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Abstract 

In four experiments, participants’ performance on a variety of non-linear patterning 

discriminations was assessed using a predictive learning task and visual patterns. Between 

groups, the similarity of the stimuli that composed these visual patterns was manipulated. 

When the stimuli were of low similarity, participants’ performance was consistent with the 

predictions of one version of Pearce’s (1987, 1994, 2002) configural theory of learning (Kinder 

& Lachnit, 2003); they were better able to discriminate between different patterns when they 

shared few, rather than many, stimuli. This effect was not observed when the similarity of the 

stimuli was high. Under these conditions, the results were more consistent with predictions 

of elemental theories of learning (e.g., Rescorla & Wagner, 1972; Wagner, 2003). This is the 

first time that these different patterns of performance on complex patterning discriminations 

have been shown within a single stimulus modality in the same experiment. The overall 

pattern of results is difficult to reconcile with either elemental or configural models of 

associative learning. 
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Stimulus similarity affects patterning discrimination learning 

Mathematical models of associative learning may be divided broadly into two classes 

based on the assumptions that they make about the way in which configurations of stimuli 

are represented. Some models take an elemental approach and assume that when multiple 

stimuli are presented in compound, each individual stimulus may enter into a separate 

association with the outcome (e.g., Rescorla & Wagner, 1972). The alternative, configural, 

approach (e.g., Pearce, 1987, 1994, 2002) supposes that a single, holistic representation of 

the stimulus compound may become associated with the outcome. These different classes of 

model make quite different predictions about the rate at which certain patterning 

discrimination tasks may be learned and examination of participants’ performance on those 

tasks may provide insight into the nature of the representation of stimulus configurations. 

In a negative patterning discrimination (A+ B+ ABo), each of two stimuli (A and B) are 

followed by an outcome (+) when presented alone, but are followed by no outcome (o) when 

presented in compound with each other. This is an example of a non-linear discrimination 

problem which cannot be solved if the strength of responding to the AB compound is 

determined purely by the strength of the association between each individual stimulus and 

the outcome. In order to allow elemental models of learning like the Rescorla-Wagner model 

to solve such discriminations, it has been suggested that when stimuli are presented in 

compound, a unique, configurational cue is generated (Spence, 1952; Wagner & Rescorla, 

1972; Brandon, Vogel & Wagner, 2000; Wagner, 2003). Hence, the discrimination may be 

recast as A+ B+ ABXo where X is the configurational cue generated by the combination of 

stimuli A and B. An inhibitory association may then develop between the configurational cue 

and the outcome. This inhibitory association can counteract the effects of the excitatory 
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associations between the individual stimuli and the outcome on compound trials. The 

Rescorla-Wagner model predicts that the asymptotic associative strength of A, B, and X will 

be equal to λ, λ, and -2λ, respectively, meaning that the net associative strengths of the 

patterns A, B, will each be equal to λ and that of AB will be 0. 

According to Pearce’s (1994) Configural Theory, training on such a negative patterning 

discrimination will lead to the recruitment of three configural units representing the patterns 

A, B, and AB. When any one of these patterns is presented it will maximally activate the 

corresponding configural unit. Other configural units may also be partially activated and their 

activation will be a function of the similarity between the pattern that they represent and the 

pattern that has been presented. Hence, when stimulus A is presented, the configural unit A 

will be fully activated, configural unit AB will be partially activated, and configural unit B will 

be inactive. When A and B are presented in compound, configural unit AB will be fully 

activated and configural units A and B will each be partially activated. In this manner, the 

associative strength of one pattern will generalize to other, similar patterns. Based on the 

assumption that A and AB (and B and AB) have a similarity of .5, Pearce’s configural theory 

predicts that the configural units A, B, and AB will have asymptotic associative strengths of 

2λ, 2λ, and -2λ when the net associative strengths of the three patterns will equal λ, λ, and 0, 

respectively. 

Because Configural Theory assumes that associative strength will generalise between 

patterns to the extent that they are similar, it predicts that the ease with which discrimination 

tasks are learned is affected by the similarity of the patterns that must be discriminated 

between. Empirical evidence supports this prediction. For example, Pearce and Redhead 
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(1993) trained pigeons on two negative patterning discrimination tasks. The first was of the 

standard form A+ B+ ABo. The second discrimination was of the form CD+ CE+ CDEo. In this 

task stimuli D and E were treated in the same manner as A and B were in the first task, but a 

common stimulus, C, was present on all trials. This had the effect of increasing the similarity 

between the patterns that were paired with food and the one that was not. Consistent with 

the predictions of Configural Theory, the A+ B+ ABo discrimination was learned more rapidly 

than was the CD+ CE+ CDEo discrimination.  

The Rescorla-Wagner model does not predict the pattern of results observed by 

Pearce and Redhead (1993). Indeed, it predicts that the addition of a common element should 

facilitate the acquisition of a negative patterning discrimination. This is because on each of 

the trials on which food was presented, there are more stimuli to which associative strength 

can accrue in the CD+ CE+ CDEo discrimination than in the A+ B+ ABo discrimination. This 

should result in greater responding to compounds CD and CE than to stimuli A and B. A further 

consequence is that early in training the compound CDE should have much greater net 

associative strength than the compound AB. Hence, the difference between the expected 

outcome and the actual outcome (nothing) on those trials will cause the CDE configurational 

cue to acquire inhibitory associative strength more rapidly than the AB configurational cue. 

Bahçekapılı (1997; described in Myers, Vogel, Shin & Wagner, 2001) reported the result of a 

rabbit eye-blink conditioning experiment which were consistent with these predictions. 

There are many other situations in which the Rescorla-Wagner model and Configural 

Theory make rather different predictions and where the predictions of each model are 

supported by experimental results (see Wagner, 2003; 2008). Typically, results that are 
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consistent with the Rescorla-Wagner model have involved compounds of stimuli drawn from 

different modalities (auditory, visual, tactile) and eye-blink conditioning in rabbits (e.g., 

Bahçekapılı, 1997; Brandon, Vogel & Wagner, 2000; Whitlow & Wagner, 1972; Myers, Vogel, 

Shin & Wagner, 2001). Results supporting Configural Theory, however, have typically involved 

compounds of stimuli within a single modality (visual) and pigeon autoshaping preparations 

(e.g., Pearce, Adam, Wilson & Darby, 1992; Pearce, Aydin & Redhead, 1997; Pearce, Esber, 

George & Haselgrove, 2008; Pearce & Redhead, 1993; Rescorla & Coldwell, 1995). These 

differences in experimental paradigm and the types of stimuli used have been identified as 

possible reasons for the different patterns of results obtained. 

In experiments employing an eye-blink procedure in rabbits, the subjects are 

restrained and often have a potentiometer attached to their nictitating membrane. Pearce 

(2002) suggested these conditions may serve as highly salient background cues which are 

present throughout the conditioning session, whereas the incidental background cues 

present during pigeon autoshaping are likely to be much less salient. Importantly, the addition 

of a salient background cue can affect the predictions of Configural Theory. Indeed, in the 

case of the patterning discrimination discussed earlier, a salient background cue reverses the 

predictions that configural theory makes about the relative speed of learning A+ B+ ABo and 

CD+ CE+ CDEo patterning discriminations. The top row of Figure 1 shows predictions derived 

from simulations of Configural Theory without (left panel) and with (right panel) the inclusion 

of a salient background cue. Configural Theory makes these predictions because the 

reinforced stimuli A and B are relatively difficult to detect against the background of a salient 

context which is itself non-reinforced during the long inter-trial intervals. Patterns A[Context] 
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and B[Context] will each activate the [Context] configural unit to a much greater extent than 

will the patterns CD[Context]and CE[Context]. 

<Figure 1 about here> 

An alternative explanation for the conflicting results of experiments involving rabbit 

eye-blink conditioning and pigeon autoshaping was advanced by Brandon and Wagner (1998; 

Wagner & Brandon, 2001). Their Replaced Elements Model (REM) is an extension of the 

Rescorla-Wagner model and assumes that individual stimuli are represented as collections of 

elements. When two or more stimuli are presented in compound, they will activate additional 

configurational elements in the manner described by Wagner and Rescorla (1972). Other 

elements of the stimuli are, however, inhibited when they are presented in compound. The 

representation of any stimulus is, therefore, composed of context-independent elements 

which are activated whenever the stimulus is present, and context-dependent elements 

whose activation is affected by the presence of other stimuli. Some context-dependent 

elements are activated only when the stimulus is presented in compound, and others are 

activated only when the stimulus is presented alone. Wagner (2003) suggested that one 

determinant of the extent to which the representations of any two stimuli interact in this 

manner is the modalities to which they belong. Stimuli within the same modality are assumed 

to interact to a greater degree than stimuli which belong to different modalities. This 

interaction is captured within the model by varying the relative proportions of context-

independent and context-dependent elements. The parameter, r, sets the proportion of 

elements within a stimulus’ representation which are replaced when it is presented in 

compound – that is, the proportion of context-dependent elements. 
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A series of simulations of REM reported by Wagner (2003) shows that many of the 

conflicting results from studies employing pigeon autoshaping and rabbit eye-blink 

conditioning may be explained by the fact that the former set of experiments tend to involve 

visual stimuli only whereas the latter experiments used stimuli drawn from different 

modalities. Nevertheless, REM is unable to reconcile the patterning data reported by Pearce 

and Redhead (1993) and Bahçekapılı (1997). No matter what value is given to the replacement 

parameter, r, REM always predicts that the CD+ CE+ CDEo discrimination is learned more 

rapidly than the A+ B+ ABo discrimination. The middle row of Figure 1 shows predictions 

derived from simulations of REM when the stimuli interact perceptually to a greater (left 

panel, r = .8) or lesser extent (right panel, r = .2). 

Despite this failure of REM to predict an effect of stimulus modality on the rate of 

acquisition of patterning discriminations, Redhead and Curtis (2013) reported just such an 

effect in a predictive learning experiment in humans. All of their participants were trained 

concurrently on A+ B+ ABo and CD+ CE+ CDEo discriminations. For half of the participants all 

stimuli were visual – differently coloured dots on a computer screen. For the remaining 

participants, they were drawn from visual, auditory, and tactile modalities such that within a 

discrimination no two stimuli belonged to the same modality. Redhead and Curtis found that 

when the stimuli were all drawn from the same modality, the A+ B+ ABo discrimination was 

acquired more rapidly than the CD+ CE+ CDo discrimination. When the stimuli belonged to 

different modalities, the reverse was true. These results are difficult to explain in terms of 

either of the models described above. REM predicts no effect of stimulus modality on the 

relative rate of acquisition of these discriminations. For Configural Theory to explain the 

findings, one would have to suppose background cues were more salient for the group trained 
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with stimuli from different modalities. There is no clear a priori reason to believe that this 

should be the case, although Redhead (2007) did find that in a similar predictive learning task 

participants trained with stimuli from different modalities gave higher ratings to the context 

than those trained with stimuli from a single modality. 

More recently, another explanation of the effects of stimulus modality on the 

acquisition of patterning discriminations has been advanced by Harris and colleagues (Harris 

& Livesey, 2010; Thorwart, Livesey & Harris, 2012). Their Attention-Modulated Associative 

Network (AMAN) is an elemental model of learning in which the activation of representational 

elements is subject to a normalization processes. Importantly for the current discussion, 

normalization between elements is affected by their similarity. Harris and Livesey suggested 

that stimuli from the same modality are more similar to each other than those from different 

modalities and that this difference in similarity causes the modality effect. Simulations of their 

model (Harris & Livesey, 2010; Redhead & Curtis, 2013) have confirmed that it makes the 

appropriate predictions – addition of a common element to a negative patterning 

discrimination retards acquisition when stimulus similarity is high (common modality) but 

facilitates acquisition when similarity it low (different modalities). The bottom row of Figure 

1 shows predictions derived from simulations of AMAN when the stimulus similarity is high 

(left panel) or low (right panel). 

Unfortunately, it is not always possible to say with confidence which of two patterning 

discriminations tasks described by Pearce and Redhead (1993; A+ B+ ABCo, CD+ CE+ CDEo) is 

acquired more rapidly if overall response rates, or ratings, differ between tasks. For example, 

participants might respond more vigorously to both sets of patterns in one discrimination 
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than to the corresponding patterns in the other discrimination. In this situation, the absolute 

difference in response rates between reinforced and non-reinforced patterns might be 

greater for one discrimination than the other, whereas the relative difference in response 

rates could show the opposite trend. Where there is no a priori reason to believe that either 

absolute or relative difference in response rate provides a superior measure of learning, such 

results are ambiguous. This problem may be overcome by having a single signal for the 

absence of the outcome but multiple signals for the presence of the outcome (or vice versa).  

Redhead and Pearce (1995) trained pigeons on complex negative patterning tasks in 

which a compound of three stimuli presented together was followed by no outcome (ABCo) 

whereas each individual stimulus (A, B, and C) and the compounds of two stimuli (AB, AC, and 

BC) were separately paired with food (i.e., A+ B+ C+ AB+ AC+ BC+ ABCo). Configural Theory 

predicts that the discrimination between the single- and the three-stimulus patterns (A+ B+ 

C+ ABCo) will be acquired more rapidly than the discrimination between the two- and three-

stimulus patterns (AB+ AC+ BC+ ABCo). The Rescorla-Wagner model predicts the opposite 

pattern of results. In pigeon autoshaping experiments using visual stimuli, Redhead and 

Pearce observed results consistent with the predictions of Configural Theory, but in an eye-

blink conditioning experiment where the three stimuli were drawn from different modalities, 

Myers et al. (2001) found that rabbits responded in the manner predicted by the Rescorla-

Wagner model. 

Experiments employing complex negative patterning procedures in humans have not 

provided such clear results as those involving non-human animals. Kinder and Lachnit (2003) 

found no difference in responding to single- and two-stimulus patterns in three experiments 
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involving eyelid conditioning with visual stimuli. In causal learning experiments, also with 

visual stimuli, Lachnit et al. (2008) observed results broadly consistent with the Rescorla-

Wagner model. Lachnit et al. (2013) replicated this finding, but found that participants’ 

performance was sensitive to time pressure. When participants had a limited time in which 

to respond, their performance was consistent with the predictions of Configural Theory. 

Redhead (2007) directly the addressed the effect of stimulus modality on acquisition of the 

complex negative patterning discrimination. Some participants were trained using only visual 

stimuli, whereas for other participants visual, auditory, and tactile stimuli were used. In both 

cases, the participants gave higher ratings to the single- than to the two-stimulus patterns, as 

predicted by Configural Theory. 

Kinder and Lachnit (2003) suggested that their failure to detect any difference in 

responding to single- and two-stimulus patterns might have been due to how discriminable 

the stimuli were from each other. They proposed a modification to Configural Theory which 

introduced a discriminability parameter, d, the effect of which is to alter generalization 

between stimulus patterns. When this parameter is equal to 2, their modified Configural 

Theory is equivalent to that described by Pearce (1994). Values greater than 2 result in 

steeper gradients of generalization around patterns. The effect of this is to reduce the 

predicted difference in responding to single- and two-stimulus patterns when stimuli are 

more discriminable. Pearce et al. (2008) showed that manipulating this parameter could 

explain the effects of stimulus similarity on another type of complex patterning 

discrimination. These observations support the proposal that stimulus similarity might 

contribute towards the effect of stimulus modality on patterning discrimination learning. 
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The purpose of the experiments reported here was to directly assess whether, as 

suggested by Harris and Livesey (2010), differences in stimulus similarity can account for the 

modality effect that has been reported in the non-human animal literature and, with 

somewhat less reliability, in the human literature. In each experiment, all participants were 

trained on patterning discriminations involving only visual stimuli. The similarity of the stimuli 

used in these patterning discriminations was manipulated between groups of participants. 

Effects of stimulus similarity under these conditions would support the argument that 

modality effects reflect differences in similarity.  

Experiment 1 

In Experiment 1, participants were trained on a relatively simple negative patterning 

discrimination described by Redhead and Pearce (1995). Presentations of one stimulus (A+) 

or of two other stimuli in compound (BC+) were followed by one outcome, whereas the 

compound of all three stimuli was not (ABCo). To ensure that participants attended to the 

stimuli rather than simply learning to respond on the basis of the number of stimuli present, 

they were concurrently trained on a positive patterning discrimination involving three other 

stimuli (Do EFo DEF+). 

The predictions of Configural Theory, REM, and AMAN concerning the acquisition of 

an A+ BC+ ABCo discrimination are less ambiguous than for the Pearce and Redhead (1993) 

patterning discriminations. Configural Theory predicts that the A+ ABCo component of the 

discrimination will be acquired more rapidly than the BC+ ABCo component regardless of 

whether there is a salient background cue present or not. The difference in the rate of 

acquisition of the two components diminishes as the value of the discriminability parameter, 
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d, increases. REM, conversely, predicts that the BC+ ABCo component will be acquired more 

rapidly than the A+ ABCo component. This is true regardless of the degree of perceptual 

interaction between the stimuli, although when r ≤ .5, the opposite pattern is predicted in the 

very early stages of learning. Figure 2 shows the predictions concerning the acquisition of an 

A+ BC+ ABCo discrimination task derived from simulations of Configural Theory (top row) and 

REM (middle row) under these different conditions. Interestingly, the effect of stimulus 

similarity on predictions derived from simulations of AMAN are not what might be expected 

based on the discussion above. These predictions are shown in the bottom row of Figure 2. 

AMAN predicts that the A+ ABCo discrimination will be acquired more rapidly than the BC+ 

ABCo discrimination regardless of whether all the stimuli belong to the same modality (high 

similarity) or if they belong to three different modalities (low similarity), although this 

difference is predicted to be smaller when the stimuli are less similar. 

 In the simulations shown in Figure 2, acquisition of the negative (A+ BC+ ABCo) and 

positive (Do EFo DEF+) patterning discriminations is generally symmetrical. Positive 

patterning has often been found to proceed more rapidly than negative patterning (e.g., 

Rescorla, 1972), and different patterns of results have been observed in positive and negative 

versions of a complex patterning discrimination. For example, (Lachnit et al., 2008) found that 

participants learned to discriminate between two- and three-stimulus patterns more readily 

than between single- and three-stimulus patterns in a negative patterning discrimination, but 

the opposite was true for a positive patterning discrimination. In the experiments reported 

here, however, symmetrical learning was expected because participants were asked to make 

predictions regarding two equally likely, and equally salient, alternatives. Livesey, Thorwart 

and Harris (2011) have shown that under these conditions, positive and negative patterning 
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discriminations are learned at the same rate. See the appendix for more details of the 

simulations reported here. 

<Figure 2 about here> 

The design of Experiment 1 is shown in Table 1. Participants received concurrent 

training on A+ BC+ ABCo and Do EFo DEF+ discrimination tasks. For all participants, A, B, C, D, 

E, and F were simple shapes presented on a computer screen (see Figure 3). For Group High 

Similarity, the six stimuli were identical shapes differing only in their location on the screen. 

For Group Low Similarity, six different shapes served as the stimuli which were also presented 

in different screen locations. At the end of the presentation of some patterns (A+; BC+; DEF+) 

a tone was played over headphones. On each trial, participants were asked to estimate the 

probability that a tone would be played by making a rating between 1 (certain than there 

would be no tone) and 9 (certain there would be tone). Based on the assumption that 

manipulating stimulus similarity would have an effect similar to that which manipulating 

stimulus modality has previously been shown to have in a similar discrimination task 

(Redhead & Curtis,2013), it was expected that participants in Group High Similarity would 

learn more rapidly about the single stimulus patterns (A+; Do) than about the two stimulus 

patterns (BC+; EFo). This tendency was expected to be reduced, or reversed, in Group Low 

Similarity. 

<Table 1 about here> 

Method 
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Participants. Thirty-six students at the University of Hull (28 female) were given credit toward 

course requirements for their participation. They had a mean age of 20.2 years (range 18 – 

30), and six were left handed. Each participant was randomly assigned to one of two groups 

so that there were eighteen participants in each group. One group received training with high 

similarity stimuli, and the other group received training with low similarity stimuli. 

Experimental protocols were approved by the ethical review committee of the Department 

of Psychology, University of Hull. 

Apparatus. Personal computers running the Windows 7 operating system (Microsoft 

Corporation, Redmond, WA) and the E-Prime 1.2 software (Psychology Software Tools Inc., 

Sharpsburg, PA) controlled the presentation of stimuli on a 48-cm colour monitor (aspect ratio 

5:4) and recorded responses on a standard 105-key keyboard. Participants were seated 

approximately 100 cm from the screen and wore stereo headphones (Sennheiser, Wedemark, 

Germany). 

Stimuli. Six shapes were, when presented, each located at one of the points of an imaginary 

regular hexagram. The centre of each shape was 8.3 cm from the middle of the screen, and 

each shape measured 4 cm x 4 cm (w x h). Stimuli A, B, and C were located at the top, lower-

right, and lower-left points of the hexagram, respectively, at the corners of an upright 

equilateral triangle; D, E, and F were located at the bottom, upper-left, and upper-right points 

of the hexagram, at the corners of an inverted equilateral triangle. The six shapes were: a 

black isosceles triangle; a black square; a black circle with three, equally-spaced, 0.6 cm 

horizontal white stripes; the same circle rotated through 90°; a red circle; and a blue circle.  

For participants in Group High Similarity, one of these six shapes served as all six stimuli which 
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therefore differed only in their location on the screen. Which shape was used was determined 

randomly for each participant in this group, but so that three participants were trained with 

each of the six shapes. For participants in Group Low Similarity, stimulus A was the black 

isosceles triangle, and D was the black square. B was the black circle with horizontal white 

stripes. E was the rotated circle. C was the red circle, and F was the blue circle. The rest of the 

screen was white during stimulus presentation and the inter-trial-interval (ITI). A 500-ms 880-

Hz tone was presented, when appropriate, over the headphones. 

<Figure 3 about here> 

Procedure. Stimuli were presented on the computer screen for 3500ms with an ITI of 2000ms. 

A small black fixation cross measuring 1cm x 1cm was displayed in the centre of the screen 

for the last 500ms of the ITI. Where appropriate, the tone was played over headphones during 

the final 500ms of the stimulus presentation. The order of presentation of the stimuli across 

trials was pseudo-random, with the constraint that each of the patterns containing one or 

two stimuli (A, BC, D, and EF) were presented three times, and each of the patterns containing 

three stimuli (ABC and DEF) were presented six times in each block of 32 trials. There were 8 

blocks of trials, making a total of 256 trials. 

During the first 3000ms of each trial, participants were required to press one of nine 

numbered keys (1 – 9) along the top of the keyboard to indicate the extent to which they 

expected the tone to occur, using a scale of 1 = very unlikely to 9 = very likely. Any responses 

made after 3000ms were discarded. This amounted to less than 1.3% of all trials, with each 

participant, on average, failing to respond on 3.2 trials (range 0 – 15; SD = 3.8). Participants 

were instructed to respond as quickly as they could whilst still making an accurate judgment 
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of their expectancy of the tone. The tone was played on trials with patterns A, BC, and DEF, 

but not on trials with patterns ABC, D, or EF.  Hence, participants received concurrent training 

on a negative patterning (A+ BC+ ABCo) and a positive patterning (Do EFo DEF+) task.  

Results and discussion 

Mean expectancy ratings for the single-, two-, and three-stimulus patterns for 

participants in Group High Similarity and Group Low Similarity are shown for each block of 

training trials in the left and right panels of Figure 4, respectively. Over the course of training, 

participants in both groups learned which patterns signalled the tone and which patterns did 

not. By the end of training, all participants were responding differentially on tone and no-tone 

trials. Participants in Group Low Similarity made more extreme expectancy ratings for single 

stimulus patterns A+ and Do than for two-stimulus patterns BC+ and EFo.  Participants in 

Group High Similarity showed no such difference and made very similar expectancy ratings 

for these two types of pattern.  

<Figure 4 about here> 

To allow meaningful comparison of ratings across the negative and positive patterning 

tasks, all ratings from the positive patterning task (i.e. those comprising one or more of shapes 

D, E, and F), were subtracted from 10. This calculation reversed the scale for these stimuli. 

Consequently, the correct derived expectancy rating for all single- and two-stimulus patterns 

was greater than 5 regardless of whether the pattern predicted the tone or not. To further 

simplify the analysis, ratings for the three-stimulus compounds ABCo and DEF+ were not 

included. We were primarily concerned with the participants’ ability to discriminate between 

single- and three-stimulus patterns relative to their ability to discriminate between two- and 
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three-stimulus patterns. Because the three-stimulus pattern was the same in each case (e.g., 

A+ vs. ABCo, BC+ vs. ABCo), this higher-order difference is equivalent to the direct comparison 

between ratings for the single- and two-stimulus patterns. 

A four-way mixed ANOVA of mean expectancy rating was conducted with group (High 

vs. Low Similarity) as a between-subjects factor, and pattern (single- vs. two-stimulus), trial 

block (1 to 8), and discrimination (negative vs. positive patterning) as within-subject factors. 

There was a significant effect of pattern, F(1, 34) = 11.40, p = .002, mean square error (MSE) 

= 4.94, ƞp
2 = .25, 90% CI[.06, .42], reflecting more extreme overall ratings for single- than for 

two-stimulus patterns. The Group X Pattern interaction was also significant F(1, 34) = 7.45, p 

= .01, MSE = 4.94 ƞp
2 = .18, 90% CI[.02, .35], and simple effects analysis of this interaction 

revealed a significant effect of pattern for Group Low Similarity F(1, 34) = 18.64, p < .0001, 

but not for Group High Similarity, F < 1. Participants were better able to discriminate between 

the single- and three-stimulus patterns than they could discriminate between the two- and 

three-stimulus patterns in Group Low Similarity. There was no statistical difference in their 

ability to discriminate between these different patterns in Group High Similarity. 

No other interaction involving group was significant, largest F(7, 238) = 1.71, p = .11, 

and there was no main effect of group, F < 1. There was a significant effect of trial block, F(7, 

238) = 82.39, p < .0001, MSE = 1.71, ƞp
2 = .71, 90% CI[.65, .73], and of discrimination, F(1, 34) 

= 9.37, p = .004, MSE = 1.26, ƞp
2 = .22, 90% CI[.04, .39]. A significant interaction of 

discrimination with trial block, F(7, 238) = 2.23, p = .03, MSE = 1.36, ƞp
2 = .06, 90% CI[.00, .09], 

and a significant Pattern X Trial Block X Discrimination interaction, F(7, 238) = 2.20, p < .05, 
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MSE = 1.34, ƞp
2 = .06, 90% CI[.00, .09],  appear to be caused by ratings for EFo changing at a 

slower pace than those for BC+ in Group Low Similarity. 

 These results are the opposite to those expected based on previous experiments 

involving stimuli drawn from either a single modality or from multiple modalities and the 

suggestion that differences in stimulus similarity are responsible for the influence of modality. 

The results from Group Low Similarity are, however, consistent with the predictions of 

Configural Theory and AMAN. Although both Configural Theory and AMAN predict the same 

pattern of results for Group High Similarity, participants in this group learned the 

discrimination very quickly, as predicted by all three theories (see Figure 2). The analysis 

reported above found no main effect of group or a Group X Block interaction, but inspection 

of Figure 4 suggests that participants in Group High Similarity learned about the outcome on 

ABC and DEF trials much more rapidly than those in Group Low Similarity. To determine 

whether this was the case, a composite rating for patterns ABC and DEF was calculated in the 

same manner as for single- and two-stimulus patterns described above. A two-way ANOVA 

conducted on this composite rating with the factors of group and trial block revealed a 

significant Group x Block interaction, F(7, 238) = 4.03, p < .001, MSE = .47, ƞp
2 = .11, 90% 

CI[.03, .15], confirming that Group High Similarity learned more rapidly than Group Low 

Similarity.  Because of this rapid learning, it is possible that the procedure employed in 

Experiment 1 lacked sensitivity to detect differences in learning rate predicted for Group High 

Similarity. To explore this possibility, participants in Experiment 2 were trained on a more 

complex version of the same patterning discrimination which they were expected to acquire 

more slowly, allowing greater opportunity to observe differences in learning rate.  
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Experiment 2 

In Experiment 2 participants were trained on a complex patterning discrimination 

described by Redhead and Pearce (1995) where any one of three stimuli, and any combination 

of two of those stimuli signalled the presentation of a tone but the combination of all three 

stimuli signalled no tone (see Table 1). That is, a discrimination of the form A+ B+ C+ AB+ AC+ 

BC+ ABCo. To prevent participants from using numerosity as a predictor of the tone, they 

were concurrently trained on a Do Eo Fo DEo DFo EFo DEF+ discrimination.  

Figure 5 shows predictions derived from simulations of Configural Theory (top row), 

REM (middle row), and AMAN (bottom row). In the absence of a salient contextual cue, 

Configural Theory predicts that the A/B/C+ ABCo and D/E/Fo DEF+ discriminations will be 

acquired more rapidly than the AB/AC/BC+ ABCo and DE/DF/EFo DEF+ discriminations. The 

difference between these sets of discriminations is predicted to diminish, but not reverse, 

when the discriminability of the individual stimuli is high. With the addition of a salient 

contextual cue, Configural Theory makes the same general prediction, with the exception that 

the associative strength of the two-stimulus patterns AB, AC, and BC is predicted to be slightly 

higher than that of the individual stimuli A, B, and C, very early in training. AMAN predicts 

that the associative strength of the two-stimulus patterns will be higher than that of the 

individual stimuli which compose them for both the positive and negative patterning 

discrimination tasks. This effect is predicted to be greater for stimuli within the same 

modality. The simulations of REM predict the opposite effect to that which has been observed 

in non-human animals. When perceptual interaction between stimuli is high (r = .8), the 

discrimination between two- and three-stimulus patterns is predicted to be acquired more 
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rapidly than that between single- and three-stimulus patterns. The opposite result is 

predicted when perceptual interaction between stimuli is low (r = .2). 

<Figure 5 about here> 

Method 

Participants. Thirty six students at UNSW Australia (23 female) were given credit toward 

course requirements for their participation. They had a mean age of 19.3 years (range 17 – 

39), and 3 were left handed. Each participant was randomly assigned to one of two groups so 

that there were eighteen participants in each group. The first group received training with 

low similarity stimuli, and the second group received training with high similarity stimuli. 

Experimental protocols were approved by the ethical review committee of the School of 

Psychology, UNSW Australia. 

Apparatus and stimuli. Details of the apparatus and stimuli were the same as for Experiment 

1. 

Procedure. The procedure were the same as for Experiment 1 with the following exceptions. 

Within each block of 48 trials, each of the patterns A, B, C, AB, AC, BC, D, E, F, DE, DF, and EF 

was presented twice and patterns ABC and DEF were each presented 12 times. There were 8 

blocks of trials, making a total of 384 trials. The tone was played on trials with patterns A, B, 

C, AB, AC, BC, and DEF but not on trials with patterns ABC, D, E, F, DE, DF, or EF.  Hence, 

participants received concurrent training on a complex negative patterning (A+B+ C+ AB+ AC+ 

BC+ ABCo) and a complex positive patterning (Do Eo Fo DEo DFo EFo DEF+) task. 
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 1.7% of responses were discarded because they were made more than 3000ms after 

the beginning of the trial. On average each participant failed to respond on 6.4 trials (range 0 

– 31; SD = 8.4). 

Results and discussion 

The left and right panels of Figure 6 show the mean expectancy ratings for the single-

, two-, and three-stimulus patterns for participants in Group High Similarity and Group Low 

Similarity, respectively. Participants in the Group Low Similarity showed much the same 

pattern of responding as those in Experiment 1. They made more extreme expectancy rating 

for single-stimulus patterns than for two-stimulus patterns. Participants in Group High 

Similarity, however, showed the opposite pattern of results. They made more extreme ratings 

for two-stimulus patterns than for single-stimulus patterns.  

<Figure 6 about here> 

Data were transformed in the same manner as described for Experiment 1 to simplify 

analysis. A four-way ANOVA of mean expectancy rating was conducted with group (Low vs. 

High similarity), pattern (single- vs. two-stimulus), trial block (1 to 8), and discrimination 

(negative vs. positive patterning) as factors. There was no significant effect of pattern, F(1, 

34) = .17, p = .68, or of group, F < 1, but there was a significant Pattern X Group interaction, 

F(1, 34) = 21.57, p < .0001, MSE = 2.17, ƞp
2 = .39, 90% CI[.17, .54]. Simple effects analysis 

revealed that participants in Group Low Similarity made significantly higher ratings for single-

stimulus patterns than for two-stimulus patterns, F(1, 34) = 8.95, p = .005, and that 

participants in Group High Similarity made significantly higher ratings for two-stimulus 

patterns than for single-stimulus patterns, F(1, 34) = 12.77, p = .001. Hence, participants in 
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Group Low Similarity learned the discrimination between A/B/C+ and ABCo more rapidly than 

the discrimination between AB/AC/BC+ and ABCo. Participants in Group High Similarity 

learned the discrimination between AB/AC/BC+ and ABCo more rapidly than the 

discrimination between A/B/C+ and ABCo. The equivalent pattern of results was evident in 

the positive patterning discrimination. 

There were significant effects of discrimination, F(1, 34) = 7.16, p = .01, MSE = 5.42, 

ƞp
2 = .17, 90% CI[.02, .35], and of trial block, F(7, 238) = 73.41, p < .0001, MSE = 5.42, ƞp

2 = 

.68, 90% CI[.62, .72], and a significant interaction between these factors, F(7, 238) = 2.32, p = 

.03, MSE = 1.88, ƞp
2 = .06, 90% CI[.00, .09]. This interaction reflects more extreme ratings for 

the negative patterning discrimination than for the positive patterning discrimination on the 

second trial block. No other interaction was significant, largest F(7, 238) = 1.66, p = .12. 

 The results from Group Low Similarity are very similar to those in the corresponding 

group in Experiment 1. Participants learned more rapidly about the outcomes associated with 

single stimuli than they did about the outcomes associated with two-stimulus patterns – 

results consistent with those that have previously been observed in pigeon autoshaping 

experiments by Redhead and Pearce (1995). Whereas no statistical difference was found 

between the rates of learning about single- and two-stimulus patterns for Group High 

Similarity in Experiment 1, here the corresponding group learned more rapidly about the 

outcomes associated with two-stimulus patterns than they did about the individual stimuli. 

This pattern of results is consistent with those obtained in a rabbit eye-blink experiment by 

Meyer et al (2001). 
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 The overall pattern of results is not consistent with Configural Theory, which predicts 

no overall effect of stimulus similarity, or of AMAN, which fails to capture the performance of 

either group of participants. The results are, however, consistent with the predictions of REM 

if we assume that perceptual interaction between stimuli is correlated with their similarity, 

and that there was a substantial difference in perceptual interaction between the two groups. 

While these predictions might at first appear to be opposite to those expected based on the 

results of experiments involving non-human animals (e.g., Redhead & Pearce, 1995; Myers et 

al, 2001), this difference is a consequence of how the outcomes were represented in these 

simulations. The two outcomes in the current experiment (tone and no-tone) were equally 

salient and equally likely alternatives, and at the start of the experiment participants had no 

reason to associate either more strongly with any pattern. Hence, the outcomes were given 

values equally, and oppositely, different to the neutral baseline associative strength of each 

stimulus element (+λ; -λ).  

Experiment 3 

 In Experiment 3, participants were trained on a variant of the patterning 

discrimination task used in Experiment 1. This problem can be described as a parity problem 

since patterns containing an odd number of stimulus elements were associated with a 

different outcome to patterns containing an even number of stimuli. The design of the 

experiment is shown in Table 1. All participants were trained on a negative parity 

discrimination of the form A+ BCo ABC+ and a positive parity problem of the form Do EF+ 

DEFo. The two discrimination problems were presented concurrently to prevent participants 

from being able to solve them based purely on the number of stimuli present on each trial.  
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 Predictions concerning the acquisition of an A+ BCo ABC+ discrimination by Configural 

Theory, REM, and AMAN are shown in Figure 7. Like those for the complex patterning 

discrimination used in Experiment 2, the predictions derived from each model are different 

to each other but are largely unaffected by variations in stimulus modality or stimulus 

similarity except in the case of REM. Configural Theory (top row) predicts more extreme 

ratings for A and D than for ABC and DEF. AMAN (bottom row) makes similar predictions to 

Configural Theory. REM predicts that ratings of ABC and DEF will be more extreme than those 

of A and D when perceptual interaction is high (r ≥ .5) but that ratings of A and D will be more 

extreme than those of ABC and DEF when perceptual interaction is low (r = .2). 

<Figure 7 about here> 

A discrimination of the form A+ BCo ABC+ has previously been used with human 

participants in skin conductance response (SCR) and eye-blink conditioning procedures by 

Thorwart and Lachnit (2007). Using coloured dot stimuli very similar to those employed by 

Redhead and Pearce (1995), their results were mixed, but provided some support for the 

predictions of Configural Theory. The first interval response of SCR conditioning was greater 

on A+ trials than on ABC+ trials. Based on the results from Experiments 1 and 2, this pattern 

of results was expected for participants in Group Low Similarity. For Group High Similarity, 

the difference in rating for single stimuli and the three-stimulus compound was expected to 

be reduced or reversed. 

Method 

Participants. Thirty six students at the University of Hull (25 female) were given credit toward 

course requirements for their participation. They had a mean age of 20.3 years (range 19 – 
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35), and one was left handed. Each participant was randomly assigned to one of two groups 

so that there were eighteen participants in each group. The first group received training with 

low similarity stimuli, and the second group received training with high similarity stimuli. 

Experimental protocols were approved by the ethical review committee of the Department 

of Psychology, University of Hull. 

Apparatus and stimuli. The apparatus and stimuli were the same as for Experiment 1. 

Procedure. All details of the procedure were the same as for Experiment 1 with the following 

exceptions. Within each block of 24 trials, each of the patterns A, BC, ABC, D, EF, and DEF was 

presented four times. There were 8 blocks of trials, making a total of 192 trials. The tone was 

played on trials with patterns A, ABC, and EF, but not on trials with patterns BC, D, or DEF.  

Hence, participants received concurrent training on a negative parity (A+ BCo ABC+) and a 

positive parity (Do EF+ DEFo) task. 

Responses from 1.2% of trials were discarded because they were made more than 

3000ms after the beginning of the trial. On average each participant failed to respond on 2.2 

trials (range 0 – 8; SD = 2.3). 

Results and discussion 

Mean expectancy ratings for participants in Group High Similarity and Group Low 

Similarity are shown for each block of training trials in the left and right panels of Figure 8, 

respectively. Participants in Group Low Similarity made more extreme expectancy rating for 

single-stimulus patterns than for three-stimulus patterns. For participants in Group High 

Similarity, the rating given to the three-stimulus patterns were more extreme than those 
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given to the single-stimulus patterns, but the difference in these ratings was much smaller 

than for Group Low similarity. 

<Figure 8 about here> 

Data were transformed in the same manner as described for Experiment 1. The type 

of patterning discriminations used in this experiment was rather different to those used in 

the previous experiments. Here, we were interested in participants’ ability to discriminate 

between single- and two-stimulus patterns and between three- and two-stimulus patterns. 

Hence, the most meaningful comparison was between ratings for single- and three-stimulus 

patterns. Only these data were analysed.  A four-way ANOVA of mean expectancy rating was 

conducted with group (Low vs. High similarity), pattern (single- vs. three-stimulus), trial block 

(1 to 8), and discrimination (negative vs. positive patterning) as factors. There was a significant 

effect of trial block, F(7, 238) = 76.36, p < .0001, MSE = 1.44, ƞp
2 = .69, 90% CI[.63, .72]; 

participants’ ratings became more extreme over the course of training. There were also 

significant effects of pattern, F(1, 34) = 5.99, p = 0.02, MSE = 3.00, ƞp
2 = .15, 90% CI[.01, .32], 

and discrimination, F(1, 34) = 9.25, p = .005, MSE = 1.50, ƞp
2 = .21, 90% CI[.04, .39], but not of 

group, F < 1. The Group X Pattern, F(1, 34) = 8.60, p = .006, MSE = 3.00, ƞp
2 = .20, 90% CI[.04, 

.38], and Group X Pattern X Trial Block, F(7, 238) = 7.80, p < .0001, MSE = .78, ƞp
2 = .19, 90% 

CI[.10, .24], interactions were significant. Simple effects analyses revealed that Group Low 

Similarity made significantly higher rating for the single-stimulus patterns than for the three-

stimulus patterns, F(1, 34) = 14.47, p < .001, and that rating for these patterns did not differ 

for Group High Similarity, F < 1. The difference in ratings for Group Low Similarity was large 
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on early trial blocks, but diminished as training progressed as ratings for both types of pattern 

approached ceiling. 

Interactions of Pattern X Discrimination, F(1, 34) = 4.16, p < .05, MSE = 1.83, ƞp
2 = .11, 

90% CI[.00, .28], Pattern X Trial Block, F(7, 238) = 3.35, p = .002, MSE = .78, ƞp
2 = .09, 90% 

CI[.02, .13], Discrimination X Trial Block, F(7, 238) = 5.73, p < .0001, ƞp
2 = .14, 90% CI[.06, .19], 

and Pattern X Discrimination X Trial Block, F(7, 238) = 4.22, p < .001, MSE = .77, ƞp
2 = .11, 90% 

CI[.04, .15], were also significant. Remaining interactions failed to reach significance, largest 

F(7, 238) = 1.11, p = .36. 

 The results of this experiment are consistent with those from Experiment 1. 

Participants in Group Low Similarity made more extreme ratings for the single stimuli (A+ and 

Do) than for the three-stimulus compounds (ABC+ and DEFo). There was no statistical 

difference in ratings for participants in Group High Similarity. The results from Group Low 

Similarity are consistent with all three models. Neither Configural Theory nor AMAN can 

explain the results from Group High Similarity. REM can explain the results from both groups, 

but only if we assume that there was relatively little perceptual interaction between stimuli 

in both cases. REM predicts that the A+ BCo and ABC+ BCo discriminations will be learned at 

approximately the same rate when r = .3, however to explain the performance of Group High 

Similarity in Experiment 2 we must assume that r ≥ .5 for the same stimuli. 

 Inspection of Figure 8 suggest that, like in Experiment 1, Group High Similarity learned 

the discrimination rapidly. It is possible that this rapid learning masked any differences in the 

rate of acquisition of the component discriminations for this group. Consequently, in 

Experiment 4, participants were trained on a more complex version of the same parity 
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discrimination which they were expected to acquire more slowly, allowing greater 

opportunity to observe differences in learning rate. 

Experiment 4 

 Participants in Experiment 4 were trained on two concurrent complex parity 

discriminations of the forms A+ B+ C+ ABo ACo BCo ABC+ and Do Eo Fo DE+ DF+ EF+ DEFo 

(see Table 1). One group of participants was trained using the high similarity stimuli used in 

Experiments 1 to 3, whereas a second group of participants was trained using the low 

similarity stimuli. This type of discrimination problem has previously been employed by 

Pearce et al (2008). In one experiment, they trained pigeon using stimuli comprising dots of 

different colours, and found that pigeons responded more rapidly in the presence of A, B , or 

C than in the presence of ABC, and much less rapidly in the presence of AB, AC, or BC. In a 

second experiment, they employed stimuli much like those used with the high similarity 

groups in the experiments reported here. The stimuli were simple white circles differentiated 

only by their position. In that experiment, the pigeons were unable to solve the 

discrimination. They responded most rapidly in the presence of A, B, or C, but less rapidly to 

the compound ABC than to the two-stimulus patterns AB, AC, and BC. A Simulation of 

Configural Theory reported by Pearce et al generated predictions that were consistent with 

this latter result. Pearce et al also found that when Kindle and Lachnit’s (2003) discriminability 

parameter was increased from 2 to 3, Configural Theory predicted that the net associative 

strength of the two-stimulus patterns AB, AC, and BC would be lower than that of the 

individual stimuli or the compound ABC. Based on these results and simulations, we would 

predict that participants in Group High Similarity should behave much like the pigeons in 
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Pearce et al’s second experiment and fail to solve the discrimination. Participants in Group 

Low Similarity, however, should learn the discrimination in much the same was as in 

Experiment 3, solving the A+ B+ C+ ABo ACo BCo discrimination more rapidly than the ABC+ 

ABo ACo BCo discrimination. These predictions are shown in the top row of Figure 9. Inclusion 

of a salient contextual cue is predicted to significantly retard learning, but does not affect the 

ordinal associative strength of single- and three-stimulus patterns. 

<Figure 9 about here> 

REM (Figure 9, middle row) predicts that the three-stimulus patterns will attract more 

extreme rating than the single-stimulus patterns regardless of the value of the replacement 

parameter, r. AMAN predicts the opposite pattern of results – generally more extreme rating 

for single- than for three-stimulus patterns, although rating for ABC+ are predicted to be 

higher than those for A+, B+, and C+ early in training. This early reversal is predicted to be 

more extreme and longer lasting when the stimuli are more similar to each other. 

Method 

Participants. Thirty six students at UNSW Australia (20 female) were given credit toward 

course requirements for their participation. They had a mean age of 19.1 years (range 18 – 

23), and 4 were left handed. Each participant was randomly assigned to one of two groups so 

that there were eighteen participants in each group. The first group received training with 

low similarity stimuli, and the second group received training with high similarity stimuli. 

Experimental protocols were approved by the ethical review committee of the School of 

Psychology, UNSW Australia. 
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Apparatus and stimuli. Details of the apparatus and stimuli were the same as for Experiment 

1. 

Procedure. The procedure were the same as for Experiment 1 with the following exceptions. 

Within each block of 42 trials, each of the patterns A, B, C, AB, AC, BC, ABC, D, E, F, DE, DF, EF, 

and DEF was presented three times. There were 8 blocks of trials, making a total of 336 trials. 

The tone was played on trials with patterns A, B, C, ABC, DE, DF, and EF but not on trials with 

patterns AB, AC, BC, D, E, F, or DEF.  Hence, participants received concurrent training on a 

complex negative parity (A+B+ C+ ABo ACo BCo ABC+) and a complex positive patterning (Do 

Eo Fo DE+ DF+ EF+ DEFo) task. 

Participants failed to respond within 3000ms of the beginning of 1.9% of trials. On 

average each participant failed to respond on 6.3 trials (range 0 – 22; SD = 6.0). 

Results and discussion 

Expectancy ratings for the single-, two-, and three-stimulus patterns for participants 

in the Group High Similarity and Group Low Similarity are shown for each block of training 

trials in the left and right panels of Figure 10, respectively. Participants in Group Low similarity 

made more extreme expectancy rating for single-stimulus patterns than for three-stimulus 

patterns, although this pattern of responding was only evident for the positive parity 

discrimination. Rating of single- and three-stimulus patterns in the negative parity 

discrimination were equivalent for this group. For participants in Group High Similarity, the 

rating given to the three-stimulus patterns were more extreme than those given to the single-

stimulus patterns, and the difference in these ratings was present in both the negative and 

positive parity discriminations. 
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<Figure 10 about here> 

Data were transformed in the same manner as described for Experiment 3. A four-way 

ANOVA of mean expectancy rating was conducted with group (Low vs. High similarity), 

pattern (single- vs. three-stimulus), trial block (1 to 8), and discrimination (negative vs. 

positive patterning) as factors. There was no significant effect of either group, F(1, 34) = 2.88, 

p = .10, or pattern, F(1, 24) = 1.19, p = 0.29, but there was a significant Group x Pattern 

interaction, F(1, 34) = 27.44, p < .0001, MSE = 4.27, ƞp
2 = .45, 90% CI[.23, .59]. There was also 

a significant interaction of group and pattern with discrimination, F(1, 34) = 6.31, p = .02, MSE 

= 2.06, ƞp
2 = .16, 90% CI[.02, .33]. Simple effects analysis revealed that there was a significant 

effect of pattern in Group Low Similarity for the positive parity discrimination, F(1, 68) = 42.99, 

p < .0001, but not for the negative parity discrimination, F < 1. There was a significant effect 

of pattern for Group High Similarity for both the positive, F(1, 68) = 8.62, p = .005,  and 

negative parity, F(1, 68) = 19.47, p < .0001, discriminations. 

 There were also effects of discrimination, F(1, 34) = 28.0, p < .0001, MSE = 2.81, ƞp
2 = 

.45, 90% CI[.23, .59], and trial block, F(7, 238) = 140.37, p < .0001, MSE = 1.69, ƞp
2 = .81, 90% 

CI[.77, .83], and a significant Discrimination X Trial Block interaction, F(7, 238) = 3.75, p = .001, 

MSE = 1.19, ƞp
2 = .10, 90% CI[.03, .14]. The interactions of discrimination with pattern, F(1, 

34) = 18.84, p = .0001, MSE = 2.06, ƞp
2 = .36, 90% CI[.14, .51], and trial block with pattern, F(7, 

238) = 2.24, p = .03, MSE = 1.49, ƞp
2 = .06, 90% CI[.00, .09], were significant. There was no 

significant interaction of group with either discrimination, F(1, 34) = 1.1, p = .30, or trial block, 

F(7, 238) = 1.51, p = .16. The three-way interactions of Group X Pattern X Trial Block, F(7, 238) 

= 3.92, p < .001, MSE = 1.49, ƞp
2 = .10, 90% CI[.03, .14], and Pattern X Discrimination X Trial 
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Block, F(7, 238) = 2.79, p < .01, MSE = 1.18, ƞp
2 = .08, 90% CI[.01, .11], were significant. The 

remaining three-way interaction of Group X Discrimination X Trial Block, F(7, 238) = 1.36, p = 

.22, and the four-way interaction, F < 1, were not significant. 

 The results are consistent with those from the previous three experiments. 

Participants trained with low similarity stimuli performed in a manner broadly consistent with 

Configural Theory when the discriminability parameter d > 2, and with AMAN; they made 

more extreme ratings when presented with individual stimuli than they did when presented 

with compounds containing three stimuli. Participants trained with the high similarity stimuli 

showed the opposite pattern of behaviour, which was consistent with the prediction of REM. 

General Discussion 

 In four experiments, the effects of stimulus similarity on the acquisition of complex 

patterning discrimination tasks was investigated. Previous research has found that when 

animals or humans are trained with stimuli drawn from a single stimulus modality, such 

patterning discriminations are often acquired in a manner consistent with the predictions of 

Configural Theory (e.g., Pearce & Redhead, 1995; Redhead, 2007; Redhead & Curtis, 2013). 

If, however, the stimuli are drawn from different modalities, the discriminations are 

sometimes acquired in a manner consistent with elemental models of learning such as the 

Rescorla-Wagner model or REM (e.g., Bahçekapılı, 1997; Redhead & Curtis, 2013). The 

primary purpose of the experiments reported here was to test the suggestion that the effects 

of stimuli modality might be explained in terms of variation in stimulus similarity (Harris & 

Livesey, 2010). It is difficult to derive absolute predictions concerning the acquisition of the 

discrimination tasks used in these experiments in the absence of an objective measure of 
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stimulus similarity. Nevertheless, we might assume that patterning discriminations involving 

highly similar stimuli should have a greater probability of being solved in a manner consistent 

with Configural Theory than those involving less similar stimuli. Conversely, patterning 

discriminations involving very dissimilar stimuli should have a greater probability of being 

solved in a manner consistent with the Rescorla-Wagner model than those involving more 

similar stimuli. 

 The results of the experiments did not support these predictions. In Experiment 1, 

participants were trained on a patterning discrimination of the form A+ BC+ ABCo. When the 

stimuli were drawn from different perceptual dimensions (colour, shape, and orientation), 

participants acquired the A+ ABCo discrimination more rapidly than the BC+ ABCo 

discrimination, consistent with the predictions of Configural Theory. When the stimuli were 

highly similar, differing only in location, there was no statistical difference in the rates of 

acquisition of the two discriminations. Experiment 3 employed a parity discrimination of the 

form A+ BCo ABC+ and yielded very similar results. Participants trained with the low similarity 

stimuli solved the A+ BCo discrimination more readily than they solved the ABC+ BCo 

discrimination, whereas participants trained with highly similar stimuli solved the two 

discriminations at the same rate. 

 In both of these experiments there was some indication that participants learned the 

discrimination tasks more rapidly when the stimuli were highly similar. In case this rapid 

learning masked any differences in the rate of learning different components of the 

patterning discrimination, Experiments 2 and 4 employed more complex versions of the tasks 

in an attempt to retard learning. In Experiment 2, participants were trained on the complex 
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patterning discrimination A+ B+ C+ AB+ AC+ BC+ ABCo. When participants were trained with 

the low similarity stimuli, results were again consistent with the predictions of Configural 

Theory; the A/B/C+ ABCo discrimination was learned more rapidly than the AB/AC/BC+ ABCo 

discrimination. Results consistent with the predictions of the Rescorla-Wagner model were 

found when the stimuli were highly similar; the AB/AC/BC+ ABCo discrimination was learned 

more rapidly than the A/B/C+ ABCo discrimination.  In Experiment 4, a complex parity 

discrimination of the form A+ B+ C+ ABo ACo BCo ABC+ generated similar results. The ABC+ 

AB/AC/BCo discrimination was acquired more rapidly when the stimuli were very similar, and 

the A/B/C+ AB/AC/BCo discrimination was learned more rapidly when the stimuli were less 

similar. 

 Taken together the results of the four experiments are difficult to explain in terms of 

either Configural Theory, REM, or AMAN. The predictions of Configural Theory regarding the 

each experiment are largely unaffected either by the addition of a salient contextual stimulus 

or an increase in the discriminability of the stimuli operationalised as an increase in the value 

of the parameter d. The former manipulation tends to retard learning whereas the latter 

manipulation speeds it up, but the relative pattern of ratings remains the same. The exception 

is Experiment 4, where the discrimination is predicted to be insoluble when d = 2. The 

predictions of AMAN are more complicated, but again are unaffected by stimulus modality 

(or stimulus similarity) in the case of the patterning tasks used in these experiments. For 

Experiment 1 and 3, AMAN predicts that rating should be more extreme for individual stimuli 

than for compound stimuli. In Experiment 2, it predict that rating should be higher for 

compound stimuli than for individual stimuli for both the positive and negative patterning 

discriminations. In Experiment 4, it predicts same pattern as for Experiment 2 very early in 
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training but the same pattern as for Experiments 1 and 3 later on. No such switch-over was 

observed in any of the experiments, and the performance of Group Low Similarity and Group 

High Similarity differed in each experiment in contrast to these predictions. Simulations of 

REM suggest that its predictions are sensitive to changes in perceptual interaction between 

stimuli for the discriminations reported here. For Experiments 1 and 4 REM predicts more 

extreme rating to stimulus compounds that to the individual stimuli, and this difference is 

predicted to be smaller for smaller values of r. For Experiment 2 and 3, REM correctly predicts 

this same pattern when r is large, but the opposite pattern when r is small. Although these 

latter predictions are broadly consistent with the results of those Experiments, parameter 

values for the two sets of stimuli must differ between the two experiments in order to predict 

the correct results. In Experiment 3, REM makes the correct predictions when r > .5 for the 

high similarity stimuli and r < .5 for the low similarity stimuli. In Experiment 4, the 

corresponding values are r ≈ .3, and r < .3. 

While we have considered two elemental models of learning – REM and AMAN – in 

some detail, other models might also be able to account for modality effects in patterning 

discriminations. McLaren and Mackintosh (2000, 2002; McLaren, Kaye & Mackintosh, 1989) 

proposed a real-time elemental model of learning the predictions of which may be influenced 

by the amount of learning which occurs on each trial. McLaren and Mackintosh (2002) 

considered the simple case of an A+ AYo discrimination and the effect of adding a common 

element on each trial to generate an AX+ AXYo discrimination. They showed that when the 

amount learned on any trial is low, then their model makes the same predictions as the 

Rescorla-Wagner model; the addition of the common element facilitates acquisition. When, 

however, the amount learned on each trial is high, the model makes the same prediction as 
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Configural Theory; the addition of a common element retards learning. This effect of learning 

rate is a consequence of the model’s real-time nature and its prediction of one-trial 

overshadowing. There is, however, little reason to suppose that McLaren and Mackintosh’s 

provides an adequate explanation of the results reported here. Visual inspection of Figures 4, 

6, 8, and 10 suggests that in each experiment participants in Group High Similarity learned 

more rapidly than those in Group Low Similarity, although this observation was not confirmed 

in any case by analysis of variance. Nevertheless, this apparent difference is in the direction 

opposite to that expected based on the predictions of McLaren and Mackintosh’s model. In 

each experiment Group High Similarity acquired the discriminations in the manner predicted 

by the Rescorla-Wagner model whereas results from Group Low Similarity were more 

consistent with the predictions of Configural Theory.  

 Some consideration must be given to the choice of stimuli in the current experiments. 

It is possible that the low similarity stimuli, all drawn from the same modality, were 

insufficiently dissimilar to have the same effect on learning as stimuli drawn from different 

modalities. Indeed, these stimuli were almost the same as those employed by Pearce and 

George (2002) in a pigeon autoshaping experiment with the exception that those involved in 

the positive and negative patterning discriminations were displayed in different locations on 

the screen. Pearce and George argued that stimuli from different perceptual dimensions, 

even within a single modality, should be less likely to perceptually interact with each other 

than the colour dots used by Redhead and Pearce (1995). Nevertheless, they found the same 

pattern of results as Redhead and Pearce. Pigeons trained on a complex negative pattering 

discrimination of the form A+ B+ C+ AB+ AC+ BC+ ABCo responded more rapidly in the 

presence of the individual stimuli than in the presence of the two-stimulus patterns. The 
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behaviour of participants in Group Low Similarity in Experiment 2 was consistent with that of 

the pigeons; they made more extreme rating for the individual stimuli. This does not, 

however, undermine the rationale for these experiments. If modality effects in patterning 

discriminations are a consequence of differences in stimulus similarity, increasing similarity 

should have resulted in more evidence of configural processing and a greater advantage for 

the individual stimuli, rather than abolishing or reversing it. This prediction does not depend 

upon absolute positions of the stimulus sets on the similarity continuum, but rather their 

relative positions. 

Similarly, the high similarity stimuli used here are much like those that Pearce et al 

(2008) employed to train pigeons on a complex parity discrimination of the form A+ B+ C+ 

ABo ACo BCo ABC+, in that they were differentiated only by screen location. Consistent with 

the predictions of Configural Theory, Pearce et al found that pigeons could not solve the 

discrimination; they responded less rapidly to the reinforced three-stimulus compound than 

to the non-reinforced two-stimulus compounds. When trained with less similar stimuli – dots 

of different colours – pigeons could solve the discrimination. Pearce et al suggested that 

stimulus similarity might affect the shape of gradients of generalization between stimulus 

patterns (c.f. Kinder & Lachnit, 2003). Participants in Group Low Similarity in Experiment 4 

acquired the discrimination in much the same way as the pigeons that Pearce et al trained 

with coloured dots. They made more extreme ratings for single stimuli than for the three-

stimulus compounds. Group High Similarity also solved the discrimination, but showed the 

opposite patterning; they made more extreme ratings for the three-stimulus compounds. Not 

only is this not consistent with Pearce et al’s results, there is no value of Kinder and Lachnit’s 

discriminability parameter which will allow Configural Theory to predict these results. 
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 A number of authors have suggested that the reason why some experiments provide 

support for elemental processing of stimuli, while others support configural processing, is that 

the two approaches are not mutually exclusive, but may be used with some flexibility (e.g., 

Melchers, Shanks, & Lachnit, 2008; Thorwart & Lachnit, 2010; Lachnit et al., 2013). That is, 

under some conditions, humans and animals might process stimuli elementally, whereas 

under other conditions they might process they configurally. If this is the case, then a model 

of learning based on one representational scheme or the other is unlikely to be able to predict 

behaviour in each situation. Melchers et al reviewed the evidence for flexible stimulus 

processing and identified five factors which influence whether stimuli are processed 

elementally or configurally: task demands, prior experience, experimental instructions, 

stimulus properties, and stimuli organisation. In the experiments reported here, the task 

demands and participant instructions did not differ between conditions, and since 

participants were randomly assigned to one condition or the other there is no reason to 

suppose that their prior experience differed systematically. Stimulus properties did differ 

between conditions, and these in turn may have affected apparent stimulus organisation. 

 One stimulus property which has already been discussed at length is modality. The 

purpose of the experiments was to determine whether modality effects might be explained 

in terms of differences in stimulus similarity. Hence, all of the stimuli employed were visual 

but differed in similarity. There are, however, explanations for the modality effect other than 

similarity. One is that stimuli from within the same modality might be more likely to 

perceptually interact with each other than those from different dimensions (e.g., Wagner, 

2003). The low similarity stimuli were chosen from different perceptual dimensions 

specifically to avoid such interactions (see Pearce & George, 2002). The high similarity stimuli 
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were identical, save for location, and might therefore also be expected to interact little with 

each other. It is possible that greater perceptual interaction between the low similarity stimuli 

may explain the results of all four experiments, but there is no strong case for believing this 

to be true. A related explanation is that stimuli might mask the perception of each other 

(Myers et al, 2001). Masking should be greater when stimuli are competing for the same 

perceptual resources, within a modality, or perhaps within a stimulus dimension. It is difficult 

to derive clear predictions of how masking might differentially affect the low and high 

similarity stimuli. Given an assumption that people have a limited capacity to process visual 

information, it is possible that the more information dense low similarity stimuli would mask 

each other to a greater extent, biasing people towards configural processing. Equally, if some 

aspects of stimulus processing occur in parallel, one could argue that the high similarity 

stimuli will compete more effectively for the same processing resources than compounds of 

more diverse stimuli which might be processed through more distributed channels. In that 

case, the opposite prediction would be made. 

 A third factor that might influence the processing of different stimuli within a single 

modality is whether they differ on integral or separable dimensions (Garner, 1974). In 

summation experiments, Lachnit (1988) found results consistent with elemental processing 

when stimuli differed on separable dimensions (line drawings which differed in size and 

orientation), and configural processing when they differed along integral dimensions (chroma 

and value of colour patches). Again, this factor is unlikely to provide an adequate explanation 

of the current results since the low similarity stimuli which differed along four separable 

dimensions (shape, colour, orientation, and location) yield results consistent with configural 

models of learning, whereas the high similarity stimuli which differed along a single dimension 



Similarity and patterning discriminations  41 
 
 
 

 
 

(location) were learned about in a manner more consistent with elemental models of 

learning. 

 The final factor that might be relevant to the stimuli employed here is their 

organization. Glautier (2002; see also Livesey & Boakes, 2004) found evidence that stimuli 

presented close together were processed configurally, whereas those presented more distant 

to each other were processed elementally. In the current experiments, the stimuli were 

arranged in triangular formations. Since the high similarity stimuli differed only in their 

location it is possible that their spatial organisation was more salient than for the low 

similarity stimuli where location may have been overshadowed to some degree by the other 

differences between the stimuli. In that case, however, the low similarity stimuli would have 

been less likely to be processed configurally than the high similarity stimuli which was not 

what was observed. 

 Taken together, the results of the experiments presented here present a challenge for 

current models of associative learning and for the explanations of modality effects in 

patterning discriminations that they provide. One explanation for the results is that people 

may flexibly process stimuli in either a configural or elemental manner, and that the 

manipulation of stimulus similarity biased the participants in one direction or the other. It is, 

however, difficult to identify exactly why that might be the case given the stimuli used here. 

Nevertheless, the current experiments do provide reliable evidence that a within-modality 

manipulation of stimulus similarity affects the acquisition of patterning discrimination tasks. 
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Appendix – details of simulations 

 For all simulations reported here, training was divided in a number of cycles. Each 

cycle consisted of the presentation of each training pattern, weighted in the same manner as 

in the corresponding experiment. Hence, for simulations of Experiment 1, each cycle 

consisted on one presentation of each of the patterns A+, BC+, Do, and EFo, and two 

presentations of ABCo and of DEF+. For simulations of Experiment 2, each cycle consisted of 

one presentation of each individual stimuli (A+, B+, C+, Do, Eo, and Fo) and of each of the two-

stimulus compounds (AB+, AC+, BC+, DEo, DFo, and EFo) and six presentations of each three-

stimulus compound (ABCo and DEF+). For simulations of Experiments 3 and 4, each pattern 

was presented once in each cycle. Because REM and AMAN tend to solve the discrimination 

problems less rapidly than Configural Theory with the chosen parameter values, simulations 

of these models are blocked over multiple cycles of training. 

Configural Theory 

 Simulations of Configural Theory were based on the descriptions of the network 

model and the equations presented by Pearce (1994). The simulations, and those or REM, 

were run using MATLAB (MathWorks Inc., Natick, MA) programmes written by the author and 

available for download from the ‘learnSim’ repository on GitHub (GitHub Inc., San Francisco, 

CA) at https://github.com/DavidNGeorge/learnSim. 

Presentation of a pattern of stimuli resulted in activity in an input network. This 

network consisted of an input layer where each unit responded to the presence of a particular 

stimulus element and was connected to a corresponding unit in an output layer. The 

activation value, P, of a given input unit was determined by the intensity of the stimulus 

https://github.com/DavidNGeorge/learnSim
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element which activated it. In the simulations reported in this article, the intensity of all 

stimulus elements was 1 except for the salient contextual cue which had an intensity of 2. 

Activity in output unit k, ok, was scaled by the number of stimulus elements present, n, and 

their intensities according to Equation A1 where Pk was the activity level (intensity) of input 

unit k. 

2
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       (A1) 

When a pattern was presented for the first time, a configural unit, j, was recruited and the 

strength of the connection, wi,j,  between an individual output unit and this configural unit 

was set to equal the activation level of the output unit (oi). Subsequently, following 

presentation of any stimulus pattern, the activation of a given configural unit j, aj, was given 

by Equation A2 where n was the number of output units in the network. Here, d is a 

discriminability parameter which was fixed at 2 by Pearce (1994), but which Kinder and 

Lachnit (2003; see also Pearce et al, 2008) suggested might vary dependent on stimulus 

properites. 
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 Configural units could enter into an association with a US unit and this association 

could have either a positive (excitatory), negative (inhibitory), or zero value. The net 

associative strength of a pattern was the sum of the activations of configural units weighted 

by the strength of their association with the US unit. Hence, Equation A3 gives the net 

associative strength, Vj, of Pattern j where ai is the activation level of configural unit i, Ei is the 
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strength of the association between configural unit i and the US, and n is the number of 

configural units in the network. 

1

n

j i i

i

V a E


        (A3) 

 Following a conditioning trial, only the strength of the association between the 

configural unit for the pattern presented and the US unit was changed according to Equation 

A4. α was a learning rate parameter associated with the configural unit and had a value of 1 

in all cases for the simulations reported here. β was a learning rate parameter associated with 

the US and had a value of .05 for all simulations reported here. λ was the magnitude of the 

US and was 1 when the outcome was delivered. When no outcome was delivered, λ = 0 for 

the simulations reported in Figure 1, and λ = -1 for all other simulations. 

 E E             (A4) 

Replaced Elements Model 

 Simulations of REM were based on the description of the model given in Wagner and 

Brandon (2001) and Wagner (2003) using a MATLAB programme that can be found in the 

‘learnSim’ repository on GitHub. The model is based on the assumption that a stimulus is 

represented by a large but finite collection of micro features or elements. Some of those 

elements are context independent and will be activated whenever the stimulus is presented, 

whereas the activation of others is dependent upon the context in which the stimulus is 

presented. Different stimuli will interact with each other to a greater or lesser extent which 

determines the relative proportions of context dependent and independent elements. For 

example, context independent elements within the representation of Stimulus A, Ai, will be 
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active whenever A is presented. Other elements might be active only when A is presented in 

compound with Stimulus B, Ab, while a third population of elements might be active only 

when A is presented in the absence of B, A~b. It is assumed that the total number of elements 

activated by A is the same whether it is presented alone or in compound with another 

stimulus, and so changes in the context will result in the replacement of activity within some 

elements with activity within others. The parameter r determines the degree of replacement, 

such that the relative size of the three populations of elements described above will be (1 – 

r), r, and r, respectively. When A might also be presented in compound with Stimulus C, this 

will result in replacement in a manner that is statistically independent of replacement by 

Stimulus B. Hence, as shown in Table A1, in this situation we can identify nine separate 

populations of elements within the representation of A: Ai, Ab, A~b, Ac, A~c, Ab~c, Ac~b, Abc, A~bc.  

<Table A1 about here> 

For the sake of computational simplicity and precision, individual stimulus elements 

were not represented within the simulation programme. Instead, each population of 

elements was represented by a single node and changes in associative strength were scaled 

to mimic differences in population size. For a given simulation, the same value of the r 

parameter was used to determine the interaction between all stimuli. This was either .8 to 

simulate the effects of training with stimuli belonging to the same modality, .2 to simulate 

training with stimuli from different modalities, or an intermediate value of .5. Following a 

conditioning trial, the associative strength of each active node was updated according to 

Equation A5 where ΔVi was the change in the associative strength of node i, αi was the 

salience of that node, β was a learning rate parameter associated with the US, ci was the 
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scaling factor used to mimic population size, λ was the magnitude of the outcome, and ΣV 

was the summed associative strength of all active nodes. Table A2 shows the activation level 

of each population within the representation of stimulus A following presentation of various 

patterns containing that stimulus. These values were used for the scaling factor, c. For all 

simulations reported here, the salience, α, of all nodes was .05 and the rate parameter β was 

also .05. λ was 1 for trials on which the outcome was delivered. When no outcome was 

delivered, λ = 0 for the simulations reported in Figure 1, and λ = -1 for all other simulations. 

 i i iV c V             (A5) 

<Table A2 about here> 

Attention Modulated Associative Network 

 Simulations of AMAN were conducted using the MATLAB programme described by 

Throwart, Livesey and Harris (2012). The programme is available for download from the 

websites http://sydney.edu.au/science/psychology/staff/justinh/downloads/ and 

https://www.uni-marburg.de/fb04/team-lachnit/mitarbeiter/thorwart/simulators/AMAN/. 

Because connectivity between E elements is probabilistic, individual simulations of the 

network can generate slightly different results. Hence, each of the predictions of AMAN 

presented in this article was the averaged result of ten individual simulations. All parameter 

values were the same as those used by Harris and Livesey (2010). In the following description, 

variable names used in the parameter definition file are shown in square brackets and are 

listed in the order in which they appear in that file. Other values were defined in the stimuli 

and trial definition files.  

http://sydney.edu.au/science/psychology/staff/justinh/downloads/
https://www.uni-marburg.de/fb04/team-lachnit/mitarbeiter/thorwart/simulators/AMAN/
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Each trial was simulated over 150 time steps [num_TicksPerTrial = 150]. CSs were 

presented between time steps 20 and 50. The US was, where appropriate, presented between 

time steps 51 and 60. Activation of the US was recorded between time steps 40 and 50. Each 

stimulus was represented by 20 elements [num_elements = 20], and the probability that any 

two E units were connected was .5 [connect_p = .5].  

Activation of stimulus elements by sensory input was varied uniformly from a 

minimum value of .05 to a maximum value of 1 for CSs and a mimimum value of .1 and a 

maximum value of 2 for the US [S_distribution = 1]. The exponent used in the response 

potential function was 2 for E and I units and 5 for A units [Power_E = 2; Power_I = 2; Power_A 

= 5]. The value of the constant used in this function was .04 [D = .04]. The rate parameter for 

increases in activation was .5 for all units [Growth_E = .5; Growth_I = .5; Growth_A = .5] and 

for decreases in activation was .2 for all units [Decay_E = .2; Decay_I = .2; Decay_A = .2]. 

The normalization of I units was not affected by E units of elements belonging to 

different stimuli [norm_across_all = 0], but was influenced by E units of elements belonging 

to the same modality with a weighting of 1/40 [norm_within_modality = .5], and E units of 

elements belonging to the same stimulus with a weighting of 1/20 [norm_within_stim = 1].  

The connection weight from A to I units was 4 [Weight_IA = 4], and between A units was .04 

[Weight_AA = .04]. 

The rate parameters βE and βI were equal to .02 and .1, respectively, when activation 

of E and I elements was increasing and to 0 when they were decaying [Beta_E_pos = .02; 

Beta_E_neg = 0; Beta_I_pos = .1; Beta_I_neg = 0]. The rate parameter for changes in the 
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connection weight function was .05 [k_V = .05] and for changes in associability was .33 

[k_Alpha = .33]. 

For simulations of Experiments 1-4, the network was pre-trained to ensure that 

presentation of each pattern resulted in moderate, and approximately equal, activation of E 

units. Pre-training consisted of 1000 cycles of training in which each pattern was partially 

reinforced. That it, each pattern was presented twice in each cycle; once paired with the US, 

and once in the absence of the US. 
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This research is based on ideas developed when the author was a visiting fellow at the School 

of Psychology, UNSW Australia. He is grateful to UNSW Australia for the generous provision 

of facilities during this period for technical support during the collection of data for 

Experiments 2 and 4.  
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Tables 

Table 1. The design of Experiments 1-4. A, B, C, D, E, and F were six different stimuli. + denotes 

that a pattern was followed by the presentation of a tone, o denotes that it was not. 

Participants were concurrently trained on negative and positive discrimination tasks. 

 Negative Positive 

Experiment 1 
A+ BC+ 

ABCo 

Do EFo 

DEF+ 

Experiment2 

A+ B+ C+ 

AB+ AC+ BC+ 

ABCo 

Do Eo Fo 

DEo DFo EFo 

DEF+ 

Experiment 3 
A+ ABC+ 

BCo 

Do DEFo 

EF+ 

Experiment 4 
A+ B+ C+ ABC+ 

ABo ACo BCo 

Do Eo Fo DEFo 

DE+ DF+ EF+ 
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Table A1. Populations of elements within the representation of Stimulus A which might be 

presented alone or in compound with two other stimuli, B and C. With respect to each 

stimulus, the population of elements might be active only in its presence, only in its absence, 

or might be independent of it.  

  Dependence on Stimulus B 

  Independent Presence Absence 

D
ep

en
d

en
ce

 o
n

 
St

im
u

lu
s 

C
 Independent Ai Ab A~b 
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Table A2. Activation in nodes contributing to the representation of Stimulus A in simulations 

of REM when A is presented alone or in combination with B, C, or B and C. 

 A AB AC ABC 

Ai (1-r)2 (1-r)2 (1-r)2 (1-r)2 

Ab - r(1-r) - r(1-r) 

A~b r(1-r) - r(1-r) - 

Ac - - r(1-r) r(1-r) 

A~c r(1-r) r(1-r) - - 

Ab~c - r2 - - 

Ac~b - - r2 - 

Abc - - - r2 

A~bc r2 - - - 
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Figures 

Figure 1 
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Figure 1. Predictions concerning the course of acquisition of A+ B+ ABo and CD+ CE+ CDEo 

patterning discriminations derived from simulations of three different models. Top row: 

Pearce’s (1994) Configural Theory either without (left panel) or with (right panel) the inclusion 

of a salient contextual cue. Middle row: Wagner’s (2003) Replaced Elements Model (REM) 

with either a high (left panel) or a low (right panel) value of the replacement parameter, r. 

Bottom row: Harris and Livesey’s (2010) attention-modulated associative network (AMAN) 

where the three stimuli are drawn from the same modality (left panel), or to three different 

modalities (right panel). The simulations presented in the left column are consistent with the 

conditions assumed to exist in pigeon autoshaping experiments involving stimuli drawn from 

a single modality whereas the simulations presented in the right column are consistent with 

the conditions assumed to exist in rabbit eye-blink experiments involving stimuli drawn from 

three different modalities. 
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Figure 2 

 

Figure 2. Predictions concerning the course of acquisition of A+ BC+ ABCo and Do EFo DEF+ 

patterning discriminations derived from simulations of three different models. Top row: 

Pearce’s (1994) Configural Theory either without (left panel, d = 2; right panel, d = 5) or with 

(middle panel, d = 2) the inclusion of a salient contextual cue. Middle row: Wagner’s (2003) 

Replaced Elements Model (REM) with either a high (left panel), intermediate (middle panel) 

or a low (right panel) value of the replacement parameter, r. Bottom row: Harris and Livesey’s 
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(2010) attention-modulated associative network (AMAN) where the three stimuli are drawn 

from the same modality (left panel), or to three different modalities (right panel). 

 

 

  



Similarity and patterning discriminations  63 
 
 
 

 
 

Figure 3 

 

Figure 3. The arrangement of stimuli in Experiments 1-4. The left panel shows the locations in 

which the six stimuli, A, B, C, D, E, and F, were presented. The right panel shows the six shapes 

that served as stimuli. Stimulus C was a solid red circle (shown here in a square checkerboard 

pattern). Stimulus F was a solid blue circle (shown here in a diamond checkerboard pattern). 
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Figure 4 

 

Figure 4. The course of acquisition of concurrent negative (A+ BC+ ABCo) and positive (Do EFo 

DEF+) patterning discriminations by participants in Experiment 1. Participants trained with 

low similarity stimuli (right panel) made more extreme ratings for single stimulus patterns 

(A+; Do) than for the corresponding two stimulus patterns (BC+; EFo). No such difference was 

seen in the ratings of participants trained with high similarity stimuli (left panel). Error bars 

show 1 standard error of the mean (SEM). 
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Figure 5 

 

Figure 5. Predictions concerning the course of acquisition of A+ B+ C+ AB+ AC+ BC+ ABCo and 

Do Eo Fo DEo DFo EFo DEF+ patterning discriminations derived from simulations of three 

different models. Top row: Pearce’s (1994) Configural Theory either without (left panel, d = 

2; right panel, d = 5) or with (middle panel, d = 2) the inclusion of a salient contextual cue. 

Middle row: Wagner’s (2003) Replaced Elements Model (REM) with either a high (left panel), 

intermediate (middle panel) or a low (right panel) value of the replacement parameter, r. 
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Bottom row: Harris and Livesey’s (2010) attention-modulated associative network (AMAN) 

where the three stimuli are drawn from the same modality (left panel), or to three different 

modalities (right panel). 

 

  



Similarity and patterning discriminations  67 
 
 
 

 
 

Figure 6 

 

Figure 6. The course of acquisition of concurrent negative (A/B/C+ AB/AC/BC+ ABCo) and 

positive (D/E/Fo DE/DF/EFo DEF+) complex patterning discriminations by participants in 

Experiment 2. Participants trained with high similarity stimuli (left panel) made more extreme 

ratings for two stimulus patterns (AB/AC/BC+; DE/DF/EFo) than for the corresponding single 

stimulus patterns (A/B/C+; D/E/Fo). The opposite pattern was observed in the ratings of 

participants trained with low similarity stimuli (right panel). Error bars show 1 SEM. 
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Figure 7 

Figure 7. Predictions concerning the course of acquisition of A+ BCo ABC+ and Do EF+ DEFo 

‘parity’ discriminations derived from simulations of three different models. Top row: Pearce’s 

(1994) Configural Theory either without (left panel, d = 2; right panel, d = 5) or with (middle 

panel, d = 2) the inclusion of a salient contextual cue. Middle row: Wagner’s (2003) Replaced 

Elements Model (REM) with either a high (left panel), intermediate (middle panel) or a low 

(right panel) value of the replacement parameter, r. Bottom row: Harris and Livesey’s (2010) 
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attention-modulated associative network (AMAN) where the three stimuli are drawn from 

the same modality (left panel), or to three different modalities (right panel). 
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Figure 8 

 

Figure 8. The course of acquisition of concurrent negative (A+ BCo ABC+) and positive (Do EF+ 

DEFo) ‘parity’ discriminations by participants in Experiment 3. Participants trained with low 

similarity stimuli (right panel) made more extreme ratings for single stimulus patterns (A+; 

Do) than for the corresponding three stimulus patterns (ABC+; DEFo). No such difference was 

seen in the ratings of participants trained with high similarity stimuli (left panel). Error bars 

show 1 SEM. 
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Figure 9 

 

Figure 9. Predictions concerning the course of acquisition of A+ B+ C+ ABo ACo BCo ABC+ and 

Do Eo Fo DE+ DF+ EF+ DEFo ‘parity’ discriminations derived from simulations of three 

different models. Top row: Pearce’s (1994) Configural Theory either without (left panel, d = 

2; right panel, d = 5) or with (middle panel, d = 2) the inclusion of a salient contextual cue. 

Middle row: Wagner’s (2003) Replaced Elements Model (REM) with either a high (left panel), 

intermediate (middle panel) or a low (right panel) value of the replacement parameter, r. 
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Bottom row: Harris and Livesey’s (2010) attention-modulated associative network (AMAN) 

where the three stimuli are drawn from the same modality (left panel), or to three different 

modalities (right panel). 
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Figure 10 

Figure 10. The course of acquisition of concurrent negative (A/B/C+ AB/AC/BCo ABC+) and 

positive (D/E/Fo DE/DF/EF+ DEFo) complex ‘parity’ discriminations by participants in 

Experiment 4. Participants trained with high similarity stimuli (left panel) made more extreme 

ratings for three stimulus patterns (ABC+; DEFo) than for the corresponding single stimulus 

patterns (A/B/C+; D/E/Fo). The opposite pattern was observed in the ratings of participants 

trained with low similarity stimuli (right panel). Error bars show 1 SEM. 

 


