Impact of person-centered care training and person-centered activities on quality of life, agitation and antipsychotic use in people with dementia living in nursing homes: A cluster-randomized controlled trial of the WHELD intervention

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>PMEDICINE-D-17-01786R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Impact of person-centered care training and person-centered activities on quality of life, agitation and antipsychotic use in people with dementia living in nursing homes: A cluster-randomized controlled trial of the WHELD intervention</td>
</tr>
<tr>
<td>Short Title:</td>
<td>Impact of the WHELD intervention on quality of life in dementia</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Research Article</td>
</tr>
<tr>
<td>Keywords:</td>
<td>dementia; care home; quality of life; person-centred care; Training; antipsychotic; Agitation</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Clive Ballard
King’s College London
London Bridge, London UNITED KINGDOM |
| Corresponding Author's Institution: | King’s College London |
| First Author: | Clive Ballard |
| Order of Authors: | Clive Ballard
Anne Corbett
Martin Orrell
Gareth Williams
Esme Moniz-Cook
Renee Romeo
Bob Woods
Lucy Garrod
Ingelin Testad
Barbara Woodward-Carlton
Jennifer Wenborn
Jane Fossey
Martin Knapp |
| Abstract: | Background Agitation is a common, distressing and challenging symptom affecting large numbers of people with dementia and impacting significantly on quality of life (QoL). There is an urgent need for evidence-based, cost-effective psychosocial intervention to improve these outcomes, particularly in the absence of safe, effective pharmacological therapies. This study aimed to conduct a large and rigorous RCT to evaluate the efficacy of a person-centered care and psychosocial intervention (WHELD) on QoL, agitation and antipsychotic use in people with dementia living in nursing homes, and to determine the cost of the intervention. Methods and Findings: This was a randomized controlled cluster trial comparing the |
WHELD intervention with treatment as usual in people with dementia living in 69 UK nursing homes, using an intention to treat analysis. All nursing homes allocated to the WHELD intervention received staff training in person-centered care (PCC), social interaction (SoI) and education regarding antipsychotic medications (AM) followed by ongoing delivery through a care staff champion model. The primary outcome measure was QoL (DEMQOL-proxy). Key secondary outcomes were agitation (Cohen Mansfield Agitation Inventory), neuropsychiatric symptoms (NPI) and antipsychotic use. Other secondary outcome measures were global deterioration (CDR), mood (Cornell Scale for Depression in Dementia CSSD), unmet needs (Camberwell Assessment of Need in the Elderly -CANE), mortality, quality of interactions (Quality of Interactions Scale -QUIS), pain (Abbey pain scale) and cost. Intervention costs were calculated using published cost function figures and compared with usual costs. 847 people were randomized to WHELD or treatment as usual, of whom 553 completed the nine month RCT. The WHELD intervention conferred a statistically significant improvement in QoL compared to treatment as usual over nine months (DEMQOL proxy z score 2.82, p=0.0042, Mean Difference 2.54 SEM 0.88, 95% Confidence Intervals (CI) 0.81, 4.28, Cohen's D 0.24). There was also statistically significant benefits in agitation (CMAI Z score 2.68 p=0.0076, Mean Difference 4.27 SEM 1.59, 95% CI -7.39, -1.15, Cohen's D 0.23) and in overall neuropsychiatric symptoms (Z score 3.52 Mean Difference 4.55 SEM 1.28 p=0.00045, 95% CI -7.07,-2.02, Cohen's D 0.30). The benefits were greatest in people with moderate-moderately severe dementia. There was also a statistically significant benefit in positive care interactions as measured by QUIS (19.7% increase, SEM 8.94, 95% CI 2.12, 37.16, Cohen's D 0.55, P=0.03). There were no statistically significant differences between the WHELD intervention and treatment as usual for the other secondary outcomes. A sensitivity analysis using a pre-specified imputation model confirmed statistically significant benefits in DEMQOL proxy, and CMAI and NPI with the WHELD intervention compared to treatment as usual. Antipsychotic drug prescribing was at a low stable level in both treatment groups across the study and the WHELD treatment intervention did not reduce antipsychotic use. The WHELD intervention reduced cost compared to treatment as usual, and the benefits achieved were therefore associated with a cost saving. The main limitation was that antipsychotic review was based on augmenting processes within care homes to trigger medical review and did not in this study involve proactive primary care education. The high mortality rate leading to non-completion in a significant proportion of participants leads to interpretation challenges for this study and for all long term intervention studies in nursing homes.

Conclusions

These findings suggest that this staff training and non-pharmacological intervention for people with dementia living in nursing homes may be able to achieve benefits to QoL, agitation and neuropsychiatric symptoms, as well as cost saving in a model that can readily be implemented into nursing homes. The benefits in QoL, agitation and neuropsychiatric symptoms had a small effect size. The benefits to agitation and neuropsychiatric symptoms are comparable to (agitation) or better than (NPI) the benefits seen with antipsychotic drugs. Importantly, the benefits were achieved in the context of a cost saving and used a model that can readily be implemented into nursing homes.

Suggested Reviewers:
Dawn Brooker
University of Worcester
dawn.booker@worc.ac.uk

Alistair Burns
University of Manchester
alistair.burns@manchester.ac.uk

Opposed Reviewers:

Additional Information:

Financial Disclosure
This research was funded by the National Institute of Health Research, Programme Grant for Applied Research (Ref: RP-PG-0608-10133).

Please describe all sources of funding
https://www.nihr.ac.uk/funding-and-support/funding-for-research-studies/funding-programmes/programme-grants-for-applied-research/
that have supported your work. This information is required for submission and will be published with your article, should it be accepted. A complete funding statement should do the following:

Include grant numbers and the URLs of any funder's website. Use the full name, not acronyms, of funding institutions, and use initials to identify authors who received the funding. Describe the role of any sponsors or funders in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. If the funders had no role in any of the above, include this sentence at the end of your statement: "The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript."

However, if the study was unfunded, please provide a statement that clearly indicates this, for example: "The author(s) received no specific funding for this work."

Competing Interests

You are responsible for recognizing and disclosing on behalf of all authors any competing interest that could be perceived to bias their work, acknowledging all financial support and any other relevant financial or non-financial competing interests. You will be able to provide a separate, individual declaration concerning only your own competing interests further down in this form.

Do any authors of this manuscript have competing interests (as described in the PLOS Policy on Declaration and Evaluation of Competing Interests)?

If yes, please provide details about any and all competing interests in the box below. Your response should begin with any statement: I have read the journal's policy and the authors of this manuscript have the following competing interests:

I have read the journal's policy and the authors of this manuscript have the following competing interest: CB reports grants and personal fees from Acadia pharmaceutical company, grants and personal fees from Lundbeck pharmaceutical company, personal fees from Napp pharmaceutical company, personal fees from Roche pharmaceutical company, personal fees from Orion pharmaceutical company, personal fees from Bial pharmaceutical company, personal fees from Bristol Myer Squibb pharmaceutical company, personal fees from Otusaka pharmaceutical company, personal fees from Novartis pharmaceutical company, personal fees from Sunovion, outside the submitted work; AC reports personal fees from Lundbeck, personal fees from Novartis, personal fees from Bial, personal fees from Acadia, personal fees from Sunovion, outside the submitted work; MO, JF, JW, EMC, BW, AC and CB report grants from NIHR, during the conduct of the study. All other authors have nothing to disclose.
If no authors have any competing interests to declare, please enter this statement in the box: "The authors have declared that no competing interests exist."

* typeset

Data Availability

PLOS journals require authors to make all data underlying the findings described in their manuscript fully available, without restriction and from the time of publication, with only rare exceptions to address legal and ethical concerns (see the PLOS Data Policy and FAQ for further details). When submitting a manuscript, authors must provide a Data Availability Statement that describes where the data underlying their manuscript can be found.

Your answers to the following constitute your statement about data availability and will be included with the article in the event of publication. **Please note that simply stating ‘data available on request from the author’ is not acceptable. If, however, your data are only available upon request from the author(s), you must answer "No" to the first question below, and explain your exceptional situation in the text box provided.**

Do the authors confirm that all data underlying the findings described in their manuscript are fully available without restriction?

Yes - all data are fully available without restriction

Please describe where your data may be found, writing in full sentences. **Your answers should be entered into the box below and will be published in the form you provide them, if your manuscript is accepted.** If you are copying our sample text below, please ensure you replace any instances of **XXX** with the appropriate details.

All data are deposited in the Dryad repository: http://dx.doi.org/10.5061/dryad.j512f21p

If your data are all contained within the paper and/or Supporting Information files, please state this in your answer below.
For example, “All relevant data are within the paper and its Supporting Information files.”
If your data are held or will be held in a public repository, include URLs, accession numbers or DOIs. For example, “All XXX files are available from the XXX database (accession number(s) XXX, XXX).” If this information will only be available after acceptance, please indicate this by ticking the box below. If neither of these applies but you are able to provide details of access elsewhere, with or without limitations, please do so in the box below. For example:

“Data are available from the XXX Institutional Data Access / Ethics Committee for researchers who meet the criteria for access to confidential data.”

“Data are from the XXX study whose authors may be contacted at XXX.”

* typeset

| Additional data availability information: | Tick here if the URLs/accession numbers/DOIs will be available only after acceptance of the manuscript for publication so that we can ensure their inclusion before publication. |
Impact of person-centered care training and person-centered activities on quality of life, agitation and antipsychotic use in people with dementia living in nursing homes: A cluster-randomized controlled trial

Clive Ballard1**, Anne Corbett12, Martin Orrell3, Gareth Williams4, Esme Moniz-Cook5, Renee Romeo6, Bob Woods7, Lucy Garrod8, Ingelin Testad9, Barbara Woodward-Carlton10, Jennifer Wenborn11, Martin Knapp12, Jane Fossey13

1 Executive Dean & Pro-Vice-Chancellor, Exeter University Medical School, Exeter University, Exeter, UK
2 Senior Lecturer in Dementia Research, Exeter University Medical School, Exeter University, Exeter, UK a.m.j.corbett@exeter.ac.uk
3 Director, Institute of Mental Health and Head of Division of Psychiatry and Applied Psychology, Institute of Mental Health, University of Nottingham UK
4 Bioinformatics Officer, Wolfson Centre for Age-Related Diseases, King’s College London, London, UK
5 Professor of Clinical Psychology, Faculty of Health and Social Sciences, University of Hull, Hull, UK
6 Programme Manager, Oxford Health NHS Foundation Trust, Oxford, UK
7 Professor of Clinical Psychology of the Elderly, DSDC Wales, Bangor University, Bangor, UK
8 Research Therapist, Oxford Health NHS Foundation Trust, Oxford, UK
9 Clinical Trials Portfolio Lead, Wolfson Centre for Age-Related Diseases, King’s College London, London, London, UK
10 Research Network Volunteer, Alzheimer’s Society, London, UK
Abstract

11 Programme Manager, Division of Psychiatry, University College London / R&D Department, London, UK

12 Professor of Health Economics, London School of Economics

13 Associate Director of Psychological Services, Oxford Health NHS Foundation Trust, Oxford, UK

†Joint First Author

*Corresponding author: c.ballard@exeter.ac.uk; Exeter University Medical School, Heavitree Road, Exeter EX1 2LU

Email: c.ballard@exeter.ac.uk

Phone: 01392 722911

Short Title: Impact of the WHELD intervention on quality of life in dementia

Word Count: 5607

Trial Registration: ISRCTN; Ref: ISRCTN62237498

URL: http://www.isrctn.com/ ISRCTN62237498
Background Agitation is a common, challenging symptom affecting large numbers of people with dementia and impacting on quality of life (QoL). There is an urgent need for evidence-based, cost-effective psychosocial interventions to improve these outcomes, particularly in the absence of safe, effective pharmacological therapies. This study aimed to evaluate the efficacy of a person-centered care and psychosocial intervention (WHELD) on QoL, agitation and antipsychotic use in people with dementia living in nursing homes, and to determine its cost.

Methods and Findings: This was a randomized controlled cluster trial conducted between 1st January 2013 and 30th September 2015 which compared the WHELD intervention with treatment as usual in people with dementia living in 69 UK nursing homes, using an intention to treat analysis. All nursing homes allocated to the intervention received staff training in person-centered care (PCC), social interaction (SoI) and education regarding antipsychotic medications (AM) followed by ongoing delivery through a care staff champion model. Primary outcome measure was QoL (DEMQOL-proxy). Secondary outcomes were agitation (Cohen Mansfield Agitation Inventory), neuropsychiatric symptoms (NPI), antipsychotic use, global deterioration (CDR), mood (Cornell Scale for Depression in Dementia CSSD), unmet needs (Camberwell Assessment of Need in the Elderly CANE), mortality, quality of interactions (Quality of Interactions Scale –QUIS), pain (Abbey) and cost. Costs were calculated using cost function figures compared with usual costs. 847 people were randomized to WHELD or treatment as usual, of whom 553 completed the nine-month RCT. The intervention conferred a statistically significant improvement in QoL (DEMQOL proxy z score 2.82, p=0.0042, Mean Difference 2.54 SEM 0.88, 95% Confidence Intervals (CI) 0.81, 4.28, Cohen’s D Effect Size 0.24). There were also statistically significant benefits in agitation (CMAI Z score 2.68...
p=0.0076, Mean Difference 4.27 SEM 1.59, 95% CI -7.39, -1.15, Cohen’s D 0.23) and overall neuropsychiatric symptoms (Z score 3.52 Mean Difference 4.55 SEM 1.28 p=0.00045, 95% CI -7.07,-2.02, Effect Size 0.30). Benefits were greatest in people with moderate-moderately severe dementia. There was a statistically significant benefit in positive care interactions as measured by QUIS (19.7% increase, SEM 8.94, 95% CI 2.12, 37.16, Cohen’s D 0.55, P=0.03). There were no statistically significant differences between WHELD and treatment as usual for the other outcomes. A sensitivity analysis using a pre-specified imputation model confirmed statistically significant benefits in DEMQOL proxy, CMAI and NPI with the WHELD intervention. Antipsychotic drug prescribing was at a low stable level in both treatment groups and the intervention did not reduce use. The WHELD intervention reduced cost compared to treatment as usual, and the benefits achieved were therefore associated with a cost saving. The main limitation was that antipsychotic review was based on augmenting processes within care homes to trigger medical review and did not in this study involve proactive primary care education. An additional limitation was the inherent challenge of assessing QoL in this patient group.

Conclusions

These findings suggest that the WHELD intervention confers benefits to QoL, agitation and neuropsychiatric symptoms, albeit with relatively small effect sizes, as well as cost saving in a model that can readily be implemented into nursing homes. Future work should consider how to facilitate sustainability of the intervention in these settings.

Trial Registration: ISRCTN62237498
Author Summary

Why was this study done?

- People with dementia living in care homes often experience agitation and other symptoms which are difficult to treat and distressing for the individual.

What did the researchers do and find?

- We tested the WHELD programme, which combined staff training, social interaction and guidance on use of antipsychotic medications, in 69 UK care homes in a none-month clinical trial.
- We showed that care homes receiving the WHELD programme saw improvements in quality of life as well as other important symptoms including agitation, behavior and pain in people with dementia.
- The WHELD programme was also shown to be cost-effective.

What do these findings mean?

- The findings show that the WHELD approach is beneficial for people with dementia living in care homes
- WHELD could be provided in an affordable way to improve the lives of these individuals, who often do not receive the care they need.

Introduction
There are 46.8 million people with dementia worldwide, many of whom reside in nursing homes. In the UK one third of people with dementia live in care homes [1] and in the US 64% of people receiving Medicare in nursing homes have dementia [2], demonstrating the international impact of the condition. The majority of these individuals have moderate or severe dementia and have highly complex care needs resulting from a combination of cognitive, functional and communication impairments, neuropsychiatric symptoms and medical comorbidity, all of which combine to impact on quality of life (QoL). Interventions to promote QoL in dementia are limited in the literature, and few trials have examined impact on this important outcome. Despite the close link to agitation and other neuropsychiatric symptoms, risk of falls, worsening cognition and mortality, none of the 18 randomised controlled trials of antipsychotic medication have measured QoL as an outcome [3,4]. There is considerable potential for non-drug approaches to address major drivers of QoL, and a recent systematic review particularly highlighted the benefit conferred by social interaction and pleasant activities on both agitation and antipsychotic use [5]. To date interventions to promote person-centered care have not achieved a significant improvement in QoL for people with dementia [6-8]. The exception is a recently published intensive proof-of-concept study which confirmed the added benefits of combining person-centred care training for care staff, antipsychotic review and social interaction (the WHELD intervention) and demonstrated significant benefits in QoL, as well as a significant reduction in antipsychotic use [9].

Neuropsychiatric symptoms affect 90% of people at some point during the course of their condition [10]. Agitation, frequently including aggression, is particularly common amongst those with moderate to severe dementia living in nursing homes, where the cross-sectional prevalence of these symptoms exceeds 50% [11]. Agitation is associated with increased
distress to residents and a burden to family and professional caregivers [4] and is one of the most challenging symptoms for clinical management. Importantly, agitation is closely associated with reduced QoL in people with dementia. There is evidence to support modest benefits of antipsychotic treatment for some symptoms of agitation, particularly risperidone, olanzapine and aripiprazole for the short-term management of severe aggression. The benefits on other symptoms of agitation and with longer term treatment are less clear [12-15]. Moreover, antipsychotics are associated with severe safety concerns including increased cognitive decline, stroke and death, particularly when used in the long term [13,15-17]. Best practice guidance emphasises the importance of frequent monitoring and judicious prescribing in order to reduce these risks, but also to ensure identification of situations where antipsychotic use is warranted [18,19]. Recent studies also highlight emerging pharmacological alternatives to antipsychotic medications. The CitAD trial examined treatment with citalopram for nine weeks in 186 people with AD, reporting significant reduction in agitation (Odds Ratio 2.13, p=0.01) and caregiver distress [20], and a trial of dextromethorphan-quinidine in 194 people with AD reported clinically relevant benefit to agitation (ordinary least squares z statistic: -3.95, p<0.001) over a ten week treatment period [21]. Whilst this emerging evidence base is promising, there were safety concerns with citalopram and both studies only evaluated relatively short term therapy over 10 weeks. There is also currently a lack of evidence supporting sustained benefit for any current pharmacological treatment for agitation.

Livingston and colleagues (22) in a comprehensive systematic review examined the benefits of a range of sensory, psychological and behavioural interventions in the treatment of agitation. The authors identified 160 clinical trials and reported promising indications of benefit across
a range of interventions. A parallel systematic review concentrating specifically on psychological and behavioural interventions identified 40 clinical trials in people with dementia, highlighting in particular the potential value of enjoyable activities as a successful treatment approach for agitation (5). A more specific systematic review and meta-analysis concentrating on parallel group clinical trials of dementia related person centred care training identified 5 trials. A meta-analysis of these studies demonstrated significant benefits in the treatment of agitation and in achieving reductions in the use of antipsychotic medications. No significant benefits in improving quality of life were however achieved (8). This literature highlights the growing evidence-base to support the value of person-centered care and non-pharmacological interventions for the management of agitation and reduction in antipsychotic use for people with dementia in nursing homes, which was further augmented by a recently published WHELD factorial intervention [6-8,22-24].

Cost is a major consideration in the development and implementation of interventions in nursing homes [5,8,9,22,23]. None of the evidence-based interventions to promote PCC have been widely adopted in clinical and care practice, and this is likely due in part to a lack of robust evidence regarding the cost profile of these approaches. A potentially cost-effective, practical means of overcoming this issue is to deliver interventions through a Champions model, enabling care staff to take ownership for ongoing implementation in the home, with more limited supervision from external therapists.

The goal of this RCT is to evaluate the impact of the WHELD intervention on QoL, agitation, neuropsychiatric symptoms, antipsychotic reduction and cost in comparison to treatment as usual.
Methods

Study design
This study was a nine month cluster-randomized controlled two-arm trial conducted in 69 UK nursing homes between 1st January 2013 and 30th September 2015. There were three recruiting hubs based in South London, North London and Buckinghamshire. Each cluster was randomized to receive either the WHELD intervention or treatment as usual for nine months. This research was reviewed and approved by the Oxford C National Research Ethics Committee (Ref: 13/SC/0281). This study is registered with the ISRCTN database (Ref: ISRCTN62237498). The full protocol is available in the published protocol paper [25].

Eligibility criteria
Eligible nursing homes had at least 60% of residents with dementia. Nursing homes were excluded if they were receiving special support from their local authority or if they failed to meet the five Care Quality Commission care home quality standards. Within each participating nursing home all residents were considered potentially eligible for inclusion if they met criteria for dementia (defined as a score ‘1’ or greater on the CDR [26], operationalized to require a minimum level of cognitive, functional and neuropsychiatric features).

Interventions
The WHELD intervention consisted of a combination of elements taken from the interventions evaluated in a previous proof-of-concept study [9]. The intervention focused on training in
person-centered care for care staff and on promoting tailored person-centered activities and social interactions. The intervention also involved the development of a system for triggering appropriate review of antipsychotic medications by the prescribing physician attached to each home.

Training for staff was provided by a research therapist. Two lead care staff members (WHELD Champions) were nominated in each care home. These individuals received additional training over a period of four months (one training day per month) with further coaching, supervision and regular review with the therapist over the nine-month period. The WHELD Champions were responsible for the delivery and dissemination of the intervention in each care home. In addition, prescribing physicians were provided with educational materials about the intervention. The control group received treatment as usual (TAU). The WHELD intervention is described in more detail in Box 1 and supplementary table 1.

Box 1 Details of WHELD intervention

<table>
<thead>
<tr>
<th>ORIENTATION PHASE</th>
</tr>
</thead>
</table>

Duration: 2 whole days or 4 half days in each home over 1 month

Delivered by: 1 full time WHELD therapist for each 9 care homes

Participants: WHELD Therapist meeting with care home managers, staff teams, Dementia Champions, residents

Aim: For WHELD therapist to meet residents and staff to introduce the project and provide information arising since the launch event, meet nominated Dementia Champions understand staff hopes and concerns, the layout and facilities of the home where the intervention will take place.
INTERVENTION DELIVERY PHASE

Duration: 8 months (months 2-9)

Months 2-5: 1 day (6 hours) per month for each care home. Training delivered to dementia champions off-site from the care home where they work.

Delivered by: WHELD Therapist

Participants: Dementia Champions from care homes

Aims:

Day 1: Understanding what person centred care (PCC) is and how homes can apply this in the care of residents. Developing ways to share this information with colleagues within the home

Day 2: Writing strengths based Care Plans and providing tailored structured social activities which recognise people’s abilities and interests with aim of providing 60 minutes per week per person.

Day 3: Understanding the evidence about the use of antipsychotic medication and familiarisation with best practice guidelines and considering ways homes could work with their local GPs to use this

Day 4: Developing ways to understand the individual needs of people who are distressed (sometimes referred to as “challenging behaviour”) using a formulation of need based model and identifying ways of using information gained through PCC/care planning (sessions 1 and 2) to meet the needs.

Delivery Style: All sessions were manualised and involved: didactic sessions, experiential learning, individual goal setting for each home for dissemination of training information and implementation activities between training sessions

Months 6-9: On-site consultation sessions totalling 8 hours per month with each care home. Delivered flexibly, by negotiation, to best support each homes’ needs.

CONCURRENTLY
Months 2-9: Cascade training and implementation of activities

Training Delivered by: Dementia Champions

Activities developed by: Dementia Champions and staff team members

Delivery Style: Adapted for care setting involved standalone training sessions, modelling skills, incorporating sessions into daily routine, working with individual residents to develop personalised and tailored activities for 60 minutes a week, care home team formulation and medication review and goal planning sessions to influence care planning.

Outcome Measures

All participants were assessed for dementia severity at baseline using the CDR [26], a validated scale used to quantify the severity of dementia using a structured interview, and the Functional Assessment Staging Tool (FAST) [27], a validated functional ordinal assessment scale of elderly people with dementia.

All outcome measures were assessed prior to randomization and after nine months of the intervention by a trained research assistant. The assessments at follow-up were collected by research assistants who had not previously visited the participating care homes. The research assistants were blind to treatment allocation, and every effort was made to maintain the blind by minimizing contact between the research assistants and research therapists, ensuring that dementia champions were not informants and clear instructions to care homes and the research team to not disclose treatment allocation. The primary outcome was QoL, measured by the DEMQOL proxy [28], a 31-item interviewer-administered questionnaire answered by a caregiver with a score range of 31 to 124 which assesses the QoL for people with dementia.
The secondary outcome measures were agitation and other neuropsychiatric symptoms, assessed using the Cohen-Mansfield Agitation Inventory (CMAI) [29], a caregiver questionnaire of agitation completed through an interview with the caregiver, consisting of 29 items, each of which is rated on a seven-point scale of frequency. Information regarding antipsychotic use and the use of other psychotropic medications was recorded from medication charts. Overall neuropsychiatric symptoms were assessed with the Neuropsychiatric Inventory (NPI – nursing home version) The NPI-NH [30,31] was developed to assess psychopathology in patients with dementia in nursing homes and evaluates 12 neuropsychiatric disturbances common in dementia: delusions, hallucinations, agitation, dysphoria, anxiety, apathy, irritability, euphoria, disinhibition, aberrant motor behaviour, night-time behaviour disturbances, and appetite and eating abnormalities. The score of each item, if present, represents the product of symptom frequency and severity, with a maximum score of 12 for each domain. Secondary outcomes also included global deterioration (CDR)[26], mood (Cornell Scale for Depression in Dementia CSSD) [32], antipsychotic use, unmet needs (Camberwell Assessment of Need in the Elderly –CANE)[33], quality of interactions (Quality of Interactions Scale –QUIS)[34], pain (Abbey Pain Scale)[35], mortality and cost.

Economic data for each individual in the study were collected using an adapted version of the Client Service Receipt Inventory (CSRI) [36,37] which includes questions about the individual’s sociodemographic profile, care home charges, and use of health and social care services. In addition, the staffing inputs of the optimized intervention were measured and covered time spent by the therapist and champion in training, supervision and preparation.
Randomization and Blinding

Nursing homes were allocated to receive either the WHELD intervention or treatment as usual (TAU) using secure web access to the remote randomization centre at North Wales Organization for Randomized Trials in Health Clinical Trial Unit (NWORTH CTU) at Bangor University. Randomization was performed by dynamic allocation \[38\] to protect against subversion while ensuring that the trial maintained a good balance to the allocation ratio of 1:1 both within each stratification variable and across the trial. Nursing homes were stratified by region and size. The system has been coded and validated in the R statistical package. The NWORTH CTU generated randomization codes and assigned clusters to intervention groups. This information was passed to the trial manager, and only passed on to the PI for each site once all baseline evaluations had been completed.

Individual baseline participants were consented and evaluated prior to randomization to minimize bias. Written consent was provided by participants when the individual had mental capacity to provide consent for their own participation. Written consent was provided by next of kin when individuals did not have mental capacity to consent for themselves. Clinicians and research assistants completing follow-up assessments were blind to treatment allocation. Every attempt was made to minimize accidental un-blinding by minimizing contact between therapists and the researchers collecting outcome data and with clear instructions to researchers and nursing home staff to not discuss treatment allocation.

Sample size

The target minimum sample size was 640 at the nine-month time point. Previous studies indicate that intra-home correlation coefficients rarely exceed 0.05. Taking this into account,
a sample size of 640 participants therefore gives 90% power using a significance level of 5% to detect a standardized effect size of 0.3 SDs, which is generally accepted as the lowest threshold of a clinically meaningful benefit. The recruitment of a minimum of 840 participants allowed for loss of 200 through mortality or withdrawal, an important consideration in the context of the high morbidity and mortality of this group.

Data Analysis

Outcome measures for the study were assessed at baseline and at nine months. All the outcome measures collected were described and reported using appropriate descriptive statistics and tabular and graphical techniques. Means with 95% confidence intervals were quoted and a 5% significance level was reported. The Consolidated Standards of Reporting Trials (CONSORT) diagram information is presented in order to identify any differential dropout between the arms of the trial. The analysis of the quantitative outcomes was undertaken using a multilevel analysis of covariance (ANCOVA).

The primary outcome measure (DEMQOL proxy) and the secondary outcome measures were analysed using the multilevel modelling approach to ANCOVA, with the value at nine months as the response. The baseline value was the covariate. The key factor was group (treatment (WHELD or control – Treatment as Usual). The multilevel nature of the design was represented by two levels: care home and individual residents in the care home. Other covariates were number of residents in each cluster and the age, gender and severity of dementia (FAST stage – baseline and follow-up) of participants with dementia. The provisional analysis plan was developed based on the analysis model developed for a previous smaller factorial study of the WHELD intervention (9). In addition to the standard ANCOVA model, this included work
to model and identify the best model for the inclusion of baseline co-variates and evaluation of several imputation models. The same baseline covariate model was used in the final analysis plan for the current study. The imputation model was less predictive in validation analyses than it had been in the factorial study. The completer analysis was therefore analysed as the primary outcome in place of the imputation analysis. Therefore the primary analysis included all participants with data available at the nine month assessment point, and the imputation model was used as a sensitivity analyses. The analysis model was finalized prior to the locking of the study database for the current trial.

The same approach was used for the analysis of all secondary outcomes other than mortality, antipsychotic use, QUIS and cost. CMAI and antipsychotic use, except that baseline CMAI and baseline antipsychotic use were used as covariates rather than baseline DEMQOL proxy.

Mortality and antipsychotic use were compared between treatment groups using Relative Risk with 95% CI. QUIS used care home level data, and was compared between treatment groups using ANCOVA, but because of the smaller sample size did not use baseline covariates.

Further exploratory sub-group analysis were undertaken evaluating differences between WHELD and treatment as usual in people with mild-moderate, moderately severe and severe dementia respectively based on the recommendations of the reviewers as part of the journal submission process. Based on these recommendations effect sizes and Number Needed to Treat were also evaluated.
Cost analysis

Total costs for each participant were derived from the collection of service use data for the three month period prior to the intervention (baseline) and the nine months of the intervention (follow-up) and consisted of three main cost categories: intervention costs, accommodation charges and health and social care costs. Intervention costs were calculated by deriving average hourly costs for WHELD Champions and therapists, combined with time spent by each staff type on training, supervision and intervention delivery, and defined as a per participant cost. An additional cost was defined for the AR element intervention for participants receiving antipsychotics. Accommodation costs were collected as weekly charges for each nursing home. Where this was unavailable or not known the typical charge for a resident with similar level of need to the participant in the study was obtained. Total health and social care costs consisted of services that are the main contributors to the cost of care in nursing homes: hospital inpatient, outpatient, day hospital, accident and emergency services, primary care (calculated as per minute unit costs for GPs and Practice Nurses), community health care and ambulatory care. Data on each nursing home resident’s use of health care (obtained from the CSRI) were multiplied by appropriate unit costs to calculate health and social care costs for each participant at each time point. Mean differences in costs and 95% CIs were obtained by non-parametric bootstrapped regression (1000 repetitions) modeling to account for non-normal distributions. A multilevel mixed model was used, controlling for site and age at entry into the study. The adjusted total health and social care cost and outcomes models also included the treatment variable as a random effect at the care home level. Clustering was accounted for by allowing the model intercept and treatment variable coefficient (i.e. treatment effect) to vary by care home.
As a sensitivity analysis, the same analysis was undertaken for the primary and key secondary outcomes but using imputed values for people who did not complete the nine month follow-up. Logistic regression was used to predict missing variables from the factors and covariates measured at baseline, using the approach validated in a previous factorial study [39].

Data deposited in the Dryad repository: http://dx.doi.org/10.5061/dryad.j512f21p[40].

Results

Cohort characteristics

1006 participants were consented to the study, with 847 individuals randomized to TAU or WHELD. The majority of participants had moderately severe or severe dementia and 71% were female. Follow-up assessments were available for 553 participants. Mortality accounted for the majority of participants who did not complete follow up assessments. The descriptive statistics for participants who completed the follow up were similar to the original population, although numerically marginally more residents receiving TAU completed the follow up compared to those on WHELD intervention (66.8% vs. 63.6%). The baseline characteristics of the study participants are described in Table 1 and flow of participants through the study is presented in Figure 1. The trial ended after the last follow-up assessment of the last participant was completed.

Table 1 Descriptive statistics for baseline cohort and completers
Baseline cohort (n = 847) vs Completers (n = 553)

<table>
<thead>
<tr>
<th></th>
<th>Baseline cohort</th>
<th>Completers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TAU</td>
<td>WHELD</td>
</tr>
<tr>
<td>Total N (%)</td>
<td>443 (100)</td>
<td>404 (100)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male N (%)</td>
<td>129 (29.1)</td>
<td>132 (32.7)</td>
</tr>
<tr>
<td>Female N (%)</td>
<td>314 (70.9)</td>
<td>272 (67.3)</td>
</tr>
<tr>
<td>Age (Mean, SEM)</td>
<td>88.5 (0.50)</td>
<td>88.4 (0.57)</td>
</tr>
<tr>
<td>FAST Score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild dementia or less N (%)</td>
<td>35 (7.90)</td>
<td>47 (11.64)</td>
</tr>
<tr>
<td>Moderate dementia N (%)</td>
<td>38 (8.58)</td>
<td>39 (9.65)</td>
</tr>
<tr>
<td>Moderately severe dementia N (%)</td>
<td>267 (60.27)</td>
<td>241 (59.65)</td>
</tr>
<tr>
<td>Severe dementia N (%)</td>
<td>103 (23.23)</td>
<td>77 (19.06)</td>
</tr>
<tr>
<td>Antipsychotic Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes N (%)</td>
<td>78 (9.2%)</td>
<td>75 (8.9%)</td>
</tr>
<tr>
<td>DEMQOL-Proxy score Mean (SEM)</td>
<td>103.84 (0.70)</td>
<td>103.04 (0.74)</td>
</tr>
<tr>
<td>CMAI Mean (SEM)</td>
<td>48.49 (1.03)</td>
<td>48.29 (1.04)</td>
</tr>
<tr>
<td>NPI Mean (SEM)</td>
<td>2.13 (0.13)</td>
<td>2.36 (0.23)</td>
</tr>
</tbody>
</table>

TAU – Treatment As Usual; FAST – Functional Assessment Staging; DEMQOL – Dementia Quality of Life Scale; CMAI – Cohen-Mansfield Agitation Inventory; NPI – Neuropsychiatric Inventory; SEM – Standard Error of Mean

Figure 1 CONSORT Chart showing flow of participants through the study
Outcome Measures

The WHELD intervention conferred a statistically significant 2.54 (SEM 0.88) point improvement in QoL compared to TAU (95% Confidence Intervals (CI) 0.81, 4.28, Cohen’s D 0.24) as measured by the DEMQOL-proxy compared to TAU over nine months (z score 2.82, Mean Difference 2.54 SEM 0.88 p=0.0042). On the secondary outcomes, WHELD also conferred a statistically significant 4.27 (95% CI -7.39, -1.15, Cohen’s D 0.23, Z score 2.68 Mean Difference 4.27 SEM 1.59 p=0.0076) point benefit on the CMAI compared to TAU with respect to agitation and conferred a statistically significant 4.55 (95% CI -7.07,-2.02, Cohen’s D 0.30, Z score 3.52 Mean Difference 4.55 SEM 1.28 p=0.00045) point benefit on the total NPI NH compared to TAU with respect to overall neuropsychiatric symptoms. The multilevel mixed-effects linear or logistic regression models for primary and secondary outcome measures are shown in Table 2.

Table 2 Effect estimates of WHELD intervention in comparison to TAU on primary outcome and key secondary outcome measures (Multiple Imputation Analysis)

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>Adj. Effect (SE)(^*)</th>
<th>(p)</th>
<th>Mean Difference (SEM)</th>
<th>95% Confidence Intervals of mean difference</th>
<th>Effect Size (Cohen’s D)</th>
<th>Number Needed to Treat(^A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMQOL-Proxy (n=553)</td>
<td>R=0.12 (Z=2.82)</td>
<td>0.0042</td>
<td>2.54(^+) (0.88)</td>
<td>0.81, 4.28</td>
<td>0.24</td>
<td>9</td>
</tr>
<tr>
<td>CMAI (n=553)</td>
<td>R = -0.11 (Z = 2.68)</td>
<td>0.0076</td>
<td>4.27(^+) (1.59)</td>
<td>-7.39, -1.15</td>
<td>0.23</td>
<td>6</td>
</tr>
<tr>
<td>NPI (n=547)</td>
<td>R=-1.5 (Z=3.52)</td>
<td>0.00045</td>
<td>4.55(^+) (1.28)</td>
<td>-7.07,-2.02</td>
<td>0.30</td>
<td>9</td>
</tr>
</tbody>
</table>
Adj. effect takes into account baseline value, age, sex, CDR, site, and clustering within care homes.

Based on binary outcome: better than mean overall outcome or mean outcome or worse than overall mean outcome for DEMQOL and CMAI respectively

DemQOL (Dementia Quality of Life Scale): Improvement in WHELD group from baseline to 9 months 4.78, Improvement in DEMQOL in treatment as usual group 2.24, mean difference 2.54

CMAI (Cohen-Mansfield Agitation Inventory): Improvement in WHELD group from baseline to 9 months -4.13, worsening in CMAI in treatment as usual group 0.14, mean difference 4.27

NPI NH (Neuropsychiatric Inventory, Nursing Home version): Improvement in WHELD group from baseline to 9 months -2.64, worsening in NPI NH in treatment as usual group 1.91, mean difference 4.55

Prescriptions of antipsychotic medications were stable across the study in both treatment groups, with no reduction in prescribing in the WHELD treatment group compared to treatment as usual (Change in Antipsychotic Prescribing: WHELD -0.1% SEM 0.1, TAU -0.2% SEM 0.1, P=0.60; antipsychotic prescribing at nine months: WHELD v TAU Relative Risk 1.06, 95% CI 0.62 to 1.82 P=0.82). For other secondary outcomes, there were no statistically significant differences between the WHELD group and TAU groups for change in global deterioration (CDR Z= 0.053 Mean Difference 0.011 SEM 0.22 P=0.96), unmet needs (CANE Z=0.84 Mean Difference 0.04 SEM 0.08 P=0.62), pain (Abbey Z=1.084 Mean Difference 0.33 SEM 0.31 P=0.27) or mood (CSSD Z=0.036 mean difference 0.017 SEM 0.48 P=0.97). There
were no significant interaction effects in the primary analysis model, and further analyses
accounting for interactions were therefore not undertaken.

The quality of interactions of positive care between care staff and residents with dementia
(QUIS) was collected as a care home level assessment in 62 of the participating care homes.
There was a statistically significant 19.7% increase in the proportion of positive care
interactions (SEM 8.94, 95% CI 2.12, 37.16, Cohen’s D 0.55, P=0.03).

A sub-group analysis was also undertaken comparing the WHELD intervention in people with
mild-moderate (FAST 4-5), moderately severe (FAST 6) and severe (FAST 7) dementia
respectively focusing on the primary and key secondary outcomes (DEMQOL, CMAI, NPI).
Statistically significant benefits of similar magnitude to the overall benefits were seen in
people with moderately severe dementia for both quality of life, agitation and overall
neuropsychiatric symptoms, but there were no statistically significant benefits on quality of
life in the smaller groups of individuals with mild-moderate or severe dementia. The full
results are shown in Table 3.

<table>
<thead>
<tr>
<th>Adj. Effect (SE)*</th>
<th>p</th>
<th>Mean Difference (SEM)</th>
<th>95% Confidence Intervals of mean difference</th>
</tr>
</thead>
</table>

Table 3 Effect estimates of WHELD intervention in comparison to TAU on key outcome
measures (Multiple Imputation Analysis): Sub-analysis Evaluating impact of WHELD in mild-
moderate, moderately severe and severe dementia
<table>
<thead>
<tr>
<th></th>
<th>DemQOL Proxy</th>
<th>CMAI</th>
<th>NPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe AD</td>
<td>R=0.00</td>
<td>Z=0.03</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.06 (1.72)</td>
</tr>
<tr>
<td>modsevAD</td>
<td>R=0.20</td>
<td>Z=3.62</td>
<td>0.0003</td>
</tr>
<tr>
<td>mildmodAD</td>
<td>R=0.06</td>
<td>Z=0.61</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SevereAD</td>
<td>R=-0.06</td>
<td>Z=0.55</td>
<td>0.58</td>
</tr>
<tr>
<td>modsevAD</td>
<td>R=-0.12</td>
<td>Z=2.08</td>
<td>0.04</td>
</tr>
<tr>
<td>mildmodAD</td>
<td>R=-0.18</td>
<td>Z=1.93</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severedem</td>
<td>R=0.19</td>
<td>Z=1.91</td>
<td>0.05</td>
</tr>
<tr>
<td>ModSevdem</td>
<td>R=0.15</td>
<td>Z=2.74</td>
<td>0.006</td>
</tr>
<tr>
<td>MildModdem</td>
<td>R=0.14</td>
<td>Z=1.54</td>
<td>0.13</td>
</tr>
</tbody>
</table>

*Adj. effect takes into account baseline value, age, sex, CDR, site, and clustering within care homes.
The sensitivity analysis using imputed values confirmed that WHELD conferred a statistically
significant benefit in DEMQOL proxy (1.5 SEM 0.06 point benefit, Z 2.50, p=0.015), CMAI (1.96
SEM 0.08 point benefit, Z=2.06, p=0.04) and NPI (Mean Difference -2.45 SEM 0.066 Z=2.64
P=0.01) compared to treatment as usual.

Adverse Events

A total of 549 Serious Adverse Events were recorded during the period of the trial. The events
were balanced between the two treatment groups with no statistical differences (291 events
in WHELD group and 258 in TAU group – Table 4). There was no significant difference in
mortality between the WHELD and treatment as usual group (Relative Risk 1.08 95% CI
0.86 to 1.35, P = 0.50).

Table 4: Serious Adverse Event reporting by category and WHELD treatment group

<table>
<thead>
<tr>
<th>SAE category</th>
<th>WHELD</th>
<th>TAU</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Fall</td>
<td>30</td>
<td>14</td>
<td>44</td>
</tr>
<tr>
<td>Fractures</td>
<td>15</td>
<td>13</td>
<td>28</td>
</tr>
<tr>
<td>Mortality</td>
<td>122</td>
<td>103</td>
<td>225</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>16</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>Stroke</td>
<td>3</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Delirium</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Condition</td>
<td>TAU</td>
<td>WHELD</td>
<td>Total</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Chest Infections</td>
<td>26</td>
<td>15</td>
<td>41</td>
</tr>
<tr>
<td>Renal</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Increased confusion</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>UTI</td>
<td>11</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>53</td>
<td>82</td>
<td>135</td>
</tr>
<tr>
<td>Total per group</td>
<td>291</td>
<td>258</td>
<td>549</td>
</tr>
</tbody>
</table>

Cost analysis

The direct cost of delivering the intervention compared to TAU was £8,627 per home. 53% (£4,554) of the cost related to WHELD Champion time spent in training and supervision. The remaining costs related to therapist time. Delivery of the intervention to residents incurred an additional £130 per person per month. The additional cost incurred for AR was £23 per resident, which accounted for Champion time spent reviewing antipsychotic use in 16% of residents and contacting prescribing physicians. Analysis of service use showed higher healthcare costs unrelated to the intervention in the TAU group compared to the WHELD intervention group. Participants receiving the intervention showed a significant health and social care cost advantage. Taking into account the cost of the intervention and the total health and social care costs, there was a cost advantage for the WHELD treatment (Table 5).
Table 5 Unadjusted mean costs and mean cost differences at baseline and over nine months (£, 2014 – 2015)

<table>
<thead>
<tr>
<th>Cost categories</th>
<th>Intervention</th>
<th>TAU</th>
<th>Intervention vs. TAU*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (£)</td>
<td>SD (£)</td>
<td>Mean (£)</td>
</tr>
<tr>
<td>WHELD intervention</td>
<td>2713</td>
<td>121</td>
<td>0</td>
</tr>
<tr>
<td>Baseline (n=887)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accommodation charges</td>
<td>9480(2010)</td>
<td>1023</td>
<td>(3675)</td>
</tr>
<tr>
<td>Hospital</td>
<td>387(1759)</td>
<td>407</td>
<td>(2413)</td>
</tr>
<tr>
<td>Primary care</td>
<td>96(126)</td>
<td>98</td>
<td>(148)</td>
</tr>
<tr>
<td>Community health</td>
<td>23(80)</td>
<td>19</td>
<td>(79)</td>
</tr>
<tr>
<td>Emergency</td>
<td>12(37)</td>
<td>9</td>
<td>(34)</td>
</tr>
<tr>
<td>Total health and social care costs</td>
<td>9998(2601)</td>
<td>10766</td>
<td>(4396)</td>
</tr>
<tr>
<td>Nine month follow-up (n=553)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accommodation charges</td>
<td>28606(10863)</td>
<td>33005</td>
<td>(12428)</td>
</tr>
<tr>
<td>Hospital</td>
<td>269(1166)</td>
<td>262</td>
<td>(1267)</td>
</tr>
<tr>
<td>Primary care</td>
<td>700(294)</td>
<td>1020</td>
<td>(301)</td>
</tr>
<tr>
<td>Community health</td>
<td>78(260)</td>
<td>70</td>
<td>(206)</td>
</tr>
<tr>
<td>Emergency</td>
<td>49(133)</td>
<td>85</td>
<td>(244)</td>
</tr>
<tr>
<td>Total health and social care costs</td>
<td>29702(8774)</td>
<td>34442</td>
<td>(11106)</td>
</tr>
</tbody>
</table>

* Cost comparisons for nine months include covariates for site, age, baseline CMAI score and baseline value of the same cost variable.

Baseline cost comparisons include covariates for site, age and baseline CMAI score

Discussion
In what is, to our knowledge, the largest RCT conducted of a staff training and non-pharmacological intervention for people with dementia living in nursing homes, we have demonstrated that the WHELD intervention confers a statistically significant improvement in QoL over nine months. There was also a statistically significant benefit to agitation and overall neuropsychiatric symptoms over the nine-month period. Whilst the effect size was small, the benefits in agitation and neuropsychiatric symptoms are comparable to (agitation) or better than (NPI) the benefits seen with antipsychotic drugs. There was also a significant increase in the proportion of positive care interactions between care staff and residents with dementia with a moderate effect size. Importantly, the benefits were achieved in the context of a cost saving and used a model that can readily be implemented into nursing homes. Antipsychotic drug prescribing was stable in both treatment groups across the study and the WHELD treatment intervention did not reduce antipsychotic use, albeit from a very low baseline frequency.

Despite the importance of QoL few trials have examined impact of interventions on this outcome, This was, to our knowledge, the largest RCT conducted of a staff training and non-pharmacological intervention for people with dementia living in nursing homes. The WHELD intervention conferred a statistically significant improvement in QoL over nine months, building on a previous proof-of-concept study of WHELD. That study reported a reduction in QoL following antipsychotic review which was mediated by social interaction within the context of an overall person-centered care training paradigm for care staff [9]. We would speculate that the added benefit was probably a reflection of the structured approach to promoting pleasant activities involving social interaction, The optimization of the WHELD intervention has maintained benefit but reduced overall cost, making it a cost-effective
program for delivery in care homes. A sub-group analysis focusing on people with mild-
moderate, moderately severe and severe dementia indicated that benefits on quality of life
were more robust in people with moderately severe dementia.

Agitation is a frequent and distressing symptom for people with dementia living in nursing
homes [10,11,41]. Benefits from pharmacological treatment with atypical antipsychotics are
limited to modest improvements in aggression [12,13,15], and the significant advantage on
the CMAI compared to control for the WHELD intervention is comparable with the modest
treatment advantage for atypical antipsychotics from a meta-analysis of previous RCTs
[12,13,15]. In addition, the use of atypical antipsychotics is limited by the significant adverse
effects of these medications in people with dementia [12,13,15]. Although recent studies
have begun to suggest that other pharmacological therapies such as citalopram[20] and
dextromethorphan [21] may confer significant benefit for the treatment of agitation, but
further studies are needed. There was also a statistically significant benefit in overall
neuropsychiatric symptoms conferred by the WHELD intervention compared to TAU,
suggesting a breadth of benefit beyond just agitation.

Although comparable to atypical antipsychotics the standardized effects sizes of benefit are
small in the context of a clinical intervention. The benefits do however also include benefits
in quality of life, which have not been demonstrated with pharmacological interventions.
Although there is no established threshold for a clinically meaningful benefit in quality of life,
any statistically significant benefit is important given the absence of any benefit in previous
studies. In addition, the intervention was not just delivered to a people with clinically
significant neuropsychiatric symptom, but conferred benefit amongst a broader population.
of people with dementia living in care homes. Whilst the effect size would be considered marginal in terms of a clinically significant benefit, we believe that the benefits to the broader population of people with dementia in care homes make this a meaningful benefit in the quality of care.

This study is consistent with the evidence base but provides important and novel data within the literature. Our results also compare favorably to the small number of published intervention studies which have focused on promoting person-centered care, none of which have reported benefits to QoL[6,7]. The findings are particularly favorable when compared with trials of antipsychotic medications which show only very modest benefits over 12 weeks in the context of significant harms [42,43]. In addition, the current study shows cost-advantages over usual care, which has not been demonstrated with any previous drug or non-drug interventions.

Elements of the WHELD intervention, such as social interaction and pleasant events, have previously been demonstrated to improve agitation in modest sized RCTs [22,23]. Incorporating them within a coherent framework such as WHELD enables straightforward and affordable implementation of these approaches in clinical and care practice.

Interestingly, there was a low baseline use of antipsychotic medications (<10%) in this study, reflecting the major changes in clinical practice and the reductions in antipsychotic use that have been achieved for people with dementia in the last decade. In contrast to our previous factorial RCT of the WHELD intervention, no significant reduction in antipsychotic use was achieved and antipsychotic use was stable in both groups. This is likely attributable to a
combination of the low baseline levels of antipsychotic prescription and the more limited education program for primary care physicians within the current study than in the previous factorial RCT, and highlights the potential additional value of primary care education programs in parallel to care home training.

This study is a robust well powered RCT evaluating the sustained impact of combining person-centered care and evidence-based non-pharmacological interventions for people with dementia in nursing homes. The study had good retention of surviving participants compared to most studies conducted in nursing home settings. The intervention evaluated was pragmatic, fully manualized and designed so that it can be easily disseminated and implemented in routine clinical practice. There were also limitations. Antipsychotic review was based on augmenting processes within care homes to trigger medical review and did not in this study involve proactive primary care education. In addition, although the study used a well validated method, evaluating quality of life in people with dementia is challenging and all methods have some limitations. High mortality rates are usual in studies of frail groups of individuals living in care homes, but lead to high non-completion rates and present some challenges for data analysis and interpretation. One of the original secondary outcomes was to evaluate the impact of the intervention on the care home environment. The selected scale focused mainly on the physical building rather than other aspects of the environment, and the Program Management Group therefore decided to omit this measure at 9 month follow-up as it was unlikely substantial building renovations had taken place in any of the participating care homes.
A key issue for future studies is the sustainability of the intervention, particularly with turnover of staff including the dementia champions. To be sustainable the WHELD intervention needs to be firmly embedded within the care home culture, and it will be important for further research to identify the optimal approach to maintain benefits. As WHELD is largely verbally based, it will also be important to further evolve interventions more tailored to the needs of people with more severe dementia.

Acknowledgements

AC and CB thank the National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London and the NIHR Collaboration for Leadership in Applied Health Research and Care South West Peninsula for supporting their time for this work. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. The funder had no role in the design and conduct of the study, collection, management, analysis, and interpretation of the data and preparation, review, or approval of the manuscript.

References

2014;26(7):1083-98.

Supporting Information Legends

S1 Text: CONSORT Chart showing flow of participants through the none-month study. 847 participants were randomized, of whom 757 were included in the full imputation analysis.

S2 Text: Data analysis protocol for the randomized controlled trial, as developed for this study and the associated factorial study [25]

S1 Table: Summary and Examples of WHELD Training
Potential participants identified
\[n = 1396 \]

Participants assessed at baseline
\[n = 1006 \]

Participants whose care homes were randomised
\[n = 971 \]

Participants who not meet study criteria for dementia (CDR ≥1)
\[n = 124 \]

TAU arm
\[n = 443 \]

WHELD arm
\[n = 404 \]

TAU
- Participants assessed at follow up
 \[n = 296 \]
- Died
 \[n = 100 \]
- Lost to follow up
 \[n = 47 \text{ (10.6\%)} \]
- Analysed in complete case analyses
 \[n = 296 \text{ (66.8\%)} \]
- Analysed in imputation analyses
 \[n = 406 \text{ (80.56\%)} \]

WHELD
- Participants assessed at follow up
 \[n = 257 \]
- Died
 \[n = 125 \]
- Lost to follow up
 \[n = 22 \text{ (5.4\%)} \]
- Analysed in complete case analyses
 \[n = 257 \text{ (63.6\%)} \]
- Analysed in imputation analyses
 \[n = 351 \text{ (75.16\%)} \]
Click here to access/download
Supporting Information
WHELDData Analysis Section Submitted
Paper.docxCB.docx
Click here to access/download
Supporting Information
Ballard_WHELD_CONSORT checklist.pdf
Click here to access/download Supporting Information S1_Table.docx
Click here to access/download
Supporting Information
Ballard_CONSORT Checklist.pdf
Click here to access/download Other Ballard_WHELD_Trial protocol.pdf
Click here to access/download Other Ballard_WHELD_Ethics Final Approval Letter.pdf