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Abstract

This article defines a new methodology for pre-recognition of events with object

motion analysis in a video without any prior knowledge. This unsupervised

application is named as ’conceptualization’. This conceptualization technique is

also tested with real-time video data in an internet of things (IoT) architecture.

The merits of rough sets in the framework of granular computing are explored

to execute the task. The proposed method is designed for the video sequences

that are acquired by simple static RGB sensors. Here the video sequences

are granulated with our newly defined ’motion granules’ and then those are

modeled as rough sets over this granulation for moving object/ background

estimation. Video conceptualization is performed afterwards by quantifying

the approximation with a new measure, namely, motion entropy. The values

obtained by this measure reflect the amount of uncertainty present in the motion

of each individual moving object which enables precognition of events. The

effectiveness of the proposed method is verified with extensive experiments in

identifying the different motion patterns present in a video sequence. The frames

with possibilities of events present therein are identified with this analysis. Both

offline and real-time sequences are used for this verification. An IoT architecture

is formed to test the proposed algorithm with physical devices in identifying the
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frames containing possible events.

Keywords: Real-time video analysis, rough sets, granular computing,

neighborhood granules, entropy, internet of things (IoT), unsupervised event

precognition

1. Introduction

Video understanding and recognition of events present in it is one of the ba-

sic steps in vision-based automation. There are several types of video analysis

techniques aimed towards it. Video scene understanding, behavior understand-

ing, storyline understanding, detection of events, prediction of events are a few5

applications of visual automation among others. This article proposes methods

to analyze the nature of different types of motions present in a video sequence

and to predict possible events with detection of unpredictable change in motion

of objects with rough set theoretic granular computing. This is an unsupervised

approach, that is the detection is performed without any prior knowledge. This10

process is named as ’conceptualization’.

Video conceptualization, in other words, is a technique of pre-recognition

of events in videos with object motion analysis. That is, whether there is a

probability of some events to take place and further analysis of the content of

the video is required or not can be decided with video conceptualization. This15

process is much simpler, requires no labelled data and is faster than video under-

standing techniques. Therefore labelled data dependency and time consumption

of an automated computer vision system (e.g. any surveillance system) can be

reduced with this technique.

Granulation is a natural process of interpretation in human mind. This con-20

cept was first introduced to machine learning by Zadeh [1], with crisp granules.

These information granules are used effectively in several areas of machine learn-

ing [2, 3]. Here, a new way of granule formation is defined over video sequences

in two layers. The first layer of forming granules contains the spatio-color in-

formation of each frame. The second layer contains the motion information of25
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those spatio-color granules. That is why these are named as ’motion granules’.

The object-background rough set is defined over these motion granules.

Theory of rough sets, as explained by Pawlak [4], has become a popular

mathematical framework for granular computing. The focus of the theory is

on the ambiguity caused by limited discernibility of objects in the domain of30

discourse. Its key concepts are those of object ’indiscernibility’ and ’set approx-

imation’. The sets defined in this work over the newly defined motion granules,

inherit the overlapping property which helps to decrease the uncertainties in

decision making by pushing uncertain granules towards the boundary of the

sets. A new measure, namely, motion entropy is introduced in the conceptual-35

ization method to quantify the uncertainty present in the motion of an object.

The entropy values can reflect well whether there is any sudden change in the

motion of the object, and can differentiate between continuous and random

movements. The effectiveness of the concept of ’conceptualization’ is tested

with real-time video acquisition in an IoT-set up built with a Raspberry Pi40

3B+ in lab environment. To our knowledge, there does not exist any literature

where the unsupervised event precognition is done from videos captured with a

single static RGB camera. The methods of detection of unusual movements in

IoT with real-time video acquisition is also very scarce.

The novelties that lie in this article are mainly in: i) approximating object-45

background with the concept of rough sets in an unsupervised manner over the

newly defined ’two-layered motion granules’, ii) formulating a new uncertainty

measure, motion entropy to compute the uncertainty present in the movement

of an object and iii) conceptualizing the videos with a simple RGB (if available

D) sensor, and iv) testing the effectiveness of the proposed algorithm in an IoT50

even with real-time data acquisition.

The rest of the article is organized as follows. A few benchmark work on

video understanding and event detection are discussed in Section 2. The pro-

posed work is explained in details in Section 3 along with an IoT architecture

of its realization/ demonstration. This includes the formulation of two-layered55

motion granules, definition of object-background as rough sets over this gran-
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ulation, and the definition of motion entropy. The key steps and proposed

algorithms for video conceptualization are described in Section 4. Experimental

results on several video sequences along with those in IoT setup are explained in

Section 5 to demonstrate the effectiveness of the proposed method. The overall60

conclusion is drawn in Section 6.

2. Related Work

There exist a significant amount of work those address the task of video un-

derstanding [5]. This problem was first dealt by Brand [6] where videos of ma-

nipulation tasks were interpreted with psychologically-based causal constraints65

to detect meaningful changes in motions. An approach of activity pattern anal-

ysis was then developed by Stauffer et al. [7] with accumulation of information

from multiple cameras. A method of automatic discovery of the key patterns of

motion was formulated by Yang et al. [8] by using a low level feature, pixel-wise

optical flow, several of which were embedded later in a diffusion map framework.70

Behavior analysis with video understanding by tracking people and analyzing

the trajectory with Mean-shift algorithm was formulated by Zaidenberg et al.

[9]. An unsupervised method for video understanding was proposed by Milbich

et al. [10] where combinatorial sequence matching was performed to train a

CNN, and thereby using a huge amount of labelled data for training the CNN.75

Mademlis et al. [11] came up with a method of unsupervised video summariza-

tion with salient features. Another way of video understanding with desktop

action recognition from ego-centric videos was developed by Cai et al. [12]. It

was mainly focused on hand motion analysis. Another problem related to video

understanding is re-identification of person in surveillance system. It was re-80

cently addressed by Gao et al. [13] with pose-guided spatio-temporal alignment.

Event recognition from videos is a step ahead inference of video understand-

ing. There are several methods addressing this task. We are going to discuss

here a few popular ones. Ke et al. [14] developed a method of event under-

standing from crowd by matching spatio-temporal segments among consecutive85
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frames. The abnormal event detection and generation of description in a human-

understandable format with a hybridized CNN model was developed by Himani

et al. [15]. Rare event detection from satellite images with fine-tuned repre-

sentation learning was developed by Hamaguchi et al. [16]. Human behavior

recognition from multiview camera was described by Hsueh et al. [17] with a90

deep network that was developed by combining convolutional neural network

and long-short-term memory network. Pre-recognition or prediction of future

events, on the other hand, is a more challenging task that is addressed recently.

Liang et al. [18] recently developed a technique of future event prediction by

combining person behavior and person interaction together95

All of the aforementioned approaches either need initial manual interven-

tion or huge amount of labeled dataset for training. Therefore, the methods

discussed above require different training data to be applied for different type

of videos. In this work we concentrated on precognition of event(s) from gen-

eral videos. Please note that this is an unsupervised technique and the entire100

method does not go through any rigorous training. Therefore the proposed

method becomes more general method which could be applied over different

type of sequences without any new information. It is different from the existing

methods in methodology-wise, as well as objective-wise. In the present inves-

tigation our objectives are: to indicate the possibilities of events to occur, to105

identify the frames with maximum information both with offline sequences and

real-time sequences in IoT, and to select a few sets of consecutive frames as the

highlight of the entire sequence. An IoT architecture is formed afterward to

check the effectiveness of the algorithm in such a network with real-time video

acquisition. Here the network is formed by embedding a computer, Raspberry110

pi 3B+, a Raspberry pi cam, and a bread board with a LED. The LED glows

when possible event is detected in the real-time sequence.

5



Figure 1: Key steps of video conceptualization
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3. Proposed Work

Here an unsupervised rough set based approach is proposed to conceptualize

the video based on the nature of moving-static elements present in it and thereby115

infer the possibility of some future event to take place in the scene. The moving

object(s) and background are represented as rough sets over temporal domain.

The granules are formed here in two layers. In the first layer the granules are

formed as described in our earlier work [19]. In the second layer the motion

granules are formed over the spatio-temporal granules in the temporal domain.120

The object and background sets are approximated as rough sets over this motion

granules. The decision about the continuous moving, random moving, and

sudden change (possible event) in a sequence are taken based on the nature of

the neighborhood granules with respect to the sets. The nature of movements of

the objects is then quantified with the newly defined motion entropy (ME). The125

regions having high ME values are detected as the regions with more information

(where some unpredictable change occurs).

The basic operational principles of this conceptualization method are shown

in Figure 1. Two layered motion granules are formed over the input video

sequence in the first block (B-1). Rough set is defined over this granulation130

in the second block (B-2). Motion entropy is then measured for the granules

present in the set in the third block (B-3). The output of this method is the

video sequence with the moving object(s) classified according to the nature of

their movements. The working principle of B-1 is described in our earlier work

[19]. Operations of blocks B-2 and B-3 are described in sections 3.2 and 3.3135

respectively. Here we assumed that if there is a possibility of some event to

take place there, then there would be some abrupt change in motion in a video

scene. Therefore, the frames identified with sudden change may be labeled as

the cause of possible future events.

IoT Architecture: The newly defined concept of conceptualization is tested140

with real-time video acquisition in IoT architecture. This architecture is shown

in Fig. 2. It can be seen from Fig. 2 that real-time sequences are acquired
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Figure 2: Proposed IoT Architecture for Video Conceptualization

with raspberry pi cam, and they are given as input to raspberry pi 3B+ mother

board. The sequence is then analyzed with the proposed algorithm which is

stored in raspberry pi. A bread board with a LED is connected in the output145

of raspberry pi. The LED glows if any unusual motion is detected or possibility

of some event to occur arises in the input sequence. Details of the experimen-

tations performed with this architectural set up to demonstrate the significance

of ’conceptualization’ are provided in Section 5.5

3.1. Formation of Two-layered Motion Granules150

Moving object(s) and background sets (upper and lower approximations)

are defined using Pawlak’s rough set (PaRS)[4] over neighborhood granules.

These granules are constructed over temporal difference values of video frames.

Spatio-temporal granules are formed in the first layer, and motion granules are

formed in the second layer over these spatio-temporal granules. These layers155

are elaborated in the following sections.
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3.1.1. 1st Layer: Spatio-temporal Granules

The formation of spatio-temporal granules is described in details in our ear-

lier work [19]. Here we describe it in brief for the convenience of readers. Let

the current frame of a sequence be denoted as ft (size M ×N) and its previous160

P -frames be ft−p : p = 1...P . The difference values are stored in P number

of different matrices (T Vp). The differences between ft to all of its previous

1, ..., P frames are computed. It is shown in Eqn. (1). T V is of size M ×N .

T Vp = |ft − ft−p| : p = 1, ..., P. (1)

The spatio-temporal granules are formed considering values of the points as

T Vp over the spatial domain. Let xi be the position of a pixel in the difference165

frame (T Vp), then the granule around it at pth frame, denoted as ℵsp−tmpp
(xi),

is formed according to Eqn (2).

ℵsp−tmpp
(xi) =

⋃
xj ∈ T Vp (2)

where xi and xj are binary connected over |T Vp(xi)−T Vp(xj)| < Thrt

and xj ∈ T Vp.

3.1.2. 2nd Layer: Motion Granules170

The motion granules are defined to unify the similar spatio-temporal granules

present in each difference frame T Vp. That is, P number of ℵsp−tmp(xip)

can be present there in each motion granule. Here xip is the location of the

representative point of the spatio-temporal granule at frame T Vp. The motion

granules will contain the optical flow information of each ℵsp−tmp(xi1).175

One may note that ℵsp−tmp(xip) and ℵsp−tmp(xi(p−1)) represent two regions

in two difference frames T Vp and T Vp−1 respectively. Now, if we plot these

two regions in a same frame those regions may have non-zero intersection, or a

region may be a subset to another region. We have considered this phenomenon

while defining the motion granules. A motion granuleM(xi) over the P frames180

in the sequence is defined in Eqn. (3).
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An example of forming motion granules over a sequence as defined in Eqn.

(3) is shown in Fig. 3. Here the granules formed over moving objects are only

shown for the sake of simplicity. In the first part of this figure (in the left most

side) the frames in D- feature space are shown. Absolute difference is taken from185

frame ft to frames ft−1, ft−2 and ft−3. Three difference frames are obtained

in this way and spatio-temporal granules are formed on the three difference

frames. The three binary images (T V1, .., T V3) in the right most side of Fig.

3 show these spaio-temporal granules. The motion granules are formed over

these spatio-temporal granules as shown there in the lower part of Fig. 3. Here190

two motion granules (represented with red and green dotted bounding box) are

formed as two moving objects are present. The red dots and green dots are the

representative points in each frame with which the motion granules are formed.

From this figure one can estimate how motion granules are formed taking into

account the optical flow of spatio-temporal granules.195

M(xi) = {
⋃
ℵsp−tmpp

(xip)} if ℵsp−tmp(xi1) 6⊂ ℵsp−tmp(xip) and

ℵsp−tmp(xi(p−1))
⋂
ℵsp−tmp(xip) 6= ∅ ∀p = 2, ..., P.

(3)

Note that in Eqn. (3) ℵsp−tmp(xip) denotes the spatio-temporal granule

formed in the pth frame. For example, the white segments in the frames T V1,

T V2 and T V3 in Fig. 3 denote ℵsp−tmp1
(xi1), ℵsp−tmp2

(xi2) and ℵsp−tmp3
(xi3)

for the example frames. Two motion granules, formed over these spatio-temporal

granules according to Eqn. (3), are shown with red and green dotted rectangles200

in Fig. 3.

3.2. Object-Background as Rough Sets

Here the moving object(s) and background are defined as a rough set over

the aforesaid motion granules in the current frame ft. The information from the

set of its previous P number of frames are taken into account and represented205

as {P} = {t − 1, ..., t − P}. The feature of a granule M(xi) that is considered

here to define the sets is the signed Manhattan Distance (along x and y axes)

between the consecutive points of M(xi). This distance is denoted as
−→
dp. One
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Figure 3: Example Formation of Motion Granules

may note that
−→
dp is a vector with four components, viz., two absolute values

(along x and y axes) and two signs (positive or negative in those axes). It is210

computed according to Eqn. (4)

−→
dp = xi(p−1) − xip,∀p = 2, ..., P. (4)

Fig. 4 represents the computation of
−→
dps over two motion granules M(x1)

and M(x2) pictorially. Here the dotted blue lines with directions signify the

distances between the consecutive points in a granule. That is, the signed

distance along both the x and y axes are computed here. One may note that215

all the d1, d2 and d3 contain two magnitudes and two directions (positive or

negative) in both the granules.

A granule M(xi) is said to belong to lower approximation of the object

region, if the absolute values of all |dp|s are greater than zero and sign(d1) =

sign(d2) = ... = sign(dP ). That is, the granules with continuous motion (in the220
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Figure 4: A pictorial example of distance computation following Eqn. 4 over two motion

granules M(x1) and M(x2)

continuous moving object(s)) will belong to Ot (see Eqn. (5(a))). If there exist

at least one pair of points for which |dp| > 0 in a granule (M(xi)) and sign(dp)s

are the same at least twice over p ∈ {P} then the granule will belong to the

upper approximation of the object region in ft Ot (see Eqn. (5(b))). That is,

any object in motion (may or may not be continuous) will belong to the upper225

approximation of the object set. Similarly, while forming the background set,

|dp| = 0 for all p ∈ {P} for a granuleM(xi) ∈ Bt, where Bt stands for the lower

approximation of the background region in the frame ft (see Eqn. (5(c))). If

there exists at least one point in a granule for which |dp| = 0 then the granule

will belong to the upper approximation of the background region in ft, i.e., Bt230

(see Eqn. (5(d))). A crisp and definite separation can be performed in this way

in the lower approximated regions. However, there exists overlapping in the

boundary regions of both the sets. One may note that there is not a common

boundary region between object and background sets. Rather, there exist two

other regions or two different sets of granules solely characterizing the object235

boundary and background boundary. That means, there are a few granules

which solely belong to the boundary region of the object but do not belong to
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the boundary region of the background. The reverse is also true for some other

granules. Besides, these granules neither belong to the lower approximations of

the sets as there exists non-zero probability to belong to its complementary set.240

Here comes the concept of the ’other class’, that is the class which is neither

object nor background. The detection of this class can be treated as noise,

i.e., no relevant information is present there in these regions even though some

motion may be there. This phenomenon of the newly defined object-background

set helps to understand of the video more clearly.245

Ot = {M(xi) ∈ U : |dp| > 0 ∀p ∈ {P} & sign(d1) = sign(d2) = ... = sign(dP )}

(5a)

Ot = {M(xi) ∈ U : |dp| > 0 ∃p ∈ {P} & sign(dpm) = sign(dpn) while {pm, pn} ∈ {P}}

(5b)

Bt = {M(xi) ∈ U : |dp| = 0 ∀p ∈ {P}} (5c)

Bt = {M(xi) ∈ U : |dp| = 0 ∃p ∈ {P}}. (5d)

A pictorial representation of the rough set (defined in Equation (5)) is shown

in Figure 5 in a two dimensional feature space. Here a two class based rough set

is shown with overlapping granules. The ’+’-class represents the object class,

whereas the ’-’-class represents the background class. It is visualized here that

how can the object boundary and background boundary regions be not the250

same, but can have overlapping among each other. Algorithm 1 describes the

steps for formation of rough set over video.

3.3. Motion Entropy

This entropy measures the amount of certainty in the movements of the ob-

ject(s). Here we assumed that if there is some probability of an event to take255

place, the motion pattern of moving/ or static object would face sudden change

and thereby causes an uncertainty. Motion entropy concerns computation of

that uncertainty. It consists of two uncertainty measures, namely, velocity en-

tropy and acceleration entropy. As shown in Algorithm 2, the decision-making
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Figure 5: Pictorial representation of a two class object-background Rough Set

regarding the movements is performed based on the nature of shifts from frame260

to frame. Both the static object(s) and object(s) with continuous movements are

supposed to have low motion entropy values. Whereas the regions with sudden

change (static-to-moving or moving-to-static) would have higher entropy values.

The information regarding those regions with uncertainty in the system should

be updated after observing their nature in the next P frames. One may note265

that, this entropy is mainly computed over the uncertain regions where motion

is or may be present, i.e., the regions present in Ot

⋃
{Ot − Ot}

⋃
{Bt − Bt}.

Shift and SC (Eqn. (6)) are considered during the formulation of this measure.

Let M represent a moving object in the ft, i.e., Mt ∈ Ot or Mt ∈ Bt −Bt.

Its nature of movement (amount of shifts and changes in shifts) over P frames are

stored in two matrices, namely, Shift(M) and SC(M). The matrix Shift(M)

contains the location change information of moving object M in consecutive

frames. The matrix SC(M) stores the change in Shift(M) over time. In other

words, Shift(M) contains the velocity information and SC(M) contains the

acceleration information of the object M . These matrices are defined in Eqn.
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(6).

Shift(M) = {Shiftp : p = 1, ..., P} : Shiftp = Mt−p −Mt−(p−1) (6a)

SC(M) = {SCp : p = 1, ..., P} : SCp =
d

dt
(Shift(M)) (6b)

where Mt−p denotes the location of the moving object M in the frame ft−p.

One may note that, Shiftp is also a signed MahattanDistance between objects270

in consecutive frames and computed similarly as of
−→
dp in Equ. 4.

Let the mean values of the matrices be represented as Shiftm and SCm. Let

ShiftL and SCL be two matrices such that, ShiftL = {s : s ∈ Shift(M)&s ≥

Shiftm} and SCL = {sc : sc ∈ SC(M)&sc ≥ SCm}.

The velocity roughness (VR) and acceleration roughness (AR) of that region275

are computed as:

VR = 1− |ShiftL|
|Shift(M)|

(7a)

AR = 1− |SCL|
|SC(M)|

(7b)

where |.| represents the cardinality of the set. Motion roughness is thereby

defined as:

MR =
VR +AR

2
(8)

and the motion entropy (ME) is:

ME = MR ∗ e1−MR . (9)

The variations in the values of the uncertainty measures over different types of

movements is shown in Table 1 with three examples: continuous movement/280

with uniform change in motion (i.e., predictable), random movement, and sud-

den change in movement.

The moving patterns shown in Table 1 are ideal by nature. In real life this

is expected to be more complex. However we can have some ideas regarding

the nature of the movements by observing the values of MR, and ME . We285
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Table 1: Variations in Entropy with Different Movement Pattern

Movements Shift Pattern SC Pattern MR ME

Predictable ∈ Ot 0.53 ' 0

Sudden Change 0.95 0.998

Random ∈ Ot 0.5 0.82

can definitely differentiate among the noise and moving object(s) and sudden

changes after observing the corresponding ME .

One may note that the values of ME is expected to be the highest (' 1) in

case of sudden change. It shows that maximum information will be present there

due to its unpredictability. Therefore, while detecting the possible event(s) we290

set the threhold of ME close to 1, i.e., 0.9. On the other hand, ME ' 0 when

the movement is predictable, that is very less information is available there.

Therefore, we set the threshold of ME-value closed to 0, at 0.2 while detecting

predictable motion.

4. Conceptualizing the Video by Estimating the Moving Patterns of295

Objects and Precognized Events

The basic steps lying behind the proposed methodology is shown in Fig. 6.

This method mainly consists of two parts. The first one is unsupervised forma-

tion of object-background sets and the second one is categorizing the moving

segments by observing the nature of movement of the object(s). The formation300

of rough sets is described in Algorithm 1.
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Algorithm 1 Formation of Rough Set over Video

INPUT: ft, . . . , ft−P , Thrt

OUTPUT: Ot, Ot, Bt, Bt

INITIALIZE: Ot ⇐ ∅ Bt ⇐ ∅

1: Form first layer granule, i.e., spatio-temporal granules ℵsp−Tmp(xi) accord-

ing to Eqn. (2).

2: Form second layer granule, i.e., motion granule M(xi) according to Eqn.

(3).

3: Compute the the number of points covered by each M(xi) and sort these

according to size (large to small).

4: Find the granule ML(xi) with maximum no. of points xi ∈ML(xi).

5: Compute
−→
dp for ML(xi) according to Eqn. (4).

5: Put it to the any one of the sets Ot, Ot, Bt, Bt according to Eqn. (5).

6: Find the next M, (ML−1). Set L-1=L.

if ML−1 ⊂ML then

Remove ML−1 form the set and go to step 5.

else

Set L-1=L and go to step 4.

end if

7: Do it for all the M.

8: Detect the no. of separate moving objects by computing the spatial near-

ness among M(x)s in Ot, Ot and {Bt −Bt}.
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Figure 6: Step-wise Flow Diagram of Video Conceptualization

After the formation of the object-background sets the objective is to estimate

the nature of motion and change in that nature with respect to time in each

set. This is done by mapping and analyzing the frame to frame shifts of each

object(s) belonging to the sets Ot, {Ot−Ot} and {Bt−Bt}. No operation will305

be conducted for the lower background regions, until and unless there occurs

some frame to frame deviation in that region. The pattern of movement of

certain object is primarily estimated from the initial P frames and then the

regions Ot and Ot get updated alongwith the stream.

Let the M th moving region in ft be denoted by Mt (Mt ∈ Ot ∪ {Bt −310

Bt}). Let the decision attributes be D = {ContMov,RndMov, SuddChng}
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representing continuous moving (ContMov), random moving (RndMov), and

suddenly changed moving (SuddChng) objects. In this work it is assumed that

if any sudden change of motion take take place there in an object, there is a

high probability of some event to occur. The movement pattern estimation and315

event precognition is done according to the Algorithm 2.

Algorithm 2 Moving Pattern Recognition of mth Object Till tth Frame and

Event Precognition

INPUT: Mt, ...,Mt−P

OUTPUT: Decision regarding the movement pattern

INITIALIZE: D ⇐ ∅

1: Compute spatial shifts of Moving regions.

Shiftp = Mt−p −Mt−(p−1)

to form the set Shift = {Shiftk : k = 1, ..., P}.

2:Compute the change in Shift values by computing its derivative over time:

SCp =
d

dt
(Shift)

and where the set SC = {SCk : k = 1, ..., P}.

3: Compute ME for M t

if Mt ∈ Ot or if ME ≤ 0.2 then

D = ContMov

else if Mt ∈ Ot and 0.2 < ME ≤ 0.9 then

D = RndMov

else if Mt ∈ Bt and 0.9 < ME ≤ 1 then

D = SuddChng

end if

4: Label Mt to cause a probable event if D = SuddChng

In Algorithm 2, Shiftps are signed integers along X and Y axes, and there-

fore it is also a vector like dp (in Eqn. (4)) with two elements. The value
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represents the shift and the sign represents the direction. Therefore, if the sign

of the values in the set Shift remains almost constant then the deviation in the320

set SC is very low which reflects continuous motion of the object. Whereas,

if there is some probability of an event to take place, then a sudden change

in object motion in ft will be observed. It will cause both of the sets Shift

and SC have only one non-zero value and those are of same magnitude. The

performance of this algorithm is demonstrated with experimental results in the325

next section.

5. Results and Discussions

5.1. Preliminary Assumptions and Parameter Selection

The experimental studies on video conceptualization is carried out here are

under the assumption that all the videos are captured by a static camera and330

there is no occlusion or overlapping. Selection of parameters is not much crucial

issue here. One of the objectives of the study is to make the parameters adaptive,

as much as possible, so that these can take the approximate values automatically

depending on the nature of the movement and size of the objects in a sequence.

For example, the value of P (the number of previous frames to be considered)335

is chosen depending upon the speed of the object. Let τp be the binarized

T Vp (see Eqn. (1)) over a threshold Th. Then, the lowest value for which⋂
τp : p = 1, ..., P ≡

⋂
τp : p = 1, ..., P + 1 is chosen as P . The threshold value

Thrt used in Eqn (2) is chosen as 0.3 ×Median(T Vp), where Median stands

for the statistical median.340

5.2. Experimental Results in PC

The proposed method is primarily implemented in MATLAB on a PC with

3.4-GHz CPU. The The effectiveness of the proposed method is established in

this section with experimental results. The main advantages of this algorithm

lies in:345

i)Unsupervised conceptualize of videos by analyzing their nature of the move-

ments and
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ii) Detecting the sudden changes or regions with more information with

proposed motion entropy.

The video sequences with different characteristics, e.g., indoor/ outdoor350

surveillance [20, 21, 22, 23], single/ multiple moving object(s) [24, 20, 23], body

part(s) movements [25] are considered during the experimentation. All of the

video images used here are in RGB color space, however D-feature sensed by

kinect sensor [26] is also used wherever it is available ([25, 20, 24]). The algo-

rithm is executed almost over 1000 frames in total, however only a few results355

are shown to limit the size of the paper.

The video sequences over which the results are shown here have the following

characteristics. Sequence P − 01 [21] initially contains one moving person and

then different moving cars from different directions appear one by one with

different velocity and with variation in shape and size over the sequence, one360

of them get stopped and became the part of the background. There are two

moving people moving in different direction, stopped, moving only hands, again

start moving in 5b-sequence [20]. There is initially one person moving with a

bag in a railway platform, where the background train disappears slowly and

the person stops and start to move his hands in A− 07 sequence [22]. Sequence365

Child [24] contains one child walking continuously, whereas the people around

him moves partially or randomly. One lady is moving her hands continuously

with a few moves in the rest of the body in M 4 [25]. Two people enter one

by one and have change in their directions, then one of them suddenly sits on

the floor and the other one jumps over him in the sequence cam − 132 [23].370

The results that are obtained with these data sets are shown in the following

sections.

The visual results are represented as:

i) Continuous movement/ without any probable event: marked in red color,

ii) Random movement/ noise: marked in purple color,375

iii) Sudden change/ probable event: marked in green color.

Four frames for each sequence are given in Fig. 7 to demonstrate the process

of decision making. It can be seen that the same object(s) is labeled in different
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classes in different frames depending on their movement varies. For example,

the moving car in frame 449 (Fig. 7(1-b)) is labeled as sudden change (moving-380

to-static) in the frame 669 (1-c), and then to background 823 (1-d). Similar

process is executed in the other sequences over objects with similar movement

characteristics. The random movements/ newly appeared object(s) are present

in scenes (1(a), 3(b), 4(b), 4(c), 5(b)-(d)). The moving-to-static changes/ sud-

den changes are present there in scenes (1(c), 2(c), 3(c)-(d), 4(b), 5(c), 6(c),385

and 6(d)).

Different motion entropy values with respect to different object(s) in each

of the aforesaid sets of frames, as shown in Figure 7 are listed in Table 2. The

frames are named as those are indexed in the figure, (i.e., from 1(a) to 6(d)), and

the ME values for different regions of a frame are listed in the respective location390

of Table 2. It is seen that the ME values for the continuously moving object(s)

are very low (marked in ’red’ color) is almost < 0.1 for all the cases. Whereas

the random movements/ newly appeared object(s) have ME values (marked in

purple) between 0.6 to 0.85. The ME values for the sudden change object(s)/

or with probable events (marked in green) are always above 0.9. Therefore, our395

theoretical assumptions are validated with experimental outcomes in this way.

Table 2: ME Values for the Frames of Fig. 7

(a) (b) (c) (d)

1 0.81, 0.04 0.07, 0.02 0.94, 0.06 0.05, 0.02

2 0.02 0.03, 0.74 0.025, 0.96 0.034, 0.026

3 0.033 0.06, 0.81 0.044, 0.069, 0.97 0.075, 0.91

40.02, 0.058, 0.0430.76, 0.07, 0.94 0.73, 0.67, 0.03 0.65, 0.08, 0.02

5 0.036 0.023, 0.78 0.93, 0.78, 0.99 0.82,0.08

6 0.053 0.033, 0.12 0.97, 0.077 0.98

Identifying the sudden changes present in a video sequence has always been

crucial and poses a big challenge. In Table 3 we have shown the accuracy of the

said task with our proposed algorithm (Algorithm 2). We have manually identi-
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fied the frames with sudden change (FSD) for the aforementioned sequences and400

validated those with the experimental outcomes. The second column of Table

3 shows the number of frames that are truly FSD and identified as FSD by our

algorithm, i.e., true positive (TP) frames in other words. The third column of

this table shows the number of frames that are not FSD but identified as FSD

by the algorithm, i.e., false positive (FP). The forth column shows the accuracy405

of the algorithm in identifying sudden change, i.e., TP/(TP + FP ).

Table 3: Accuracy of the Algorithm in Identifying Frames with Sudden Change

Name of the SequenceTP FramesFP FramesAccuracy

P − 01 65 6 91%

5− b 22 4 84%

A− 07 56 5 92%

Child 11 2 85%

M 4 65 12 84%

cam− 132 78 8 90%

One may note that, the proposed algorithm does not generate any false

negative frames. That means, the frames with true FSD will always be detected

by our algorithm.

It is claimed that proposed ’conceptualization’ technique will cause compu-410

tational gain as less number of ’highlight’ frames will be required for further

processing. We have shown the proof quantitatively in Table 4. It is previously

discussed that the frames with sudden change will have the highest entropy

value and they carry the useful information. Accordingly, we have shown how

many frames of the aforementioned sequences have motion entropy values > 0.9415

in the total sequence. From Table 4 we can see that the useful information is

present only in 15 − 25% frames of various types of sequences under consid-

eration. Therefore, further processing of 85 − 75% frames are not required to

interpret the storyline of the videos. This is how we can achieve huge compu-

tational gain in video understanding.420
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Table 4: % of Frame Number Reduced From further Processing

Name of theTotal number of framesTotal number of frames% of gain

Sequence with ME > 0.9

P − 01 350 65 81.15%

5− b 130 22 85.33%

A− 07 250 56 77.6%

Child 85 11 87.65%

M 4 65 12 81.5%

cam− 132 460 78 83%

5.3. Comparative Results

The unsupervised video conceptualization, comprising object tracking fol-

lowed by event precognition, is a new concept. There is almost no other sim-

ilar studies to compare its performance. However, tracking based on object-

background separation is an underlying part of conceptualization. Therefore425

we fail to show any comparative studies with the proposed conceptualization

method. However, moving object-background separation, described in Algo-

rithm 1 is a part of this work. Therefore we have performed comparative studies

with a few recent robust tracking methods over the aforesaid datasets. With this

comparitive study we will be able to judge how efficient our proposed method430

is for the task of event precognition, since this tracking performance is crucial

behind this task. The tracking methods with which the comparative studies are

performed include our earlier method NRBFG [19] and the following six popular

methods.

DeepTrack [27]: In this method a single convolutional neural network (CNN)435

was used for tracking. This network was developed for learning effective features

for the target object representation in a purely online manner.

CNT [28]: Here simple two-layer convolutional networks were used for ob-

ject representations. A ’deep network’ structure was then introduced in visual

tracking.440
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KPSR [29]: Key patch sparse representation based tracker was introduced

here. Sparse representation, selection of the key patches and designing the

contribution factor of the patches were the basic steps of tracking here.

CST [30]: A constrained graph labeling algorithm was proposed here for

tracking. Superpixel based transductive learning, the appearance fitness con-445

straint, and the temporal smoothness constraint are incorporated in the graph

labeling algorithm which is then used for tracking.

DNNT [31]: A dual deep network is designed here for tracking. Its objective

is to exploit the hierarchical features in different layers of a deep model and

design a dual structure to obtain feature from various streams. This model is450

updated online based on the observation tracked object in consecutive frames.

SIMT [32]: This method obtains several samples of the states of the target

and the trackers during the sampling process using Markov Chain Monte Carlo

(MCMC) method. Here the trackers interactively communicate and exchange

information with others thereby improving its performance and increasing the455

overall tracking performance.

The time and accuracy comparisons among the aforementioned methods to

our proposed method is shown in Table 5 . The accuracy is measured based on

the distance between the centroids (CD) of the ground truth and the obtained

tracked region of the respective frames. The ground truths are available along460

with the data sets that we used in the experiment. average CPU time in second

needed to process a frame.

Table 5 shows that the proposed method results in computational gain as

less computation time is required compared to the other methods. It can also be

noticed that the accuracy of this method is not always the best among the others.465

Therefore, the proposed method could be useful where no prior knowledge is

available and faster decision making is required. One may note that no visual

comparative result is provided here as the proposed method does not show any

visual gain compared to the other methods.
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Table 5: Time and Accuracy Comparisons

Sequence Metric NRBFG DeepTrack CNT KPSR CST DNNT SIMT Proposed

P − 01 CD 4.78 3.22 3.56 3.43 3.82 3.81 3.93 4.95

P − 01 Time 0.325 0.305 0.320 0.332 0.381 0.307 0.368 0.165

A− 07 CD 4.54 5.94 5.86 5.21 4.68 4.76 4.81 5.21

A− 07 Time 0.234 0.323 0.366 0.383 0.265 0.271 0.231 0.189

Child CD 4.23 5.32 4.22 3.57 3.82 3.72 3.61 4.51

Child Time 0.308 0.351 0.385 0.335 0.381 0.344 0.276 0.198

M 4 CD 2.72 2.02 2.42 1.65 1.42 1.55 1.36 2.92

M 4 Time 0.256 0.241 0.295 0.222 0.251 0.246 0.271 0.111

cam− 132 CD 4.82 6.02 5.42 4.65 4.72 4.58 4.75 5.22

cam− 132 Time 0.276 0.421 0.415 0.322 0.351 0.316 0.284 0.192

5.4. Computational Complexity of Algorithms470

It is already demonstrated in Table 5 that the computation time required

by our proposed tracking algorithm (Algorithm 1) is much less. Here we are

going to show how the computational complexity of this algorithm get reduced

with the newly defined motion granules. If there are total N number of pixels

in a frame, and such P no. of frames are considered for granulation, then475

the complexity of granulation is O(NP
n ), with n degree of similarity in three

dimensions. Now the object background separation could be done with a single

scan through the representative points of the granules. Say, there are G such

granules. Now, since G << NP , the total complexity will still be ≈ O(NP
n ) in

detecting an object. That is why the computation is not much dependent on480

the speed or size of the objects, and here it varies between 0.11− 0.19 second/

frame.

Now, let us consider Algorithm 2. Let there be M no. of moving objects

present there in the sequence. Then the computational complexity of Algorithm

2 will simply be O(M) since all the computational procedure will be conducted485

over the motion granules only.
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5.5. Experimental Results in IoT

The effectiveness of the proposed algorithm is demonstrated here in an IoT

architecture. The architecture is built by embedding a Raspberry Pi 3B+ moth-

erboard, a Raspberry Pi Cam for real time data acquisition, and a breadboard490

with LED. The codes to implement these algorithms and techniques are written

here in Python programming language by leveraging the predefined functions

present in OpenCV library, Scipy. The detail of this architecture is shown in

Fig. 2 at Section 3. The videos used here for experimentation are both the

offline data, as described in the previous section, and the real-time data. The495

real-time (on-line) sequences were shot by moving a pen with different speeds

and directions in front of the Raspberry Pi Cam. Here in Fig. 8, two example

frames for off line and on line videos with unusual change detection are shown.

LED glows by detecting unusual movements. In case of on-line data, it glows

whenever some change is found in the motion/ movement of the pen.500

In Table 6 the performance of our algorithm is demonstrated quantitatively.

In the first six, rows Table 6 is compared with Table 4 in terms of the reduction of

frames. The count in the third column of Table 6 is taken as the total number of

times, the glew LED in each sequence, and it is compared with the total number

of frames with ME > 0.9 of Table 4 for the same sequences. It can be seen from505

Table 6 that the the number of frames where LED glows IoT is almost same

as that obtained in the PC. One to two frames only got lost in each sequence

due to IoT set up, but the performance is almost similar. Therefore it can

be concluded that the proposed algorithm performs well in IoT architecture.

The last two rows of Table 6 show the performance of this IoT architecture510

with two real-time sequences. The real time sequences, as mentioned before,

are shot by moving a pen with different speeds and directions in front of the

Raspberry Pi Cam. The LED glows when there is some change in motion of the

pen. The same sequences were recorded and tested with ME values in PC. The

forth column shows these results. From the last two rows of Table 6 the similar515

conclusion can be drawn for real-time sequences as that of the offline sequences.

That is, our algorithm is effective with real-time data acquisition too, in IoT.
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Table 6: Comparative Study on Frame Number Reduction

Name of the Total numberTotal number of framesTotal number of frames

Sequence of frames where LED glows with ME > 0.9

P − 01 350 62 65

5− b 130 20 22

A− 07 250 55 56

Child 85 10 11

M 4 65 12 12

cam− 132 460 76 78

Real − TimeSq − 1 90 46 48

Real − TimeSq − 2 110 32 33

6. Conclusions

The process described in this article involves rough set based moving object

background classification and motion uncertainty analysis with newly defined520

motion entropy. The primary goals of this new application lie in, predicting

some event to occur, identifying the frames where some events may take place,

and selecting a few sets of consecutive frames as the highlight of the entire se-

quence. The effectiveness of the theories and methodologies described here is

experimentally validated with different types of video sequences. The proposed525

work is also applied and tested in an IoT framework where it proves to work

properly even with real-time data acquisition. To our knowledge, no such unsu-

pervised video conceptualization approach exists in literature. The application

of event prediction in IoT is also very scarce. Therefore no suitable comparative

survey could be provided for the entire task and we showed comparative results530

are shown for the tracking part only. The new unsupervised tracking method

which is a crucial part of the ’conceptualization’ task proves to be faster than

several recent robust tracking methods. Besides, the motion uncertainty mea-

sure, viz., ’motion entropy’, defined here can reflect which object(s) present in

a video sequence have unpredictable movements, i.e., more suspicious behavior.535
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Since the method is primarily developed for the videos captured with static

cameras, it may not work if camera movement is present there in the video

sequence.

This method could be extended to identification of object-of-events and de-

scription generation of possible events. Techniques to handle camera motion540

could also be integrated with this method to make it more robust. Further, the

theories and methodologies developed here may be applied in the other areas of

computer vision e.g., video summarization and shot boundary detection. Above

all, this investigation could be highly effective in the IoT applications with video

processing, like smart city, and smart home.545
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1(a) 1(b) 1(c) 1(d)

2(a) 2(b) 2(c) 2(d)

3(a) 3(b) 3(c) 3(d)

4(a) 4(b) 4(c) 4(d)

5(a) 5(b) 5(c) 5(d)

6(a) 6(b) 6(c) 6(d)

Figure 7: Conceptualization results for frame nos. (1) 12, 449, 669, 823 from P −01 sequence,

(2) 196, 364, 746, 1418 from 5b sequence, (3) 2339, 2389, 2445, 2492 from A − 07 sequence,

(4) 5, 25, 44, 69 from Child-sequence, and (5) 7, 16, 21, 28 from M 4 sequence (6) 159, 239,

310, 365 form cam− 132 sequence
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(a)

(b)

Figure 8: LED Glows in IoT by Detection of Unusual Change in Motion: (a)Frame no. 692

of P − 01-Sequence and (b) A Frame in Real-time Sequence
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