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ABSTRACT: The pH-dependent intramolecular chelation of a tethered sulfonamide ligand in ruthenium(II)-arene complexes is 

demonstrated; a process shown to modulate metal-centered reactivity toward the model ligand guanosine 5'-monophosphate within 

the physiologically relevant pH region.

Ruthenium(II)-based organometallic compounds continue to 

be intensively investigated as prospective anticancer metal-

lodrugs,1 prompted by early work that identified promising anti-

angiogenic and antimetastatic activity within the [Ru(η6-

arene)Cl2(PTA)] (RAPTA) series2 of compounds and antitumor 

activity within the [Ru(η6-arene)(en)Cl]+ series3 of compounds.  

Metallation of protein and/or DNA targets, usually through dis-

placement of a coordinated H2O molecule by a donor atom pre-

sent within the biomacromolecule, is believed to form the basis 

of the anticancer activity for many of these organometallic spe-

cies.4 A limitation of such compounds is that their reaction with 

DNA/proteins can, in principle, occur in both healthy and can-

cerous tissue and would lead to indiscriminate reactivity in vivo, 

likely accompanied by serious side-effects. 

The development of ruthenium(II) compounds whose ligands 

afford intrinsic control over metal-centered reactivity in a man-

ner dependent on the local chemical environment would lead to 

more selective metallodrugs.  For example, the known differ-

ences between the extracellular pH of tumour tissue (6.5-6.9) 

and that of healthy extracellular tissue (7.2-7.4)5 may be ex-

ploited by the development of ruthenium(II)-based organome-

tallic compounds exhibiting pH-dependent reactivity profiles. 

Several reports have described preliminary investigations to-

ward developing metallodrugs with such pH-dependent behav-

iour.  In 2001 the prototypical RAPTA compound [Ru(η6-p-cy-

mene)Cl2(PTA)] was shown to exhibit pH-dependent DNA 

binding, with increased binding observed below pH 7.0.6  How-

ever, subsequent studies have shown that DNA is unlikely to be 

a major cellular target of RAPTA compounds.7  A subsequent 

approach to render the reactivity of RAPTA compounds pH-

dependent utilized fluoroarene ligands to yield a small series of 

[Ru(η6-fluoroarene)Cl2(PTA)] (fluoroarene = 1,4-C6H4CH3F, 

C6H5F, C6H5CF3) structures.8  The calculated pKa values of the 

aqua ligand in [Ru(η6-fluoroarene)Cl(H2O)(PTA)]+ were de-

pendent on the fluoroarene utilized (8.9, 8.3 and 5.5 when 1,4-

C6H4CH3F, C6H5F, C6H5CF3 respectively) and the rate of aqua-

tion of [Ru(η6-C6H5CF3)Cl2(PTA)] was faster at pH 4.7 com-

pared to pH 5.7.  However, NMR analysis of the complexes re-

vealed varying degrees of fluoroarene loss on incubation of the 

compounds in aqueous solutions which clearly limits future ex-

ploration of their pH-dependent reactivity.  Building on an ear-

lier precedent,9 a recent study has described the activation of or-

ganometallic ruthenium(II) compounds via ring-opening of an 

η6:κ1-arene/N chelate under acidic conditions.10  The ‘activated’ 

ring-opened form of the complexes were able to bind to guano-

sine 5'-monophosphate (5'-GMP); however, the pKa value of 

the ligand (ca. 2.5) renders the complexes inactive and unable 

to bind to 5'-GMP under physiologically relevant pH condi-

tions.  Similar ruthenium(II)-complexes bearing η5-cyclopenta-

dienyl or η6-arene ligands with pendant thiophene,11 amine12 or 

hydroxy12 groups able to form an intramolecular chelate via het-

eroatom ligation to ruthenium have also been reported.  How-

ever, the described systems are unsuited to regulate metal-cen-

tered reactivity under physiological conditions due to the forc-

ing conditions required to either form or ring-open the chelate.  

It is clear that although progress has been made toward achiev-

ing the goal of pH-dependent modulation of ruthenium-cen-

tered activity, methods are lacking in order to extend this to the 

physiologically relevant pH-region.  A series of reports have 

described the application of reversible intramolecular sulfona-

mide ligation to modulate, in a pH-dependent manner, the co-

ordination environment of the central ion in lanthanide com-

plexes.13  With these studies in mind we postulated that the in-

troduction of a pendant sulfonamide group to the arene ligand 

of an organometallic ruthenium(II) complex would permit the 

reversible pH-dependent formation of an intramolecular chelate 
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via displacement of a labile aqua ligand (Scheme 1).  We envis-

aged that this process could be employed to regulate metal-cen-

tered coordination to target ligands and could be tuned, through 

modulation of the basicity of the sulfonamide nitrogen via var-

iation of the R substituent, to afford control across the physio-

logically relevant pH range.  Here we report the synthesis of 

two ruthenium(II) organometallic compounds bearing a pen-

dant sulfonamide group and studies into their pH-dependent re-

activity in aqueous solution. 

Two ruthenium(II) arene complexes bearing a pendant sul-

phonamide moiety, [Ru(η6-C6H5CH2CH2NHR)(C2O4)(H2O)] 

(R = Ms, Tf, 1 and 2 respectively), have been prepared in good 

yield via the reaction of the respective ruthenium(II) dimers, 

[RuCl2(η
6-C6H5CH2CH2NHR)]2 (R = Ms, Tf14), with silver ox-

alate.  An analogous complex, [Ru(η6-

C6H5CH2CH2NHCOCH3)(C2O4)(H2O)] (3), bearing a pendant 

N-acetyl group was also synthesised from its respective ruthe-

nium(II) dimer, [RuCl2(η
6-C6H5CH2CH2NHCOCH3)]2.

15  Com-

plexes 1-3 are readily soluble in water and possess good stabil-

ity at 310 K in the presence of bovine serum albumin (BSA) and 

NaCl (Figs. S19-21), with the Ru-arene bond remaining intact 

under these conditions.  All complexes were characterized by 
1H and 13C (and 19F in the case of 2) NMR spectroscopy, high-

resolution mass spectrometry and elemental analysis.  Single 

crystals of 1 and 3 were grown by vapour diffusion and their 

molecular structures confirmed by single crystal X-ray crystal-

lography (Fig. 1).  Crystallographic data for [RuCl2(η
6-

C6H5CH2CH2NHTf)]2 and an analogue of 2b is also reported 

(Figs S2-4, Table S1).     

NMR studies were performed on 1-3 at 295 K to gain a pre-

liminary insight into their solution behavior.  1H NMR spectra 

of 1 in pure D2O exhibited a single set of signals in the arene 

region, attributed to the aqua form of the complex.  In contrast, 

spectra of 2 exhibited two sets of signals in the arene region, 

corresponding to the aqua and chelate (2b) forms of the com-

plex.  The appearance of a further set of signals in the arene 

region in D2O solutions of 1 and 2 containing 100 mM NaCl 

were attributed to the formation of the chlorido analogues of 1 

and 2 in each case (Figs. S13-14).   

Examination of 1H NMR spectra (2.46 mM, D2O, 295 K, 0.1 

M NaCl) of 1 and 2 as a function of pH revealed reversible 

changes indicative of pH-dependent intramolecular sulphona-

mide ligation.  For both 1 and 2 the open (aqua and chlorido 

analogues) and chelate (1b, 2b) forms of the complexes were 

distinguished by unique sets of signals, the intensity of each set 

of signals being pH-dependent (Figs. S15-16).  It is worth not-

ing that a single signal is observed for each −CH2− group in 1b 

and 2b; this signal being at the average chemical shift of the 

protons within each group due to the trigonal-planar geometry 

at the ligated N atom (Figure S4) and fast chemical exchange 

processes.  Analysis of the ratio of selected ligand signals (those 

corresponding to the -CH3 group in the case of 1, or the meth-

ylene bridge connected to the arene group for 2) corresponding 

to the open and chelate forms of the complex allowed a plot of 

Scheme 1.  Compounds 1-3 and pH-dependent intramolecu-
lar chelate formation. 

Figure 1.  Molecular structures of 1 (left) and 3 (right).  Atoms 
are drawn as 50 % probability ellipsoids. Unbound water has 
been omitted from 3 for clarity. Colour scheme: Ru (pink); C 
(grey); H (pale grey); N (blue); O (red); S (yellow). 
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Figure 2.  pH dependence of the proportion of the closed form 
versus the open form of 1 (blue squares) and 2 (black circles) 
(2.46 mM complex, D2O, 295 K, 0.1 M NaCl).  pD values are 
determined using pD = pH meter reading + 0.4.16  Solid red 
lines show the fit of the Henderson-Hasselbalch equation to 
the experimental data. 
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% open form (relative to the chelate form present) versus pD to 

be made, revealing a sigmoidal curve in each case (Fig. 2).  It-

erative least-squares fitting of the Henderson-Hasselbalch equa-

tion to the data determined pKa values of 6.65 and 4.05 for 1 

and 2 respectively; these results are in line with decreasing elec-

tron density at the sulfonamide nitrogen as the R substituent is 

varied from -CH3 to -CF3.  Whilst 1H NMR spectra of 2 indi-

cated a simple conversion of the open form of 2 (the aqua and 

chlorido species) to the chelate form (ligated sulphonamide) 

over the pH range 2.4-6.4, experiments with 1 revealed the on-

set of an additional equilibrium between [Ru(η6-

C6H5CH2CH2NHMs)(C2O4)(H2O)]/[Ru(η6-

C6H5CH2CH2NHMs)(C2O4)(HO)]− as the reaction was basified.  

The formation of the hydroxido analogue was evidenced at pD 

values >5.9 by the appearance of an additional set of ligand sig-

nals; over the pD range 6.5-7.4 the proportion of this species 

present remained below 5 %.  This observation was corrobo-

rated through analysis of the 1H NMR spectra of the related 

complex 3 in pure D2O over a range of pD values.  For example, 

at pD 3.65 a single set of arene signals was observed, attributed 

to the aqua form of 3.  Upon basification a second set of arene 

signals appeared (Fig. S12), correlating with those attributed to 

[Ru(η6-C6H5CH2CH2NHMs)(C2O4)(HO)]−. 

The observed biological effects exerted in cellulo and in vivo 

by a wide range of ruthenium(II)-based organometallic species 

is often linked to the ability of these compounds to coordinate 

to DNA and/or proteins, with guanine N7 and the histidine im-

idazole nitrogens being frequently identified as the respective 

binding locations.7b, 17  To investigate whether pH-dependent in-

tramolecular sulphonamide ligation within 1 and 2 could regu-

late such coordination events we performed binding studies 

with the model ligands 5'-GMP and L-histidine.  The reaction 

of 1 with 5'-GMP (30 mM, 1:1, D2O, 295 K, 0.1 M NaCl) over 

a range of pD values was monitored by 1H NMR spectroscopy 

(Fig. S17).  Under acidic conditions where intramolecular che-

late formation is negligible ≈ 90 % of 5'-GMP was coordinated 

to the complex as evidenced through appearance of a new signal 

associated with the guanine H8 proton of 5'-GMP.  On basifi-

cation the equilibrium was perturbed, with increasing formation 

of 1b and concomitant release of 5'-GMP (Fig. 3).  The propor-

tion of coordinated 5'-GMP was found to be 83 % and 58 % at 

pD values of 6.50 and 7.50 respectively18 with Ru-5'-GMP ad-

duct formation found to be reversible – acidification/basifica-

tion of the sample resulted in re-equilibration.  The reaction of 

2 with 5'-GMP at pD 6.41 (30 mM, 1:1, D2O, 295 K, 0.1 M 

NaCl), where the intramolecular chelate 2b is the predominant 

form under these conditions, revealed only low levels of Ru-5'-

GMP adduct formation (8%) (Fig. S18).19  These results are in 

line with the hypothesis that intramolecular sulphonamide liga-

tion is able to regulate Ru-5'-GMP adduct formation and that 

the degree of coordination can be rendered pH-dependent. 

Binding studies between L-histidine and 1 and 2 (30 mM, 1:1, 

D2O, 295 K, 0.1 M NaCl) resulted in complete Ru-L-histidine 

adduct formation in the pD range 6-7.4 via displacement of the 

ligated sulphonamide.  It is clear, in contrast to ruthenium coor-

dination with 5'-GMP, intramolecular sulphonamide ligation is 

unable to regulate L-histidine coordination to the metal and is 

quantitatively displaced by the amino acid.   

An initial evaluation of the cytotoxic activity of complexes 

1-3 was performed against the HT-29 (human colorectal adeno-

carcinoma) cell line.  72 h exposure to compounds 1 and 3 (100 

μM) resulted in no inhibition of cell growth.  In contrast, 2 re-

sulted in 70 % cell death under the same conditions.  Clearly the 

reactivity of 1 towards L-histidine, and its apparent metalation 

of proteins in the cell culture experiments (see Fig. S19 which 

indicates binding between 1 and BSA), does not result in cyto-

toxicity towards this cell line.  The relatively high cytotoxic ac-

tivity of 2 is striking given the structural similarities across the 

series, particularly between 1 and 2.  Further studies are under-

way to probe the origins of this behavior. 

In summary, we have demonstrated that reversible intramo-

lecular sulfonamide ligation in ruthenium(II)-arene systems can 

regulate the core coordination environment around the metal 

ion, in a pH-dependent manner, across the physiologically rele-

vant pH range.  This behaviour bodes well for the future incor-

poration of the pendant sulfonamide moiety into known cyto-

toxic systems to endow them with pH-dependent reactivity to-

ward biomacromolecular targets, the extent of which is con-

trolled by the nature of the local tissue environment.  Further-

more, the differential reactivity of the present systems toward 

5'-GMP and L-histidine within the physiologically relevant pH 

region warrants further exploration.  Such differentiation hints 

at the exciting prospect of metallodrugs able to selectively 

metallate target classes of biomacromolecular targets, or dis-

criminate between different sites within a single biomacromo-

lecular target.  Studies are ongoing in these areas.  
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Figure 3. pH dependence of the proportion of 5'-GMP present 
as Ru-5'-GMP adducts (blue circles) and the chelate-form of 
the complex (red squares) in the reaction between 1 and 5'-
GMP (30 mM, 1:1, D2O, 295 K, 0.1 M NaCl). 
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Detailed synthetic procedures for the synthesis of all novel com-

pounds and copies of their nuclear magnetic resonance spectra, X-

ray diffraction parameters and cell culture protocols.  (PDF)  
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