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Abstract 

Exploring the impacts of population place visitation on crime patterns is crucial for understanding crime mechanisms 
and optimising resource allocation in crime prevention. While recent studies have broadly examined dynamic popula-
tion activities at specific places from geo big data, limited crime-related studies have utilised this measurement to dis-
entangle the impact of specific place visitation on urban crime patterns. This study aims to investigate the impact 
of population activities at different urban functional places on theft levels across different urban areas and distinctive 
social changing contexts. We utilised geo big data (mobile phone GPS trajectory records) collected from millions 
of anonymous users to measure footfalls (counts of visitations) attached to place types on weekdays and weekends. 
An explainable machine learning approach was applied to analyse the impacts of place visitations on theft levels: 
the ‘XGBoost’ algorithm trained a high-performance regression model and ‘SHapley Additive exPlanations’ (SHAP) 
values were measured to identify the contributions of different visitation variables to theft levels at specific spatial 
and temporal scales. Using the police records and geo big data in Greater London from 2020 to 2021, the optimised 
model revealed that visitation to ‘Accommodation, eating and drinking’ services during weekdays had the most 
significant impact compared to 17 other types of place visitations. Further, the influence of place visitations on theft 
varied across different local urban areas corresponding with changes in social restrictions during the pandemic. Spe-
cifically, the urban areas where theft was most impacted by visitation at specific types of places (e.g., accommodation, 
eating and drinking services) shifted to outer London during the first national lockdown compared to normal times. 
The findings provide further evidence from direct micro-level analysis and contribute to tailoring policing strategies 
in places with different contexts and urban visitation patterns.

Keywords  Mobile phone GPS data, Human mobility, Ambient population, Explainable machine learning, Urban 
vitality, Geo big data

1  Introduction
The routine activities of citizens in urban places are 
closely intertwined with available opportunities for crime 
occurrence, hence they significantly influence urban 
crime patterns in space and time (Brantingham and 
Brantingham 2016). Traditionally criminological research 
has used a simple count of the specific types of places to 
represent high-volume population activity in urban set-
tings (e.g., how many shopping centres, bars or public 
transit stations are present). These proxy methods, which 
use static land uses to represent activities at place have 
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revealed strong relationships with crime patterns (Ber-
nasco and Block 2011; Brantingham and Brantingham 
1995; Barnum et al. 2017; Curman et al. 2015). With the 
growth of location-based services and applications, the 
accumulation of different types of geo big data enables 
the measurement of population activities through a more 
direct footprint of citizen activity. Recent studies have 
revealed significant connections between population 
dynamics sensed from geo big data (e.g., mobile phone 
data and social media data) and crime patterns in urban 
areas (Andresen 2011; He et  al. 2020; Song et  al. 2019; 
Chen et al. 2023a). Despite this growing body of research, 
gaps remain in our understanding of the intricate inter-
play between crime and population activity behaviours in 
specific urban contexts, particularly across different types 
of places, local areas and under varying socio-economic 
conditions such as during the pandemic. Further inves-
tigation is required to examine variations in the place-
specific of population activity (which we refer to here as 
place visitation) on crime patterns in local urban areas. 
Simply put, to further understand crime problems, we 
need combined models that measure both the size and 
variation of dynamic populations in time and space, but 
also distinguish between the activities of those popula-
tions by place function.

To address these research gaps, this study aims to 
answer the following specific research questions: (1) How 
do dynamic place visitations influence specific crime pat-
terns in different types of places? (2) Does the impact of 
specific place visitation on crime level vary under differ-
ent social contexts, such as during the COVID-19 pan-
demic? (3) How does the influence of place visitation on 
crime differ across local urban areas?s?

We investigate these questions through a comprehen-
sive analysis of theft incidents in London neighbour-
hoods, represented by Lower layer Super Output Areas 
(LSOAs) covering he period from 2020 to 2021. First, 
place visitation variables were quantified into monthly 
footfalls (sensed from large-scale anonymous mobile 
phone GPS data) at various places in different urban 
areas. Subsequently, the impacts of place visitation vari-
ables on theft levels were investigated by employing an 
explainable machine learning approach consisting of 
training tree-based XGBoost models and implement-
ing a ‘SHapley Additive exPlanations’ (SHAP) strategy. 
Last, both global and local impacts based on SHAP val-
ues were employed to investigate population activity-
based factors in explaining crime levels at different types 
of places across urban areas during several defined pan-
demic periods.

The structure of this paper is outlined as follows: The 
Sect.  2  reviews the theoretical foundations and empiri-
cal research in crime pattern analytics using emerging 

geo big data sets and discusses related studies during the 
pandemic. The Sect. 3 provides a description of the study 
area and related data used. The Sect.  4  illustrates the 
generation of place visitation variables and the explain-
able machine learning strategy used in the study. The 
Sect. 5 presents the experiments conducted in the study 
area and the obtained results. The Sect. 6 discusses impli-
cations and limitations based on the empirical findings. 
Finally, the Sect.  7  summarises the contributions and 
highlights further work.

2 � Background
Crime opportunity theories reveal that citizens’ daily 
routine activities intertwined with the available crime 
opportunities (e.g., targets) in urban settings play a key 
role in distributing crime patterns in space and time 
(Cohen 1981). In particular, the places attracting large 
volumes of population visitations are highly associated 
with crime occurrences. Overall, opportunity theories, 
such as crime pattern theory (CPT) and routine activity 
theory (RAT), provide insights into how crime opportu-
nities can be affected by dynamic population changes in 
particular urban areas. RAT implies that the spatial pat-
terns of crimes in urban areas are shaped by varied crime 
opportunities generated by the complex interplay of dif-
ferent population’s activities in urban settings (Cohen and 
Felson 1979; Felson 2016). To detail, crime opportunities 
arise from the interactions between motivated offenders, 
suitable targets/victims (e.g., population) and the absence 
of capable guardians in a specific time and space.

CPT also emphasises the role of population activity in 
creating crime opportunities, noting that these typically 
arise in busy areas familiar to offenders and where there 
are suitable targets and victims (Brantingham and Brant-
ingham 1984; Brantingham et  al. 1981). Further, CPT 
describes the places with higher levels of crime as follow-
ing two distinct mechanisms: 1) crime generators which 
are the places that generate crime by attracting large vol-
ume populations to a particular location (e.g., shopping 
malls and transportation stations) – these places tend to 
have a high volume of foot traffic and a concentration of 
businesses and services, which can create opportunities 
for criminal activity; and 2) crime attractors which are 
places that may not attract a large population but are still 
associated with higher levels of criminal activity due to 
their characteristics (e.g., abandoned buildings) which 
are likely to attract offenders to engage in criminal activ-
ity (Brantingham et al. 1981; Brantingham and Branting-
ham 2016).

Before the widespread use of mobility datasets, earlier 
studies often utilised the number of crime generator loca-
tions (e.g., shopping centres or retail places) as a proxy for 
measuring the levels of visitor/population-based crime 
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opportunities across urban areas (Sherman et  al. 1989; 
Eck and Weisburd 1995). For example, Groff and Lock-
wood (2014) investigated the influence of criminogenic 
facilities (e.g., bars, liquor stores and public transporta-
tion) on crime rates across street segments in Philadel-
phia, USA. They used place data (point of interest) to 
identify the locations of these facilities and analysed 
their impacts on crime patterns in the surrounding area. 
Within the same city, Haberman and Ratcliffe (2015) 
examined the impact of potentially criminogenic places 
on street robbery counts in census blocks. They exam-
ined the connections between aggregate crime levels and 
census block locational characteristics during both day-
time and nighttime. Their findings showed that certain 
places have a greater influence during the day, while oth-
ers are more significant at night. Furthermore, Barnum 
et al. (2017) investigated both similarities and differences 
in relationships between place features and crime across 
urban settings in the US cities: Newark, Los Angeles and 
Cincinnati – demonstrating variation and the context-
specific nature of the crime-place connection. Schnell 
et al. (2019) demonstrated that facilities generating crime 
opportunities are significantly associated with the spatial 
distribution of violent crime occurrences on street seg-
ments. Specifically, the presence of particular place types, 
such as retail and commercial properties, was found to be 
related to higher levels of violent crime. A clear limita-
tion of these approaches is that relying on static repre-
sentations from place counts cannot accurately reflect 
real population activities, which are inherently linked 
to the ever-changing dynamics of crime opportunities 
across time and space.

By using geo big data, researchers can more effec-
tively track and analyse the dynamic trends of the 
population’s routine activity, providing deeper insights 
into population shifts and their implications on vari-
ous societal issues. In this context, utilising geo big 
data offers a valuable advantage to capture popula-
tion dynamics and link the sensed patterns to crime 
incidents (Shaw et al. 2016; Wu et al. 2018; Chen et al. 
2018). For instance, Malleson and Andresen (2015) 
demonstrated that the inclusion of social media data 
(geo-tagged Twitter data) provides a more accurate 
representation of the ambient population, leading 
to a better understanding of the spatial patterns of 
crime. Kontokosta and Johnson (2017) also used Twit-
ter data to simulate ambient population distributions 
and revealed the spatial relationship between ambient 
population and crime. In addition, Hanaoka (2018) esti-
mated the ambient population using mobile phone data 
and revealed the strong relationship between popula-
tion dynamics and certain types of street crimes, such 

as theft and assault. Further studies have also examined 
a strong correlation between property crime (e.g., theft) 
incidents and dynamic ambient populations sensed 
from mobile phone data collected from cellular towers 
(He et  al. 2020; Song et  al. 2018; Johnson et  al. 2021). 
Focusing on transportation settings, Zahnow and Corc-
oran (2021) used transit smart card data to measure the 
population’s activity at bus stops and revealed a signifi-
cant relationship with crime occurrences around bus 
stops. Specifically, higher usage levels at bus stops and 
the usage of certain amenities (e.g., seating) were found 
to be related to increased crime risk.

The COVID-19 pandemic had profound influences 
on the population’s routine activities in cities due to the 
implementation of various restrictive policies aimed 
at curbing the spread of the virus. Measures such as 
lockdowns, social distancing, travel restrictions, and 
closures of non-essential businesses drastically altered 
the way people interact, work, and socialise, leading 
to significant changes in urban dynamics (Chen et  al. 
2023b; Cheng et al. 2022). It logically followed that the 
distribution of opportunities for crime in urban areas 
was also influenced as a consequence of the shifts in 
the population’s activities (Halford et  al. 2020; Stickle 
and Felson 2020). Empirically, the COVID and crime 
studies have revealed that property crime experienced 
a decrease while some violent crimes saw an increase 
(Ashby 2020; Mohler et  al. 2020). However, there are 
only a limited number of studies that have explored the 
relationships between crime and population activity – 
especially at specific types of places or venues – during 
the COVID-19 pandemic. Halford et al. (2020) analysed 
police data and Google community mobility data to 
determine how changes in population activities influ-
enced crime patterns at a region level. Then, Chen et al. 
(2022) employed a spatio-temporal stratified model to 
assess the relationships between the urban population’s 
activities and crime patterns across urban areas (census 
block groups) of San Francisco during the COVID-19 
stay-at-home mandate. Similarly, Cheung and Gunby 
(2022) found that variations in mobility were associated 
with shifts in property crime rates in New Zealand cit-
ies during the pandemic.

In summary, existing studies on the impact of popu-
lation mobility on crime remain limited, as they tend 
to focus on large regions or city-level analyses, often 
overlooking localised interactions within specific urban 
settings across different areas. To address this gap, this 
study contributes to mobility-related crime research 
by examining how directly measured place visitations 
influence crime across different contexts – including 
different place types, urban areas and time periods.
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3 � Data
3.1 � Study area and time period
In this research, Greater London as the study area is 
the largest city in the UK, housing over 8.8 million peo-
ple in mid-20211. The UK’s Office for National Statistics 
(ONS) has structured a hierarchical system of census 
units, aiding in the compilation and examination of area-
level demographic details2. London comprises 33 Local 
Authority areas and 4,835 designated local census zones 
named ‘Lower super open areas’ (LSOAs), which were 
used as the unit of analysis in this study.

Amid the global pandemic starting in 2020, London 
became one of the cities most affected by COVID-19 
with a high number of infections in the UK. To counter 
this, the government rolled out a nationwide lockdown 
on March 23, 2020, including measures like a stay-at-
home policy, pausing public transit, and the closure of 
non-vital businesses. As the situation evolved, restric-
tions were adjusted based on the infection rates which 
led to a second lockdown from November to Decem-
ber 2020, and a subsequent third phase from January to 
March 2021. Given the significance of these restrictions 
on population mobility, these months are used as tempo-
ral markers in the analysis that follows.

3.2 � Mobile phone GPS trajectory data
Anonymous mobile phone GPS trajectory data for the 
London areas collected from broadly mobility-related 
application apps (e.g., navigation, route planning, out-
door sports) were provided by Location Sciences AI3. 
This data collection takes place following user agree-
ments established under the General Data Protection 
Regulation (GDPR) framework, ensuring the privacy and 
protection of individual user information. The mobile 
phone GPS data used in this analysis includes 1,979,081 
users (about 22% of the total London resident popula-
tion) in Greater London during the observed two-year 
period (2020 and 2021). Abundant in terms of the diver-
sity of trajectory collection apps and the sample rate of 
user numbers, our GPS dataset demonstrated a good 
representation for measuring the mobility activity for the 
London population (Chen et al. 2023b).

3.3 � POI data
The Point of Interest (POI) data of London, which rep-
resents place locations and place types, are provided by 
Ordnance Survey4. The classification scheme of the POI 

dataset offers three hierarchical levels of information for 
POI types, consisting of nine groups, 52 categories, and 
600 classes5. In this research, nine distinct POI types 
were selected according to the first-level classification 
(nine groups) from the dataset, including: ‘Accommo-
dation, eating, and drinking (AED)’, ‘Transport (TRA)’, 
‘Commercial services (CS)’, ‘Attractions (ATT)’, ‘Sport and 
entertainment (SE)’, ‘Education and health (EH)’, ‘Public 
infrastructure (PI)’, ‘Manufacturing and production (MP)’ 
and ‘Retail (RET)’. To clarify, each POI is assigned to only 
one category from the nine categories with no overlap 
– each POI belongs exclusively to a single category at 
this classification level. For example, a POI classified as 
‘Commercial services (CS)’ will not also be labelled under 
another category such as ‘Retail (RET)’.

3.4 � Police record data
Theft from the person data sourced from London police 
records was obtained from the Metropolitan Police Ser-
vice in the UK’s online police data portal6. The records 
detail each theft incident, specifying its location (latitude, 
longitude, LSOA index) and time (month and year). Due 
to the ‘geomasking’ process for keeping location details 
anonymous in the police records prior to public sharing, 
the LSOA is the most specific geospatial unit with reli-
able spatial precision for cumulative counts (Tompson 
et al. 2015).

4 � Methods
This section presents the analysis framework including 
two components: (1) The generation and measurement of 
the place visitation variables. This describes the detection 
of an individual’s stays/stops from the raw mobile phone 
GPS trajectory. Next, we linked detected stays to place 
locations for each geospatial area (LSOA) and aggregated 
to place visitations in LSOA at monthly level. (2) Explain-
able machine learning which was used to model the rela-
tionships between theft and place visitations.

4.1 � Generation of place visitation variables
In this study, a place was delineated by a polygon-based 
representation named area of interest (AOI), which was 
generated based on the point of interest (POI) topol-
ogy for each geospatial unit of analysis (LSOA). Figure 1 
shows the process of generating areas of interest (AOI) 
from points of interest (POI) within each LSOA, which 
is a widely used geospatial approach for representing 

1  London datastore: https://​data.​london.​gov.​uk/​datas​et/​londo​ns-​popul​ation
2  Office for National Statistics: https://​www.​ons.​gov.​uk/
3  Location Sciences AI (now known as Sorted): https://​sorted.​com/
4  Ordnance Survey: https://​www.​ordna​ncesu​rvey.​co.​uk/

5  The official Ordnance Survey POI classification scheme document 
explains the hierarchical levels in more detail: https://​www.​ordna​ncesu​rvey.​
co.​uk/​docum​ents/​produ​ct-​suppo​rt/​user-​guide/​points-​of-​inter​est-​class​ifica​
tion-​schem​es-​v3.4.​pdf
6  Data.police.uk: https://​data.​police.​uk/

https://data.london.gov.uk/dataset/londons-population
https://www.ons.gov.uk/
https://sorted.com/
https://www.ordnancesurvey.co.uk/
https://www.ordnancesurvey.co.uk/documents/product-support/user-guide/points-of-interest-classification-schemes-v3.4.pdf
https://www.ordnancesurvey.co.uk/documents/product-support/user-guide/points-of-interest-classification-schemes-v3.4.pdf
https://www.ordnancesurvey.co.uk/documents/product-support/user-guide/points-of-interest-classification-schemes-v3.4.pdf
https://data.police.uk/
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different types of places or functional areas (Liu et  al. 
2019; Chen et  al. 2020; Li et  al. 2022). For POIs in one 
defined geospatial area, the intersecting areas as the 
represented AOIs (Fig.  1C) are generated from their 
Thiessen (Voronoi) polygons (Fig.  1B) then intersected 
with POI’s buffer zones – the circle areas with a radius 
of 50 meters from each POI (Fig. 1A). This is a common 
strategy used to create the catchment areas to represent 
places (Jiang et al. 2015; Kucukpehlivan et al. 2023).

In this research, nine distinct AOI categories were 
produced from the first-level classification (the 9 groups 
introduced in Sect. 3.3) in the POI dataset (i.e., each AOI 
that was generated represented a single place that was 
labelled with a place type). The AOIs here include the 
physical area of the visitation places themselves but are 
also assumed as the ‘catchment’ area for the population 
visiting that place. In other words, AOIs in the LSOAs 
represent the on-the-street populations assumed to be 
associated with places as well as the populations at the 
places themselves.

Figure  2 shows the steps involved in detecting place 
visitations based on GPS trajectory data and AOIs in one 
geospatial area (LSOA) as an example. For each individ-
ual’s GPS trajectory (Fig. 2A), a stay detection algorithm 
proposed by Hariharan and Toyama (2004); Pappalardo 

et al. (2019) was implemented to retrieve the stays (rep-
resented by the centre of red points in Fig. 2B) where a 
single user spends some time at a location (Zheng 2015; 
Zhao et al. 2016). In this work, each stay/stop was defined 
when a user spent at least 5 minutes within a 50-meter 
radius according to GPS point records. This parameters 
set is based on the assumption that a stop detected from 
the GPS points represents the natural range of human 
stops when visiting a place location in urban areas and is 
commonly found in related urban analysis studies (Zhao 
et al. 2015).

By spatially linking with the AOIs, all the stays attached 
with place information were then aggregated to foot-
falls representing population activity in places (i.e., place 
visitations) in space and time (Fig.  2C). It is important 
to note that three distinct types of stays, which are not 
strongly related to place visitation at locations (such as 
staying at home or working at a workplace) were excluded 
from consideration: (1) Stays in the early morning from 0 
AM to 6 AM. The early morning hours typically do not 
showcase social activity at places due to significantly 
reduced activity and closed businesses, making these 
stays appear less representative of human place-visiting 
activity. Such human activity patterns have also been 
identified in various urban studies through the use of geo 

Fig. 1  Generating areas of interest (AOIs) from points of interest (POIs) in one geospatial area (represented by the square boundary). To clarify, there 
is no geographical boundary overlap among the created AOIs

Fig. 2  Detecting place visitations based on GPS trajectory data
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big data (Traunmueller et al. 2018; Sulis et al. 2018); (2) 
A user’s home location, i.e., the stay location that a user 
visitations most frequently during the night-time period 
(from 11 PM to 6 AM) (Pappalardo et  al. 2016; Verma 
et  al. 2024); (3) A user’s workplace which refers to the 
location of the stay’s duration time above 6 hours from 7 
AM to midnight as working behaviours are not the same 
as visiting behaviours and would confound the analysis. 
This distinction was also used in related studies to infer 
the work location from mobile phone data (Kung et  al. 
2014; Yan et al. 2019).

4.2 � Measuring place visitation variables
For the measurement of the place visitation variables, the 
stays at each place (i.e., AOI) were separated into week-
days and weekends as there are evidenced differences in 
population activity across urban areas during these dis-
tinct period types (e.g., Niu and Silva (2023)). The stays 
were then separately aggregated as footfalls (stay counts) 
for the predefined geospatial unit (LSOAs in this study) 
and temporal unit (daily in this study) for weekdays 
and weekends. Next, the monthly daily average footfall 
(MDAF) for each type of place on weekdays (WD) and 
weekends (WE) was constructed as the place visita-
tion variables for each month during the two years. The 
rationale for this monthly aggregation is to align this data 
with the police record data (described in Sect. 3.4), which 
is only provided at a monthly temporal resolution.

To elaborate, it is helpful to take the measurement of 
MDAF at a place type on weekdays in a single LSOA as 
an example. We first calculated the sum of footfalls at one 
place type such as retail (there might be multiple AOIs 
in one LSOA) on weekdays across a month, then calcu-
lated the daily average by dividing by the total number 
of weekday days in that month. This aggregation process 
resulted in 18 categories (nine types of AOIs for WD and 
WE) of place visitation variables (MDAF) for each LSOA 
during the 24 months in this study. Note that if a specific 
type of AOI is not present within the LSOA, the corre-
sponding MDAF value will be assigned to zero.

4.3 � Explainable machine learning
Machine learning techniques have been widely used in 
crime studies due to their strong predictive capabilities 
and versatility (Rummens et  al. 2017; Alves et  al. 2018). 
However, the black-box nature prevents a deeper under-
standing of the underlying factors driving crime mecha-
nisms (Berk and Bleich 2013; Guidotti et al. 2018). While 
some machine learning methods (e.g., decision trees) can 
provide feature importance scores, these measures can-
not reflect the true underlying relationships between 
explanatory variables and responders, particularly in 
examining their interactive effects (Lundberg and Lee 

2017). Thus, there is a demand for explainable machine 
learning – an advanced approach focusing on developing 
and offering comprehensible justifications for model pre-
dictions – to help better identify factors associated with 
crime opportunities in space and time (Zhang et al. 2022; 
Campedelli 2022).

This study employed the ensemble learning method 
known as the XGBoost model, followed by the explain-
able machine learning strategy called ‘SHapley Addi-
tive exPlanations’ (SHAP). This section first describes 
the XGBoost for modelling the relationship between 
place visitation variables (MDAF) and theft levels, then 
introduces the explainable strategy SHAP, especially in 
terms of how this approach reveals the specific impacts 
of different place visitation variables on theft levels in the 
XGBoost model.

4.3.1 � XGBoost regression model
XGBoost. This study selected the XGBoost (short for 
‘Extreme Gradient Boosting’) regressor (regression 
model) to fit the theft levels and place visitation variables 
due to its efficiency and scalability in handling large data 
sets. As an ensemble learning method, XGBoost uses 
tree-based models as base learners and implements gra-
dient boosting machines (GBMs) to iteratively combine 
the predictions of multiple weak learners (i.e., decision 
trees) with improving accuracy and generalisation capa-
bilities (Freund et  al. 1999; Chen and Guestrin 2016). 
The XGBoost algorithm works by adding new decision 
trees to the ensemble models with each decision tree 
attempting to correct the errors of the previous trees. The 
XGBoost model can be denoted as:

where f is a function in a set of functions (i.e., function 
space) F  , i.e., the set of all possible decision trees. Then, 
F  can be denoted as:

In this context, q represents a function that navigates 
through the structure of a decision tree and outputs 
the corresponding leaf index (i.e., the unique identifier 
assigned to each leaf node in a tree), T is the leaf numbers 
in the decision tree, w is the leaf weight and K is the total 
number of the trees in the model.

Overall, XGBoost adds decision trees to minimise a 
specific objective function. The objective function com-
bines a loss function (i.e., mean absolute error) that 
measures the difference between the predicted and actual 
values of the target variable and a regularisation term 

(1)ŷi = φ(xi) =

K

k=1

fk(xi), fk ∈ F

(2)F = {f (x) = wq(x)} (q : Rm → T ,w ∈ R
T )
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that penalises complex models to avoid overfitting. Thus, 
the objective function can be denoted as:

where l(yi, ŷ(t−1)
i + ft(xi)) is the loss function that meas-

ures the discrepancy between the true label yi and the 
predicted label ŷ(t−1)

i + ft(xi) . ft(xi) is a new function 
(e.g., a decision tree) to be added, where t is the current 
iteration. The sum 

∑n
i=1 adds up these losses for all n 

samples. l(t) is the objective function at the t-th iteration 
that the algorithm aims to minimize. �(ft) is a regularisa-
tion term that controls the complexity of the model and 
prevents over-fitting, which can be denoted as:

γT  is a regularisation component related to the complex-
ity of the model. Here, T typically denotes the number of 
terminal nodes (leaves) in the tree-based model, and γ is 
the regularisation parameter controlling the influence of 
the tree complexity. 1

2
�‖w‖2 is another component called 

L2 regularisation related to the weights w of the model. 
Here, � controls the influence of the weight regularisa-
tion, and ‖w‖2 represents the squared L2 norm (i.e., the 
sum of the squares of the elements of weight vector w).

Fundamentally, XGBoost is attempting to identify a 
new function ft(x) at each step and incorporate it into 
the existing model. This process minimises the cumula-
tive loss of decision trees while ensuring the ensemble 
model’s complexity remains controlled. During training, 
XGBoost determines the optimal split for each decision 
tree based on the feature that significantly reduces the 
loss function. Once the decision trees are added to the 
ensemble, XGBoost uses boosting to update the training 
samples’ weights to lead to better overall performance. In 
summary, XGBoost determines the optimal split for each 
decision tree based on the feature that provides the most 
significant reduction in the objective function (indicat-
ing better prediction) and uses boosting to update the 
weights of the training samples.

Model training. The XGBoost regression model was 
prepared by linking the explanatory matrix in the shape 
of (4,835 LSOAs × 24 months) rows and nine columns 
(place visitation variables for each place type) with the 
counts of theft at LSOA and monthly level. In the model 
training setup, the first 19 months of data from January 
2020 to July 2021 (80 % of the total dataset) was selected 
as the training set. The remaining dataset encompassing 
five months from August 2021 to December 2021 was 
selected as the testing set. In terms of data preparation, 
the training set and testing set (as part of the explanatory 

(3)L
(t) =

n
∑

i

l
(

yi, ŷ
(t−1)
i + ft(xi)

)

+�
(

ft
)

(4)�(f ) = γT +
1

2
��w�2

matrix X (i.e., the place visitation variables) and response 
variable y (i.e., theft counts)) were separately imple-
mented using z-score standardisation. The model perfor-
mance metrics for the XGBoost regressor are root mean 
square error (RMSE) and the coefficient of determination 
( R2 ) for both the training set and testing set. Briefly, the 
R2 indicates the proportion of the target variable’s vari-
ance that the model can explain, while the RMSE quan-
tifies the difference between the model’s predictions and 
the actual observations. Therefore, a higher R2 value and 
a lower RMSE indicate better model performance. For 
the hyperparameter tuning of the XGBoost regressor, 
grid search and cross-validation methods were utilised to 
optimise the parameter settings (10-fold cross-validation 
was set in GridSearchCV7 at this step).

4.3.2 � Model explanation using SHAP
Though traditional feature importance in tree-based 
models can provide useful insights, it is still limited in 
providing full interpretability. This is mainly due to the 
fact that feature importance calculation is based on heu-
ristic methods (e.g., Gini importance, mean decrease 
impurity), which cannot measure the complex interac-
tions across features. Another concern is that the feature 
importance can also be biased towards the preferential 
treatment of features with a large number of categories. 
Further, feature importance does not provide informa-
tion about the directionality of the impacts (i.e., whether 
an increase in a feature value leads to an increase or 
decrease in the predicted value).

Shapley additive explanation (SHAP) as an advanced 
machine learning interpreter leverages the concept of 
Shapley values from cooperative Game Theory (Chalki-
adakis et  al. 2011) to fairly distribute the contribution 
of each feature towards the prediction for each individ-
ual instance, thereby providing detailed global and local 
interpretability in machine learning models (Lundberg 
and Lee 2017; Lundberg et al. 2018). In general, consider-
ing a machine learning model as a ‘game’ where the fea-
tures used in the model are ‘players’, the SHAP strategy 
aims to calculate the values of the contributions of tar-
get features on prediction in the model. Then, the SHAP 
value ∅i(v) for each feature i can be denoted as:

Where N is the set of all features and n is the total 
number of features, S is a subset of features not 

(5)

∅i(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(s))

7  GridSearchCV: https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​
model_​selec​tion.​GridS​earch​CV.​html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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including feature i, and v is the model function that 
gives the prediction for each subset of features. So, the 
v(S ∪ {i})− v(s) represents the prediction changes after 
we include the new feature i in the model and |S|!(n−|S|−1)!

n!  
represented the associated weight (i.e., marginal con-
tribution). Then, 

∑

S⊆N\{i}
|S|!(n−|S|−1)!

n!  is the weight by 
summing up the weights from all possible subsets S.

To summarise, the SHAP value for feature i represents 
the average contribution of feature i in the model’s pre-
diction when it is added to different subsets of features, 
weighted by the probability of each subset forming before 
feature i is added. Hence, an absolute SHAP value rep-
resents the magnitude or strength of the impact that a 
feature has on the model’s prediction compared to the 
baseline prediction. For example, a larger feature SHAP 
value (which can be positive or negative) indicates that 
the feature is more important for contributing to the 
model (i.e., increases the model performance or makes 
the model more predictable) compared to other input 
features. Positive SHAP values for a feature i mean that 
the higher value of this feature contributes to increas-
ing the dependent variable value in prediction (it implies 
that this type of feature obtains a positive impact on the 
model’s predicted values). Conversely, negative SHAP 
values for a feature i indicate that the higher feature value 
in a given instance contributes to decreasing the model’s 
dependent variable value in prediction (it implies that 
the feature obtains a negative impact on the model’s pre-
dicted values).

5 � Results
The nine types of AOIs were constructed from POIs for 
each LSOA of London through the methods described 
in Sect.  4.1. In total, 252,685 AOIs including the nine 
types representing places were generated across 4,835 
LSOAs in London. Figure 10 in Appendix gives an exam-
ple by depicting the map of generated AOIs for the six 
LSOAs within the City of London (as one local authority 
in Greater London). By aggregating and attaching stays 
detected from the mobile phone GPS trajectory data, 
the daily footfalls for AOIs were generated from 2020 
to 2021 in London. Then place visitation variables were 
obtained by calculating the MDAF (monthly daily aver-
age footfalls) for each type of place (AOI) for each LSOA. 
This process results in MDAF as place visitation variables 
(18 categories in total) with nine place types separated 
for weekdays and weekends over 24 months and 4,835 
LSOAs in London. In training, the XGBoost regressor, 
modelling demonstrated a maximum tree depth of 13, 
a learning rate of 0.04, and a column sub-sample ratio 
of 0.3 during tree construction. The best model perfor-
mance metric achieved offered a RMSE value of 0.19 and 
an R2 of 0.96 within the 19-month dataset from January 

2020 to July 2021 (i.e., the training set). Next, during 
model testing, the performance of the trained XGBoost 
regressor was evaluated with a RMSE value of 0.54 and 
an R2 of 0.73. These metrics were obtained by compar-
ing the trained model’s predicted theft levels with the 
actual data over the last five-months of the dataset from 
August 2021 to December 2021 (i.e., the testing set). 
Last, the SHAP strategy was employed to give more in-
depth model explanation for the trained XGBoost regres-
sor with application to both the training and testing set. 
The SHAP values were utilised to quantify the impacts of 
place visitation levels on theft levels both on a global and 
local scale. In particular, the local SHAP values allowed 
for examining the impacts of visitation at places on theft 
levels for one specific LSOA and month.

In the remainder of this section, Sect.  5.1 describes 
the global impacts of varying levels of population visita-
tions in different categories of places on theft in the con-
text of the changing restrictions or relaxation policies 
during the pandemic from 2020 to 2021. Subsequently, 
Sect. 5.2 delineates the local interpretability of the model 
by focusing on the impacts of the population’s visitation 
at various places on theft levels at local LSOAs, especially 
focusing on the variations of these impacts in London 
LSOAs for different observation months relevant to pan-
demic policies.

5.1 � Global impacts
In the trained ‘Theft’ XGBoost regressor, the coefficient 
of determination ( R2 ) from the training set (0.96) and 
the testing set (0.73) both show promising performance, 
as well as indicating the strong relationships between 
the explanatory variables (the MDAF of place visita-
tions) and the response variables (theft levels) across 
London LSOAs. Further, the SHAP values quantify the 
contribution/impact of a particular variable (i.e., each 
type of place visitation variable) towards the prediction 
outputs (theft levels) across all months and LSOAs. Fig-
ure 3 shows the mean absolute SHAP values of different 
types of place visitations on weekdays/weekends, rep-
resenting their impact on theft levels. The figure shows 
that the population’s visitation levels at the venues cat-
egorised as ‘Accommodation, eating and drinking’ (AED) 
on weekdays and weekends have the top two impacts on 
theft levels with mean SHAP values of 0.038 and 0.030, 
respectively. Conversely, weekday visitations to the ‘Edu-
cation and health’ (EH) venues appear to have the weak-
est impact on the theft levels. It is also of note that place 
visitations categorised under ‘Retail’ (RET) and ‘Attrac-
tions’ (ATT) on weekends and weekdays have generated 
a consistently high level of impact on the predictability of 
theft levels compared to other visitation categories with 
the SHAP values of 0.015 and 0.026.
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To understand the impact of place visitation by type 
of place on theft, Fig. 4 plots the SHAP values of each 
place visitation variable (measured by MDAF) across 
all spatial and temporal units/grids, i.e., 4835 LSOAs × 
24 months (represented by individual dots). The x-axis 
in the figure represents the influence (SHAP values) of 
place visitation variables on the theft counts. The posi-
tive and negative SHAP values (above or under 0) indi-
cate whether the population visitations at a particular 
place type contribute to increasing or decreasing pre-
dicted theft levels. The legend on the y-axis represents 
the types of place visitation levels (i.e., the MDAF value 
levels) and is visually distinguished by the colour, with 
red signifying higher values and blue denoting lower 
values. Overall, across the units tested, increasing 

visitor population levels increase predicted theft levels 
– as most of the dots with high place visitation levels 
are to the right of the zero line – although the picture 
is more balanced for ‘Transport’ (TRA), ‘Education 
and Health’ (EH) and ‘Manufacturing and Production’ 
(MP). However, in several situations, compared to all 
observation samples (i.e., all LSOAs over 24 months), 
those units with higher levels of population visitations 
(indicated by red dots) at certain places also decreased 
theft levels (i.e., had negative impacts), such as ‘Retail’ 
on weekends (RET(WE)) and ‘Attractions’ on weekdays 
and weekends (ATT(WD) and ATT(WE)) (showing red 
dots to the left-hand side of the zero line). It can also be 
observed that the low-level population visitations (indi-
cated by blue dots) are clustered around SHAP values 

Fig. 3  The global impacts (measured by the mean absolute SHAP values) of different types of place visitations (on weekdays/weekends) on theft 
incident levels in London from 2020 to 2021. The full AOI names are ‘Accommodation, eating, and drinking’ (AED), ‘Retail’ (RET), ‘Attractions’ (ATT), 
‘Commercial services’ (CS), ‘Sport and entertainment’ (SE), ‘Transport’ (TRA), ‘Manufacturing and production’ (MP), ‘Education and health’ (EH) 
and ‘Public infrastructure’ (PI)
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of 0, which means limited place visitation levels have 
negligible impacts on theft levels.

To more fully understand the impacts of place visita-
tion on theft incidents amid the pandemic restriction 
and relaxation policies, Figs. 5, 6 and 7 show the global 
impact of the population’s visitation at three types of 
places (‘Accommodation, eating and drinking’, ‘Retail’ 
and ‘Attractions’) on theft levels in London during the 
two years by month. Here, the global impact is rep-
resented by the mean of absolute SHAP values of all 
London LSOAs by month within the two-year period. 
Three vertical grey lines denote the specific national 
lockdown months in the UK, including the ‘First 
national lockdown’ (from March 23, 2020 to June 23, 
2020), ‘Second national lockdown’ (from November 5, 

2020 to December 2, 2020) and ‘Third national lock-
down’ (from January 6, 2021 to February 22, 2021). In 
general, it shows that the global impacts of popula-
tion visitation at various places on theft significantly 
changed due to pandemic-related restrictions. The 
impact of place visitation on theft level started to rise 
in correspondence with the relaxation of pandemic 
constraints and declined when the restrictions were 
reintroduced. The figures illustrate that the global 
impact of the population’s visitation at these three 
specific places (accommodation eating and drink-
ing, retail and attractions) on theft reached the high-
est levels in February 2020 (before the first national 
lockdown) while declining to the lowest level in April 
2020 during the first national lockdown. Furthermore, 

Fig. 4  The SHAP values of place visitation variables across all spatial and temporal units/grids (4835 LSOAs × 24 months in total). The legend 
represents the levels of place visitation variable values and is visually distinguished by the colour, with red signifying high values and blue denoting 
low values
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it indicates the reinforcements in the impacts of place 
visitation on crime levels during eased restriction peri-
ods following the lockdowns, specifically between May 
2020 and September 2020 after the first national lock-
down, and between February 2021 and May 2021 after 

the third national lockdown. Further, the visitation to 
these locations on weekdays led to a higher impact on 
theft compared to visits during weekends over the two 
years across all the months studied.

Fig. 5  The global impact (measured by the mean of absolute SHAP values of all LSOAs) of the population’s visitation at ‘Accommodation, eating 
and drinking’ on theft outcomes of London from 2020 to 2021 (24 months). The visitation on weekdays (WD) and weekends (WE) are plotted 
as a solid line and a dashed line, respectively

Fig. 6  The global impact (measured by the mean of absolute SHAP values of all LSOAs) of the population’s visitation at ‘Retail’ on theft outcomes 
of London from 2020 to 2021 (24 months). The visitation on weekdays (WD) and weekends (WE) are plotted as a solid line and a dashed line, 
respectively
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5.2 � Local impacts
The local impacts explore the contribution of each type 
of place visitation measured by SHAP values in the 
XGBoost model’s output at each spatio-temporal unit/
grid (i.e., per LSOA and month in this study). In this 
manner, the heterogeneous impacts of place visitations 
on theft incident levels can be captured across London 
LSOAs for different pandemic contexts.

To distinguish the varied impacts of place visita-
tion on theft across London LSOAs, Figs. 8, 11 and 12 
(see Figs. 11 and 12 in Appendix) highlight the LSOAs 
with the top 30 positive SHAP values for three types 
of place visitation (‘Accommodation, eating and drink-
ing’, ‘Retail’ and ‘Attractions’) on weekdays and week-
ends in different pandemic contexts, respectively. The 
maps also indicate the boundaries between the LSOAs 
in inner London (1,901 LSOAs) and outer London 
(2,934 LSOAs). To clarify, these maps only depict the 
LSOAs which have seen positive and high-level impacts 
of selected place visitations on thefts (as indicated by 
extremely high SHAP values). For illustration, the top 
positive SHAP values in each map are broken into three 
distinct tiers (see the legends for reference). Further-
more, the four months represented in each map relate 
to unique months in pandemic restriction/relaxa-
tion policies (including February 2020 with the before 
lockdown, April 2020 with the first national lockdown, 
August 2020 with the first lockdown restriction eased, 

and November 2020 with the second national lock-
down) to illustrate the evolving spatial patterns of the 
place visitations’ influences on theft.

Figure 8 displays the spatial distributions of LSOAs in 
which theft levels are most affected by the place visita-
tions at ‘Accommodation, eating and drinking’ venues 
during four unique pandemic circumstances. Notably, in 
normal times (i.e., before lockdown), the top SHAP values 
for visitation at ‘Accommodation, eating and drinking’ 
venues on weekdays are concentrated in the city centre of 
inner London. Following the government’s implementa-
tion of social policy during the first national lockdown, it 
illustrates that the top SHAP values for ‘Accommodation, 
eating and drinking’ visitation on weekdays shifted and 
were observed in the northeastern outer London LSOAs. 
However, it is important to note that the SHAP values in 
the first national lockdown were lower than those before 
the lockdown. A similar pattern of displacement in the 
first national lockdown can be seen in the map for visita-
tion on weekends (see the map of ‘AED (WE) 2020-04’) 
where the high SHAP values appear prominently in the 
northeastern LSOAs, and some new LSOAs with high 
SHAP values are observed in the western outer London. 
As the restrictions of the first national lockdowns started 
to ease in the summer of 2020, the place visitation lev-
els increased theft (shown as the increased SHAP values) 
and re-clustered in the city centre.

Fig. 7  The global impact (measured by the mean of absolute SHAP values of all LSOAs) of the population’s visitation at ‘Attractions’ on theft 
outcomes of London from 2020 to 2021 (24 months). The visitation on weekdays (WD) and weekends (WE) are plotted as a solid line and a dashed 
line, respectively
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Fig. 8  The spatial distributions of top 30 positive SHAP values of the place visitation at ‘Accommodation, eating and drinking’ on weekdays (WD) 
and weekends (WE) in inner (the darker central area) and outer London (the lighter surrounding area). The markers represent the centroid of LSOAs 
and their size and transparency correspond to the magnitude of the top positive SHAP values, which have been grouped into three distinct levels 
for visualization purposes (as indicated in the legends)
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Figures  11 and 12 in Appendix show the similar pat-
terns as Fig.  8 for ‘Retail’ and ‘Attraction’ places, but 
denote nuances by type of place. For example, highly 
influential population visitations in driving theft levels 
for ‘Retail’ appear to be more widely distributed across 
all LSOAs during the periods examined, but visitations at 
‘Attraction’ tend to have a greater impact on theft levels 
in inner London compared to outer London areas. This 
shows that there are differences both in terms of the spa-
tial distribution of highly influential populations, but also 
in terms of how these changed over the pandemic period.

To further explore the varied impacts of place visita-
tions in specific urban areas during the different pan-
demic contexts, Fig.  9 plots the place visitation’s SHAP 
values for three selected LSOAs made up of distinct 
urban functional settings both before lockdown (Feb 
2020) and during the first national lockdown (Apr 2020). 
The top left map of London shows the physical locations 
of the three LSOAs (A, B and C) selected from inner 
London and outer London. The top table indicates each 
LSOA’s AOI numbers representing different urban func-
tional contexts. LSOA A (coded as E01004765) is located 

Fig. 9  The SHAP values of place visitation variables at three selected LSOAs before and during the first national lockdown months are illustrated 
as force plots. The length of the bars in the force figure denotes the impact extent (the magnitude of the SHAP values) of place visitation variables 
on theft levels with red specifying positive impacts (more visitations meaning more thefts) and blue specifying negative impacts (more visitations 
meaning less theft)
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in a highly-developed commercial and entertainment dis-
trict (traditionally known as the ‘Oxford circus area’ next 
to Soho) in the centre of London, and mainly contains 
238 ‘Commercial services’, 76 ‘Retail’ and 72 ‘Accommo-
dation, eating and drinking’ sites. Unlike the high-density 
AOIs in LSOA A, LSOA B (coded as E01001640) is a 
typical residential and entertainment area in the Green-
wich main district of inner London. This area includes 
17 ‘Accommodation, eating and drinking’, 12 ‘Retail’, 12 
‘Commercial service’ and 10 ‘Attractions’ AOIs. Finally, 
LSOA C (coded as E01001043) is a part of the high street 
area of Croydon (in outer London) and includes 165 
‘Commercial services’, 79 ‘Accommodation, eating and 
drinking’ and 55 ‘Retail’ sites.

Figure  9 contains large amounts of information, all 
of which demonstrates the nuances in data trends and 
hence we devote some time to interpretation here and 
provide some examples. In the subfigure of LSOA A, 
the two force plots illustrate the impacts of place visita-
tion variables on theft levels in February 2020 (left) and 
April 2020 (right), respectively. The visitation at ‘Sport 
and Entertainment’ on weekends (labelled as SE (WE)) 
was the only type of place visitation that had a negative 
impact on theft in Feb 2020, but this was a weak influ-
ence. In addition, the values of place visitation variables 
(standardised MDAF) are plotted underneath the corre-
sponding bars, so the MDAF for SE (WE) in LSOA A in 
Feb 2020 was 5.59. On the x-axis, the dark bold number 
represents the theft level value (standardised) predicted 
from the trained XGBoost regressor for selected LSOA 
and month (e.g., LSOA A and February 2020). The base 
value (0 as labelled in the x-axis) is the expected pre-
dicted theft level (i.e., standardised mean value) of all 
samples (24 months and 4,853 LSOAs). Hence, predicted 
theft levels in LSOA A were higher in Feb 2020 than in 
April (8.43 compared to 0.29) but also predicted levels in 
LSOA A were higher than those in other units like LSOA 
B.

Figure 9 also shows that the majority of the place visi-
tation variables imposed positive impacts on theft before 
lockdown (Feb 2020), especially the visitation at ‘Accom-
modation, eating and drinking’ on weekdays obtaining 
the highest SHAP values than other places. Despite expe-
riencing a significant drop in all place visitation levels 
(MDAF) in the first national lockdown (Apr 2020), the 
population visitations at ‘Accommodation, eating and 
drinking’ in LSOA A continued to influence thefts posi-
tively on weekdays (AED (WD) visitation level decreased 
from 10.48 to 0.73). However, the weekday visitation 
at ‘Transportation’ sites changed to having a negative 
impact on theft in LSOA A during the lockdown, from a 

positive impact during normal times (TRA (WD) visita-
tion levels decreased from 6.25 to 0.19).

Although the decline in visitation to LSOA B was 
relatively smaller compared to LSOA A, the impact of 
‘Attractions’ on weekends in LSOA B reached the high-
est level in the first national lockdown (April 2020). On 
the other hand, the influence of visitation to ‘Accommo-
dation, eating, and drinking’ on weekdays (AED (WE)) 
dropped to the second position in April 2020, after 
holding the most influence in February 2020. LSOA C 
also experienced the shifts in place visitations’ impacts 
on theft, with the impact of ‘Attractions’ on weekdays 
moving up to third place during the lockdown. Interest-
ingly, the impact of ‘Transportation’ visitation on week-
ends shifted from a negative to a positive impact on the 
thefts between normal time and the lockdown periods 
(TRA (WE) visitation level reduced from 3.77 to 0.32). 
This appeared to be a more general trend in this LSOA, 
with a number of the visitation variables having a positive 
impact on theft numbers during the lockdown period.

6 � Discussion
This study has examined the interplay between theft inci-
dents and the population’s place visitations sensed from 
geo big data across London’s urban areas during various 
social changes with a particular emphasis on periods of 
the pandemic. The analytical methodologies used here 
have highlighted substantial disparities in the influence of 
dynamic place visitations on theft levels across different 
circumstances. Using SHAP values as a measure of the 
impacts/contributions of place visitation on theft levels, 
the results underscore the strong association between 
place visitations and theft levels. The results demonstrate 
the strong relationship across London LSOAs between 
‘Accommodation, eating, and drinking’ places and lev-
els of theft on weekdays in particular, with higher visita-
tion typically leading to increased theft levels. However, 
the findings from local analyses indicate variations in 
the impact of visitation across London LSOAs – with 
areas where visits had a significant influence on theft 
shifting from inner London to outer London during the 
pandemic restriction periods. When closely examining 
specific urban areas (LSOAs), noticeable changes can 
be observed in the influences of visitation on theft at dif-
ferent place types under various pandemic contexts and 
demonstrate that there is no general local trend. This 
detailed research enables a more nuanced understanding 
of the dynamic influence of population activity related 
to different urban places on theft levels, particularly in a 
‘natural experiment’ condition such as a pandemic.
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The benefit of sensing population activities from big 
data is that crime opportunities can be dynamically 
assessed which allows for the analysis of the relation-
ship between specific crime types, the type of places 
in which they occur, and their busyness across any 
defined urban areas and temporal periods. For exam-
ple, theft is strongly linked to specific types of place 
visitation, particularly the ‘Accommodation, eating, and 
drinking’ sites in this study, where the measured high-
volume population activity (footfalls) creates opportu-
nities during normal (i.e., non-pandemic) times. The 
large-scale opportunities created by high foot traf-
fic in accommodation, eating, and drinking venues 
attract thieves searching for suitable targets, such as 
the properties of customers in these places. Such tar-
get selection preference and the population creating 
opportunities turns these place locations into crime 
generators in certain urban areas based on crime pat-
tern theory (Brantingham and Brantingham 2016).

The place visitation variables also capture the tempo-
ral variations that directly influence the availability of 
crime opportunities at specific types of location. This 
approach delineates the opportunities in micro-places 
characterized by variations in population activity across 
different temporal periods, such as distinct phases dur-
ing the pandemic, or between weekend and weekday 
contexts. For example, in the case study, direct evidence 
shows a global decline in population activities at accom-
modation, eating and drinking, retail, and attraction 
venues, resulting in a noticeable reduction in the impact 
of these visitations on thefts during the implementa-
tion of pandemic restrictions. Conversely, the crimino-
genic influences arising from place visitations exhibit a 
rebound during periods of relaxation as social activities 
recover leading to increased crime opportunities. We 
can conclude that using dynamic variables representing 
variations in activity levels at place rather than purely 
using place categorisations offer advantage in under-
standing the interactions between places, populations 
and levels of crime.”

Importantly, the pattern that the opportunities are 
not uniformly distributed across London LSOAs, which 
reflects the variations in population routine activity 
(e.g., mobility/movement patterns) across urban areas. 
These mobility behaviour changes reflect that some loca-
tions experienced a drastic reduction in mobility and/
or impacts on theft during the pandemic while others 
did not. For instance, during the pandemic restrictions, 
the places where visitations have a relatively high impact 
on crime appear to have spatially shifted from inner to 

outer London. This shift might be due to the fact that 
commercial and entertainment areas in inner London 
no longer attracted large volumes of the population for 
dining, working or shopping compared to pre-pandemic 
levels. During this time, outer London residents seemed 
to exhibit activity more around their residential area due 
to limited mobility, such as reduced commuting and out-
door activities in compliance with pandemic restriction 
policies.

Another explanation is that theft levels influenced by 
place visitations are further modulated by local guardi-
anship across various urban neighbourhoods. Under the 
reduction of crime opportunities alongside social activity 
restrictions (due to low levels of visitor population), some 
urban neighbourhoods with different guardianship levels 
showed varied capacities in their ability to protect their 
areas against crime (Andresen and Hodgkinson 2022; 
Campedelli et al. 2020; Chen et al. 2023a).

Additionally, the local interpretability findings obtained 
from the XGBoost regressor in this study also demon-
strate that the variations in the population guardianship 
could be related to the local places within distinct con-
texts. The negative SHAP values may represent protec-
tive impacts of population visitation against theft crime 
with different levels as distinguished by urban function-
ality. For example, there are differences in the type of 
places delivering the negative (protective) influences on 
theft between the commercial and entertainment dis-
trict (LSOA A) and the local residential areas (LSOA 
B) in normal (non-pandemic) times (see Fig.  9). Also, 
under certain contexts, the impacts of population visita-
tion at the same type of place on theft would be differ-
ent. For example, the impact of the population’s visitation 
at ‘Transportation’ sites (on weekends) on thefts turned 
from negative (protective) to positive (promoting) during 
the first national lockdown.

Disentangling the intricacies of the dynamic popu-
lation visitation’s impact on theft incidents at diverse 
place settings within disparate social contexts can be 
instrumental in shaping the implications for crime 
prevention strategies. Predominantly, based upon the 
explainable machine learning strategy, these methods 
can not only pinpoint potential areas of elevated theft 
activity through sensing high-volume population visi-
tation derived from geo big data but also dynamically 
identify the type of local place that has either a posi-
tive or negative influence on theft levels. Then, identi-
fying the locations of theft occurrences significantly 
influenced by place visitation could serve as a tai-
lored tool for resource allocation. This strategy would 
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help plan the deployment of specific management 
resources at specific places, thereby offering a more 
targeted approach to intervention. Within the context 
of dynamic societal shifts (particularly health crises or 
natural hazards), understanding the influences of local 
visitation on criminal activities can help to calibrate 
routine preventative strategies (such as police patrol-
ling) in alignment with changing requirements. The 
strategy adjustments should account not only for the 
spatial differences in how population activity influences 
crime but also for the specific context and surround-
ing environment of each urban area, as high-impact 
locations may shift between different types, as demon-
strated by this case study. Moreover, it is crucial to align 
strategy modifications to consideration of the charac-
teristics of each urban region, as the dominant impact 
tends to shift between different types of place visitations 
during times.

While this study provides valuable insights, there are 
limitations when interpreting the findings and designing 
future research. First, the geo big data employed (mobile 
phone GPS data) in this study contains a general bias, 
which can be related to the socio-economic conditions 
of the population groups sharing the data (Pappalardo 
et  al. 2023). Second, the detection of place visitation 
behaviour from geo-big data also generates bias in this 
work. One bias arises from the parameters used in stay 
detection, as well as the heuristic parameters employed 
to infer home and work locations based on mobile phone 
GPS data. Another issue is the sensed place visitation lev-
els are obtained on the basis of POIs which are likely to 
have different densities across urban areas, meaning that 
there will be subsequent variation in the size of the AOIs. 
Beyond visit frequency, other important factors such as 
the duration of stay are also critical components of visi-
tation behaviour, but have not been examined in this 
study. The emphasis on visitation behaviours is also lim-
ited by the exclusion of the working population and resi-
dents from the analysis, though one could argue that it 
is important to avoid conflating these population groups. 
Third, this analysis does not include dynamic guardian-
ship factors, such as police patrol records. The absence 
of this data limits our ability to fully track the interaction 
between guardianship and targets as theorised by the 
opportunity theories of crime. Fourth, while the study 
delineates spatial units into urban neighbourhood areas, 

the temporal units are aggregated into monthly levels due 
to police record data limitation. The monthly-level tem-
poral resolution obstructs the development of crime pre-
diction models that operate on a daily or hourly basis that 
could be facilitated by high-resolution geo big data. One 
of the barriers here is encountered in accessing corre-
sponding crime incident data in high resolution in space 
and time from open UK police data sources. Another is 
the time and computing power cost of undertaking all 
possible forms of analysis on distinct forms of aggregated 
mobility data. Lastly, the study primarily analyses the 
interoperability from the trained machine learning mod-
els, i.e., named relationships or impacts, but it does not 
provide causal inferences. In the face of dynamic social 
contexts, such an approach needs careful verification in 
interpretation for policy development through incorpo-
rating an understanding of the local neighbourhoods to 
ensure significance.

7 � Conclusions
In conclusion, this study has evaluated the impacts of 
the population’s visitation to various places on theft by 
applying explainable machine learning techniques in the 
London LSOAs over the 2020-2021 period. The popula-
tion visitations at places sensed from geo big data show 
a strong association with theft in the study area, particu-
larly the population’s visitation at ‘Accommodation, eat-
ing, and drinking’ on weekdays which incurs the highest 
(positive) impact on theft levels. Moreover, the impact 
of place visitations on crime can fluctuate depending 
on the circumstances during different pandemic phases 
with changes in influence across various types of place 
visitations at local urban areas. This study suggests the 
importance of considering the dynamic characteristics 
of population activity at places over time and in differ-
ent contexts when developing targeted crime prevention 
strategies. Future research could focus on characterising 
place visitation behaviour and integrating more dynamic 
guardianship factors, which could help elucidate crime 
opportunities and their interplay with target populations 
at various places. The data and analysis required in this 
research make it computationally challenging, but an 
obvious further research pursuit would be to replicate 
this method in other countries and regions.
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Appendix

Fig. 10  The generated nine types of AOIs in City of London (including six LSOAs) are displayed. Each LSOA boundary is plotted by grey lines. Each AOI 
type is represented using a different colour in the plot. The full AOI names are ‘Accommodation, eating, and drinking’ (AED), ‘Commercial services’ (CS), 
‘Attractions’ (ATT), ‘Sport and entertainment’ (SE), ‘Education and health’ (EH), ‘Public infrastructure’ (PI), ‘Manufacturing and production’ (MP), ‘Retail’ (RET) 
and ‘Transport’ (TRA). The distributions of commercial services and accommodation, eating and drinking exhibit denser patterns in the central areas 
of the City of London compared to other places. Additionally, some transportation sites are located near the southern boundary of the city, while other 
place types have not been observed as present in this region
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Fig. 11  The spatial distributions of top 30 positive SHAP values of the place visitation at ‘Retail’ on weekdays (WD) and weekends (WE) in inner (the 
darker central area) and outer London (the lighter surrounding area). The markers represent the centroid of LSOAs and their size and transparency cor-
respond to the magnitude of the top positive SHAP values, which have been grouped into three distinct levels for visualization purposes (as indicated 
in the legends)



Page 20 of 22Chen et al. Computational Urban Science            (2025) 5:30 

Fig. 12  The spatial distributions of top 30 positive SHAP values of the place visitation at ‘Attractions’ on weekdays (WD) and weekends (WE) in inner 
(the darker central area) and outer London (the lighter surrounding area). The markers represent the centroid of LSOAs and their size and transpar-
ency correspond to the magnitude of the top positive SHAP values, which have been grouped into three distinct levels for visualization purposes (as 
indicated in the legends)
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