
On Cost-effective Reuse of Components in the Design of
Complex Reconfigurable Systems

J. I Aizpurua∗, Y. Papadopoulos† , E. Muxika‡, F. Chiacchio⋆, G. Manno◦

∗
Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK

†
Computer Science Department, University of Hull, Hull, UK

‡
Electronics and Computing Department, Mondragon University, Arrasate, Spain

⋆
University of Catania, Department of Mathematics and Informatics, Catania, Italy

◦
DNV GL, Digital Solutions & Innovation, Høvik, Norway

Abstract: Design strategies that benefit from the reuse of system components can reduce costs whilst
maintaining or increasing dependability—we use the term dependability to tie together reliability and
availability. D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous
redundancies) is a methodology that supports the design of complex systems with a focus on recon-
figuration and component reuse. D3H2 systematises the identification of heterogeneous redundancies
and optimises the design of fault detection and reconfiguration mechanisms, by enabling the analysis
of design alternatives with respect to dependability and cost. In this paper, we extend D3H2 for appli-
cation to repairable systems. The method is extended with analysis capabilities allowing dependability
assessment of complex reconfigurable systems. Analysed scenarios include time-dependencies between
failure events and the corresponding reconfiguration actions. We demonstrate how D3H2 can support
decisions about fault detection and reconfiguration that seek to improve dependability whilst reducing
costs via application to a realistic railway case study.

Keywords: Dynamic dependability, repairable systems, reconfigurable systems, heterogeneous redun-
dancies, cost-effectiveness, design methodology, adaptive systems.

1 Introduction

The improvement of system dependability and the reduction of cost are typically competing goals in
the design of systems1,2. Improvement of dependability is often achieved via use of fault tolerance.

This is the peer reviewed version of the following article: Aizpurua, J. I., Papadopoulos, Y., Muxika, E., Chiacchio, F.,
and Manno, G. (2017) On Cost-effective Reuse of Components in the Design of Complex Reconfigurable Systems.
Qual. Reliab. Engng. Int., 33: 1387–1406. doi: 10.1002/qre.2112 which has been published in final form at http://
dx.doi.org/10.1002/qre.2112. This article may be used for non-commercial purposes in accordance With Wiley Terms
and Conditions for self-archiving.

Traditional design strategies for improving fault tolerance are based on the replication of hardware
components in redundant configurations, for instance primary/standby or triple modular redundancy3.
Hardware replicas perform identical functions and accordingly they are known as homogeneous redun-
dancies. Combined with design diversity, this can be an effective strategy for improving dependability.
However, the replication of hardware resources often results in unnecessary additional costs.

In highly networked scenarios there is room to take advantage of over-dimensioning design deci-
sions and overlapping functions by exploiting heterogeneous redundancies, i.e. components that, be-
sides performing their primary intended design function, can also be used as a means of restoring the
functionalities lost when other components fail4–7. For systems with high dependability requirements
the effects of such use on dependability must be established. While dependability integrates different
attributes8, in this paper we focus on reliability and availability.

Highly networked scenarios comprise of many processing units, sensors, and actuators connected
to a communication network with the particularity that replicas of system functions are distributed
throughout the physical structure. For example, trains have replicated functions throughout their cars
and large buildings have replicated control functions throughout their floors and rooms. Assuming that
such heterogeneous redundancies exist and can be exploited in case of failures, the system must include
fault detection and reconfiguration implementations (i.e., health management mechanisms) that deploy
these redundancies. Heterogeneous redundancies typically operate as cold-standby redundancies which
need to be activated in the presence of failures7. Failing to activate a redundancy has consequences for
dependability which must be established. Different decisions about use of heterogeneous redundancies
yield different dependability and cost values for a system and, therefore, evaluation of design options is
needed to arrive at a decision that can achieve high dependability with acceptable costs.

To systematize and integrate these concepts in a method for the assessment and design of com-
plex reconfigurable systems, we have created the D3H2 (aDaptive Dependable Design for systems with
Homogeneous and Heterogeneous redundancies) methodology4,6. The aim of D3H2 is to identify het-
erogeneous redundancies; create architectures that exploit homogeneous/heterogeneous redundancies;
and evaluate the influence of design decisions on dependability and cost. D3H2 provides the data that
supports trade-off design decisions between dependability and cost when deciding to implement differ-
ent types of redundancy and health management strategies.

In previous work, we have developed D3H2 for a class of non-repairable systems5,7. However,
most complex industrial systems can be considered repairable9. We have, therefore, extended the D3H2
methodology to cover repairable systems. One challenge is that, for non-repairable systems only the
order of failure is important, but for repairable systems both the order of failure and repair must be
respected. A key innovation in D3H2 is that the reconfiguration process is governed by the reconfigu-
ration priority of implementations. This means that the failure/repair reconfiguration is not necessarily
defineda priori, but it can follow a dynamically decided pattern. For instance, assume that there are four
implementations ordered with their priority and currently the third implementation is operative while
first and second implementations have failed (cf. Figure 1, t=t3). If the first or second implementation
is repaired before the third fails, when the third implementation fails the first or second implementation
should be activated instead of the fourth implementation.

Qual. Reliab. Engng. Int.2016

Figure 1: Possible random reconfiguration sequences.

This type of complex repair process cannot be modelled with existing dynamic dependability for-
malisms such as Dynamic Fault Trees10 because their modelling constructs assume fixed sequences and
they are insufficient for capturing this complex repair pattern. Although in theory it is possible to use
low-level pure stochastic models (e.g., Markov chains), their effectiveness for complex models is lim-
ited because it is difficult to trace from the design model to the analysis model and their size growths
rapidly leading eventually to state-explosion problems11.

The main contribution of this paper is thus the extension of the D3H2 methodology to enable the
design of repairable systems, which include complex failure and repair event sequences. The method-
ology encompasses the implementation of user-defined reconfiguration strategies and the systematic
evaluation of the influence on dependability of design decisions including redundancy strategies and
health management mechanisms. The second contribution of the paper is the application of the D3H2
methodology for the evaluation of the reuse of repairable components in a railway case-study.

The remainder of this paper is organised as follows. Section 2 reviews the relevant work, Section
3 introduces the D3H2 methodology, Section 4 presents the running case study, Section 5 specifies in
detail the system design, Section 6 describes the dependability evaluation approach, and, finally, Section
7 presents conclusions and future prospects.

2 Related Work

The design of reconfigurable systems is an ongoing research challenge. While many works have con-
centrated on analysing the influence of homogeneous redundancies12–16, approaches focusing on the
evaluation of heterogeneous redundancies are scarce7,10. Heterogeneous redundancies can take many
forms: design diversity17, analytical redundancies18, or redundancies arising from overlapped system
functions4.

In our approach we focus on identifying and exploiting implicit redundancy which may exist in
an application. Detailed knowledge and mathematical formulation of the system is typically needed
to get analytical redundancy relations18. However, the complexity of the mathematical formulation
increases with the system size, and this has led us to adopt a function-based viewpoint that uses qualita-
tive attributes (see also Subsection 5.2). The use of functional alternatives to compensate for component
failures is discussed in19. The authors use weighted sums to to combine different attributes and compare

Qual. Reliab. Engng. Int.2016

QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL

the overall utility of alternative configurations. The shared redundancy concept is presented in20 with
the goal of reusing processing units in the presence of software component failures. Authors perform
availability and cost evaluations using Fault Trees and Monte Carlo simulations. Implicit redundan-
cies are also aligned with the goal of reusing components21. The paper describes an adaptation model
used to specify for each component its implicit redundancies and quality constraints. Component Fault
Trees and Markov chains are used to estimate failure probabilities. Similarly, the integrated modular
avionics paradigm shares the goal of replacing software units via standardized generic hardware mod-
ules22. Their goal is not to use heterogeneous redundancies in highly networked scenarios, but exploit
replaceable processing units in reconfiguration.

While the influence of fault detection, reconfiguration and communication implementations on sys-
tem design has been addressed for homogeneous redundancies, to the best of our knowledge, these
mechanisms has been assumed ideal for heterogeneous redundancies. The evaluation of the faulty be-
haviour of these implementations leads to obtaining an approach which better adheres to reality and
consequently provides more accurate estimation of dependability. In D3H2, dependability is a key
criterion of performance in the decision between alternative reconfiguration strategies. Due to the com-
plex, dynamic and repairable nature of the systems, we need a dependability approach which is able to
specify:

(S1) Time-dependent behaviour of system configurations.

(S2) Modular or hierarchical system failure behaviour to manage the complexity of the model and be
able to trace from the design model to the dependability model and vice-versa.

(S3) Repair behaviour of hardware, software and communication resources of the system.

(S4) Any cumulative distribution function for failure and repair events.

(S5) User-defined reconfiguration strategies according to the defined configuration priorities.

There is a wealth of recent development in dependability analysis from which D3H2 could benefit.
Dynamic Fault Trees (DFT) extend Fault Trees to integrate system dynamics23. Dynamic Fault Trees
have been extended to address repairable systems by embedding repair mechanisms in the failure spec-
ification logic24. Similarly, Dynamic Reliability Block Diagrams (DRBD) are based on the dynamic
extension of Reliability Block Diagrams25. In DRBD each block is modelled with three possible states:
operating, standby, and failed state. Transitions between these states are defined with four events: wake-
up, sleep, repair, and failure. For the dependability assessment the DRBD approach defines cause-effect
relationships between connected blocks. HiP-HOPS26 is a modular dependability analysis approach
which integrates dynamic analysis with design optimization and safety requirement allocation using
meta-heuristics. The designer makes failure annotations in the design model and HiP-HOPS synthe-
sizes Dynamic Fault Trees used for subsequent analysis and optimisation of the system design27,28.
Boolean Driven Markov Processes (BDMP)29 integrate Markov chains and Fault Trees to specify the

Qual. Reliab. Engng. Int.2016

dynamic failure behaviour. In a BDMP model, different events (or leafs) can trigger other events in the
Fault Tree dynamically. The specification of leafs is done with predefined Markov chains.

The modular system failure specification has been addressed for different dynamic dependability
models such as Dynamic Fault Trees30,31. Other dependability analysis approaches integrate the mod-
ular specification logic in the dependability specification formalism through the transformation of a
high-level component-based model into a low-level dependability analysis formalism for quantifica-
tion. State-Event Fault Trees (SEFT)32 combine the specification of Component Fault Trees with state-
machine representations in order to specify the failure behaviour of repairable systems in a modular way.
In order to quantify the SEFT model, it is transformed into an underlying Deterministic and Stochastic
Petri nets model. Similarly, Generalized Fault Trees (GFT)33 rely on transformations to solve high-
level GFT models which combine parametric and repairable DFT concepts. As for the quantification
of Generalized Fault Tree models, they are transformed into Stochastic Well-Formed Nets. Although
these top-level formalisms are modular, their transformation into a low-level formalism results in a flat
dependability analysis model. Table 1 displays analysed dynamic dependability analysis techniques and
addressed properties.

Table 1: Dynamic dependability approaches and specification capabilities.

Approach (S1) Temporal (S2) Modular (S3) Repair (S4) Any CDF (S5) Reconfiguration

DFT 24 X X X X X

DRBD25 X X X X X

HiP-HOPS26 X X X X X

BDMP29 X X X X X

SEFT32 X X X X X

GFT33 X X X X X

Most approaches in Table 1 address temporal analysis, can be applied in a modular fashion, can
deal with repair, and assume any cumulated distribution function for component failures. However,
approaches to repair require users to makea priori assumptions about this repair process which have
a static character. For instance, DFT spare gates require predefined repair priorities24, DRBD embeds
possible dependencies25, and BDMP defines the reactivation logic for inter-dependent components with
predefined trigger mechanisms29. Fixing elements of the repair logic, however, has its drawbacks; for
instance, it is difficult, if not impossible, to represent situations where repair is dynamically decided.
Although a few techniques have been extended with more flexible mechanisms (e.g., BDMP34), the
representation and analysis of dynamic repair scenarios remains a research challenge that we try to
address within D3H2.

Qual. Reliab. Engng. Int.2016

3 Overview of the D3H2 Methodology

D3H2 integrates the modelling and analysis activities as shown in Figure 2. Systems are specified as
a set of interacting hardware, software, and communication resources, including their interfaces and
provided functionality.

D3H2 Methodology

Figure 2: D3H2 design methodology4.

The main approaches integrated in the D3H2 methodology are listed below:

• The Functional Modelling Approach specifies the functional model including system functions
and related attributes including the physical location in which these functions are performed and
a necessary list of resources to develop these functions (see Subsection 5.1).

• The Compatibility Analysis identifies compatible implementations (i.e., redundancies) in the
functional model. To use these compatible implementations, it may be necessary to aggregate
additional resources and perform reallocation of new elements. Subsequently, reconfiguration
strategies and reconfiguration priorities are defined (see Subsection 5.2).

• The Extended Functional Modelling Approach (see Subsection 5.3) revisits the functional model
to include the fault detection and reconfiguration functions needed to implement the strategies
identified in Compatibility Analysis. The functional model is also extended to include alloca-
tion of hardware/software (HW/SW) resources to the system functions. At this point, a HW/SW
architecture emerges and the effect of design improvements on dependability and cost can be
assessed.

• The Dependability and Cost Evaluation Approach predicts the dependability and cost of the
HW/SW architecture. Via iterative application and comparison of results, it enables the adop-
tion of informed trade-off decisions between candidate design decisions and incurred cost (see
Section 6). The HW/SW architecture needs to be evaluated to verify if the initial requirements are

Qual. Reliab. Engng. Int.2016

met. If they are not satisfied there are two options: Option A takes the process to an earlier activity
and iterates from there while Option B moves the design process back to its starting point so that
design requirements are reconsidered. Depending on the requirements, Option A redirects the
design flow to an intermediate design step: redundancy-related design decisions are reconsidered
through the application of the Compatibility Analysis (e.g. changing homogeneous redundancies
with heterogeneous redundancies to reduce design costs), whereas health management functions
are reconsidered through the Extended Functional Modelling Approach (e.g. reducing fault de-
tection implementation redundancies to reduce design costs). Generally the application of the
Compatibility Analysis implies the application of the Extended Functional Modelling Approach.
The reconsideration of design requirements from Option B results in the redesign of the func-
tional model. Note that the fault hypothesis that underpin the dependability analysis in the D3H2
is the occurrence of permanent, but potentially repairable, dynamic failures of hardware, software,
and communication components which are manifested with loss of function (omission failure) or
delivery of function out of context (commission failure)8.

The four approaches of D3H2 will be discussed with the aid of a railway system which is introduced
next and described in more detail in6.

4 Train Car Door Status Control System

The door status control is a safety-critical function which determines the safe operation of door open and
close actions. It has dependencies with other systems of the train and the door operations are controlled
by the driver depending on the status of the train, e.g. the doors must remain closed while the train is
running. Each door in the train has sensors and control buttons for the passengers and the driver. Figure
3 shows the door status control configuration including both hardware and logical dependency models.
There is one opening and closing button for the driver connected to the processing unit of the driver
(PUDriver) and each door throughout the train has: one opening button for passengers, one door speed
sensor, one door open detection sensor, one door closed detection sensor and one obstacle detection
sensor. All these sensors, their controllers, and the door control algorithm are located in the processing
unit PUDoor.

Door Control

Algorithm

Open

Sensor

DriverControl

Closed

Sensor
Obstacle

Sensor

Speed

Sensor

Open

Button

Passeng.

Open

Button

Driver

Enable

Button

Driver

Motor

TCMS

Train Car Door

Close

Button

Driver

(b)

Ethernet
MVB

CAN

PUDoor

Open

Sensor

PUDriver PUTCMS

Closed

Sensor

Obstacle

Sensor

Speed

Sensor

Open

Button

Passeng.

CloseButton

Driver
Open

Button

Driver

Enable

Button

Driver

Motor

(a)

Figure 3: Door status control: (a) hardware dependencies and(b) logical dependencies.

Qual. Reliab. Engng. Int.2016

In the train there is a component called TCMS (Train Control and Monitoring System), which mon-
itors and controls different critical systems of the train such as traction and doors. This component is
homogeneously duplicated in two reliable processing units (PUTCMS) for safety purposes. The TCMS
receives information about the speed of the train and it will not allow the driver to open the doors while
the train is running. To this end, the TCMS sends an enable signal to the driver to inform about the
safe operation of door opening or closing (Enable Door Driver - EDD). Using the information of the
Enable Door Driver signal, the driver sends an enable signal to the controller of each door (Enable Door
Passenger - EDP) to act safely on opening/closing the doors, while taking into account if the train is
moving and if there is an obstacle in the door (cf. Figure 3b). All the processing units of the door
status control system are connected to Multifunction Vehicle Bus (MVB)35. Other systems in the train
are connected to Ethernet (e.g., video surveillance) and CAN (e.g., fire protection) communication net-
works. An interconnecting gateway enables the communication between processing units connected to
different communication networks.

5 System Design using D3H2

5.1 Functional Modelling Approach

The Functional Modelling Approach specifies the functional operation of the system in a top-down
manner. Inspired from SADT (Structured Analysis & Design Technique)36, a set of tokens aid in the
systematic specification of the key operational parts of the system starting from a set of high-level
functions (e.g., different railway train operations: train operating properly, train stopped) tracing down
to the necessary resources to perform these functions:

• A high level function consists of a set of Main Functions (MF), e.g., train operating properly =
{traction system OK, signalling system OK, braking system OK, air conditioning control OK,
. . .}.

• Main functions are performed in possibly different Physical Locations (PLs), e.g., a single air
conditioning control implementation may span a whole train car or each car compartment in a
train car may have its own air conditioning control.

• A main function consists of a set of subfunctions (SF), e.g., input, control and output subfunctions.

• A subfunction may have multiple implementations (#) to carry out the subfunction and these are
ordered with respect to their priority.

• Each implementation requires a set of hardware, software and communication resources.

For simplicity, the token-based specification process focuses on main functions and a first level of
decomposition from main functions to subfunctions. However, the Functional Modelling Approach is

Qual. Reliab. Engng. Int.2016

extendible toN functional levels. The full specification of a subfunction’s implementation of a generic
main function is specified as follows:

Main Function.Physical Location.Subfunction.Implementation (1)

To define the physical location of system functions consistently, a physical location map is defined
for the physical structure. Figure 4 shows the physical location map of an hypothetical train, where each
car of the train is comprised of different compartments (ZoneA, ZoneB).

Figure 4: Physical location map6.

Based on the token-based specification defined in Eq. (1), Table 2 describes the functional model of
the door status control (cf. Figure 3).

Table 2: Functional models of door status control and video surveillance.

Main

Function

Physical

Loc.
Subfunction Resources #

Door Status

Control

Train.
Car1.

ZoneA .
Door

Enable Door Driver (EDD) PUTCMS1, SWTCMS1 1

Enable Door Driver (EDD) PUTCMS2, SWTCMS2 2

Enable Door Passenger (EDP) EDD, PUDriver, EnableButton, Communication 3

Door Close Command (DCC) PUDriver, CloseButtonDriver 4

Door Open Command (DOC) PUDriver, OpenButtonDriver 5

Door Open Command (DOC) PUDoor, OpenButtonPassenger 6

Door Open Detection (DOD) PUDoor, OpenSensor 7

Door Closed Detection (DCD) PUDoor, ClosedSensor 8

Door Velocity (DV) PUDoor, VelocitySensor 9

Obstacle Detection (OD) PUDoor, ObstacleSensor 10

Door Control Algorithm (DCA)
EDP, DCC, DOC, DOD, DCD, DV, OD, PUDoor, SWDSC,
Communication

11

Door Manipulation (DM) DCA, PUDoor, Motor 12

Video

Surveillance

Train.
Car1.

ZoneA .
Door

Video Input Camera, PUCam 13

Process Image Video Input, SWSurveillance, PUCam 14

Alarm Process Image, SirenA 15

Qual. Reliab. Engng. Int.2016

The door status control main function requires different input subfunctions to assure the safe oper-
ation of door opening/closing: enable subfunctions (enable door driver — EDD [#1, #2], enable door
passenger — EDP [#3]), command subfunctions (door close command — DCC [#4], door open com-
mand - DOC [#5, #6]), and monitoring subfunctions (door open detection — DOD [#7], door closed
detection — DCD [#8], door velocity — DV [#9], obstacle detection — OD [#10]). Door open com-
mands are generated by passengers and the driver, but the door close command is controlled only by
the driver. These input subfunctions are directed toward the door control algorithm (DCA) subfunction
[#11] which determines when and how to close the doors through the door manipulation (DM) subfunc-
tion [#12]. Note that the final decision on opening/closing the door relies on the Enable Door Passenger
(EDP) signal, which is determined by the driver.

Table 2 also shows the functional model of the video surveillance main function, which is connected
to the Ethernet communication network and it is located in the same physical location as the door status
control main function (cf. Figure 4): Train.Car1.ZoneA.Door. The video surveillance function receives
video images via video input subfunction [#13], processes them through the process image subfunction
[#14] and, when conditions are met, it raises an alarm using the sirens connected to the PUCam [#15].

5.2 Compatibility Analysis

The Compatibility Analysis identifies heterogeneous redundancies based on tokens of the functional
model (cf. Eq. (1)). There may exist two compatibility cases among the system implementations
defined in the functional model:

• Natural compatibility is the case of implementations carrying out the same subfunction in com-
patible physical locations.

• Forced compatibility is the case of implementations carrying out different but potentially equiva-
lent subfunctions located at compatible physical locations.

To identify heterogeneous redundancies we identify matching subfunctions and compatible physical
locations in the functional model to determine if the analysed implementations are compatible or not.
We define compatible physical locations according to the location of subfunctions (cf. Figure 4): (1)
same physical location; (2) adjacent physical locations ([Train].[Car1].ZoneA ↔ [Train].[Car1].ZoneB);
or (3) physical locations that span other physical locations ([Train].[Car1].[ZoneA] →
[Train].[Car1].[ZoneA].Door). Focusing on forced compatibilities we can see that the door status control
and video surveillance main functions in Table 2 are located in a compatible physical location. Based
on engineering design knowledge, we can identify that the video surveillance can provide a compatible
implementation to the door status control function by reusing the camera and adding an image process-
ing software to perform different functions. Specifically, the following heterogeneous redundancies can
be implemented reusing video surveillance camera [#13] with the necessary processing software and
communication interfaces: door-open detection [#7], door-closed detection [#8], door velocity [#9],
and door-obstacle detection [#10].

Qual. Reliab. Engng. Int.2016

As a result of the compatibility analysis, the designer can select different homogeneous or hetero-
geneous redundancy strategies for each subfunction. Apart from the identified heterogeneous redun-
dancies, it is possible to add homogeneous redundancies duplicating existing sensors. For instance, for
the door status control function in Table 2 the homogeneous and heterogeneous redundancy decisions
in Table 3 can be adopted. Communication integrates MVB and Ethernet communication networks and
their connecting gateway.

Table 3: Redundancy strategies for door status control main function.

Implementation Subfunction

Type Door Open Detection Door Closed Detection Obstacle Detection Door Velocity

Nominal PUDoor, OpenSensor PUDoor, ClosedSensor PUDoor, ObstacleSensor PUDoor, VelocitySensor

Heterogeneous
Camera, PUCam,

SWOpenDet, communication

Camera, PUCam,
SWCloseDet,

communication

Camera, PUCam,
SWObstDet, communication

Camera, PUCam, SWSpeed,
communication

Homogeneous PUDoor, OpenSensor2 PUDoor, ClosedSensor2 PUDoor, ObstacleSensor2 PUDoor, VelocitySensor2

There are several approaches in the diagnostics and fault-tolerant control community focused on
identifying analytic redundancies systematically18. A number of approaches in this area evaluate if it
is possible to provide the same service with a combination of remaining sensors, i.e., if there exists
an alternative analytic equation, which uses a different set of variables (resources) to provide the same
service. The identification of redundancies focuses on the relations among system equations, and vari-
ables. That is, if there exists redundant information about the system structure (i.e., if there are more
equations than variables to be determined) there may also exist alternative ways to define a variable.

The exhaustive characterization and mathematical formulation of complex systems is not trivial
and in some cases is infeasible. The identification of analytic redundancies is typically feasible at
subsystem level, but the complexity of the mathematical formulation increases dramatically at system
level. Additional complexity exists in highly networked scenarios where systems consists of many
subsystems, which are all interconnected through a communication network. In general, the formal
identification and categorisation of heterogeneous redundancies for complex systems is a challenging
task. This is pronounced in the case of non-evident redundancies raised from forced compatibilities
because there is no direct relationship between them.

Reconfiguration strategies integrate the functional model with redundancies. They define all possi-
ble realizations of the main function comprised of the necessary subfunctions and prioritized implemen-
tations. The prioritization is based on the weighted sum of functional degradation, failure probability
and cost of the implementation4. The functional degradation depends on the relative physical distance
(applicable for heterogeneous redundancies arising from natural compatibilities). For heterogeneous
redundancies raising from forced compatibilities, the designer’s knowledge is necessary.

Qual. Reliab. Engng. Int.2016

QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL

5.3 Extended Functional Modelling Approach

The Extended Functional Modelling Approach augments the functional model by adding health man-
agement functions and implementations: fault detection to detect the incorrect operation of an imple-
mentation and reconfiguration to recover from implementation failures. We have defined the following
mechanisms and protocols for fault detection and reconfiguration subfunctions:

• Fault detection (FD): each subfunction has an associated fault detection subfunction (FDSF).
The FD SF is located at the destination processing unit where the information of the source pro-
cessing unit is used to detect communication omission failures directly.

• Reconfiguration (R): each subfunction has its own reconfiguration subfunction (RSF), which
receives fault detection (FDSF) signals and sends reconfiguration signals to subfunctionimple-
mentations.

• Fault detection of the reconfiguration (FDR): each reconfiguration implementation (RSF) has its
own fault detection mechanism (FDR SF) implemented in keepalive configuration. Each RSF
implementation sends keepalive signals to all their FDR SF implementations to indicate that it
is operating. In the absence of a keepalive signal during a time-slot, an RSF implementation
is assumed to have failed. When this happens, the FDR SF implementation sends an activation
signal to the available RSF implementation with the highest priority.

• Communication is considered at resource level.

There does not exist a uniquely valid solution when allocating health management implementations.
The adopted decisions predefine the behaviour of health management mechanisms so that it is possible
to design and evaluate HW/SW architectures systematically.

Since fault detection and reconfiguration are subfunctions of a given main function, they are also
modelled using tokens (FDSF, RSF, FDR SF). Accordingly it is possible to analyse alternative fault
detection and reconfiguration strategies. Figure 5 describes the closed-loop operation of a system de-
ployed in a highly networked scenario including input, control and output subfunctions. The operation
of the HW/SW architecture is described for the output subfunction with redundancies. Overlapped
rectangles describe alternative implementations for the same subfunction.

Extending the functional model of the door status control main function in Table 2, Table 4 displays
the HW/SW architecture including the identified heterogeneous redundancies (cf. Table 3) and their
health management mechanisms. Namely, for each subfunction with redundancies: a single fault detec-
tion implementation (FDSF), duplicated reconfiguration implementations (RSF), and duplicated fault
detection of the reconfiguration (FDR SF) implementations have been selected.

The HW/SW architecture design step can be automated4 and implemented in real systems5. As for
the automation, the token-based annotations make it possible to parse the HW/SW architecture from a
design model (e.g. Simulink37) which includes designers decisions with respect to the level and type
of redundancy and health management strategies. For implementation, each processing unit needs a

Qual. Reliab. Engng. Int.2016

Table 4: HW/SW architecture of the door status control main function.

MF PL SF Resources MF PL SF Resources

DSC

Train.
Car1.
ZoneA .
Door

EDD PUTCMS1, SWTCMS1

DSC

Train.
Car1.
ZoneA .
Door

FD R DCD PUDoor, SWFD R DCD, Comm

EDD PUTCMS2, SWTCMS2 FD R DCD PUCam, SWFD R DCD, Comm

EDP
EDD, PUDriver, EnableBut.,

Comm
OD PUDoor, ObstacleSensor

DCC PUDriver, CloseButtonDriver OD
Camera, PUCam, SWObstacleDet,

Comm

DOC PUDriver, OpenButtonDriver FD OD PUDoor, SWFD OD, Comm

DOC PUCam, OpenButtonPassenger R OD PUDoor, SWR OD

DOD PUDoor, OpenSensor R OD PUCam, SWR OD, Comm

DOD
Camera, PUCam, SWOpenDet,

Comm
FD R OD PUDoor, SWFD R OD, Comm

FD DOD PUDoor, SWFD DOD, Comm FD R OD PUCam, SWFD R OD, Comm

R DOD PUDoor, SWR DOD DV PUDoor, SpeedSensor

R DOD PUCam, SWR DOD, Comm DV
Camera, PUCam, SWDoorVelocity,

Comm

FD R DOD PUDoor, SWFD R DOD, Comm FD DV PUDoor, SWFD DV , Comm

FD R DOD PUCam, SWFD R DOD, Comm R DV PUDoor, SWR DV

DCD PUDoor, ClosedSensor R DV PUCam, SWR DV , Comm

DCD
Camera, PUCam, SWCloseDet,

Comm
FD R DV PUDoor, SWFD R DV , Comm

FD DCD PUDoor, SWFD DCD, Comm FD R DV PUCam, SWFD R DV , Comm

R DCD PUDoor, SWR DCD DCA
EDP, DCC, DOC, DOD, DCD,

DV, OD, PUDoor, SWDSC, Comm

R DCD PUCam, SWR DCD, Comm DM DCA, PUDoor, Motor

Qual. Reliab. Engng. Int.2016

Figure 5: Operation of the HW/SW architecture.

wrapper that ensures the interchangeability between compatible implementations and a reconfiguration
mechanism to redirect its information. Furthermore, the units with FDR SF implementations require
monitoring keepalive signals to control the correct operation of the active RSF implementation5.

6 Dependability and Cost Evaluation Approach for Repairable Sys-
tems

6.1 Concepts and Notation

The failure model of the HW/SW architectures considers the possible failure modes of its health man-
agement mechanism and functional implementations: fault detection implementations (FDSF, FDR SF)
fail in omission (O) when they do not detect an occurred failure, and in false positive (FP) when they
falsely report a failure that has not occurred; reconfiguration implementations fail in omission when they
fail to act on needed reconfiguration; and failure of subfunction implementations (SF) cover omission
and incorrect value failure modes.

All possible failures of all system subfunction implementations (SF, FDSF, RSF, FDR SF) are
defined at the implementation-level (i.e., [MF].[PL].[SF].[Impl]Failure) with respect to failures of the
implementation resources. Based on the combination of implementation-level failures, subfunction-
level failures are defined systematically ([MF].[PL].[SF]Failure).

Implementations are reconfigured sequentially for non-repairable systems5. However, for repairable
systems, it is necessary to check the status of all subfunction implementations to know which imple-
mentation is active and reconfigure the implementation with the highest priority (cf. Figure 1). Im-
plementationi becomes active if at initialisation it has the highest priority among the implementations
for the same subfunction, or when the active implementation fails and implementationi has the highest
priority among the available implementations.

Qual. Reliab. Engng. Int.2016

QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL

The logical and temporal combination of failure and repair events are specified using repairable
Dynamic Fault Tree gates (cf. Table 5).

Table 5: Repairable Dynamic Fault Tree gates.

Gate Notation Gate Behaviour

Y=AND(A,B) If A fails and B fails, then Y fails. If A or B is repaired, then Y is also repaired.

Y=OR(A,B) If A fails or B fails, then Y fails. If A or B is repaired, then Y is also repaired.

Y=PAND(A,B)
If A fails before the failure of B or at the same time, then Y fails. If A is repaired, then Y is

repaired and another sequence of A failing before B is needed to cause the failure of Y.

The use of these gates is limited to expressing certain eventswith predefined failure and repair logic,
but more flexible failure and repair specification logics are also needed to model non-predefined random
events (see Subsection 6.3).

Table 6 defines the notations of the failure events and working events according to their subfunction
and failure modes. For brevity, in subsequent characterizations we omit the common part ([MF].[PL]).

Table 6: Notation of failure and working events.

Notation Failure Logic Notation Failure/Working Logic

FX X failure WX X working

FSF [SF] failure WSFi [SF].[Impli] working = NOT(FSFi)

FSFi [SF].[Impli] failure FR [R SF] failure

FFD [FD SF] failure FRi O [R SF].[Impli] omission

FFD FP [FD SF] false positive FFD Ri FP [FD {[R SF].[Impli]}] false positive

FFDi [FD SF].[Impli] failure FFD Ri O [FD {[R SF].[Impli]}] omission

FFDi O [FD SF].[Impli] omission FRi O/FP [R SF].[Impli] omission or FP =OR(FRi O,FFD Ri FP)

FSFi FP [SF].[Impli] failure or FP =OR(FSFi ,FFD FP) FSFi FP| Act
[SF].[Impli] fail or FP while active =

OR(FSFi | Act, FFD FP)

FSFi | Act [SF].[Impli] fail while active
FFDi O | Act [FD SF].[Impli] omission while active

FSF Desti | Act [SF Dest].[Impli] fail while active

The failure specification of each resource is defined by sampling randomly the failure and repair
times according to their cumulative distribution functions along the system lifetime. The methodology
supports any cumulative distribution function, but for the sake of demonstration and without loss of
generality, in subsequent probabilistic characterizations exponential failure distributions are assumed.
In line with this assumption, the failure specification of resources (FRes) is defined according to their
failure rates (λRes) and repair rates (µRes). FRes can be seen as continuous-time Markov chains with
working and failed states, where the transitions between these states are determined byλRes andµRes

parameters.
The failure specification of a subfunction’si-th implementation ([SF].[Impi] Failure) comprised of

N resources is defined as follows:

Qual. Reliab. Engng. Int.2016

FSFi = OR(FRes1, FRes2, . . . , FResN) (2)

The same equation holds for the specification of the omission failures of: fault detection (FDSF
— FFDi O), reconfiguration (RSF —FRi O), and fault detection of the reconfiguration (FDR SF —
FFD Ri O). Accordingly, false positive failures of fault detection implementations (FFD FP andFFD Ri FP)
are specified with failure and repair distributions and parameters.

6.2 Dependability Analysis Algorithm

The dependability analysis algorithm defines compositionally combinations of subfunction implementa-
tion failures that prevent the HW/SW architecture from performing its intended subfunction. The failure
of any subfunction necessary for a main function provokes the immediate failure of a main function.
Hence, from this point onwards, we will only consider the failure of a subfunction. To express these
events we use equations with the logic gates defined in Table 5.

The subfunction fails (FSF) when all implementations have failed (FAll Impl.), an implementation
fails and reconfiguration does not happen (failure unresolved,FUnresolved), or its input dependencies
have failed (FDependencies):

FSF = OR(FAll Impl. , FUnresolved, FDependencies) (3)

Assuming that we haveNSF implementations of the subfunction, theFAll Impl. event happens when
each implementation fails or is detected as failed:

FAll Impl. = AND(FSF1 FP, . . . , FSFNSF FP) (4)

The failure unresolved (FUnresolved) occurs when the active implementation fails and either the fault
is not detected (failure undetected event) or the reconfiguration itself fails (reconfiguration failed event).
For each implementation there are different failure unresolved events (FUnr. Impi) because each imple-
mentation has different failure probabilities:

FUnresolved= OR(FUnr. Imp1, . . . , FUnr. ImpNSF
) (5)

To define the failure unresolved event (FUnr. Impi) we introduce two new events. The first event occurs
when first the reconfiguration subfunction fails and then thei th implementation of the subfunction fails
when it is active (reconfiguration sequence failure,FR Seq.i):

FR Seq.i = PAND(FR, FSFi FP| Act) (6)

The second event occurs when first the fault detection of the subfunction fails and then thei th imple-
mentation of the subfunction fails when it is active (fault detection sequence failure,FFD Seq.i):

FFD Seq.i = PAND(FFD, FSFi | Act) (7)

Qual. Reliab. Engng. Int.2016

Accordingly, the failure unresolved event of thei th implementation (FUnr. Impi) occurs when either
the fault detection sequence (FFD Seq.i) fails or the reconfiguration sequence (FR Seq.i) fails:

FUnr. Impi = OR(FFD Seq.i , FR Seq.i) (8)

Dependencies address the influence of Input (I) and Control (C) subfunctions to influence on Control
and Output (O) subfunctions respectively. A Control subfunction failure impacts directly the output
subfunction failure (C→O). The influence of an input subfunction on a control subfunction depends on
the control configuration of the system, i.e. whether this is Closed Loop (CCL) or Open Loop (COL):

FDependencies= OR(FDep. CCL, FDep. COL) (9)

Assuming thatWC X=OR(WC X1, . . . ,WC XNW
) means that any of theNW implementations of the

C X subfunction are working (whereX = {CL,OL}), equations in (10) describe the different input
subfunctions that affect each control configuration (ICL→C CL, I OL→C OL). FDep. COL may not
happen because the open loop control generally does not have input dependencies:

FDep. CCL = AND(WC CL, F I CL)

FDep. COL = AND(WC OL, F I OL)
(10)

The reconfiguration failure is a special subfunction and thereforeFR is developed like Eq. (3),
except that there are no additional dependencies:

FR = OR(FAll R Impl. , FR Unresolved) (11)

FAll R Impl. indicates the failure of all reconfiguration implementations andFR Unresolveddesignates the
failure unresolved condition of the reconfiguration. AssumingM reconfiguration implementations:

FAll R Impl. = AND(FR1 O/FP, . . . , FRM O/FP) (12)

FR Unresolvedhappens whenM implementations of the reconfiguration’s fault detection fail simul-
taneously and it is a direct consequence of design choice: all fault detection implementations of the
reconfiguration (FDR SF) are active and homogeneous redundancies (keepalive implementations):

FR Unresolved= AND(FFD R1, . . . , FFD RM) (13)

The false positive of the reconfiguration’s fault detection occurs when all reconfiguration’s fault
detection implementations raise the false positive condition simultaneously. Although the system may
operate correctly when a false positive occurs, it has to assume that the information provided by the fault
detection is correct, since there is no mechanism to detect the incorrect operation of fault detection. The
fault detection failureFFD depends on the operation of the destination subfunction (SFDest), because the
fault detection implementation is located at the same processing unit. Hence,FSF Dest influences directly
FFD.

Qual. Reliab. Engng. Int.2016

When the fault detection implementation fails, the change of destination subfunction’s (SFDest) im-
plementation determines its reconfiguration. We assume that the change of destination subfunction’s
implementation activates the corresponding fault detection implementation and the previous one is deac-
tivated. Eq. (14) describes the fault detection subfunction failure case when fault detection subfunction
hasK implementations:

FFD = OR(FFD Dest1 | Act, . . . , FFD DestK | Act) (14)

The failure of thei th fault detection implementation while it is active (FFD Desti | Act) expresses the
next event: either thei th destination subfunction or thei th fault detection implementation fail while
active (note thati th fault detection and SFDesti implementation are located at the same processing
unit):

FFD Desti | Act = OR(FSF Desti | Act, FFDi O | Act) (15)

To avoid creating loops, the influence of dependencies is taken into account at the subfunction’s
failure level (cf. Eq. (3)). At this level, the failure of any dependent subfunction leads directly to the
subfunction failure.

6.3 Implementation

Stochastic Activity Networks (SAN)38 meet all the requirements to specify the dependability evaluation
model of HW/SW architectures including the specification of: time-dependant scenarios; modular sys-
tem behaviour; repair behaviour; any cumulative distribution function; and user-defined reconfiguration
strategies (cf. Section 2).

6.3.1 Preliminaries on SAN

SAN was first introduced in the mid-1980s39 and it has been used for performance, dependability and
performability evaluations6,40,41. SAN makes use of reduced base models42 so as to alleviate the state-
explosion problem and it extends stochastic Petri Nets generalizing the stochastic relationships and
adding mechanisms for hierarchical models38. Figure 6 shows the SAN modelling constructs.

Join

SubmodelJoin

Instantaneous
Activity

Timed
Activity

model

Atomic/
Composed

Extended
place

Input
gate

Standard
place

Output
gate

Figure 6: SAN modelling constructs.

Places represent the state of the modelled system. Each place contains tokens defining the marking
of the place: a standard place contains an integer number of tokens, while extended places contain data
types other than integers (e.g. float, array). We will denote the marking function of the placex asm(x),
e.g.m(x) = 1 means that the placex has a marking equal to one.

Qual. Reliab. Engng. Int.2016

There are two types of activities: instantaneous which complete in negligible amount of time; and
timed whose duration has an effect on the system performance and their completion time can be a
constant or a random value. The random value is ruled by a probability distribution function defining
the time to fire the activity.

Activities fire based on the conditions defined over the marking of the network and their effect is to
modify the marking of the places. The completion of an activity of any kind is enabled by a particular
marking of a set of places. The presence of at least one token in each input place enables the firing of
the activity removing the token from its input place(s) and placing it in the output place(s).

Another way of enabling activities consists of utilising input and output gates. Gates make SAN
general and powerful enough to model complex real situations. They determine the marking of the
network via employing user-defined C++ rules. Input gates control the enabling of activities and define
the marking changes that will occur when an activity completes. A set of places is connected to the input
gate and the input gate is connected to an activity. A Boolean condition enables the activity connected
to the gate and a function determines the effect of the activity completion on the marking of the places
connected to the gate. Output gates specify the effect of activity completion on the marking of the
places connected to the output gate. An output function defines the marking changes that occur when
the activity completes.

SAN models which include the specified SAN elements form a SAN atomic model (see Figure 10
“Reusable Block” column). The join operator links SAN models through a compositional tree struc-
ture in a unique composed model (e.g., see Figure 8). It is possible to link atomic models, composed
models, or combinations thereof. Composed and atomic SAN models are linked through join operators
using shared places between them. Thus, the analyst can focus on specific characteristics through fit-
for-purpose atomic/composed models and later join independently validated models to obtain a more
complex composed model.

The performance measurements are carried out through reward functions defined over the designed
model. Reward functions are defined based on the marking of the network (state reward function) or
completion of activities (impulse reward function) and they are evaluated as the expected value of the
reward function. For a complete and formal definition of SAN please refer to38.

6.3.2 Dependability Evaluation Approach Specification in SAN

Figure 7 shows the specification of the dependability analysis algorithm comprised of the following
models and activities:

• Functional Modelling: for each subfunction (SF) its resources, implementations, and the recon-
figuration logic are specified using SAN atomic models. The same modelling process applies
for each fault detection (FDSF), reconfiguration (RSF) and reconfiguration’s fault detection
(FD R SF) subfunction implementations.

• Failure Logic Modelling : the failure logic of the gates used in Eqs. (2)-(15) are modelled in
SAN.

Qual. Reliab. Engng. Int.2016

• SAN Synthesis: according to the dependability analysis algorithm, SAN composed models are
created linking resources, implementations, reconfiguration logic and failure logic. Composed
models are constructed by creating shared places between implementations and failure gates.
They define implementation-level failures (cf. Eq. (2)) and they are linked to define subfunction
and main function level failures (cf. Eq. (3)).

For each subfunction:

{SF, FD_SF, R_SF, FD_R_SF}

Implementation Events

SF: FSF , WSF , FSF FP

FD_SF: FFD , FFD O

R_SF: FR O, FR O/FP

FD_R_SF: FFD_R O, FFD_R FP

i i i

i i

i i

ii

Figure 7: Dependability Evaluation Approach specification process in SAN.

Functional Modelling: for each subfunction its different implementations, resources, and reconfig-
uration logic are specified using SAN atomic models. For instance, assuming that the implementation
Impl1 is comprised of resourcesRes1 andRes2, Figure 8 shows the SAN atomic specification of (a)
resources (Res1); (b) implementations (Impl1); and (c) the SAN composed model that links implemen-
tations and resources via shared places.

As modelled in the resource specification (Figure 8a),Res1 (andRes2) transits between working
and failed states according to its failure and repair cumulative distribution functions (F (t), R(t)). Ini-
tially resources are assumed to be operative (<m(Res1 Working), m(Res1 Failure)> = <1,
0>) and implementations can be in working or standby state, e.g.,Impl1 is working (<m(Impl1
Working), m(Impl1 Failure), m(Impl1 Standby)> = <1, 0, 0>).

According to the atomic implementation specification, whenRes1 or Res2 fails, Impl1 switches to
failure state (see the logic inF Impl1 input gate). When both resourcesRes1 andRes2 are repaired,
Impl1 switches to standby state (see the logic inR Impl1 input gate). IfImpl1 is in standby state and
receives a reconfiguration signal (m(Impl1 Reconfigure)=1), then instantaneously returns to the
working state (see atomic model of the implementation specification — Figure 8b).

The composed model of the implementation links atomic models of resources and implementations
sharing their dependent places:Res1 Failure andRes2 Failure (Figure 8c). This modelling
process is repeated for all the implementations and their constituent resources.

After specifying all the implementations and resources, it is necessary to define the reconfigura-
tion logic between implementations. Figure 9 shows the reconfiguration process forImpl1 and Impl2

Qual. Reliab. Engng. Int.2016

R(t) F(t)

FRes1

WRes1

SAN Atomic modelState Machine

Resource Specification(a)

W

F
Failure
Res1

Repair
Res1

Working
Res1

Fault
Res1

R(t)

F(t)

SAN Atomic modelState Machine

W

FS

FRes1
FRes2

FRes1

FRes2

WRes1 &&WRes2

Impl1
Reconf

Implementation Specification - Atomic Model(b)

Impl1
Standby

Impl1
Recon✁ gure

Impl1
Working

Impl1
Failure

Res1
Failure

Res2
Failure

F_Impl1

R_Impl1

Implementation Specification - Composed Model

Figure 8: Specification of implementations and resources.

assuming thatImpl1 has higher priority thanImpl2. The SAN atomic model of the reconfiguration
(Reconfig SF) defines the reconfiguration process:

• The implementation with the highest priority starts operating (Impl1).

• When Impl1 fails the next implementation in standby state with the highest priority is activated
(Impl2).

• When the failed implementation is repaired, it returns to the standby state and it remains in standby
state until the implementation that is active fails.

• When the implementation which does not have the highest priority fails, standby implementations
are checked according to their priority. In this case, ifImpl1 is in standby state whenImpl2 fails,
it returns to the active operation.

This process is extendible toN implementations and the implementation reconfiguration priorities
are determined according toif-else-if statements and implementations states.

To implement the reconfiguration logic the atomic modelReconfig SF in Figure 9 is joined
with the composed models ofImpl1 and Impl2 (cf. Figure 8c) creating shared places between the
implementations and the reconfiguration logic for each implementation:Impli Failure, Impli
Reconfigure, andImpli Standby, wherei identifies the implementation,i={1, 2}.

Qual. Reliab. Engng. Int.2016

if (m(Impl2 Failure)==1 && m(Impl1 Standby)==1)

m(Impl1 Reconfigure)=1;

else if (m(Impl1 Failure)==1 && m(Impl2 Standby)==1)

m(Impl2 Reconfigure)=1; Recon✁ gure

Figure 9: Specification of the reconfiguration process.

Failure Logic Modelling : in order to implement the logic in the equations of the dependability
analysis algorithm it is necessary to model in SAN the logic of repairable Dynamic Fault Tree gates —
see Table 5. Figure 10 shows the specification of repairable Dynamic Fault Tree gates in SAN using
state machines and their corresponding SAN model. In the state machine the initial state is indicated
with an arc, failure states are identified with doubled circles, andFx andRx indicate failure and repair
events ofx. The resultant reusable blocks are used to create the equations of the dependability analysis
algorithm systematically.

SAN model - Input Gate SpecificationState Machine

Submodel

AND
A

B
Y

AB

FA

RA
FB RB

ĀB

ĀB̄AB̄

FB RB FA

RA

FA

RA
FB RB

ĀB

ĀB̄

AB

AB̄

FB RB FA

RA

OR
Y

A

B

AND

YB

A
if (m(A)==1 && m(B)==1

&& m(Y)==0)

m(Y)=1;

if ((m(A)==0 || m(B)==0)

&& m(Y)==1)

m(Y)=0;

OR

YB

A
if ((m(A)==1 || m(B)==1)

&& m(Y)==0)

m(Y)=1;

if (m(A)==0 && m(B)==0

&& m(Y)==1)

m(Y)=0;

PAND
Y

A

B

AB

FA

RA

FB RB

ĀBAB̄

FA RA

FB

RB

ĀB̄
ĀB̄

YB

BFA AND

y_BF

if (m(A)==1 && m(B)==0

&& m(y_BF)==0)

m(y_BF)=1;

if (m(A)==0 && m(y_BF)==1)

m(y_BF)=0;

if (m(y_BF)==1 && m(B)==1

&& m(Y)==0)

m(Y)=1;

if ((m(y_BF)==0 || m(B)==0)

&& m(Y)==1)

m(Y)=0;

Block Diagram

BF

AND

AND

Submodel

OR

Submodel

PAND

Submodel

Reusable Block

RB

RA

Figure 10: Specification of repairable Dynamic Fault Tree gates in SAN.

Note that the repairable Dynamic Fault Tree gates in Figure 10 are directly extendible to gates withN
inputs and they can be used in a broader context for the evaluation of any complex repairable Dynamic
Fault Tree model. The behaviour of the repairable gates have been validated using other repairable
Dynamic Fault Tree analysis tools24.

Qual. Reliab. Engng. Int.2016

SAN Synthesis: linking the design and operation logic for all the system resources, implemen-
tations, and subfunctions and then connecting them with failure gates leads to synthesis in SAN of
the equations of the dependability analysis algorithm. The algorithm is applied bottom-up using Eqs.
(2)-(15), starting from resources and implementations (Eq. (2)) up to the subfunction failure (Eq. (3)).

For instance, Figure 11 showsFAll Impl. event (cf. Eq. (4)) assuming that the subfunction under study
is comprised of two implementations.

FAll Impl.=AND(FSF FP , FSF FP)1 2

ANDImpl1_FP Impl2_FP

Res2 FD_FPRes1

Impl1

Res3 FD_FPRes2

Impl2

Impl1_FP Impl2_FP

F_AllImpl

Figure 11: SAN synthesis example for theFAll Impl. event defined in Eq. (4).

The same modelling process applies to the remainder of the equations of the Dependability Evalua-
tion Approach. In this way compositional dependability evaluation of complex reconfigurable systems
is achieved by linking the dependability analysis algorithm with component-based SAN models of sys-
tem elements. Note that the reconfiguration model for each subfunction (cf. Figure 9) is linked at the
subfunction failure level (cf. Eq. (3)) so as to reconfigure subfunction implementations consistently.

6.4 Door Status Control Case Study Application

Starting from the functional model of the door status control in Table 2, we have identified heteroge-
neous redundancies for different subfunctions. For instance, it is possible to reuse a video surveillance
camera to provide redundancies for door open detection, door closed detection, obstacle detection; and
door velocity subfunctions — see Subsection 5.2. Table 3 displays alternative redundancy strategies
that can be considered at the design phase.

To use these redundancies, the HW/SW architecture is designed adding fault detection and recon-
figuration mechanisms. In the HW/SW architecture displayed in Table 4 we have assumed that for each
subfunction with redundancies we have one fault detection subfunction (FDSF), two reconfiguration
(R SF), and two fault detection of the reconfiguration (FDR SF) implementations.

The cost assessment of the designed architecture is carried out by adding up the cost of hardware
and software resources. The cost of software components is quantified by considering their develop-
ment cost assuming that it will be paid off in X years (let us assume X=4 years for calculation purposes).
We classify four types of SW components: fault detection (SWFD), reconfiguration (SWR), fault de-
tection of the reconfiguration (SWFD R) and Control-Detector (SWDet). The development costs for

Qual. Reliab. Engng. Int.2016

each of these four software components is considered once for different subfunction implementations:
once developed, they are adapted for the related subfunction implementations.

This assumption is adopted because the grouped subfunction implementations are closely related
and they do not need a significant development cost (the cost of N variants is not N times the cost of
a single software variant43): fault detection implementations adapt to different subfunctions modifying
subfunction-specific time/value thresholds. The cost of development of reconfiguration implementa-
tions does not differ for different subfunctions because the reactivation logic remain. The fault detec-
tion implementations of a reconfiguration differ only in the keepalive timeout and the development is
independent of any subfunction. All the control-detector software implementations have a similar logic.

Hardware cost is evaluated using the sensors, controllers and actuator costs obtained from suppli-
ers. The labour cost related with mounting/testing is considered for sensors and actuators assuming 10
minutes per sensor (actuator) at a rate of 60e/hour. Downtime cost is measured as the combination of
travels lost while the train was stopped (travels lost); people in each travel (peopletravel); and cost of
a ticket per person (ticket cost):

downtime cost = travels lost× people travel × ticket cost

travels lost =
travels

hour
× downtime

downtime = failure probability ×mission time

We assume that we do not have to stop the whole train to fix a failure in a car. Besides, we adopt the
following values for a short-distance train (≤ 50 km): travels

hour
= 2; peopletravel = 20; ticket cost= 1e;

mission time= 30 years. We will evaluate thefailure probabilityat T = 30 years time instant.
Regarding their failure rate values, resources with the same characteristics have been grouped in

Table 7: pressure sensor covers open, closed and obstacle detection sensors; PU gathers characteristics
of all different processing units; and communications include MVB and Ethernet communication proto-
cols and their gateway. Regarding software components, plausible values are assumed. The repair rate
for all components is assumed to beµ = 0.5 y-1.

Table 7: Failure rate & cost values.

Resource λ (yr-1) Cost (e)

SW Det, SWHM 1E-2 80 each

SW FP 1E-2 -

Pressure Sensor44 + Mounting 1.6E-2 20 + 60e/hr

Speed Sensor44 + Mounting 1.8E-2 20 + 60e/hr

Camera45 9.43E-2 -

PU46 3.87E-2 30

Communications 5E-3 200

Table 8: Analysed redundancy strategies.

ID Configuration

#1 4 heterogeneous redundancies (cf. Table 4)

#2
3 heterogeneous redundancies: DCD, DOD, DV;

1 homogeneous redundancy: OD

#3
2 heterogeneous redundancies: DCD, DOD;

2 homogeneous redundancies: OD, DV

#4
1 heterogenous redundancy: DCD;

3 homogeneous redundancies: OD, DV, DOD

#5 4 homogeneous redundancies

We have analysed the failure probabilities of different HW/SW architectures with alternative redun-
dancy strategies by applying the dependability analysis algorithm (cf. Subsection 6.2) and synthesizing

Qual. Reliab. Engng. Int.2016

QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL

the equations of Dependability Evaluation Approach in SAN (cf. Subsection 6.3.2). Table 8 displays
analysed redundancy strategies using the redundancies displayed in Table 3 and Table 9 displays the im-
plementations of the health management mechanisms used for the set of subfunctions with redundancies
denoted as SF={DOD, DCD, OD, DV}.

Table 9: Health management implementations and resources.

Implementation FD SF R SF FD R SF

Implementation 1 PUDoor, SWFD SF, Comm PUDoor, SWR SF PUCam, SWFD R SF, Comm

Implementation 2 No redundancy PUCam, SWR SF, Comm PUDoor, SWFD R SF, Comm

The HW/SW architecture in Table 4 displays the implementation of the health management con-
figuration in Table 9 for the different subfunctions with redundancies of the door status control main
function.

Figure 12 and Table 10 show respectively the relative failure probability and relative cost of different
HW/SW architectures for alternative redundancy strategies displayed in Table 8 normalized with the
architecture without redundancies (cf. Table 2).

Time (Years)
0 10 20 30

R
e
la

ti
v
e
 F

a
il
u
re

 P
ro

b
a
b
il
it
y

0.5

0.6

0.7

0.8

0.9 4 Heterogeneous Redundancies

1 Homogeneous Redundancy; 3 Heterogeneous Redundancies

2 Homogeneous Redundancies; 2 Heterogeneous Redundancies

3 Homogeneous Redundancies; 1 Heterogeneous Redundancy

4 Homogeneous Redundancies

Figure 12: Relative failure probability of door status control
configurations.

Table 10: Normalized
cost of door status control
configurations.

Conf.
HW, SW,

Comm Cost
Downtime

Cost

#1 1.221 0.583

#2 1.248 0.576

#3 1.281 0.57

#4 1.308 0.562

#5 1.2903 0.556

The following improvements have been observed at T=20 years with respect to the configuration
without redundancies (cf. Figure 12): (#1): 42% better; (#2): 42.57% better; (#3): 43.23% better; (#4)
44.07% better; and (#5): 44.74% better. When considering the cost of hardware, software and com-
munication implementations, heterogeneous redundancy configurations are cheaper than homogeneous
redundancy configurations. However, with downtime costs, the less reliable the architecture, the higher
its cost. Accordingly, heterogeneous redundancy configurations are more expensive than homogeneous
redundancy configurations.

Qual. Reliab. Engng. Int.2016

To examine the influence of reconfiguration strategies we have evaluated the failure probability
for input, control, and output subfunctions with different reconfiguration arrangements for input sub-
function implementations. Table 11 displays the arrangement of reconfigurations, where the subscript
indicates the priority of the software reconfiguration implementation. All these configurations have the
same fault detection configuration displayed in Table 9.

The system failure probability does not vary changing the number and distribution of reconfigura-
tion implementations. However, focusing on Eq. (6) and Eq. (11) there are some properties worth
mentioning. Taking door closed detection subfunction as a reference (note that the remainder of input
subfunctions are characterized equally — door open detection, obstacle detection and door velocity),
Table 12 shows the failure probability of the reconfiguration sequence failure event (FR.Seq.DCD — Eq.
(6)) and the reconfiguration subfunction failure event (FR DCD — Eq. (11)) at T=10 years. These events
have been analysed for different values of failure rates for health management software implementations
(fault detection, reconfiguration, and reconfiguration’s fault detection): SWFD, SW R, SW FD R. We
have modified the failure rates of these software resources altogether (denoted collectively asλSW HM)
to see the effect on the failure probability.

Table 11: Reconfiguration distribution strategies.

Conf. Reconfiguration Implementation Distributions

1R PUDoor(R DOD1, R DCD1, R OD1, R DV1)

2RC
PUDoor(R DOD1, R DCD1,R OD1, R DV1);

PU1(R DOD2, R DCD2, R OD2, R DV2)

2RD
PUDoor(R DOD1, R DCD2); PU1(R DOD2, R DCD1);

PU2(R OD1, R DV2); PU3(R OD2, R DV1)

3RC
PUDoor(R DOD1, R DCD1, R OD1, R DV1);

PU1(R DOD2, R DCD2, R OD2, R DV2);
PU2(R DOD3, R DCD3, R OD3, R DV3)

3RD

PUDoor(R DOD1,R DCD2,R OD3);
PU1(R DOD2,R DCD1,R DV3);
PU2(R DOD3,R OD1,R DV2);
PU3(R DCD3,R OD2,R DV1)

Table 12: Reconfiguration events failure probability.

Events 1R 2RD 2RC 3RD 3RC

FR.Seq.DCD
(λSW HM =

0.05)
0.013 0.005 0.005 0.003 0.004

FR.Seq.DCD
(λSW HM =

0.15)
0.014 0.008 0.009 0.007 0.007

FR.Seq.DCD
(λSW HM =

0.25)
0.016 0.011 0.011 0.009 0.009

FR DCD(λSW HM =
0.05)

0.312 0.138 0.140 0.124 0.127

FR DCD(λSW HM =
0.15)

0.571 0.313 0.316 0.274 0.275

FR DCD(λSW HM =
0.25)

0.761 0.466 0.466 0.390 0.391

The following characteristics are identified in Table 12:

• As the number of redundant implementations of reconfiguration increase, the failure probability
of FR.Seq. SF andFR SF decreases.

• As the failure rate of the health management implementations increases, the failure probability of
FR.Seq. SF andFR SF also increase.

• FR.Seq. SF is lower thanFR SF due to the sequence-dependent constraint (cf. Eq. (6)).

Taking the HW/SW architecture with the redundancy configuration #1 as reference configuration
(see Table 8), the influence of fault detection, reconfiguration and communication implementations

Qual. Reliab. Engng. Int.2016

have been analysed assuming their ideal and real behaviour. Figure 13 shows the failure probability of
these configurations.

F
a
il
u
re

 P
ro

b
a
b
il
it
y

0.1

0.2

0.3

Time (years)

0
0 10 20 30

Real configuration

Configuration with ideal reconfiguration

Configuration with ideal fault detection

Configuration with ideal communication

Figure 13: Door status control failure probability with ideal
assumptions.

Table 13: Figure 13 values at
T=15 years.

Configuration

Failure

Probabil-

ity

Real
Configuration

0.348

Ideal Recon-
figuration

0.347

Ideal Fault
Detection

0.347

Ideal Com-
munication

0.342

Figure 13 shows that the influence of the communication is moreimportant than health management
implementations because the communication influences many subfunctions and implementations at the
same time. In this case, there is no difference in the influence of fault detection and reconfiguration
implementations and their influence can be considered negligible (cf. Table 13).

7 Conclusions and Future Work

In this paper we have extended the recently proposed D3H2 methodology to model and evaluate re-
pairable systems for the cost-effective design of dependable reconfigurable systems. Prioritized repair
strategies are taken into account including components with complex logic and repeated events. The
compositional modelling in D3H2 improves traceability between design and dependability models.

Application of the method to a railway case study has confirmed that the reuse of system resources
reduces system cost compared with the addition of extra hardware components. However, this is only
true when the additional cost incurred from increased failure probability of the system is not greater than
the extra cost of homogeneous redundancy. When excluding downtime costs, heterogeneous redundan-
cies are cheaper than homogeneous redundancies. However, downtime cost is higher with less reliable
architectures and it is more penalising than hardware, software, and communication costs. D3H2 assists
in the trade-off analysis between these properties and it enables informed decision making. The D3H2
methodology also includes the effect of health management mechanisms on system dependability. It
is true that in many cases their effect may not be significant for the system performance, but assuming
them ideal may result in an optimistic system evaluation. Therefore, their effect needs to be evaluated,
specially for safety-critical systems.

Qual. Reliab. Engng. Int.2016

QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL

When evaluating reconfiguration strategies, distributed reconfiguration strategies have shown a lower
failure probability than the centralised reconfiguration redundancies in the analysed case study. How-
ever, it should be noted that the effect of increasing reconfiguration redundancies on system failure
probability is attenuated because there are sequence-dependent intermediate, lower-level failure events.
That is, the failure of the reconfiguration subfunction occurs when first the reconfiguration mechanism
fails and then the subfunction implementation failure occurs. This time-dependent condition constraints
the effect of increasing reconfiguration redundancies on the system failure probability.

As shown in the case study, optimisation of design decisions with respect to the level and type of
redundancy and reconfiguration strategies to maximize dependability and minimize the cost are feasible
within the D3H2 methodology. We acknowledge that the methodology assumes a design rationale and
process, which designers may not wish to use in every application. However, the innovative and useful
aspects of D3H2 such as dependability modelling can be adopted within other design methods. Our
future goals towards improving D3H2 will focus on improving the proposed approach by addressing
the following extensions:

• Automatic extraction of the dependability evaluation models: this approach would alleviate mod-
elling errors (e.g., using meta-modelling techniques47) and accordingly enable the implementation
of meta-heuristics, e.g., extending the work in2,13 to automate and optimise design decisions. One
possible direction is synthesis of D3H2 with model-based dependability analysis techniques13.

• Formal identification of heterogeneous redundancies: this is a challenging task for complex sys-
tems because there may not be a deterministic relationship between variables. Further refinement
of the proposed identification approach could focus on formalising engineering knowledge or
exploring multi-physics based modelling formalisms48.

• Verification of heterogeneous redundancies: include architecture-specific requirements such as
timeliness constraints49 or memory and processing capacity.

• Quality degradation caused by the use of heterogeneous redundancies: analyse other properties
than the failure probability.

• Repair and maintenance strategies: the train operates through different phases and it is possible
to schedule repair and maintenance actions accordingly. For instance, if an asset is not critical,
it can be left in the failed state until reaching a railway depot and repair altogether. For critical
assets, condition-based maintenance techniques50 can be considered to monitor the condition of
components and schedule maintenance before their failure occurrence reducing downtime costs51.

• Application of the D3H2 methodology at the overall system level including interactions and de-
pendencies between all the system main functions through high level functions.

Qual. Reliab. Engng. Int.2016

Acknowledgements

This work was partially funded by Mondragon University and CAF Power & Automation company. The
authors would like to thank the reviewers for their valuable comments that helped to improve the clarity
and completeness of the paper and also colleagues at CAF Power & Automation for the discussions that
helped to develop the case study.

References

1. Elegbede A, Chu C, Adjallah K, Yalaoui F. Reliability allocation through cost minimization.Reli-
ability, IEEE Transactions onMarch 2003;52(1):106–111.

2. Dhouibi MS, Saintis L, Barreau M, Perquis JM. Safety driven optimization approach for automotive
systems.2015 Annual Reliability and Maintainability Symposium (RAMS), 2015; 1–7, doi:10.1109/
RAMS.2015.7105113.

3. Han J, Gao J, Jonker P, Qi Y, Fortes JAB. Toward hardware-redundant, fault-tolerant logic for
nanoelectronics.IEEE Design Test of ComputersJuly 2005;22(4):328–339, doi:10.1109/MDT.
2005.97.

4. Aizpurua JI, Muxika E. Functionality and dependability assurance in massively networked scenar-
ios.Safety, Reliability and Risk Analysis: Beyond the Horizon, CRC Press, 2013; 1763 – 1771.

5. Aizpurua JI, Muxika E, Manno G, Chiacchio F. Heterogeneous redundancy analysis based on com-
ponent dynamic fault trees.Proceedings of PSAM 12, 2014.

6. Aizpurua JI. Functionality and dependability assurance in massively networked scenarios. PhD
Thesis, Electronics and Computing Department, Mondragon University January 2015.

7. Aizpurua JI, Muxika E, Papadopoulos Y, Chiacchio F, Manno G. Application of the D3H2 method-
ology for the cost-effective design of dependable systems.Safety2016; 2(2):9, doi:10.3390/
safety2020009.

8. Avizienis A, Laprie JC, Randell B, Landwehr C. Basic concepts and taxonomy of dependable and
secure computing.IEEE Trans. Dependable Secur. Comput.2004;1:11–33, doi:http://dx.doi.org/
10.1109/TDSC.2004.2.

9. Garg H, Sharma S. Stochastic behavior analysis of complex repairable industrial systems utilizing
uncertain data.ISA Transactions2012;51(6):752 – 762, doi:http://dx.doi.org/10.1016/j.isatra.2012.
06.012.

10. Aizpurua JI, Muxika E. Model based design of dependable systems: Limitations and evolution of
analysis and verification approaches.International Journal on Advances in Security2013;6:12–31.

Qual. Reliab. Engng. Int.2016

11. Baier C, Katoen JP.Principles of Model Checking. The MIT Press, 2008.

12. Katsaros P, Angelis L, Lazos C. Performance and effectiveness trade-off for checkpointing in
fault-tolerant distributed systems.Concurrency and Computation: Practice and Experience2007;
19(1):37–63, doi:10.1002/cpe.1059.

13. Adachi M, Papadopoulos Y, Sharvia S, Parker D, Tohdo T. An approach to optimization of fault
tolerant architectures using HiP-HOPS.Softw. Pract. Exp.2011; .

14. Cauffriez L, Renaux D, Bonte T, Cocquebert E. Systemic modeling of integrated systems for deci-
sion making early on in the design process.Cybernetics and Systems2013;44:1–22.

15. Chen D, Lönn H, Mraidha C, Papadopoulos Y, Reiser M, Servat D, Azevedo LS, Piergiovanni ST,
Walker M. Automatic optimisation of system architectures using EAST-ADL.SAFECOMP 2013 -
Workshop ASCoMS (Architecting Safety in Collaborative Mobile Systems), Toulouse, France, 2013.

16. Perez D, Mirandola R, Merseguer J. On the relationships between QoS and software adaptability at
the architectural level.Journal of Systems and Software2014;87:17.

17. Strigini L. Fault tolerance against design faults.Dependable Computing Systems: Paradigms, Per-
formance Issues, and Applications, Diab H, Zomaya A (eds.). John Wiley & Sons, 2005; 213–241.

18. Blanke M, Hansen S, Blas MR. Diagnosis for control and decision support in complex systems.
Proceedings Volume from the Special International Conference on Complex Systems, 2011; 89–
101.

19. Shelton CP, Koopman P. Improving system dependability with functional alternatives.Proc. of
DSN’04, IEEE, 2004; 295–304.

20. Wysocki J, Debouk R. Methodology for assessing safety-critical systems.Int. Journal of Modeling
and Simulations2007;27(2):99–106.

21. Adler R, Schneider D, Trapp M. Engineering dynamic adaptation for achieving cost-efficient re-
silience in software-intensive embedded systems.Proc. of Engineering of Complex Computer Sys-
tems, IEEE, 2010; 21–30, doi:10.1109/ICECCS.2010.12.

22. Bieber P, Noulard E, Pagetti C, Planche T, Vialard F. Preliminary design of future reconfigurable
IMA platforms.SIGBED Rev.2009;6(3).

23. Dugan J, Bavuso S, Boyd M. Dynamic fault-tree models for fault-tolerant computer systems.IEEE
Trans. on Reliability1992;41(3):363–377, doi:10.1109/24.159800.

Qual. Reliab. Engng. Int.2016

24. Manno G, Chiacchio F, Compagno L, D’Urso D, Trapani N. Conception of repairable dynamic
fault trees and resolution by the use of RAATSS, a matlab toolbox based on the ATS formalism.
Reliability Engineering & System Safety2014;121:250 – 262, doi:http://dx.doi.org/10.1016/j.ress.
2013.09.002.

25. Distefano S, Puliafito A. Dependability evaluation with dynamic reliability block diagrams and
dynamic fault trees.IEEE Transanctions on Dependable and Secure Computing2009;6(1):4–17.

26. Papadopoulos Y, Walker M, Parker D, Rüde E, Hamann R, Uhlig A, Grätz U, Lien R. Engineer-
ing failure analysis and design optimisation with HiP-HOPS.Engineering Failure Analysis2011;
18(2):590–608.

27. Edifor E, Walker M, Gordon N.Quantification of Priority-OR Gates in Temporal Fault Trees.
Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; 99–110, doi:10.1007/978-3-642-33678-29.

28. Edifor E, Walker M, Gordon N.Quantification of Simultaneous-AND Gates in Temporal
Fault Trees. Springer International Publishing: Heidelberg, 2013; 141–151, doi:10.1007/
978-3-319-00945-213.

29. Bouissou M, Bon JL. A new formalism that combines advantages of fault-trees and Markov models:
Boolean logic driven Markov processes.Reliability Engineering &; System Safety; 82(2):149 – 63.

30. Gulati R, Dugan JB. A modular approach for analyzing static and dynamic fault trees.Reliability
and Maintainability Symposium. 1997 Proceedings, Annual, 1997; 57–63, doi:10.1109/RAMS.
1997.571665.

31. Yevkin O. An improved modular approach for dynamic fault tree analysis.Reliability and Main-
tainability Symposium (RAMS), 2011 Proceedings - Annual, 2011; 1–5, doi:10.1109/RAMS.2011.
5754437.

32. Kaiser B, Gramlich C, Forster M. State-event fault trees - a safety analysis model for software-
controlled systems.Reliability Eng. System Safety2007;92(11):1521–1537.

33. Codetta-Raiteri D. Integrating several formalisms in order to increase fault trees’ modeling power.
Reliability Engineering & System Safety2011; 96(5):534 – 544, doi:http://dx.doi.org/10.1016/j.
ress.2010.12.027.

34. Piriou PY, Faure JM, Lesage JJ. Modeling standby redundancies in repairable systems as guarded
preemption mechanisms.Dependable Control of Discrete Systems (DCDS), 5, Cancun, Mexico,
2015; 147–153.

35. IEC. Train Communication Network, IEC 61375.Technical Report2007.

Qual. Reliab. Engng. Int.2016

QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL

36. Marca DA, McGowan CL.SADT: Structured Analysis and Design Technique. McGraw-Hill, Inc.:
New York, NY, USA, 1987.

37. MathWorks. Matlab/Simulink.http://www.mathworks.com; Accessed: 25/04/2016 2015.

38. Sanders WH, Meyer JF. Lectures on formal methods and performance analysis. chap. Stochastic
Activity Networks: Formal Definitions and Concepts, Springer, 2002; 315–343.

39. Meyer JF, Movaghar A, Sanders WH. Stochastic activity networks: Structure, behavior, and ap-
plication.International Workshop on Timed Petri Nets, IEEE Computer Society: Washington, DC,
USA, 1985; 106–115.

40. Di Martino C, Cinque M, Cotroneo D. Automated generation of performance and dependability
models for the assessment of wireless sensor networks.Computers, IEEE Transactions onJune
2012;61(6):870–884, doi:10.1109/TC.2011.96.

41. Giandomenico FD, Itria M, Masci P, Nostro N. Automated synthesis of dependable mediators for
heterogeneous interoperable systems.Reliability Engineering & System Safety2014; 132:220 –
232, doi:http://dx.doi.org/10.1016/j.ress.2014.08.001.

42. Sanders WH, Meyer JF. Reduced base model construction methods for stochastic activity networks.
Petri Nets and Performance Models, 1989. PNPM89., Proceedings of the Third International Work-
shop on, 1989; 74–84, doi:10.1109/PNPM.1989.68541.

43. Kanoun K. Real-world design diversity: a case study on cost.Software, IEEEJul 2001;18(4):29–
33, doi:10.1109/MS.2001.936214.

44. IAEA. Component reliability data for use in probabilistic safety assessment, IAEA-TECDOC-478.
Technical Report1988.

45. JVC Professional.http://pro.jvc.com/; Accessed: 25/04/2016.

46. Vinod G, Santosh T, Saraf R, Ghosh A. Integrating safety critical software system in probabilistic
safety assessment.Nuclear Engineering and Design2008;238(9):2392 – 2399.

47. Henderson-Sellers B. Bridging metamodels and ontologies in software engineering.Journal of Sys-
tems and Software2011;84(2):301 – 313, doi:http://dx.doi.org/10.1016/j.jss.2010.10.025.

48. Fritzson P.Introduction to Modeling and Simulation of Technical and Physical Systems with Mod-
elica. Wiley-IEEE Press, 2011.

49. Priesterjahn C, Steenken D, Tichy M. Timed hazard analysis of self-healing systems.Assur-
ances for Self-Adaptive Systems - Principles, Models, and Techniques. 2013; 112–151, doi:
10.1007/978-3-642-36249-1\ 5.

Qual. Reliab. Engng. Int.2016

50. Aizpurua JI, Catterson V. Towards a methodology for design of prognostics systems.Annual Con-
ference of the Prognostics and Health Management Society, vol. 6, 2015.

51. Aizpurua JI, Catterson VM, Chiacchio F, D’Urso D. A cost-benefit approach for the evaluation
of prognostics-updated maintenance strategies in complex dynamic systems.Proceedings of the
European Safety & Reliability Conference (ESREL’16), Glasgow, UK, 2016.

Acronyms and Abbreviations

DCA : Door Control Algorithm FD SF : Fault Detection of the SF

DCD : Door Closed Detection FP : False Positive

DM : Door Manipulation MF : Main Function

DOC : Door Open Command O : Omission

DOD : Door Open Detection OD : Obstacle Detection

DSC : Door Status Control PL : Physical Location

DV : Door Velocity PU : Processing Unit

EDD : Enable Door Driver R : Reconfiguration

EDP : Enable Door Passenger R SF : Reconfiguration of the SF

FD : Fault Detection SF : Subfunction

FD R SF: Fault Detection of the RSF TCMS
: Train Control and Monitoring
System

Authors’ Biographies

Jose Ignacio Aizpuruais a Research Associate within the Institute for Energy and Environment at the
University of Strathclyde, Scotland, UK. He received his Eng., M.Sc., and Ph.D. degrees from Mon-
dragon University (Basque Country, Spain) in 2010, 2012, and 2015 respectively. He was a visiting
researcher in the Dependable Systems Research group at the University of Hull (UK) during autumn

Qual. Reliab. Engng. Int.2016

2014. His research interests include prognostics and health management, dependability, condition mon-
itoring, and systems engineering.
Yiannis Papadopoulosis a professor and leader of the Dependable Systems research group at the
University of Hull. He pioneered the HiP-HOPS MBSA method and contributed to the EAST-ADL au-
tomotive design language, working with Volvo, Honda, Continental, Honeywell, and DNV-GL, among
others. He is actively involved in two technical committees of IFAC (TC 1.3 & 5.1).
Eñaut Muxika is a lecturer and a researcher at Mondragon Unibertsitatea and he obtained his PhD in
Electrical Engineering from the Institute National Polytechnique de Grenoble (INPG) in 2002. He has
worked in machine-tool and power electronics control systems. His current research interests include
reliability, availability, safety and performance modeling, model-based system engineering and adaptive
hardware, software, communication system design.
Ferdinando Chiacchio is a Researcher in the Department of Electrical Electronic and Computer En-
gineering at the University of Catania. He received his Laurea and Ph.D. degrees from University of
Catania in 2005 and 2010 respectively. His research areas concern reliability, performability, commu-
nication protocols for home and industrial control and automation, HPC computing and immunomics.
Gabriele Manno is Senior Researcher at DNV GL in the Strategic Research and Innovation depart-
ment. He received his Bachelor, M.Sc., and Ph.D. degrees from the University of Catania and a MSc in
Business Administration from IlSole24Ore Business School. His interests include dependability theory
and advanced prognostics as well as digitalization, big data and industrial platforms with specific focus
on the shipping industry.

Qual. Reliab. Engng. Int.2016

