening the site to exploitation on completion of the OWF construction and their 90 

use as a potential management tool. The study also highlighted the potential 91 

positive effects of the fishing industry engaging in research of OWF effects.  92 

Methodology 93 

Site Description 94 

The Holderness coast lobster fishery is the largest lobster fishery in the UK, 95 

representing approximately 20% of national lobster landings. Landings of European 96 

lobster, into the regions’ main port of Bridlington in 2015 were 405 tonnes with an 97 

estimated first sale value of £4.2 million (Marine Management Organisation 2015). 98 

The fishery in the area targets lobster almost exclusively using static creels 99 
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generally baited with mackerel. Creels are immersed for varying periods depending 100 

on the fisher, but generally 2 – 3 days. 101 

The Westermost Rough wind farm, constructed in 2014/15 at a cost of £800 million, 102 

and is located within the Holderness fishery, situated within one of the fisheries main 103 

target areas. The site was one of the first to be located on a rock and cobble 104 

substrate. The Westermost Rough OWF extends from 7.7 km off the coast to 13.3 105 

km offshore and is approximately 35 km2 in area (Figure 1). It consists of 35, 6 MW 106 

turbines and associated substation, located in a depth of water ranging from 15 - 23 107 

metres. The substrate is predominantly rock and cobble with sand patches, the area 108 

was subjected to boulder removal prior to the construction phase.  109 

The study was conducted using a fishing industry managed research vessel, the 110 

R.V. Huntress. The study was a collaboration between the local fishery; The 111 

Holderness Fishing Industry Group (www.hfig.org.uk) and the OWF developer, 112 

DONG Energy. 113 

Sampling Methods 114 

There were two sites chosen to assess the effects of the construction of the 115 

Westermost Rough OWF, one site in the OWF (treatment (subsequently referred to 116 

as the wind farm)) and a site to the north of the OWF (control) (Figure 1). The sites 117 

were restricted in their spatial distribution within the OWF due to the process of the 118 

construction of the OWF. The site was agreed with the developer as the area that 119 

could be surveyed without disruption to the sampling protocol. The control site was 120 

located 1 km to the north of the OWF. The prevailing current drifts north/south, any 121 

effects of the construction should not have been observed. This site was also 122 

selected due to the substrate reflecting that within the OWF. There were further 123 
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spatial restrictions of the control site due to displacement of fishing gear from the 124 

OWF to the surrounding area, care was taken to avoid gear conflict.  125 

Sampling strings consisting of 30 creels were deployed both within the wind farm 126 

and the control. The strings consisted of 25 standard commercial creels with a 70 127 

mm mesh and 96.5 cm base; and 5 creels with a 30 mm mesh and a 76.2 cm base.  128 

All creels were exempt from local byelaws ordering the use of escape gaps. The 129 

smaller mesh creels were used to sample catch that may escape the larger mesh 130 

creels. On every haul, each creel was baited with two mackerel ‘frames’, which are 131 

commonly used in the region to target lobsters. Each string was secured at either 132 

end with a 20 kg anchor and marked with a surface marker buoy. The gear 133 

configuration mirrored that of the commercial fishing strings in the area. 134 

A baseline survey was carried out prior to the wind farm construction, taking into 135 

account the spatial restrictions that were predicted once the construction began. 136 

The survey was timed to target the lobster fishery between June and September of 137 

2013, maintaining a mean immersion period of 3.0 days (s.d. +/- 1.34 days) and all 138 

creels from both the control and treatment were processed on every survey day (n 139 

= 24 hauls each site). Following the before/after, control/impact (BACI) approach 140 

(Carstensen et al., 2006, Hoskin et al., 2011, Moland et al., 2013, Vandendriessche 141 

et al., 2015) sampling was mirrored in June to September of 2015 for the first-year 142 

post build of the wind farm. The immersion period of the creels in 2015 was 3.9 days 143 

(s.d. +/- 2.1 days) and all creels from both the control and treatment were processed 144 

on every survey day (n = 23 hauls each site). Variation in immersion periods to the 145 

baseline survey was due to inclement weather. There was no survey during 2014 146 

as the site was under construction. 147 
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During the baseline survey of 2013 both the wind farm and control were subjected 148 

to fishing exploitation for the entire period. During construction, the wind farm was 149 

closed to fishing exploitation for a period of 20 months during 2014/15, until the 150 

middle of August 2015 (13/08/2015). This was part way through the 2015 sampling 151 

period, with 13 sample days when the site was closed and 11 sample days when 152 

the site was open to exploitation. For the entire survey periods in both 2013 and 153 

2015 there were no restrictions to fishing exploitation in the control site and the main 154 

management of effort in the area was based on minimum landing size (87 mm 155 

carapace length (CL)) of the catch. 156 

Abundance of lobster was recorded from each creel. Sex, condition, ovigerous 157 

status and size (CL) was recorded for the aggregated catch within each string. All 158 

animals were returned to sea after recording. The survey was timed and designed 159 

to assess the effects of the wind farm construction on the region’s most valuable 160 

fishery, this study reports lobster status only. 161 

Data Analysis 162 

Analysis was conducted on the overall differences in size and catch rates between 163 

the baseline (2013) and the first-year post build (2015). Because the previously 164 

closed site was re-opened to fishing during the 2015 sampling regime, analysis was 165 

also conducted on the status of the wind farm (open/closed to fishing exploitation).  166 

Size distribution 167 

Differences in size frequency for both between years and between statuses of the 168 

wind farm (open and closed) were analysed using the two-sample Kolmogorov 169 

Smirnov test.  Empirical cumulative distribution (ECDF) plots were generated to 170 

demonstrate the proportion of lobsters between the two sites that are less than each 171 
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observed length (Thomas et al., 2015). Generalised Linear Mixed Models  (GLMM) 172 

are used when the data are not normally distributed and when there is the potential 173 

for pseudo-replication (Zuur and Ieno, 2016).  Due to the limitations of survey sites, 174 

the size data not conforming to normality (Kolmogorov Smirnov, p < 0.05) and the 175 

variability in the number of lobsters sampled on each day (range = 13 – 137 (2013), 176 

44 – 179 (2015)), GLMM was deemed a more suitable analysis. We therefore 177 

applied a GLMM in which the relative catch probability of the lobsters entering the 178 

pots within each site was the response variable, carapace length (size) of lobster 179 

as the fixed effect and haul (survey day) was used as a crossed random intercept. 180 

A binomial error was applied due to the response variable being the relative catch 181 

probability of lobsters entering pots within each site. Sex, ovigerous status and 182 

condition of the lobsters were investigated as factors within the model but were 183 

rejected due to either insignificance (P > 0.05 (Sex and Condition)) or unsuitable 184 

factors to include (Ovigerous status). Soak time was investigated whether it should 185 

be included as an offset within the model. There was a poor relationship (R2 < 0.1 186 

on all occasions) between the daily abundance of lobsters within each string and 187 

the soak time they were subjected to. Soak time was also negated for the between 188 

sites comparison within the survey design, as both sites were subjected to the same 189 

soak time on all occasions. It was decided that soak time was not required to be 190 

offset within the GLMM. Therefore, the simplest model was the best description of 191 

the relative catch probability of lobsters of each size entering the strings/pots 192 

between the two sites/status of the wind farm (open/closed);  193 

Pr{
𝑇𝑒𝑠𝑡

𝑇𝑒𝑠𝑡 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙
} = 1/(1 + 𝑒 – (haul + β

1 
x length + β

2
 x length2)) 194 

 195 
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GLMM was applied using the lme4 package in R statistical software (Bates et al., 196 

2015). This follows an accepted methodology described by Holst and Revill, (2009), 197 

analysing differences in catch composition at length between tests and controls 198 

(Van Marlen et al., 2014; Vogel et al., 2017).   199 

Validation of each GLMM model was conducted checking that the normality of the 200 

standardised residuals conformed to a normal distribution (Shapiro Wilkes, p > 0.05) 201 

(Thomas et al., 2015) and also comparing the GLMM results to the 2-sample 202 

Kolmogorov Smirnov analysis. GLMM results were also presented graphically, 203 

allowing for inference as to where within the distribution the significance lay. 204 

Catch comparison 205 

Catch per unit of effort (CPUE) was determined as the total number of lobsters 206 

caught in a string (Davies et al., 2015). Landings per unit of effort (LPUE) was 207 

determined as the total number of lobsters per string that were above the minimum 208 

landing size (87 mm CL) and of a good enough quality (i.e. not missing limbs and 209 

no visible signs of disease) to be landed to market. The CPUE and LPUE data 210 

conformed to a normal distribution (Kolmogorov Smirnov, p > 0.05) but the 211 

variances could not be considered equal (F test, p < 0.05). A Welch’s t-test 212 

assuming unequal variances was applied to the CPUE and LPUE to analyse the 213 

differences in site, year and wind farm status (open/closed). 214 

  215 
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Results  216 

A total of 1440 creels (720 at each site) were hauled during the baseline data 217 

collection in 2013 (n = 24 survey days) recording 6051 lobsters. During the 2015 218 

post build survey (n = 23 survey days) 1380 creels (690 at each site) were hauled 219 

and 8734 lobsters were recorded.  220 

Size Distribution 221 

The size frequency distributions of lobsters differed significantly between the two 222 

years (Kolmogorov Smirnov, D = 0.10, p < 0.001). The windfarm in 2015 showed a 223 

larger proportion of lobsters at a larger size (>100mm CL) than sampled in 2013 224 

(Figure 2a & b), there was a greater proportion of lobsters from the MLS (87mm) – 225 

96 mm CL in sampled in 2013. There was a broader size range, 39 – 126 mm CL 226 

in 2015 as opposed to 56 – 114 mm CL in 2013. The empirical cumulative 227 

distribution function (ECDF) plot (Figure 2c) demonstrates that the greatest 228 

difference in distributions were between 75 & 92 mm CL. This was supported by the 229 

GLMM plot (Table 1, Figure 2d), which demonstrates that there was a greater 230 

proportion of lobsters sampled over 70 mm CL in 2015 than in 2013. 231 

During the wind farm closure in 2015 (prior to 13/08/2015) the size distribution of 232 

lobsters in the control site (Figure 3b) had a narrower distribution (39 -117 mm CL) 233 

than within the wind farm (40 – 126 mm CL) and there was generally a greater 234 

proportion of lobsters within the wind farm than within the control site (Figure 3a). 235 

The size distribution of lobsters within the wind farm was significantly different to 236 

both the control site (Kolmogorov Smirnov, D = 0.32, p = < 0.0001) and the baseline 237 

data (Kolmogorov Smirnov, D = 0.14, p < 0.0001) (Figure 3a & b). Although Figure 238 

3c shows that the size of lobsters within the wind farm (red) differed from the 239 
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baseline (black and grey) and the control (blue) between 60 – 107 mm CL, Figure 240 

3d shows that the distribution was split approximately at the MLS (vertical line). The 241 

graphical representation of the GLMM (Table 1) shows that there was a greater 242 

proportion of lobsters below the MLS in the control site and the inverse in the wind 243 

farm. 244 

There was a decline in the proportion of lobsters above MLS in the control site after 245 

the wind farm had been opened to fishing (Figure 4a) in comparison to the period 246 

when the wind farm was closed (Figure 3a) (Kolmogorov Smirnov, D = 0.07, p < 247 

0.05). This was also reflected within the wind farm site (Figure 3b & 4b) (Kolmogorov 248 

Smirnov, D = 0.28, p < 0.0001). The sampling period post opening of the wind farm 249 

to fishing demonstrated a greater proportion of lobsters within the wind farm in 250 

comparison to the control site (Kolmogorov Smirnov, D = 0.11, p < 0.0001). 251 

Although there was a difference in the cumulative distribution between the wind farm 252 

and the control site between 70 – 100 mm CL, both sites also showed a difference 253 

from the baseline data (Figure 4c). GLMM analysis (Table 1) shows that after 254 

opening of the site to fishing there was a greater proportion of lobsters below MLS 255 

in the control site as opposed to the wind farm (Figure 4d). There was no significant 256 

difference in the proportion of lobsters above MLS between the two sites post 257 

opening of the site. 258 

Catch and landings per unit of effort between years 259 

Mean CPUE (Table 2) was significantly greater in 2015 for both sites than in 2013 260 

(p < 0.01 (Table 4)), however did not differ significantly between control and wind 261 

farm within the same year (p > 0.05 (Table 4). Mean LPUE (Table 2) was also 262 

significantly greater in the wind farm in 2015 than 2013 and it was also significantly 263 

greater in the wind farm than the control site in the year 2015 (p < 0.01 (Table 4)). 264 
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The control site showed no significant difference in mean LPUE between sample 265 

years (p > 0.05 (Figure 5 & Table 4)). The greatest ratio between CPUE & LPUE 266 

(0.25) was within the wind farm during the year 2015, this was when the wind farm 267 

was closed for a period during the sampling regime (Figure 5). 268 

Influence of wind farm opening 269 

After the wind farm opened to fishing exploitation, mean CPUE (Table 3) within the 270 

wind farm reduced significantly (p < 0.001 (Table 5)), this was not the case in the 271 

control site (p > 0.05 (Table 5)). Mean CPUE (Table 3) was also significantly greater 272 

prior to the wind farm being opened to fishing exploitation (p < 0.001 (Figure 6 & 273 

Table 5)). Mean LPUE (Table 3) was significantly greater in the wind farm when it 274 

was closed than the control site during the same period and once the wind farm was 275 

opened to fishing (p < 0.001 (Table 5)). Mean LPUE (Table 3) was significantly 276 

greater in the control site when the wind farm was closed than the period when the 277 

area was open to fishing exploitation (p < 0.05 (Figure 6 & Table 5)). The greatest 278 

ratio of LPUE against CPUE (0.33) was during the period when the wind farm was 279 

closed to fishing, indicating a higher proportion of high quality lobsters that were not 280 

being exploited (Figure 6). 281 

Discussion 282 

Size distribution 283 

The exclusion of fishing effort within the OWF was observed to have an effect on 284 

the size distribution of lobsters within the area. There was a greater total number of 285 

lobsters observed during the post-build survey than during the baseline survey (n = 286 

2683 difference).  Within the wind farm, there was a greater proportion of lobsters, 287 

greater than MLS observed in 2015 than in 2013 (Figure 2). The absence of fishing 288 
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exploitation within the wind farm during construction acted as a NTZ, protecting 289 

lobsters greater than the MLS. There is potential for spill-over effects of an 290 

MPA/NTZ (McClanahan and Mangi 2000, Smyth et al., 2015), this can be observed 291 

locally for species with reduced movement patterns. (Moland et al., 2011). When a 292 

NTZ is created it has been reported to initially show an increase in lobster 293 

abundance and biomass (Hoskin et al., 2011, Wootton et al., 2012, Davies et al., 294 

2015). The increase in the proportion of larger lobster (> 100 mm CL) reported in 295 

Figure 2 and the overall higher number of lobsters observed was expected due to 296 

the closure of the site when compared to the baseline data. 297 

Prior to the wind farm being opened, the size distribution of lobsters within the wind 298 

farm was significantly different to the control site and the wind farm baseline 299 

distribution (Figure 3). The density of lobsters can be influenced by the availability 300 

of shelters within a habitat (Ball et al., 2001, Steneck 2006). The size of lobsters 301 

within a population has also been demonstrated to be limited by the size and 302 

number of shelters available (Bushmann and Atema 1997, Debuse et al., 1999). 303 

The addition of scour stone protection to the base of each monopole could 304 

potentially increase the available habitat and shelters for lobsters. The Westermost 305 

Rough OWF site was subjected to boulder removal prior to construction so the 306 

additional habitat creation may have been negated by the boulder removal. As the 307 

difference in size within the wind farm was described by lobsters over 75mm CL 308 

(Figure 3d), the absence of fishing effort in the site is most likely to have greater 309 

influence than the habitat change. 310 

Opening of the site to fishing exploitation led to a rapid, short-term increase in fishing 311 

mortality in the wind farm in comparison to the surrounding area. After the wind farm 312 

was reopened to fishing the previously unfished population of larger lobsters was 313 
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reduced by intensive fishing over a short period. This reduction however did not 314 

drop below that reflected by the control site which was subjected to exploitation for 315 

the entire period. The proportion of lobsters above MLS did not differ between the 316 

wind farm and the control site in the period after opening to fishing (Figure 4d). 317 

However, there was a greater proportion of smaller lobsters observed in the control 318 

site than within the wind farm (Figure 4d). The presence of a greater abundance of 319 

larger lobsters may have deterred the smaller lobsters from the wind farm (Steneck 320 

2006, Émond et al., 2010). Their immigration into the site once lobsters above MLS 321 

were again being exploited may not have occurred during the timeframe of the 322 

survey. The smaller lobsters may have also been displaced into areas surrounding 323 

the wind farm due to inter-specific competition for resources (Wahle et al., 2013) 324 

which was reflected in the control site (Figure 3b & 4b). This indicates potential 325 

overspill effects, however, of the pre-recruits rather than recruits into a fishery. 326 

There are also influences in catch dynamics of a creel, smaller lobsters can use 327 

creels as shelter from predation. The greater abundance of larger lobsters in the 328 

area that were subsequently caught in the survey creels, may have deterred the 329 

smaller lobsters from entering the creels (Jury et al., 2001). This interaction could 330 

have skewed the data to present a population biased in favour of larger lobsters. 331 

Alternatively the construction of the OWF and associated disturbance may  have 332 

had a greater effect on the smaller, less robust lobsters (Rodmell and Johnson, 333 

2002). As the fishing pressure returns to a stable state, again removing lobsters 334 

above MLS, it’s likely that smaller lobsters will again be observed within the area. 335 

Catch and landings per unit of effort 336 

The increase in lobster abundance observed in 2015 was reflected by the CPUE, 337 

showing a significant increase in catch rate of lobsters for both sites in 2015. There 338 
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was no significant difference in catch rates of lobsters between the wind farm and 339 

control site in 2015 (Figure 5). Indicating that the difference between the years was 340 

due to natural variation and not just the closure of the wind farm. The LPUE, i.e. the 341 

number of lobsters of good quality per string that were above the MLS of 87 mm CL 342 

also showed a significant increase within the wind farm between years and with the 343 

control site in 2015. Wootton et al., (2012) & Davies et al., (2015) both observed a 344 

greater prevalence of injury and disease in lobsters within an NTZ. The increased 345 

LPUE observed in this study, indicating a greater abundance of lobsters without 346 

injury above MLS, suggests that this was not the case here. This could be attributed 347 

to the period of closure, as this site was only closed for 20 months in comparison to 348 

2 and 5 years in their respective studies. The area may not have been closed long 349 

enough for true competition of resources that can result in increased occurrences 350 

of injuries.  351 

After the wind farm was opened to fishing the CPUE reduced significantly within the 352 

wind farm when compared to when the site was closed. It also differed significantly 353 

to the control site after opening (Figure 6 & Table 5). This demonstrates the effect 354 

of opening the area to exploitation after a period of closure. The mean LPUE 355 

however, after opening of the wind farm did not differ significantly to the control site 356 

(Figure 6 & Table 5). This indicates that although effort was high, within a relatively 357 

short period (6 weeks survey period after opening), the landings fishermen were 358 

getting within the site reflected the surrounding area.  359 

It has been demonstrated that periodic (Murawski et al., 2000) or permanent 360 

(Bergman et al., 2014) closure of areas to exploitation can enhance commercial 361 

fisheries. Closure of areas can allow the larger, more fecund lobsters to contribute 362 

to the spawning stock without fishing pressure (Moland et al., 2010, Leal et al., 363 
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2012). Periodically closing and reopening of the site has the potential to offset the 364 

possible detrimental effects of a permanent NTZ as observed by Wootton et al., 365 

(2012) & Davies et al., (2015). Economic loss to the fishery of a closed area may 366 

be offset by the increased earning potential once the site has been opened. Figure 367 

6 demonstrates a 22% increase in LPUE in comparison to the control site. This 368 

however was only a short-term effect as the LPUE within the wind farm reflected 369 

the control site during the period of the survey (six weeks after opening).  370 

There is the potential for OWFs with their easily identifiable delineation to be used 371 

as a stock management tool for lobster fisheries. Combined with other suitable and 372 

easily identifiable sites, rotational closures could protect spawning stocks whilst 373 

offsetting economic loss and detrimental effects of permanently closed areas 374 

(Cohen and Foale, 2013). 375 

Conclusion 376 

This study has demonstrated the short-term effects on size distribution, CPUE and 377 

LPUE of offshore wind farm construction on a commercially important lobster 378 

fishery. The construction of the OWF created a temporary NTZ during the 379 

construction period which resulted in an increase in larger, good quality lobsters in 380 

comparison to both the baseline data and control sites. The opening of the wind 381 

farm during the sampling period has highlighted that exploitation levels immediately 382 

following reopening of a site are high but quickly return to reflect surrounding areas. 383 

This study, whilst spatially limited has also presented a BACI approach to monitoring 384 

effects of OWF construction. Presenting a high number of individuals sampled, that 385 

represented the main fishing season for lobsters in the area. The collaboration 386 

between industry and developers has led to a study using industry data collection, 387 
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that enables a high number of lobsters sampled, to aid in addressing a current gap 388 

in the literature. Subsequent monitoring of the site will highlight any longer-term 389 

effects of the OWF construction and its operation on the local lobster stocks when 390 

fishing exploitation is stable. Opening of the site during the sampling period has also 391 

highlighted the potential for OWF sites to be used as a stock management tool for 392 

periodic closures. 393 
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Table 1: GLMM parameters for both the comparison between years and the 581 

comparison between the control and wind farm, in relation to the status of the wind 582 

farm being subjected to fishing exploitation. 583 

Treatment Response 
Intercept 

Variance 
Parameter Estimate 

Standard 

Error 

Wind farm 
Between 2013 

and 2015 
0.755 

β0 

β1 

0.215 

-0.009 

0.347 

0.004 

Wind farm 

closed 

Wind farm and 

control 
0.031 

β0 

β1 

6.678 

-0.081 

0.385 

0.005 

Wind farm 

open 

Wind farm and 

control 
0.036 

β0 

β1 

2.045 

-0.020 

0.464 

0.006 

  584 
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Table 2: Descriptive statistics of CPUE and LPUE of lobsters sampled at both sites 585 

of the Westermost Rough OWF during the 2013 and 2015 surveys.  586 

Year Site Effort Mean s.d. 

2013 Wind Farm CPUE 63.14 34.68 

2013 Control CPUE 74.27 45.48 

2015 Wind Farm CPUE 93.30 32.14 

2015 Control CPUE 107.30 29.46 

2013 Wind Farm LPUE 11.51 6.75 

2013 Control LPUE 11.28 5.71 

2015 Wind Farm LPUE 23.39 16.68 

2015 Control LPUE 10.26 4.67 

  587 
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Table 3: Descriptive statistics of CPUE and LPUE of lobsters sampled at both sites 588 

of the Westermost Rough OWF before and after the wind farm was opened to 589 

fishing exploitation. 590 

Status Site Effort Mean s.d. 

Closed Wind Farm CPUE 113.08 29.31 

Closed Control CPUE 107.08 35.44 

Open Wind Farm CPUE 71.73 18.59 

Open Control CPUE 107.55 22.98 

Closed Wind Farm LPUE 36.83 10.43 

Closed Control LPUE 12.08 4.23 

Open Wind Farm LPUE 8.73 6.25 

Open Control LPUE 8.27 4.47 

  591 
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Table 4: Results from Welch’s 2 sample t test for the mean CPUE/LPUE data 592 

analysed between the control and treatment sites of the Westermost Rough OWF 593 

and between the baseline and post build surveys. The significant results are 594 

displayed in bold. 595 

Factors analysed Response P t DF 

Treatment between years CPUE < 0.01 - 3.02 29.27 

Control between years CPUE < 0.01 - 2.88 35.75 

Treatment between years LPUE < 0.01 - 3.16 29.27 

Control between years LPUE n.s. 0.65 40.62 

Treatment v Control in 2013 CPUE n.s. 0.91 39.25 

Treatment v Control in 2015 CPUE n.s. 1.54 43.67 

Treatment v Control in 2013 LPUE n.s. - 0.12 40.88 

Treatment v Control in 2015 LPUE < 0.01 - 3.64 25.43 

 596 

 597 

 598 

 599 

 600 

 601 

  602 
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Table 5: Results from Welch’s 2 sample t test for the mean CPUE/LPUE data 603 

analysed between the status of the Westermost Rough offshore wind farm (OWF) 604 

in 2015, i.e. open or closed to fishing. The significant results are displayed in bold. 605 

Factors analysed Response P t DF 

Treatment between status of OWF CPUE < 0.001 4.08 18.79 

Control between status of OWF CPUE n.s. - 0.04 19.01 

Treatment between status of OWF LPUE < 0.0001 7.92 18.23 

Control between status of OWF LPUE < 0.05 2.10 20.56 

Treatment when OWF was open CPUE < 0.001 4.02 19.16 

Control when OWF was closed CPUE n.s. - 0.45 21.25 

Treatment when OWF was open LPUE n.s. - 0.20 18.12 

Control when OWF was closed LPUE < 0.0001 - 7.62 14.53 

  606 
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Figures 607 

608 

Figure 1: Location of the Westermost Rough OWF, the individual turbine locations 609 

marked in grey and the locations of the treatment strings (red) and the control strings 610 

(blue) to the North of the site. 611 
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 612 

Figure 2: Size distributions of lobsters sampled within the Westermost Rough OWF 613 

for the baseline survey in 2013 (a) and the first-year post build survey in 2015 (b), 614 

both plots fitted with the density curve of the distribution and the bins set to 2mm 615 

carapace length. (c) Empirical cumulative distribution function (ECDF) for the 616 

sampled lobsters for the wind farm and control site in 2013 (red and black) and the 617 

wind farm and control site in 2015 (blue and grey). (d) Plot derived from GLMM 618 

modelling of the proportion of the lobsters sampled at each size in 2013 (top box) 619 

and 2015 (bottom box). The grey shaded areas represent the 95% confidence 620 

intervals and the bold black line the mean value. The central horizontal line 621 
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represents the 0.5 (50%) value, points overlapping this line indicate that there was 622 

no significant difference in the proportion of that sized animal between the two 623 

years. A value of 0.75 indicates that 75% of the lobsters sampled at that size were 624 

sampled in 2013 and the other 25% were sampled in 2015. This applies to all 625 

subsequent plots derived from GLMM analysis. The vertical line on all plots 626 

represents the minimum landing size of lobsters in the fishery which is 87mm 627 

carapace length. This applies to all subsequent plots reported. 628 

  629 
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 630 

Figure 3: Size distributions of lobsters sampled at the Westermost Rough OWF for 631 

both the wind farm site (a) which was closed to fishing for the period and the control 632 

(b) which was subjected to fishing throughout the period. ECDF plot for the period 633 

before the wind farm site was opened to fishing showing the wind farm (red), control 634 

(blue) and baseline for the two sites (black (wind farm), grey(control) (c) and plot 635 

derived from GLMM analysis for both the control and wind farm site (d) for the period 636 

before the wind farm was opened to fishing. 637 

 638 
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 639 

Figure 4: Size distributions of lobsters sampled at the Westermost Rough OWF for 640 

both the wind farm site (a) after the site was opened to fishing and the control (b) 641 

which was subjected to fishing throughout the period. ECDF plot for the period after 642 

the wind farm site was opened to fishing showing the wind farm (red), control (blue) 643 

and baseline for the two sites (black (wind farm), grey(control) (c) and plot derived 644 

from GLMM analysis for both the control and wind farm site (d) for the period after 645 

the wind farm was opened to fishing. 646 

  647 
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 648 

 649 

Figure 5: Mean catch per unit effort (a) and landings per unit effort (b) for the wind 650 

farm (dark grey) and the control site (light grey) for the baseline survey (2013) and 651 

the first-year post build survey (2015). The top of the bars represents the mean 652 

CPUE/LPUE and the error bars the standard deviation of the data. The values 653 

above the LPUE bars represent the ratio between CPUE and LPUE.  The letters 654 

above the bars indicate the factors that showed a significant difference. This applies 655 

to all subsequent bar plots reported. 656 

  657 
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 658 

Figure 6: Mean CPUE (a) and LPUE from the wind farm (dark grey) and the control 659 

site (light grey) before and after the wind farm was opened to fishing exploitation. 660 


