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Abstract. In this paper the generative and feature extracting powers of the 

family of Boltzmann Machines are employed in an algorithmic music 

composition system. Liquid Persian Music (LPM) system is an audio generator 

using cellular automata progressions as a creative core source. LPM provides an 

infrastructure for creating novel Dastgāh-like Persian music. Pattern matching 

rules extract features from the cellular automata sequences and populate the 

parameters of a Persian musical instrument synthesizer [1]. Applying restricted 

Boltzmann machines, and conditional restricted Boltzmann machines as two 

family members of Boltzmann machines provide new ways for interpreting the 

patterns emanating from the cellular automata. Conditional restricted 

Boltzmann machines are particularly employed for capturing the dynamics of 

cellular automata. 
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1 Introduction 

Persian traditional music is often recognized and investigated in the framework of 

Dastgāh music [2]. Each Dastgāh consists of smaller musical pieces called Gushe 

which share some similarity in respect to musical intervals, frequency of appearing 

notes, and repeated melodic motives. Different Dastgāh systems share some similar 

traits, for example the quality of the beginning and ending pieces and the presence of 

pieces having special characteristics as well as their respective time intervals. 

Dastgāhs, by their nature, have their complexities, which makes the emergence of 

new musical pieces reliant on the nascence of genius master musicians, who are 

intimately familiar with the concept of Dastgāh. This fact has made the creation of 

new Dastgāhs nearly impossible, and the quantity of compositions in different 

Dastgāhs intricate. Yet, there are immense possibilities for new music to be created in 

this genre [3, 4]. Techniques and tools from artificial intelligence are able to assist in 

the navigation of music space for creating the possibility of novel music.  

One of the targets in the computational creativity arena is the manifestation of new 

artefacts with the help of computational algorithms. It is obvious that a clear 

viewpoint about the quality of creativity and how it happens is required from the 

outset. One of the ways for defining creativity is the study of its appearance or 

expression in human being when an artefact is created. Boden [5], [6] identifies three 
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types of creativity in this respect: Combinational, Exploratory, and Transformational. 

In combinational creativity, previous ideas are populated and associated with each 

other in an artistic way. In exploratory creativity, a conceptual space is explored in the 

hope of finding novel forms; this navigation may result in transformational creativity 

by altering some of the involved dimensions of the elements and/or the conceptual 

space. Boden further describes creativity in two broad categories: Historical-

Creativity, and Personal-Creativity with respect of their origin. H-creativity refers to a 

type of creativity that has never happened before within a civilization or society. P-

creativity is allocated to a type of creativity that is new to the person who created it, 

though it has happened before throughout history. Observation of the requirements 

involved for the appearance of a creative act, provides guidelines in many respects for 

enabling the recreation process. Algorithmic music generation can be considered as a 

manifestation of computational creativity.  

Algorithmic music composition have been performed for various purposes from 

generating musical motifs for inspiring musicians and usually in the form of computer 

aided algorithm composition software to more complex tasks as well as 

mechanization of music itself [7]. The later target is a hard core problem which needs 

the studying the creativity behavior in human. Likewise algorithmic composition can 

improve knowledge about how the creativity is performed by humans. Nevertheless 

various methodologies are applied for algorithmic composition; for example machine 

learning tools, knowledge based systems, evolutionary algorithms, and computational 

intelligence models [7]. Computational intelligence models as well as Cellular 

Automata (CA) are able to generate materials without contributing to human domain 

knowledge [4]. Therefore they have been in the attention of the computational 

creativity community.  Noteworthy, hybrid methodologies which benefit from the 

characteristics of various tools are likely to be the subject of future research. In the 

current project the aim is to explore the possibility of creating new types of Persian 

music, by navigating the spectrum of various types of creativity by a hybrid approach 

consisting of CA, and a machine learning tool.  

Liquid Persian Music (LPM) is a Cellular Automata based auditory system, which 

relies on pattern matching rules for extracting features from CA progressions, and 

feeding these to a Persian musical instrument synthesizer. Pattern matching rules 

extract features from consecutive CA progressions. The synthesizer accepts 

parameters such as the length of the musical instrument string, and the ADSR 

envelopes and produces the audio signal. More information about the software can be 

found in [8]. 

One of the aims in this paper is to elevate the pattern matching rules to the next 

level. For this work two major concepts have been taken into account. One of them 

refers to associative memories and their crystal like nature. Every time an associative 

memory system reaches its equilibrium stability, new associations are produced 

across their constituent elements. This in fact, determines their stochastic nature. The 

other concept refers to the nature of cellular automata, as stochastic, yet determinable 

systems which makes them storable.  

Boltzmann machines are a type of associative memory, and in this paper two 

families of Boltzmann machines, Restricted Boltzmann Machines (RBM), and 

Conditional Restricted Boltzmann Machines (CRBM), are investigated. RBMs have 

been used for learning static data and producing new representations of data. 



 

Conditional Restricted Boltzmann machines expand RBM to be capable of prediction 

by learning time-series data. Cellular automata progressions are stored inside RBMs, 

and CRBMs. In this paradigm the stochastic nature of Boltzmann machine family 

have been used to benefit the generation of musical forms in the LPM system.  

The arrangement of the sections of this paper are as follows: Section two presents 

Liquid Persian Music system, as a test bed for creating Persian-like music. Section 

three is dedicated to cellular automata, and basins of attraction models for studying 

the dynamics of CA. Section four is dedicated to Boltzmann machines in general and 

RBM, and CRBM in detail. The architectures of these two members of family of 

Boltzmann machines are described which then form the basis of the current 

experiments. The design approach and experiment are presented in sections five, and 

six. The results are available in section seven. The paper concludes in section eight, 

and future possibilities for research are presented.  

2 Liquid Persian Music Software & Previous Research Agenda 

The fundamental idea of LPM, likewise its former version Liquid Brain Music [9, 10] 

is the exploration of artificial life systems in the production of audio. Outputs of such 

system in relation to different parameterizations, are conventionally referred to as 

voices in the series of LPM associated publications. Voices resemble musical motives 

in music terminology. In [4, 11], it has been inferred that there are  887 ∗ 207 ∗ 𝑡 

number of such voices, considering the number of 88 unique CA behaviors, 20 pattern 

matching rules, 𝑡 number of CA progressions, and 7 as the count of the synthesizer 

parameters.  

One of the present considerations have been towards sequencing those voices in a 

musical manner. In [3], the LPM voices have been examined both individually and in 

relation to each other to study their aesthetical aspects regarding Zipf’s law [12]. This 

study have been performed, acquiring suitable aesthetical means for evolving them in 

a musical manner. A computational framework for creating Persian Dastgāh-like 

music have been proposed in [4], in which sequencing the voices in a competent 

manner have been considered as a search problem. The musical critiques have been 

determined to be Zipfian metrics, and random sequences of voices as genotypes. 

Fitness functions based on Zipfian metrics are computable aesthetical critiques. In a 

later experiment in [3], Zipfian metrics have been extracted from a traditional Persian 

music data base. These metrics have been employed to train a Support Vector 

Machine Regression (SVMR) model, against, features extracted from LPM random 

sequences. The features which produced overlap between Persian music and LPM 

sequences were kept while the other ones have been discarded. This has been done 

due to the fact that SVMR model would decide solely based on a few strong 

detaching feature categories. On this basis, SVMR model would have cast off most of 

the LPM sequences without any chances for guiding them to the next evolutionary 

phase. On the other hand, it has been demonstrated that only a few number of features 

out of about 400 Zipfian features were sufficient for the conducting task. More details 

on this experiment can be found in [3]. 

The major issue in these experiments was the appearance of vivid jumps between 

the musical motives in some of the sequences. The randomized sequences in the 



 

initial population, left a dramatic effect throughout consequent generations which 

could not have been detected with the usage of Zipfian metrics solely. To counter this, 

there would be too many generations involved, and/or the fitness function possess 

sufficient amount of intelligence to unravel the competent individuals, and operators 

to erode the jumping effects and then evolve the pieces in a desired manner. Although 

fitness function based on Zipfian metrics are capable of discarding incompetent 

individuals and giving credits to those who have further similar Zipfian metrics to 

Persian music, the need for a more intelligent criticizer became self-evident. It should 

not be left unsaid that during algorithm execution some desirable pieces have been 

created which were detected while performing auditory investigations. Some of the 

LPM generated audio have also been evaluated in an auditory survey [13]; some 

examples are available in [8]. In the current paper, unlike the previous publications in 

this series [3, 4, 11], the aesthetical aspects of the produced audio are not directly and 

particularly the main focus. Instead the attention is shifted towards approaches for 

interpreting the patterns derived from cellular automata sequences and applying them 

in the problem of sequencing LPM voices. This kind of approach is not only 

considered as a generative model; multiplying the power of creativity of cellular 

automata; it also has the potential of maintaining and producing smoother transitions 

between LPM voices.  

3 Cellular Automata  

Cellular Automata are dynamical systems whose manifestation are assigned to Von 

Neumann back in 1940s [14, 15]. Later in 1960s CA have been investigated as 

dynamical systems [16]. In this viewpoint, CA are discrete dynamical systems 

consisting of identical elementary individuals with same set of defined behaviors, 

which account to the global dynamics of the whole system.  

Elementary CA consists of an assembly of cells which are arranged in a sequence 

of one dimensional array. In this work, each of the cells take two binary states. The 

progression of CA in each time step 𝑡, emerges as a two-dimensional lattice. The state 

of a cell at a time step is determined by its state and the states of its adjacent 

neighbors at the previous time step. The neighborhood radius is defined by 𝑟, which 

accounts to 2𝑟 specifications, resulting from permuting the states of a cell and its 

neighbors. Allocating these permutations to binary states produces 22𝑟
 CA rules [16]. 

Considering the states of the left, and right neighbors of a cell, the number of rules for 

an elementary CA becomes 256.  

Wolfram recognized four major classes of behavior in CA, consisting of fixed, 

cyclic, chaotic, and complex behaviors [16]. CA have been in the attention of artists’ 

community as well, for their emergent behavior. Various attempts have taken place 

for contributing CA both independently as an inspiring source for artists, or as a 

computational creative tool for generating artefacts. Some of these works can be 

traced back in the works of pioneers as well as Iannis Xenakis in the generation of 

music. who used CA for attaining the general structure of compositions [7, 19]. 

However, these kind of compositions were often accompanied by heavy editing. 

Some others inferred CA as a source of raw material, which could not have been 

highly relied on for music composition in an independent manner [20].  



 

Beyls Cellular Automata Explorer is one of the early musical systems based on 

CA. He experimented with various CA configurations including the cell 

neighborhood from previous and future CA progressions, and various rule 

specification in the search for finding complex musical structures [21]. Millen 

developed the CAM system, which exploits two and three dimensional game of life 

cellular automata, and maps the data to musical space for producing melody [7], [21]. 

CAMUS and Chaosynth [22, 23] are two other well-known CA musical generators. 

CAMUS uses Game of Life together with Demon Cyclic Space to simulate the 

diffusing effect of musical patterns in time. CAMUS system later exploits Cartesian 

mapping to achieve triplet musical forms [23]. Chaosynth is a CA based audio system 

which relies on producing sound granules resulting from additive synthesis; the 

produced audio is not presently similar to music as we know, it rather resembles the 

nature sounds as well as the flow of water, or a cluster of amphibians singing. 

Chaosynth underlying system is based on the model of the chemical reaction of a 

catalyst which in the visual domain appears as hypnotic contraction and detention 

effects of chemicals [20]. 

3.1 The Dynamics of Cellular Automata 

The dynamics of cellular automata can be better illustrated in structures known as 

basin of attraction [24–26]. In order to clarify this notation, the meaning of state space 

is briefly overviewed. A state space consists of all possible configurations or patterns. 

For instance a binary vector of size 𝑁 has 2𝑁patterns, and a binary matrix of size 4*4 

has 216 different configurations. For a cellular automata rule number, this state space 

can be divided to sections with each section having a structure relating its consisting 

patterns. These structures are known as basins of attraction. They often consist of a 

central point or a collection of patterns arranged on a circular path. There might be 

branches with so many sub branches connecting to these figures. The links between 

patterns in a basin of attraction is formed according to the accessibility by previous 

observed patterns. These outer branches are pre-images of the inner ones.  

 

 

 

  
(a) (b) 

Fig. 1. Examples of Basin of Attraction for Cellular automata configuration for (a) rule 54, and 

(b) rule 90. The star signs shows the Garden of Eden states. These graphs are manually 

obtained, however, there are algorithms available for obtaining basin of attraction models for 

any CA rule space with different configurations [17].  



 

The leaves are Garden of Eden states, which are not accessible by any previous states 

[24–26]. Figure 1 shows two examples of basin of attraction models for four-cell 

configurations for Wolfram rule numbers 54, and 90. Rule 54 produces 3 basins of 

attraction, while rule 90 produces 2 of them. Note that all different 16 configuration 

for 4 cells have been classified in the basin of attraction field model. 

4 Restricted Boltzmann Machines 

Boltzmann machines are stochastic neural networks invented by Hinton and 

Sejnowsky back in 1985 [27]. They can also be considered as Hopfield networks 

which replace the binary threshold rules associated to the units with stochastic 

decision rules [28]. Boltzmann machine dynamics revolve around an energy concept. 

Adhering to a fully connected architecture for Boltzmann machines make them 

inefficient for training. On the other hand, constraining the connections between the 

units will turn them into devices with tractable formulation for the required training 

procedures [29]. Restricted Boltzmann machines [30] are graphical models with 

undirected symmetrical connections which have only maintained their pair-wise 

connections between visible and hidden units. Figure 2-(a) shows the architecture of 

RBM. 

RBM are capable of modelling the probability distribution of the input data. These 

new representations of the observable data, are accumulated in the intra-layer weights. 

Consequently, these networks are widely used in feature extraction, dimensionality 

reduction, and classification applications. Some examples of these kinds are available 

in [31, 32], [33]. For instance, once this network is trained, the features which are 

now embedded in weights in the bipartite graph can be used as data for further 

machine learning applications [34],[35]. Boltzmann machines have also been utilized 

in music generation applications in [36], more examples of such systems are provided 

in the CRBM section. 

The behavior of the RBM system is directed by the energy function defined in 

formula 1. In which 𝑣, and ℎ, stand for visible and hidden layer units in vectors, W is 

the weight matrix. 𝑎, and b, are bias vectors. On this account, the energy function in 

RBM is a sum of the linear products of the hidden vector, the connection weights 

matrix, and the input vector. The remaining terms in the following formulas stand for 

the products of the visible and hidden units and their contributing bias terms. 

 𝐸(𝑣, ℎ) = −(ℎ𝑇𝑊𝑥 + 𝑎𝑇𝑣 + 𝑏𝑇ℎ) (1) 

The probability of observation of a particular configuration over 𝑣 visible input 

vectors and ℎ hidden units are obtained by the notation 2, in which 𝑍 is the 

normalization term. The Z normalizing value is the result of calculating 𝑒−𝐸(𝑣,ℎ) 

throughout all configurations for 𝑣, and ℎ.   

 𝑝(𝑣, ℎ) = 𝑒−𝐸(𝑣,ℎ) 𝑍⁄  (2) 

Obtaining 𝑍 (which is also known as the partition function) is nearly impossible, 

originating from the fact that so many binary units are involved. Inferring the joint 

probability distribution of 𝑣, and ℎ can be performed by easier ways than computing 

the value of partition function. In order to track the value of the 𝑝(𝑣, ℎ) a procedure is 

taken by marginalizing out the value of ℎ from formula 2 [37].  



 

 

 
(a) (b) 

Fig. 2. The architectures of (a) Restricted Boltzmann machine, and (b) Conditional Restricted 

Boltzmann machine. 
The marginal probability distribution of a visible vector equals the sum of the 

exponential of the energy function over all possible configurations as  

 𝑝(𝑣) =  ∑ 𝑒−𝐸(𝑣,ℎ) 𝑍⁄

ℎ

 (3) 

This formulation provides a basis for attaining the logarithm likelihood of 𝑝(𝑣) 

which its derivation can be traced back in [38]. The ultimate target would be to 

maximize log(𝑝(𝑣)) for the training data in the visible units. This would become the 

foundation for performing gradient descent method for training RBMs by 

differentiating the negative of logarithm likelihood of 𝑝(𝑣). On this account the 

parameter update [34] for the weights can be obtained as:  

 ∆𝑤 =  𝛾(𝐸𝑃𝑑𝑎𝑡𝑎
(𝑣ℎ𝑇) − 𝐸𝑃𝑚𝑜𝑑𝑒𝑙

(𝑣ℎ𝑇))  (4) 

Equation 4 consists of two terms. The first term 𝐸𝑃𝑑𝑎𝑡𝑎
(. ) is the positive gradient, 

also known as the data dependent term which is the expectation over the data 

distribution. The second term 𝐸𝑃𝑚𝑜𝑑𝑒𝑙
(. ) is the negative gradient and is the data 

independent term also presenting the expectation over the model distribution. 

Computing these expectations are intractable, however, they are estimable by 

performing alternating Gibbs sampling between hidden, and visible units. This 

procedure is followed in Contrastive Divergence algorithm.  

4.1 Contrastive Divergence Algorithm 

Contrastive Divergence algorithm [39, 40] is a sort of gradient descent method 

which is applied for training weights in RBMs.  

The Contrastive Divergence algorithm works with the following procedure:  

For each of training vectors the following steps are taken: 

 The visible units are populated with a training vector.  

 The probabilities of the units in the hidden layer are calculated and 

their states are determined by the following notation: 

 𝑠(ℎ𝑚) = {
1, 𝑝(ℎ𝑚=1|𝑣) > 𝑟𝑛𝑑

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

where 𝑟𝑛𝑑 is a random number from uniform distribution in the range 

[0,1]. 



 

 𝑘-levels of Gibbs sampling takes place: the vector 𝑣′ is 

reconstructed by sampling from the hidden units and the hidden 

units ℎ′ are resampled from 𝑣′. 
 The weights and biases are updated considering the following 

learning rules, in which 𝛾 is a learning rate:  

 𝑊𝑡 =  𝑊𝑡−1 +  𝛾(ℎ𝑡𝑣𝑡 𝑇
− ℎ′𝑡𝑥′𝑡𝑇

) (6) 

 𝑎𝑡 =  𝑎𝑡−1 +  𝛾(𝑣𝑡 − 𝑣′𝑡) (7) 

 𝑏𝑡 =  𝑏𝑡−1 +  𝛾(ℎ𝑡 − ℎ′𝑡) (8) 

 The algorithm iterates, until a stopping criteria is visited (as well 

as the number of Gibbs sampling to be performed). 

4.2 Conditional Restricted Boltzmann Machines 

Conditional restricted Boltzmann machines are an extended version of RBM systems, 

which model the dependability of data to its previous time frames. An architecture of 

CRBMs are shown in figure 2-(b). They are best for capturing the dynamics of time-

series data. CRBMs has had successful applications in modeling the dynamics of 

systems, as well as human motion [41, 42]. It is notable that there have been research 

in the area of music and CRBMs both for classification tasks, and for composition. 

CRBMs have been applied for the task of auto-tagging music in [43, 44]. This 

proposed model have been able to outperform some other machine learning 

classifiers, as well as support vector machines, and multi-layer perceptron. In [45] 

forward CRBMs have been employed to reconstruct music and improvise in the 

desired musical style, based on the provided first notes.  

In CRBM model, the visible and hidden units are conditioned on 𝑛 previous steps 

of visible states. Visible and hidden units receive this temporal information by 

established direct connection to an additional layer. Previous temporal information are 

provided in this new added layer. The topology of this model is illustrated in figure 2-

(b). The energy function of the system is inferred as: 

 𝐸(𝑣, ℎ, 𝑢) =  −𝑣𝑇𝑊ℎ − 𝑢𝑇𝑈𝑢𝑣𝑣 − 𝑢𝑇𝑈𝑢ℎℎ − 𝑣𝑇𝑎 − ℎ𝑇𝑏 (9) 

In which 𝑣, ℎ, 𝑢 correspondingly stand for observables, hidden neurons, and 

additional layer (associated to visible units in the previous time steps). Likewise, 𝑊 

are the weights between visible layer, and hidden layer, 𝑈𝑢𝑣 relates to the weights 

between visible layer and additional layer, and at last, 𝑈𝑢ℎ is the weight matrix 

between conditional layer, and hidden units. 𝑎, 𝑏 are bias matrixes. The weights, and 

biases in CRBM models can still be learned by the application of Contrastive 

Divergence algorithm.  

5 Approach 

The stochastic nature of Boltzmann machines proposes that there would be no unique 

equilibrium status for the system. This fact contributes to the generative nature of 

Boltzmann machine family models. This effect has been resembled to crystals which 

settle on their different facades (In fact Richards in [46] has first assimilated 

memories as crystals). A crystal with plasma like origin is gradually formed or 



 

crystallized. Starting from an initial configuration for the elements of the plasma, 

every time the system is run, different associations between the elements are formed. 

This causes for attaining various crystal shapes. However, using the term of a solid 

crystal for BMs is a little bit tricky. A stable equilibrium of the system is where a 

local minimum energy is achieved in the energy hyper-surface. This does not 

necessarily mean that the state of neurons are not changing any longer. Actually the 

states of the neurons may still be oscillating, but that is happening around the local 

minima. Therefore the states of the neurons are not necessarily frozen. 

Since the dynamics of CA is stochastic yet determinable, they can be treated as 

static memories. This relaxes the architecture of the LPM system from the 

requirement of navigations in the search spaces as discussed previously. This provides 

the ability to apply associative memory architectures. The dynamics of CA can be 

stored as memories. This scheme lets the individuals of an associative memory model 

be resembled to fossilized ants (as an example of individuals in a swarm) in a crystal. 

The associations of the ants would be different in every single crystallization process. 

Moreover, the angle of looking into the crystal changes the relations and the 

proportions in which they are perceived. This latter phenomenon is an assimilation to 

show the importance of the choice of collecting output from different hidden units in 

various extensions of Boltzmann machines. To be clearer, it should be noted that, 

although all the hidden units can be used for populating the synthesizer parameter, the 

audio result would change, considering which neuron is taken. This is how the 

generative powers of Boltzmann machine family can be manifested in LPM system. 

6 Experiments 

In this section the details of the performed experiments are presented; there are 

different perspectives towards applying CA to Boltzmann machine model family. In 

one of the approaches, 88 one-dimensional CA progressions are considered as static 

images with white and black cells to be applied as input vectors to the visible units. In 

this approach the number of cells in the visible layer would equal the total number of 

cells of a cellular automata progression. The same visible units are associated with the 

same cells in the CA progression over all the training samples. It is obvious that 

various possible initial seeds exist for the CA progression, which determine the 

emerging patterns in the upcoming generations. In fact they would end up in different 

basin of attractions for a CA rule. For this experiment, all the possible binary 

configurations for the initial seed have been taken into account for all the 88 unique 

CA behaviors.  

In the second experiment, various configurations of CA progression are provided 

for a Conditional Restricted Boltzmann machine. This model have been inspired from 

basin of attraction models which are applied for studying the dynamics of CA. There 

are also some literature about neural networks which learn the dynamics of CA [47]. 

Each of the CA rules have their own basin of attraction fields regarding the 

configurations in which the basin of attraction is studied for that CA rule. Identifying 

each of those attractors and employing them as inputs to CRBMs, requires the 

consideration of various topologies for the input layer, and the connecting weights. 

Although this is not an impossible task, it is a labor intensive one. Therefore, another 



 

tactic has been taken into account which is based on CA progressions history as 

training series. In this experiment all the transients starting from the initial seeds have 

been taken into account. Notably, all the possible initial seeds have been explored as 

well.  

CA progressions can be trained to CRBMs for seizing their dynamics with various 

configurations. This work can be performed for each generation of CA, or even an 

arbitrary configuration from CA progression. For instance, one may wish to choose a 

complete number of cells from each CA generation, or partially select some of the 

cells. It is possible to include cells from more than one generation to form 𝑝 ∗ 𝑞 

matrices of cells. The number of previous cells are also adjustable. For example, one 

may pick 𝑛 number of 𝑝 ∗ 𝑞 previous configurations to constrain visible and hidden 

layers.  

The number of the CA progressions to be trained by the CRBM system has been 

empirically determined by the behavior of CA rules themselves, whether they are in 

the classes of fixed, cyclic, chaotic, or complex. For instance, the number of the 

involved generations of CA rules in the fixed, and cyclic categories are noticeably 

less than the rules in the third, and fourth classes. These groups tend to achieve their 

stable behavior faster than the other groups, and would reach loopy behavior, and/or 

repetitions which would put more emphasis on these kinds of patterns and bring bias 

in the training set. Instead the possibility of having more generations out of the CA 

progressions have been allocated to chaotic, and complex behavior rule categories.  

The experiments in this project are implemented in Matlab and with inspiration 

from the software and codes provided in [48],[49], and [50]. 

7 Results 

In this section more details on the conducted experiments are provided, and the results 

are presented. For the first experiment with RBM, a number of 88 main CA behaviors 

over 24 generations have been taken into account. The initial seeds have been taken 

constant for all the CA rules. The training set consists of 88, 25*25 metrics in 20 

batches. This produces 625 visible units. The number of hidden neurons was selected 

to be 400 units. Overall number of 200 epochs were involved. Figure 3 demonstrates 

a portion of the connecting weights between visible, and hidden units. Each square 

presents one hidden unit. The square shapes are represented in this way to be 

analogous to the input metrics.  

In the second experiment which is performed with CRBM, the CA progression 

have been divided into a series of 3*3 metrics respecting their history of appearance. 

Each of these metrics have been conditioned to their three previous ancestors. This 

would result in having 9 visible units, and 27 past units. The count of hidden units are 

400. Figure 4 demonstrates portions of weight metrics between visible-hidden, past-

visible, and past-hidden. For this experiment all the 88 CA behaviors have been 

involved, and all the possible initial seeds have been allowed.  

 



 

 
Fig. 3. Looking into the mind of RBM. Each of the small squares are associated to one of the 

units in the RBM architecture and all its connecting weights. These squares are a portion of 65 

units out of the total hidden neurons. 

 

 

 

(a) (b) 

 
(c) 

Fig. 4. Looking into the mind of CRBM. In the configuration of the CRBM for this experiment, 

Figure (a) relates to the weights between the visible and hidden units, figure (b) demonstrates 

the weights in between past and visible units, while figure (c) shows the weight values between 

past and hidden units. 

So far the experiments suggested in this paper have resulted in producing patterns 

which can later be accompanied in music production. This means that new pattern 

matching rules are introduced to LPM system. The interesting thing about this 

architecture is the generation of various patterns by changing the initial configuration 

of CA, the initial seeds, and the number of involved hidden units which also 

contribute to the generative power of Boltzmann machine family. The outputs of the 

pattern matching rules in the original LPM system are employed for feeding the 

parameters of a Persian musical instrument synthesizer. The parameters vary from the 

physical parameters of a musical instrument as well as string length to ADSR 

envelopes of musical notes.  

What have been discussed in this paper are some technical issues revolving around 

the sub system of a bigger LPM architecture for creating Persian-Dastgāh like music. 

The presentation of the whole system is out of the scope of the current paper. The 

mapping of the results of this research to musical space would be in association to 

other parts of the system and subject to future publications. The interested readers are 

welcome to follow the creations of the system as the research progresses in [8], 

related to LPM web page.  

8 Conclusions and Future Work 

In this article, RBM and CRBM have been applied for capturing the dynamics of 

cellular automata. It has been illustrated that these models have generative 

characteristics. In fact the usage of these two models have manifold targets in LPM 

system. The first aim is to enhance the pattern matching rules in LPM system and 



 

taking them to another level. The other one is the exploitation of the generative, and 

stochastic nature of Boltzmann machine family themselves.  

Elementary cellular automata have been used as a computational intelligence tool 

which provides raw material for creativity in LPM system. Complicating the initial 

configuration of CA, gives raise to the variety of the emerging patterns. Moreover, 

cellular automata are a sub type of Random Boolean Networks [51]. This fact 

expands the neighborhood configurations to multiply the level of complexity of the 

emerging patterns. It is obvious that taking account these types of configurations 

would increase the generality of the whole system, however, the integrity is 

suppressed by the current computational resources while the results of this stage are 

sufficient guidelines for entering the next phases of research. 

Deep neural networks have been generating interest in the area of computational 

creativity due to the resemblance their underlying processes bear to the procedures 

taking place in human brain. In this work an infrastructure for employing deep 

architectures are employed which are built on Boltzmann machines. Extending the 

architecture of RBM into deep Boltzmann machine or a deep belief net [52] 

architecture by building further hidden layers would provide additional feature 

extractors or in another viewpoint higher level of features. This implies that further 

representations of data will be reflected in the top layers which can be derived 

correspondingly.  

Other future steps of this research includes the design of the mapping mechanism 

to musical space of LPM voices while delving deeper into the sequencing problem. 

The produced mechanism is capable of being generalized to include various sources 

of raw materials for creativity rather than CA and different genres of music besides 

Persian music or any other creative artefacts. 
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