
Software & Systems Modeling
https://doi.org/10.1007/s10270-018-0658-5

SPEC IAL SECT ION PAPER

Type inference in flexible model-driven engineering using
classification algorithms

Athanasios Zolotas1 · Nicholas Matragkas2 · Sam Devlin1 · Dimitrios S. Kolovos1 · Richard F. Paige1

Received: 17 June 2016 / Revised: 27 July 2017 / Accepted: 11 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract
Flexible or bottom-up model-driven engineering (MDE) is an emerging approach to domain and systems modelling. Domain
experts, who have detailed domain knowledge, typically lack the technical expertise to transfer this knowledge using traditional
MDE tools. Flexible MDE approaches tackle this challenge by promoting the use of simple drawing tools to increase the
involvement of domain experts in the language definition process. In such approaches, no metamodel is created upfront,
but instead the process starts with the definition of example models that will be used to infer the metamodel. Pre-defined
metamodels created by MDE experts may miss important concepts of the domain and thus restrict their expressiveness.
However, the lack of a metamodel, that encodes the semantics of conforming models has some drawbacks, among others
that of having models with elements that are unintentionally left untyped. In this paper, we propose the use of classification
algorithms to help with the inference of such untyped elements. We evaluate the proposed approach in a number of random
generated example models from various domains. The correct type prediction varies from 23 to 100% depending on the
domain, the proportion of elements that were left untyped and the prediction algorithm used.

Keywords Model-driven engineering · Flexible model-driven engineering · Bottom-up metamodelling · Type inference ·
Classification and regression trees · Random forests

1 Introduction

In contrast to traditional rigorous MDE lifecycles where
engineers start the DSL development process by creating

Communicated by Prof. Alfonso Pierantonio, Jasmin Blanchette, Fran-
cis Bordeleau, Nikolai Kosmatov, Prof. Gabriele Taentzer, Prof.Manuel
Wimmer.

B Athanasios Zolotas
thanos.zolotas@york.ac.uk

Nicholas Matragkas
n.matragkas@hull.ac.uk

Sam Devlin
sam.devlin@york.ac.uk

Dimitrios S. Kolovos
dimitris.kolovos@york.ac.uk

Richard F. Paige
richard.paige@york.ac.uk

1 Computer Science Department, University of York,
Deramore Lane, Heslington, York YO10 5GH, UK

2 Computer Science Department, University of Hull,
Hull HU6 7RX, UK

a metamodel, in flexible MDE approaches engineers and
domain experts start the process by defining example models
in free-form drawing tools [11,18,23,38]. Flexible modelling
is arguably more accessible to domain experts as the latter
can use tools that they are already familiar with to express the
concepts of the domain; the involvement of domain experts
is widely argued to be important in the definition of high-
quality DSLs [12,13,23,35]. In this fashion, modellers work
without being restricted by a metamodel, which may be
defined by MDE experts who are not necessarily domain
experts. The sketched elements can have type annotations
assigned to them and can be consumed by model manage-
ment suites, which in turn can be used to determine whether
the sketches are fit for purpose, e.g. by programmatically
interrogating the sketches and building code generators for
them. This process may lead to changes being made to the
sketches incrementally. Using this approach, a potentially
richer understanding of the domain is being incrementally
developed, while concrete insights (e.g. type information)
pertaining to the envisioned metamodel are discovered.

However, there are some drawbacks to what flexibleMDE
offers: the drawn elements do not conform to a specific pre-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0658-5&domain=pdf

A. Zolotas et al.

defined metamodel and as a result there is no guarantee that
they will consistently obey the syntactic and semantic rules
that a metamodel would impose. This can be revealed in the
aforementioned type annotation process, where elements of
a sketch have types proposed for them (by a domain expert),
and thereafter attached to them using a sketching tool. This
process can be problematic: in particular, different types of
errors may arise in the annotation process.

1. User input errors: the types assigned to two elements of
the same type are different due to spelling errors (e.g.
Person vs. Prson)

2. Changes: due to better understanding of the domain
following the incremental fashion of flexibleMDE, a spe-
cific type may change to a new one. The new type should
be assigned to all the elements manually. (Animal vs.
Mammals)

3. Inconsistencies: different types might by assigned to ele-
ments that express the same concept due to the fact that
multiple domain experts work on the same examplemod-
els. (Doctor vs. Veterinarian)

4. Omissions: it becomes easier to overlook some elements
andnot assign them types, especiallywhen examplemod-
els become larger.

Such challenges need to be addressed to provide support
for the transition from flexible to more rigorous (metamodel-
based) modelling approaches.

In this paper, we propose a technique to tackle errors that
belong to the fourth category given above: that of type omis-
sions. In this category, sketch elements are overlooked and
are not annotatedwith type information.There are at least two
different approaches for solving this problem. The first is the
application of amechanism that will check for untyped nodes
on the example models when these are created and request
from the domain experts to provide their types; a constraint
and language with model repairing capabilities [28] can be
used to support this. However, such an approach may force
users to take decision on types when they are not ready to
do so. Also, this kind of approaches tend to reveal all omis-
sions and inconsistencies at once, and so it can be difficult to
find and repair specific problems. We consider this solution
to be closer to the spirit of rigorous MDE (and constraint
checking), rather than the spirit of flexible modelling.

The second approach is that of type inference: missing
types can be inferred by analysing and calculating specific
characteristics between the elements that are typed and those
that are left untyped. One benefit of this approach is that
users can avoid reapplying the same type to elements that
are already defined in the diagram. In addition, elements can
be created without having a type assigned to them, which
can be calculated when it suits the domain expert, not the
modelling tool.

This paper builds on top of the work presented in [43].
In [43], we proposed the use of a classification algorithm,
specifically classification and regression trees (CART) [4],
to calculate matches between typed and untyped elements,
based on five characteristics of each of them. We demon-
strated the approach using a flexible modelling technique
based on GraphML, called Muddles [18]. The accuracy and
limitations of the approach were evaluated via experiments
on a number of randomly generated models.

In this extended version:

1. We test the use of a second classificationmechanism, that
of random forests (RF) [3] in an attempt to improve the
accuracy of the prediction.

2. In addition to the initial dataset of randomgeneratedmod-
els, both CART and RF are now evaluated on a new set of
random generated models that this time is injected with
noise affecting 4 of the 5 variables used as input in the
prediction algorithm.

3. Finally, the importance of each of the 5 variables in creat-
ing the decision tree(s) is also calculated and presented.

The rest of this paper is structured as follows. Section 2
includes a brief review of a specific flexible modelling
approach, Muddles [18], which is based on GraphML. In
Sect. 3, the proposed approach is described. In Sect. 4, details
on the experiments that were carried out are presented. The
results of running the experiments are given in Sect. 5, along
with threats to experimental validity. In Sect. 6, related work
in the field of type and metamodel inference is presented. In
Sect. 7, we conclude the paper and outline plans for future
work.

2 Background: Muddles

In this section, we present the Muddles [18] flexible mod-
elling approach that is used in this work to illustrate the
proposed approach to type inference.

2.1 Overview

In Muddles [18], yEd,1 a GraphML-compliant drawing edi-
tor, is used to create the examplemodels. Language engineers
start by drawing the examples which they can then anno-
tate with types and attributes. The relations (references and
containments) between elements can be expressed using
edges and group containers, respectively. Using a multipass
model-to-model transformation, the annotated diagram is
automatically transformed to an intermediate Muddle (the
Muddle metamodel is given in Fig. 1), so it can be consumed

1 http://www.yworks.com/en/products_yed_about.html.

123

http://www.yworks.com/en/products_yed_about.html

Type inference in flexible model-driven engineering using classification algorithms

Fig. 1 The Muddle metamodel. (adapted from [18])

Fig. 2 An example Zoo diagram

by suites like the Epsilon platform [28] to perform model
management operations (e.g. model-to-text transformation).

2.2 Example

We demonstrate “muddling” with an example, creating a
language used to describe zoos. The language definition pro-
cess starts with the creation of an example zoo diagram (see
Fig. 2). Next, the elements are annotated with basic type
information. For example, one can define the type of the dia-
mond shape as “Doctor” and the type of the directed edges
from “Doctor” to “Animal” nodes (hexagons) as instances of

the “treats” relationship. In amuddle, the types are not bound
to the shape; in the same drawing, a hexagon represents both
elements of type “Tiger” and “Lion”. Types and type-related
information like properties (attributes of the type), roles and
multiplicity of edges are specified using the appropriate fields
in the yEd’s custom properties dialog. The inheritance rela-
tionship can be denoted by using the “<” symbol in the type
field. For example, for types “Lion” and “Tiger” this should
be “Lion < Animal” and “Tiger < Animal”, respectively.
More details about these properties are given in Table 1.

Model management programs use this type-related infor-
mation to access and manipulate elements of the diagram.

123

A. Zolotas et al.

Table 1 Element properties
(based on Table 1 from [18])

Extension For Description Example

Type Node, edge The type of the element Lion, Doctor < Person

Properties Node, edge Descriptors and values for
primitive attributes of
nodes/edges

String name = Jenny,
Integer age = 25

Default Node, edge Descriptor of the slot under
which the first label of the
node/edge should be made
accessible

name, label

Source role Edge Descriptor of the role of the
source end of the edge

source, sourceNode

Target role Edge Descriptor of the role of the
target end of the edge

target, targetNode

Role in source Edge Descriptor of the role of the
edge in its source node

patient 0…5, partner 0…1

Role in target Edge Descriptor of the role of the
edge in its target node

carer *, employee *

Fig. 3 An overview of the proposed approach (based on Fig. 3 from [43])

For example, if all the circled elements (typed as “Fan”)
have a string attribute called “name” assigned to them, then
the Epsilon Object Language (EOL) [19] script in Listing 1
returns the names of all of them. As such, muddles can be
programmatically processed like other models, without hav-
ing to transform them to a more rigorous format (e.g. Ecore).

var fans = Fan. al l () ;
for (f in fans) {
("Fan: " + f .name) . println () ;

}

Listing 1 EOL commands executed on the drawing

3 Type inference

In this section, we describe the proposed approach to type
inference in flexible MDE approaches. An overview of the

approach is given in Fig. 3. The source code for all the
algorithms described in Sects. 3 and 4 along with detailed
instructions can be found online.2

Language engineers initially construct a flexible model
using a GraphML-compliant drawing tool, like yEd. Each
element of this example model can then be annotated with
types of the envisioned DSL. However, for the reasons men-
tioned in Sect. 1, some nodes may be left untyped. The
annotated model is then automatically analysed to extract
characteristics of interest, called features, which are pre-
sented in detail in the following section. These characteristics
are passed to the classification algorithm of choice (either
CART or random forests), which performs type inference.
We now explain this process in more detail.

2 http://www.zolotas.net/type-inference-sosym/.

123

http://www.zolotas.net/type-inference-sosym/

Type inference in flexible model-driven engineering using classification algorithms

Table 2 Signature features for nodes

Name of feature Description

Number of attributes (F1) The number of attributes that the
node has

Number of different types
of incoming references
(F2)

The number of all the types of
references that target that node. If
a node is targeted by more than
one references of the same type,
only 1 instance of them is taken
into account (unique references)

Number of different types
of outgoing references
(F3)

The number of all the types of
references that come from that
node. As above, multiple
outgoing references of the same
type are counted once

Number of different types
of children (F4)

The number of all the unique types
that the node contains. Multiple
contained elements of the same
type are counted once

Number of different types
of parents (F5)

The number of all the types that the
node is contained in. As in
Eclipse Modelling Framework
and thus in Muddles one element
can be contained in maximum 1
other node, this value is binary;
0: no parents, 1: has parent

3.1 Model analysis and feature selection

In order to be able to match untyped elements with those that
are typed, we need to specify a set of features that describe
selected attributes of each element. In this approach, we use
a set of five features, presented in Table 2 which are the
same as those used in our previous work [43]. These fea-
tures were selected because they arguably measure structural
and semantic characteristics of the models. As mentioned in
Sect. 1, naming inconsistencies in types may appear espe-
cially if many domain experts work on the same models. Our
feature selection was based on this assumption, and thus in
this set of features we do not take into account string sim-
ilarity between the various attributes of each element (i.e.
names of attributes, names of references and names of con-
tainments). However, we need to highlight that we do not
claim that the names should be totally ignored as they can
carry useful information. Methodologies which base their
similarity measurement on name matching could be com-
bined with the approach we propose and possibly improve
the prediction results.

The set of features for each node is called its feature sig-
nature. At the end of each signature, the type of the element
(if known) is also attached. If the type is not known, then
this field is left empty. Below we present some examples of
feature signatures for the elements of the model illustrated in

Fig. 4 which is an object-diagram-like representation of the
muddle shown in Fig. 2.

The feature signature of the node “JurassicZoo : Zoo” is
[2,0,0,1,0,Zoo], as it has 2 attributes, no incoming or outgo-
ing references, 3 children which are of the same type (so 1
unique child) and 0 parents. The sixth position of the sig-
nature declares the type of the element, which is useful for
training the classification algorithm. Similarly, the feature
signature of the node “Kato : Tiger” is [3,3,1,0,1,Tiger] as
it has 3 attributes, 3 unique incoming references (supports,
partner and treats), 1 unique outgoing reference (partner), 0
children and1parent (resident). The class of the node isTiger,
placed at the end of the signature. Note here that although the
element “Kip : Tiger” is also of type Tiger, has not got the
“supports” incoming reference instantiated so its signature
(i.e. [3,2,1,0,1,Tiger]) is different from the aforementioned
“Kato : Tiger” node. This justifies the choice of using a clas-
sification algorithm to perform the matching. Classification
algorithms do not look for perfect matches but are trained to
classify elements by using each time those and only those
features that are most important in the specific set they are
trained on, increasing the possibilities of identifying true pos-
itives even if two elements have different signatures.

A script that parses all the elements of the diagram was
implemented. The parser constructs the signatures and stores
them in a text file. The signatures that have types assigned to
them are used to train the classification algorithm. The type
of the rest is then predicted based on the outcome of this
training.

3.2 Training and classification

Classification algorithms are a form of supervised machine
learning for approximating functions mapping input fea-
tures (e.g. our feature signature [3,3,1,0,1]) to a discrete
output class (e.g. Tiger) from a finite set of possible val-
ues (e.g. [Tiger, Lion, Fan, Doctor, Zoo]. They require a
training dataset with labelled examples of the output class
to process, after which they can generalise from the previous
examples to new unseen instances. For example, provided
sufficient examples (i.e. diagram elements) of the form
[3,3,1,0,1,Tiger] a classification algorithm can learn to pre-
dict the class Tiger when given an unlabelled example such
as [3,2,1,0,1].

Many classification algorithms exist, some of the most
established being decision trees, random forests, support
vector machines and neural networks [15]. For our previ-
ous work [43], we chose to use decision trees due to the
interpretable output representing the hypothesis learnt. In
practice, other classification algorithms can often have higher
accuracy, but will produce a hypothesis in a form that is not
human readable. As part of the extensions presented in this
paper, we experiment also with random forests (RF) [3], a

123

A. Zolotas et al.

Fig. 4 Example model

Fig. 5 Example decision tree

method that typically gives higher accuracy but less inter-
pretable results [10].

Specifically, for decision trees, we used the rpart package
(version 4.1-9)3 that implements the functionality of CART
[4] in R.4 An example decision tree is illustrated in Fig. 5.
Internal nodes represent conditions based on features (e.g.
number of attributes, unique children), branches are labelled
with “TRUE” or “FALSE” values for the condition of the
parent node and leaf nodes represent the final classification
given. To classify a new instance, the algorithm starts at the
root of the tree and takes the branch that satisfies the condition
of this node. The algorithm continues to process each internal
node reached in the same manner until a leaf node is reached
where the predicted classification of the new instance is the
value of that leaf node. For example, given the tree in Fig. 5, a
new instancewith fewer than 1.5 unique incoming references
(F2) and less than 3.5 attributes (F1) is classified as “Fan”
(path is highlighted in Fig. 5).

3 http://cran.r-project.org/web/packages/rpart/index.html.
4 http://www.r-project.org/.

CARTgenerates a decision tree by considering all labelled
instances in the training dataset in one single batch. For each
input feature, the information gain of using that feature to
classify the instances in the batch is calculated. The feature
with the highest information gain is used as the root node.
The dataset is then split based on the values of the feature at
the root node, and the process repeated on each child node
with each subset of the dataset until a stop condition (e.g.
minimum number of instances in a leaf node, depth or accu-
racy of tree) is satisfied.

Additionally in this work, we used the randomForest R
package (version 4.6-12)5 to compare the performance of
CART against a method that typically provides higher accu-
racy. An RF is an ensemble of multiple decision trees, each
trained on a different set of training instances from the dataset
chosen at random with replacement and often using a ran-
dom subset of the input features. Once trained, the ensemble
classifies new instances by processing each tree in the same
manner as an individual decision tree and then choosing
a single predicted class by majority vote. Intuitively, this
typically increases the accuracy in a manner similar to the
wisdom of crowds. More formally, the combined multiple
weak hypotheses in an RF will typically outperform the
single hypothesis generated by CART due to each tree con-
taining bias towards the data it observed but the ensemble
being able to average out these biases. This advantage, how-
ever, is balanced by an increase in the complexity of the
resultant model. While it is simple to read a single decision
tree and gain an understanding as towhich features themodel
has correlatedwith a particular class, an ensemble ofmultiple
trees becomes harder to read as many trees must be consid-

5 https://cran.r-project.org/web/packages/randomForest/.

123

http://cran.r-project.org/web/packages/rpart/index.html
http://www.r-project.org/
https://cran.r-project.org/web/packages/randomForest/

Type inference in flexible model-driven engineering using classification algorithms

Fig. 6 The experimentation process

ered and the classifications of each combined to reach the
final prediction of the model.

In our approach, the feature signatures list that contains the
signatures of the known elements of the model are the input
features to the CART and RF algorithms. A trained deci-
sion tree or ensemble of trees is produced dependent on the
algorithm used. These can then be used to classify (identify
the type of) the untyped nodes using their feature signatures.
To compare the relative performance of CART and RF, the
success of a classification algorithm can be evaluated by the
accuracy of the resultant model (e.g. the decision tree learnt
by CART) on test data not used when training. The accuracy
of a model is the sum of true positives and negatives (i.e. all
correctly classified instances) divided by the total number of
instances in the test set. A single measure of accuracy can be
artificially inflated due to the learnt model overfitting bias in

the dataset used for training. To overcome this, k-fold clas-
sification can be implemented [27]. This approach repeats
the process of training the model and testing the accuracy k
times each time with a different split of the data into training
and test data sets. The final accuracy using this method is
then the mean value generated from the k repeats.

4 Experiment

In this section, the experiments ran to evaluate the proposed
approach are presented. An overview of the experiment is
shown in Fig. 6. Details about each step follow.All the scripts
used in the approach are available at the paper’s website.6

6 http://www.zolotas.net/type-inference-sosym/.

123

http://www.zolotas.net/type-inference-sosym/

A. Zolotas et al.

To evaluate our approach, we applied it to a number of
randomly generated models, instances of publicly available
metamodels that were collected as part of the work presented
in [37]. The 10 metamodels selected are the same used in the
evaluation of our previous work [43]. For each of these meta-
models, we produced 10 random instances using the Crepe
model generator tool [36] (step 1© in Fig. 6) which uses a
genetic algorithm to produce random models. In the major-
ity of the cases, the Crepe random model generator had the
tendency to instantiate all the “0.. *” and “0.. 1” references
and containment relationships appeared in the metamodels.
This might be a bias in the experiment as features 2–5 are
relying on the unique appearance of references and contain-
ments: if a type of reference is not instantiated, then it is
not counted; in contrast, if it is instantiated at least once,
then it is counted. By injecting this type of noise, we create
cases like those presented in the example feature signatures
in Sect. 3.1 between two “Tiger” nodes that have different
signatures due to the absence of the “support” incoming rela-
tionship in one of them. To include noise in the signatures, in
this work we decided to create an extra set of randommodels
modifying the generator to be less keen in instantiating the
aforementioned relationships. This second set, consisting of
10 models for each of the metamodels, is called as “Sparse”
set while the original is called as “Normal” in this work. For
our approach, the values of the attributes of each node in
the example models were randomly selected, as these do not
affect the final feature signature of the element. We discuss
threats to validity introduced by using randomly generated
models instead of muddles in Sect. 5.6.

Having themodels generated,we then transform them into
muddles. A model-to-text (M2T) transformation was imple-
mented to transform instances of EMF models to GraphML
files that conform to the Muddles metamodel (step 2©).

These two steps (1© and 2©) could be skipped if there
was a portfolio of muddles available to test our approach
on. However, to our knowledge such a repository of flexible
models does not exist. A second approach, that of drawing
example muddles on our own to experiment with, was also
rejected because it could introduce bias to the process. We
decided to follow the two-step process instead firstly because
wewould be able to have a bigger number of testmuddles and
secondly because these muddles are randomly generated and
are not biased to fit our approach. Moreover, by introducing
the second set ofmodels (i.e. “Sparse”), we inject noise in the
feature signatures that works against the proposed approach.

After the generation of the muddles from the random
models, we extract the feature signature of each node. We
implemented a script that parses each muddle to collect the
information needed for each node (i.e. number of attributes,
unique outgoing and incoming references, children and par-
ents). By following this process, a text file containing a list
with signatures is created for each muddle (step 3©).

At this point, the types of all the nodes are known and
saved in the feature signatures list. However, in order to test
the proposed approachwe had to simulate the scenario where
some nodes were left untyped. For that reason, each feature
signature file is split into two sets (step 4©): the training set
which includes all the nodes whose type is known and will
be used to train the classification algorithm and the test set
which includes all the nodes left untyped and will be used to
test the prediction capabilities of the algorithm. Of course,
in this experiment all the nodes have types assigned to them
as the muddles were generated from typed models. Thus the
simulation of a realistic scenario was done by randomly sam-
pling the feature signatures lists and placing elements in the
training and testing sets. As done in previous work [43], we
picked 7 different sampling rates, from 30 to 90% (with a
step of 10%). A 30% sampling rate means that only 30%
of the nodes have a type assigned to them. In order to con-
form to the standard 10-fold cross-validation in the domain
of classifications algorithms, described in Sect. 3.2, we did
this random sampling 10 times for each of the sampling rates
for each example model, ending with 700 different couples
of training and test sets for each metamodel in the exper-
iment. The same process was done for both the “Normal”
and “Sparse” set of models. It is important to highlight that
each time the classification algorithm was trained using one
training set and was tested using the coupled test set. After
that, the algorithm was reset and trained/tested with the next
couple of sets. In contrast with the previous work [43], we
tried two different classification algorithms, CART (step 5a©)
and random forests (step 5b©). In addition, in order to check
if the number of trees used for the classification in random
forest affects the accuracy of the prediction we performed
the same experiment for 7 different values for the number of
trees variable: 1, 5, 10, 50, 250, 500 and 1000.

At the end of each train/test run, the success ratio was
calculated (step 6©). The success ratio (also referred as accu-
racy) is defined as the total number of correct predictions to
the total number of untyped nodes. In the next section, the
results of the experiments are presented.

5 Results and discussion

In this section, the results of the experiment are presented.
The raw results for all the experiments with plots and tables
not included in the paper can be found at the paper’s website.

As described in Sect. 4, the experiment can be split into
four sub-experiments based on 2 variables (see Table 3); the
type of classification algorithm (CART vs. RF) and the den-
sity of the models (“Normal” vs. “Sparse”). In Sects. 5.1 and
5.2, the raw results of running the experiment on both the
“Normal” and “Sparse” sets using the CART and RF algo-
rithms will be given. In Sect. 5.3, a comparison of the results

123

Type inference in flexible model-driven engineering using classification algorithms

Table 3 Experiments’ IDs

Normal Sparse

CART N-CART S-CART

Random Forest N-RF S-RF

for the CART versus RF and the “Normal” versus “Sparse”
experiments will be presented. The results of the experiments
on the importance of the variables used in the feature signa-
tures will be discussed in Sect. 5.4 followed by a qualitative
analysis and the threats to validity in the experiments.

Before going into the presentation and the discussion of
the results, we give a summary of the models used as input
in the experiments (see Table 4). The smallest of the meta-
models consists of only 2 types. The largest is the one that
describes Wordpress Content Management System websites
with 19 different types of classes. On average, the test meta-
models had 6.5 types with a median of 6. The number of
classes excludes the abstract classes in the metamodels as it
takes into account only those that can be instantiated in mod-
els. For each metamodel, 10 models were generated for the
“Normal” set and 10 different for the “Sparse” set. The sizes
of the smallest (Min) and the largest (Max) instance model
for each metamodel are shown in the respective columns of
Table 4. The average number of elements for the instances
of each metamodel is also given for both sets.

We also provide the values for a muddle drawing we
examined. This muddle was part of a side project and was
created before commencing thiswork. It was used to describe
requirements of a booking system. We provide this muddle
as an indication that the performance of the approach on the
synthetic muddles frommetamodels does not differ from the
that of applying it to real muddles.

Finally, Table 5 presents the results of randomly assigning
values to the untyped nodes. These values are provided for
comparison with the results of our approach. To obtain these
values for each model, we initially collected all the avail-
able types appearing in the model (i.e. the set of all the types
of the typed nodes). We then visited each untyped node and
assigned a type to it by picking one randomly from the afore-
mentioned set. When all the untyped nodes in a model had a
random type assigned, we compared the randomly assigned
value with the correct one, which was already stored before
the type deletion, to calculate the success ratio of the ran-
dom assignment. Each field in Table 5 denotes the average
success rate for each of the 100 models for each sampling
rate. It is important to mention that the sampling rate is not
important in the scenario of random type allocation. This is
because, random allocation does not require any training and
thus the information available in the model will not affect
its performance as is the case with the CART and RF. As
expected, the average accuracy across the same model is the
same regardless the sampling rate. We include the results for
all the sampling rates though to facilitate 1-to-1 comparison
with the accuracy values of the classification algorithms.

5.1 Quantitative analysis for CART

As discussed in Sect. 4, 10 random models were instantiated
from each of the metamodels. Seven different sampling rates
(30–90%) were applied to each of these models. The clas-
sification algorithms were run 10 times (10-fold) for each
sampling rate of each model. That sums up to 700 experi-
ments for each of the 10 metamodels (7,000 runs in total).
In this work, the exact same experiments were executed on
the “Sparse” set for 7 different values of the number of trees
(49,000 runs in total). The results are summarised in Tables 6
and 7, respectively.

Table 4 Data summary table Model name #Types Normal Sparse

Min Max Average #elements
in instances

Min Max Average #elements
in instances

Chess 2 17 26 21.3 18 33 25.5

Conference 4 30 61 42.5 21 48 36.7

Profesor 4 25 36 29.2 19 37 27.7

Zoo 5 47 73 57 22 35 26.2

Ant 6 53 78 65.3 39 77 61.1

Usecase 6 35 71 54.2 42 70 52

Bugzilla 7 21 56 39.9 10 30 21.4

BibTeX 8 56 106 78.8 66 122 92.9

Cobol 11 33 92 63.7 13 62 39.1

Wordpress 19 42 71 58.6 40 88 64.2

Muddle 20 105 105 105 – – –

123

A. Zolotas et al.

Table 5 Results summary table
for random assignment

Model name #Types Average accuracy for random assignment Avg.

30% 40% 50% 60% 70% 80% 90%

Chess 2 – 0.49 0.49 0.51 0.52 0.49 0.53 0.507

Profesor 4 0.41 0.42 0.40 0.41 0.41 0.45 0.38 0.411

Zoo 5 0.20 0.20 0.19 0.19 0.20 0.21 0.18 0.197

Ant 6 0.15 0.16 0.16 0.16 0.16 0.16 0.19 0.162

Conference 6 0.22 0.20 0.18 0.19 0.21 0.20 0.22 0.202

Usecase 6 0.18 0.16 0.15 0.16 0.17 0.16 0.19 0.167

Bugzilla 7 0.14 0.14 0.13 0.14 0.15 0.13 0.14 0.138

BibTeX 8 0.13 0.12 0.12 0.13 0.12 0.12 0.10 0.122

Cobol 11 0.09 0.09 0.09 0.09 0.10 0.09 0.08 0.092

Wordpress 19 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.053

Avg. 0.18 0.20 0.20 0.20 0.21 0.21 0.21

Table 6 Results summary table
for N-CART

Model name #Types Average accuracy for different sampling rates (N-CART) Avg. Cor. 1

30% 40% 50% 60% 70% 80% 90%

Chess 2 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

Profesor 4 0.97 0.98 0.98 0.99 0.99 1.00 1.00 0.985 1

Zoo 5 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.990 0.99

Ant 6 0.66 0.69 0.72 0.74 0.74 0.73 0.76 0.723 0.89

Conference 6 0.87 0.91 0.93 0.96 0.96 0.97 0.99 0.940 1

Usecase 6 0.74 0.76 0.80 0.81 0.80 0.80 0.78 0.783 0.5

Bugzilla 7 0.46 0.52 0.55 0.55 0.55 0.55 0.55 0.531 0.75

BibTeX 8 0.66 0.67 0.67 0.68 0.66 0.67 0.69 0.673 0.46

Cobol 11 0.59 0.63 0.68 0.71 0.75 0.75 0.74 0.692 0.89

Wordpress 19 0.44 0.53 0.63 0.69 0.75 0.77 0.81 0.658 1

Muddle 20 0.55 0.60 0.63 0.65 0.66 0.66 0.66 0.630 0.89

Avg. 0.70 0.77 0.79 0.81 0.82 0.82 0.83

Cor. 2 −0.88 − 0.90 − 0.89 − 0.87 − 0.74 − 0.73 − 0.72

Table 7 Results summary table
for S-CART

Model name #Types Average accuracy for different sampling rates (S-CART) Avg. Cor. 1

30% 40% 50% 60% 70% 80% 90%

Chess 2 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

Conference 4 0.87 0.91 0.93 0.94 0.96 0.97 0.97 0.936 0.95

Profesor 4 0.85 0.90 0.93 0.95 0.95 0.96 0.94 0.926 0.82

Zoo 5 0.72 0.82 0.88 0.93 0.94 0.99 0.99 0.896 0.95

Ant 6 0.71 0.74 0.77 0.78 0.78 0.80 0.79 0.767 0.91

Usecase 6 0.74 0.79 0.81 0.82 0.81 0.83 0.83 0.804 0.86

Bugzilla 7 0.53 0.57 0.61 0.62 0.63 0.67 0.56 0.599 0.50

BibTeX 8 0.67 0.68 0.67 0.67 0.68 0.67 0.69 0.676 0.49

Cobol 11 0.44 0.51 0.54 0.59 0.62 0.64 0.68 0.574 0.99

Wordpress 19 0.41 0.51 0.57 0.60 0.64 0.66 0.69 0.583 0.96

Avg. 0.59 0.74 0.77 0.79 0.80 0.82 0.81

Cor. 2 −0.17 − 0.83 − 0.81 − 0.79 − 0.75 − 0.74 − 0.63

123

Type inference in flexible model-driven engineering using classification algorithms

In Tables 6 and 7, the average accuracy is given for all the
models of each metamodel. The results are separated based
on the sampling rate that was used each time. For instance,
the highlighted value 0.71 in Table 6 indicates that for the
Cobol metamodel, on average (between the 10 models and
10 sampling simulations), 71%of themissing typeswere suc-
cessfully predicted, using 70% sampling rate. The respective
value for the “Sparse” case was 62% (highlighted in Table 7)

Considering the raw values of both tables, the average
accuracy varied from 53.7 to 100% for the “Normal” dataset
and from 57.4 to 100% for the “Sparse” dataset. Comparing
with the random allocation baseline provided in Table 5, we
can see that in any model and regardless the sampling rate
our approach performed significantly better. By checking the
values for the “Normal” experiments, there are some small
models (i.e. their metamodel has fewer than 5 types) that
the predictive mechanism performs quite well (success ratio
of 85–100%). There are cases where the scores are higher
than 97% even for samples as low as 30 or 40%. The same
outcome is noticed at the smaller metamodels (fewer than
4 types) of the “Sparse” experiments. In both, the average
accuracy drops (some times significantly) formodels ofmore
types. However, these values are affected by the fact that
in the relatively large metamodels, the prediction scores are
lower in small sampling rates, but they keep increasing as
the sampling rate (which equals to the amount of knowledge
that the CART algorithm is trained with) is increased.

These two observations lead us investigate the following
questions:

Q1: How strong is the dependency between the sampling
rate and the success score?

Q2: How strong is the dependency between the number
of types in a metamodel (size of metamodel) and the success
score?

The answers to these questions are given by the values of
the correlation measures that are calculated in column “Cor.
1” and row “Cor. 2”, respectively.

As expected, the correlation coefficient values for Cor. 1
indicate a strong or perfect dependency for all the metamod-
els, except two (i.e. BibTeX and Usecase) for the “Normal”
and BibTeX and Bugzilla for the “Sparse” experiments.
Regarding the second correlation (Cor. 2), we observe a
strong (negative) correlation between the number of types
in a metamodel and the success score for some samples
in the “Normal” experiments and for all (except 30%) for
the “Sparse” experiments. What it is of interest is that in
both experiments the correlation is dropping steadily as the
sampling rates are increasing. In some cases (above 70%
sampling rate), in the “Normal” experiments the correlation
stops being significant.One can extract the following 3 obser-
vations by checking these trends:

1. Fewer types lead to better results.

2. Fewer untyped nodes result to higher accuracy of the
approach.

3. As the sampling rate increases, the effect of the second
observation becomes less strong.

The approach presented here was tested (see Table 4) on
models that have on average from 21 to 79 elements. These
are “human-sized” models and not “super-sized” models of
thousands of elements that would probably lead to better
training with better results but are not considered realistic
in scenarios where flexible MDE is used. We need to high-
light that in our approach and the experiments, the learning
algorithm is reset every time a new model is assessed, thus
the results presented here are based on the algorithm trained
each time on one “human-sized” model. It then starts from
the beginning without any prior knowledge.

An experiment was conducted to explore if the size of the
model affects the prediction accuracy. Two line graphs for
the BibTeX and the Cobol metamodels are provided in Fig. 7
(the rest can be found on the paper’s website).7 These graphs
show the accuracy for the 50% sampling of the 10 models of
varying size for each of these two metamodels. As one can
see, the accuracy is fluctuating and there are cases where
biggest models score lower than smaller ones. Moreover,
models of almost the same size have significantly different
prediction accuracy. For example, in the Cobol metamodel
(see Fig. 7b) two models of almost the same size (34 vs.
36 nodes) have 15% difference in the prediction accuracy
(59–44%). What is interesting is that the smaller one have
better accuracy. A possible explanation for this is the fact
that the number of the elements is not the only variable that
is changing when models grow in size. In reality, when new
elements are added, more references (and containments) are
created as well, which affects 4 out of the 5 variables in the
experiment. Thus, when new nodes are added, the signatures
of the already existing nodes are changing. As a result, the
accuracy of the mechanism is affected not only by the addi-
tion of new elements (so, there is more training data for the
approach) but from the fact that the features are changing as
well, which is a very important (if not the most important)
factor that affects the performance of the approach.

5.2 Quantitative analysis for RF

The results of running the experiments using the random
forest algorithm as the prediction mechanism for both the
“Normal” and “Sparse” experiments are summarised in
Tables 8 and 9, respectively. In the paper, we only include
the results where the algorithm was trained using 1, 50 and
1000 trees. The data for all the values can be found at the
paper’s website.

7 http://www.zolotas.net/type-inference-sosym/.

123

http://www.zolotas.net/type-inference-sosym/

A. Zolotas et al.

60 70 80 90 100

0.
60

0.
62

0.
64

0.
66

0.
68

0.
70

Number of Elements

S
uc

ce
ss

 S
co

re

Success score for different number
of elements (BibTeX)

(a)

40 50 60 70 80 90

0.
5

0.
6

0.
7

0.
8

Number of Elements

S
uc

ce
ss

 S
co

re

Success score for different number
of elements (Cobol)

(b)

Fig. 7 Accuracy for different model sizes. a BibTeX—50% sampling, b Cobol—50% sampling

Table 8 Results summary table
for N-RF

Model name #Types #Trees Average accuracy for different sampling rates (N-RF) Avg. Cor. 1

30% 40% 50% 60% 70% 80% 90%

Chess 2 1 – 0.96 0.97 0.98 0.99 0.96 0.98 0.973 0.35

50 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

1000 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

Conference 4 1 0.71 0.78 0.78 0.81 0.82 0.82 0.85 0.796 0.93

50 0.82 0.85 0.87 0.88 0.88 0.89 0.90 0.870 0.94

1000 0.81 0.86 0.87 0.88 0.89 0.90 0.93 0.877 0.95

Profesor 4 1 0.85 0.87 0.91 0.90 0.91 0.92 0.93 0.899 0.92

50 0.95 0.97 0.97 0.97 0.97 0.97 0.99 0.970 0.80

1000 0.95 0.98 0.96 0.98 0.98 0.98 0.99 0.974 0.77

Zoo 5 1 0.61 0.64 0.64 0.66 0.73 0.75 0.73 0.680 0.93

50 0.88 0.91 0.93 0.95 0.97 0.97 0.98 0.941 0.97

1000 0.89 0.92 0.95 0.96 0.98 0.98 0.99 0.953 0.95

Ant 6 1 0.57 0.58 0.64 0.64 0.63 0.65 0.68 0.627 0.91

50 0.67 0.68 0.71 0.71 0.72 0.70 0.72 0.701 0.79

1000 0.67 0.69 0.71 0.71 0.72 0.71 0.74 0.707 0.91

Usecase 6 1 0.60 0.62 0.66 0.69 0.71 0.71 0.72 0.673 0.96

50 0.74 0.75 0.76 0.78 0.78 0.76 0.75 0.760 0.35

1000 0.75 0.75 0.77 0.79 0.78 0.77 0.76 0.767 0.41

Bugzilla 7 1 0.38 0.39 0.39 0.39 0.38 0.42 0.41 0.394 0.71

50 0.45 0.43 0.46 0.46 0.43 0.44 0.45 0.446 −0.06

1000 0.46 0.43 0.47 0.47 0.44 0.45 0.45 0.453 −0.10

BibTeX 8 1 0.56 0.57 0.58 0.57 0.57 0.60 0.57 0.574 0.49

50 0.63 0.64 0.64 0.63 0.63 0.64 0.64 0.636 0.29

1000 0.63 0.63 0.64 0.64 0.64 0.64 0.64 0.637 0.79

Cobol 11 1 0.43 0.49 0.53 0.55 0.55 0.61 0.60 0.537 0.95

50 0.58 0.62 0.66 0.69 0.70 0.71 0.74 0.671 0.97

1000 0.59 0.63 0.67 0.69 0.70 0.71 0.75 0.677 0.97

123

Type inference in flexible model-driven engineering using classification algorithms

Table 8 continued Model name #Types #Trees Average accuracy for different sampling rates (N-RF) Avg. Cor. 1

30% 40% 50% 60% 70% 80% 90%

Wordpress 19 1 0.29 0.36 0.40 0.42 0.45 0.47 0.46 0.407 0.94

50 0.45 0.55 0.62 0.66 0.69 0.71 0.76 0.634 0.97

1000 0.48 0.56 0.62 0.67 0.70 0.71 0.77 0.644 0.98

Muddle 20 1 0.44 0.45 0.45 0.48 0.46 0.51 0.52 0.473 0.91

50 0.48 0.54 0.55 0.56 0.58 0.60 0.58 0.556 0.89

1000 0.50 0.56 0.55 0.58 0.59 0.60 0.56 0.563 0.70

Avg. 0.58 0.70 0.73 0.74 0.74 0.75 0.76

Table 9 Results summary table
for S-RF

Model name #Types #Trees Average accuracy for different sampling rates (S-RF) Avg. Cor. 1

30% 40% 50% 60% 70% 80% 90%

Chess 2 1 – 0.98 0.98 0.98 0.96 0.98 0.95 0.972 −0.68

50 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

1000 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

Conference 4 1 0.77 0.80 0.83 0.81 0.82 0.85 0.86 0.820 0.91

50 0.83 0.85 0.87 0.86 0.87 0.88 0.88 0.863 0.90

1000 0.84 0.86 0.87 0.86 0.87 0.89 0.87 0.866 0.77

Profesor 4 1 0.75 0.77 0.84 0.86 0.87 0.87 0.87 0.833 0.89

50 0.87 0.90 0.92 0.94 0.94 0.95 0.95 0.924 0.93

1000 0.88 0.90 0.92 0.94 0.94 0.95 0.95 0.926 0.94

Zoo 5 1 0.48 0.56 0.60 0.58 0.59 0.63 0.66 0.586 0.91

50 0.64 0.70 0.77 0.78 0.79 0.85 0.88 0.773 0.97

1000 0.65 0.71 0.77 0.79 0.80 0.85 0.88 0.779 0.98

Ant 6 1 0.52 0.54 0.60 0.62 0.63 0.64 0.67 0.603 0.96

50 0.64 0.69 0.72 0.75 0.75 0.77 0.78 0.729 0.95

1000 0.66 0.71 0.74 0.75 0.75 0.77 0.78 0.737 0.93

Usecase 6 1 0.59 0.63 0.67 0.69 0.71 0.75 0.76 0.686 0.99

50 0.71 0.75 0.78 0.80 0.80 0.84 0.82 0.786 0.93

1000 0.72 0.76 0.78 0.80 0.80 0.82 0.83 0.787 0.96

Bugzilla 7 1 0.47 0.48 0.53 0.53 0.53 0.58 0.48 0.514 0.45

50 0.55 0.57 0.60 0.60 0.59 0.65 0.55 0.587 0.33

1000 0.55 0.57 0.59 0.61 0.59 0.64 0.55 0.586 0.33

BibTeX 8 1 0.59 0.59 0.59 0.58 0.59 0.61 0.59 0.591 0.34

50 0.63 0.64 0.64 0.64 0.63 0.63 0.64 0.636 0.00

1000 0.63 0.65 0.64 0.64 0.63 0.64 0.65 0.640 0.28

Cobol 11 1 0.32 0.39 0.39 0.45 0.46 0.48 0.47 0.423 0.93

50 0.45 0.51 0.53 0.58 0.61 0.63 0.63 0.563 0.97

1000 0.45 0.51 0.55 0.58 0.62 0.65 0.64 0.571 0.97

Wordpress 19 1 0.23 0.30 0.33 0.34 0.40 0.38 0.43 0.344 0.96

50 0.39 0.47 0.52 0.52 0.56 0.60 0.62 0.526 0.97

1000 0.40 0.48 0.52 0.54 0.58 0.59 0.63 0.534 0.97

Avg. 0.54 0.68 0.70 0.71 0.72 0.75 0.74

123

A. Zolotas et al.

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

Success score for different number of trees and
sampling rates (Cobol, Random Forests, Normal)

Sampling %
30
40
50
60
70
80
90

(a)

0.
3

0.
4

0.
5

0.
6

0.
7

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

Success score for different number of trees and
sampling rates (Wordpress, Random Forests, Normal)

Sampling %
30
40
50
60
70
80
90

(b)

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

Success score for different number of trees and
 sampling rates (Cobol, Random Forests, Sparse)

Sampling %
30
40
50
60
70
80
90

(c)

0.
3

0.
4

0.
5

0.
6

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

Success score for different number of trees and
 sampling rates (Wordpress, Random Forests, Sparse)

Sampling %
30
40
50
60
70
80
90

(d)

Fig. 8 Accuracy for different sampling rates and number of trees. a Cobol—Normal, b Wordpress—Normal, c Cobol—Sparse, d Wordpress—
Sparse

The random forest mechanism has the same prediction
characteristics identified in the CART experiments: for mod-
els with few types the accuracy is higher. It drops as the
number of types is increased. The same pattern occurs when
it comes to the sampling rate: the higher the number of typed
elements in the graph, the best the prediction. This behaviour
is identical for the “Sparse” set as well. More specifically, for
the “Normal” set the accuracy prediction varies from 87.0 to
100.0% for models with less than 5 types (based on the 50
trees classification). The same values for the “Sparse” set are
77.3–100.0%. The lowest prediction value in the “Normal”
set is for the Bugzilla metamodel, with 44.6% of the untyped
nodes predicted correctly. The same value in the “Sparse”
set is 58.7%. As with the CART approach, RF also outper-

forms the random allocation approach, the results of which
are presented in Table 5.

Regarding the experiments related to the number of trees
used and how this affects the prediction results it is clear
from both the tables that the number of trees created as part
of the random forest generation affects the accuracy: more
trees lead to better accuracy. However, by analysing all the
data for the 7 different tree values (1, 5, 10, 50, 250, 500,
1000) we identified that there is a point after which there
is not significant improvement in the prediction. To make
this more clear, we present the line graphs for the prediction
accuracy based on the number of trees used, for 2 different
models of the experiment (Cobol and Wordpress), for both
the “Normal” set and the “Sparse” set.

123

Type inference in flexible model-driven engineering using classification algorithms

Table 10 Accuracy difference
trends between “Normal” and
“Sparse” experiments

Model Name # of “*” Relationships
out of total

Difference from
N-CART to S-CART

Difference from
N-RF to S-RF (50 trees)

Ant 6/6 ↗ ∼
BibTeX 0/1 ∼ ∼
Bugzilla 6/6 ↗ ↗
Chess 1/1 ∼ ∼
Cobol 6/13 ↘ ↘
Conference 2/6 ∼ ∼
Profesor 3/5 ↘ ↘
Usecase 7/7 ∼ ∼
Wordpress 32/33 ↘ ↘
Zoo 2/3 ↘ ↘

As shown in Fig. 8, from 1 to 50 trees there is a rapid
increase in the predictive ability of the RFs generated.
After 50 trees, the accuracy does not improve any more but
the computation needed to generate the ensemble continues
to increase. This pattern of diminishing returns is typical
when increasing the number of trees in a RF. Given the
common occurrence of convergence in the accuracy across
multiple metamodels, these results would suggest that if
deploying RF as the classification algorithm for type infer-
ence, 50 is a suitable parameter setting.

5.3 Comparison

5.3.1 Normal versus Sparse

In this experiment, we adjusted the random model genera-
tor to produce less dense models by minimising the “*” or
“0…1” references and containments instantiated. We sum-
marise the results of the comparison in Table 10. In the table,
the second column presents the number of “*” or “0…1” ref-
erences in each model out of the total references. The third
column shows the trend in the prediction accuracy between
the “Normal” and the “Sparse” set in CART. For example,
in the Ant metamodel the average accuracy was higher (↗)
in the “Sparse” set than the “Normal” set. In the same man-
ner, the last column hosts the trend for the random forests
equivalent.

As one can see from the table, in 9 cases the accuracy
wasn’t affected at all, while in 8 others the accuracy dropped,
sometimes significantly. There were three cases where the
accuracy was increased. There are models which have all
their relationships marked as “*” (e.g. Bugzilla, Usecase,
Wordpress) and have different trends in their prediction
scores (↗, ∼, ↘, respectively). That does not allow us to
reach a definitive conclusion if the density of the models
affects the prediction accuracy.

In addition, we believe that the following, unavoidable,
side effect of the “Sparse” model generation also affects the
results: the elements that are created only through one “*”
relationship will be instantiated less times in the “Sparse”
experiment. If these elements, on their turn, are responsible
to instantiate other types that are onlyhostedby them, then the
latter have significantly decreased chances in appearing in the
set. For example, in a naivemodel with 3 types (Grandparent,
Parent, Children) with 2 “*” relationships (Grandparent -*-
> Parent -*-> Children), the “Sparse” set will have fewer
“Parent” nodes and even less (maybe 0) “Children” nodes
than the “Normal” set. In the scenario, where the “Children”
node is a distinctive one, and the prediction algorithm has
high accuracy in predicting this specific type, the lack of
presence of this type in the model will be the reason why the
total average accuracy is dropped and not the fact that the
model is less dense (and thus the feature signatures of the
“Grandparent” and “Parent” nodes were affected).

Finally, as mentioned in Sect. 3.2, CART and RF dynam-
ically pick each time the feature that is distinctive among the
different types. Thus, it is possible that between two types
that have one of their features affected by the noise injec-
tion (e.g. F2), the algorithm to pick any other from the rest
4 features (i.e. F1, F3, F4 or F5) to differentiate them. This
way, the noise injection has no effect in the accuracy of the
prediction mechanism.

5.3.2 CART versus RF

By comparing the accuracy of RF and CART given the same
metamodel and sampling rate, our results show that the accu-
racy of our implementation of RF is at best equivalent to
CART and often worse (see Table 11 for the trends in the
average scores for each metamodel). This was an unexpected
outcome for the study, given that RF typically outperform
CART and more generally that ensembles of classifiers typ-
ically outperform individual classifiers [10].

123

A. Zolotas et al.

Table 11 Accuracy difference trends between CART and RF

Model name Difference from
N-CART to N-RF

Difference from S-CART
to S-RF (50 trees)

Ant ∼ ↘
BibTeX ↘ ↘
Bugzilla ↗ ∼
Chess ∼ ∼
Cobol ∼ ∼
Conference ↘ ↘
Profesor ∼ ∼
Usecase ∼ ∼
Wordpress ↘ ↘
Zoo ∼ ↘

Our expectation is that this result has occurred due to the
reduction in features used by each tree in the RF. By default,
the randomForest package used chooses

√
(p) where p is

the number of features in the input. Given that our feature
signature contains only 5 features, the package chose only 2
features to train each tree in the ensemble potentially harming
the accuracy achievable by the resultant models. This default
behaviour of RF does not allow it to outperform CARTwhen
datasets have restricted number of features as is the case in
our approach.Apossible solution thatwould help not onlyRF
perform better but CART as well is the introduction of new,
extra features on top of those five presented in this work. Plan
for future work is described in Sect. 7. Furthermore, consid-
ering the high accuracy of CART on almost all metamodels
(particularly those with 6 or less types) this may also have
occurred because CART is able to achieve an upper bound
on the accuracy achievable. Therefore, the extra predictive
ability of RF may become more apparent if we increased
the number of features in our feature signature, removed the
sampling of features used by each tree in a RF or increased
the complexity of the metamodels by including more types.
However, assuming the metamodels tested are representative
of those this method may be applied to, we conclude these
results support our decision in the previous study that for this
application to type inference CART is both sufficiently accu-
rate and preferable tomore complex classification algorithms
due to its interpretable output.

5.4 Variables importance

The importance of each variable is a value that signifies how
important that variable is in classifying the elements of the
test set. In experiments with large sets of features (variables)
such a process is important as it helps eliminate those that do
not play a significant (or any) role in creating the split deci-
sion nodes in each tree and thus reduce the time needed for

training. As, to the best of our knowledge, this is the first time
classification algorithms are used for type inference, and it
is of interest to assess if any of the 5 proposed features is
redundant and/or which features are more important in this
domain. To measure the importance of different variables in
the experimentswe used the built-in functions available in the
same packages (rpart and randomForest) used for the classi-
fication. A description of how the calculation is performed
follows.

As discussed in Sect. 3.2, CART calculates the split per-
formance of all the features (variables) available and selects
the one that has the best goodness of split to place it as a
condition on a node. The selected feature is called primary
feature for the node [40]. However, sometimes theremight be
more than one features that would produce the identical split-
ting with the one selected to appear on the node (primary).
These “clone” variables are called surrogate variables for
the node [40]. The rpart package (responsible for classifying
elements based on the CART algorithm in our approach) cal-
culates the importance of each variable by accumulating the
goodness of split measures of each variable whenever it par-
ticipated as a primary or a surrogate variable in a node [33].
The final sums are then scaled to 100 to appear as percent-
ages.

Regarding RFs [3], the importance of each variable is cal-
culated by summing up the impurity decreases [24] for all the
nodes that the variable participated. This sum is then divided
by the total number of trees in the forest [24]. The Gini index
is used as impurity decreases measure (also referred as the
Mean Decrease Gini [24]) in the randomForest package used
for classification in this work [22].

A summaryof the results for the four different experiments
is shown in the pie charts of Fig. 9. These values are the
average importance of different variables for all the runs of
the experiments expressed as percentages. We also include a
table with the variable importance values of each feature for
each metamodel in the N-CART experiments, in Table 12.
The tables for the rest 3 experiments (S-CART, N-RF and
S-RF) are available at the paper’s website.

The pie charts suggest that in the 4 different experiments,
the first feature (F1), that of Number of Attributes, is the one
that is important in creating the decision nodes in the clas-
sification trees. The second most important is either feature
2 (Number of Incoming References) or feature 5 (Number of
Parents). The last 2 positions occupy feature 3 or 4 (Number
of Outgoing or Number of Children, respectively).

The fact that F1 is the most important feature is an
expected outcome. This is because in all the metamodels
used, there are types that have attributes assigned to them,
thus at some point this becomes a distinctive point between
some types. In contrast, there are metamodels which have
no containment relationships or references at all. Thus this
specific feature value (i.e. F2 and F3 if there are no refer-

123

Type inference in flexible model-driven engineering using classification algorithms

F1 37%

F2 21%

F3 12%

F4 12%

F5 18%

Variables Importance (CART, Normal)

(a)

F1 37%

F2 17%

F3 11%

F4 14%

F5 20%

Variables Importance (CART, Sparse)

(b)

F1 38%

F2 24%

F3 12%

F4 9%

F5 18%

Variables Importance (RF, Normal)

(c)

F1 40%

F2 18%

F3 11%

F4 11%

F5 20%

Variables Importance (RF, Sparse)

(d)

Fig. 9 Variables importance. a CART—Normal, b CART—Sparse, c RF—Normal, d RF—Sparse

Table 12 Variable importance table CART normal

Model name F1 F2 F3 F4 F5

Ant 17.20 9.58 6.76 3.08 6.97

BibTeX 21.96 0.00 0.00 12.02 13.24

Bugzilla 10.69 5.37 0.00 4.81 5.38

Chess 6.12 0.00 0.00 0.92 6.10

Cobol 12.83 12.03 8.05 4.55 7.44

Conference 8.04 8.76 0.29 7.51 7.36

Profesor 7.64 1.99 1.84 0.66 6.43

Usecase 7.41 10.99 11.74 5.57 5.94

Wordpress 15.81 13.57 7.75 0.39 2.61

Zoo 17.29 9.85 3.85 0.00 0.00

ences, F4 and F5 if there are no containments) is always 0
between all elements. This way features 2 to 4 are sometimes
absolutely ignored and thus their average importance value
shown in the pie is decreased. For example, as is shown in
Table 12, in the “Chess” metamodel, which has no reference
relationships, the values of F2 and F3 are 0.

5.5 Qualitative analysis

We now examine the results from a qualitative perspective in
order to identify patterns that may occur in the models that
affect the prediction accuracy.

By assessing the Bugzilla metamodel, we found out that
all the wrong predictions were done among four classes that
were extending the same abstract superclass. More specif-

123

A. Zolotas et al.

ically, the types DependsOn, Keywords, Blocks and CC
(which extend the same class “StringElt”) were all identified
as beingof the same type, the onewith the greatest presence in
the training data. By looking at the metamodel, we identified
that these types follow the structure of modelling inheritance
with no concrete differentiating characteristics [26] (i.e. no
differentiating point with the parent class as they have no
extra attributes, references or containment relations assigned
to them). As a result, the constructed feature signature is
identical for all of the four types and thus the classification
algorithm is unable to find a distinctive characteristic to split
them into different classes/leaves.

A similar behaviour was also discovered in the BibTeX
metamodel; the types had one differentiating pointwhichwas
of the same category (i.e. an extra attribute each). Again, the
feature signature was identical.

This behaviour is one of the reasons why the results are
not getting close to the maximum possible value (that of
100% prediction accuracy) when the training set is high
(90%): there are some cases like those described abovewhere
even the language engineer would not be able to identify the
intended type of an untyped node as some types are not differ-
entiated. A second reason that explains why the prediction is
not maximised even when high training sets are used, which
is also related with the first reason, is the number and the
type of the features used in the proposed approach. These
features are not able to find differences between nodes that
have the same attributes and incoming/outgoing references
or containments.

A way to address this problem and improve the prediction
accuracy could be the introduction of other features, atop the
five used in this study, which are calculated based on other
characteristics that are not always the same in such situations.
In [44], four features that are based on concrete syntax are
proposed. Combining these featureswith the five proposed in
this workmight help in the direction of tackling the problems
appearing in the aforementioned cases. In addition, includ-
ing string similarity measurements in the prediction (like
checking the name of the extra added attribute in the BibTeX
example) will help, too. Finally, in a usual flexible modelling
approach, a draft metamodel that explains the current con-
cepts in the example models might already exists. This draft
metamodel includes some constraints (e.g, multiplicities of
references) that can be exploited to improve type inference
in scenarios like the aforementioned where types have no
differentiation point. Consider for example the following sce-
nario. A draft metamodel which was inferred in one of the
iterations of the Bugzilla metamodel development using a
flexible MDE approach contained a reference from “Bug” to
“Keyword” with multiplicity of “1”. If in the example model,
a “Bug” node is already connected with a “Keyword” node,
then all the other remaining nodes connected with the same
“Bug” node could not be of type “Keyword”. In contrast with

our approach that mixes the types “Keyword” and “Block” as
they have no differentiation characteristics, a “Block” node
that has been left untyped could not be incorrectly been pre-
dicted as of type “Keyword” following the new suggested
approach. Such an approach that is based on Constraint Pro-
gramming principles has been implemented in [42]. Plans
in the direction of combining the above solutions with the
proposed approach are discussed in Sect. 7.

However, that behaviour is not always undesirable: more
specifically if the goal is that of metamodel inference,
this behaviour will help in identifying possible unnecessary
inheritance introduced in the language. Both algorithms used
in this approach have built-in mechanisms to group classes/-
types that are very similar by using the notion of “buckets”
in the leaf nodes.

5.6 Threats to validity

The data used to evaluate the performance of the proposed
approach were generated using a random model generator.
The first issue of that is that we are using models which
conform to a metamodel, and not real muddles. We wanted
to evaluate the feasibility of the proposed approach for type
inference first before carrying out more detailed experiments
onuser-createdflexiblemodels.We followed this approachof
synthetic muddles creation for pragmatic reasons: firstly, we
have a model generator that uses genetic algorithms to pro-
duce randommodels (no randommuddle generator currently
exists) and secondly, a library of example models created as
part of a flexible MDE approach does not exist. It is not pos-
sible to be sure if the synthetic muddles created as part of
this approach are representative examples of real muddles
because flexible modelling is a relatively new technology
which still positions itself in the MDE world. We do not
believe that the use of models instead of muddles will have
significant impact on the experimental results as the accuracy
of our classification algorithm depends only on the features
identified in Table 2; randomly generated models and mud-
dleswill not be observably different in termsof these features.

To support this argument, we ran the prediction on a real
muddle and the results suggest that the performance of the
predictions is not affected by this fact. However, other user-
defined models and muddles may differ—and as such our
future work will involve conducting experiments with more
user-created muddles. In addition, we introduced noise in
four out of five features to include structural inconsisten-
cies in our data. The results of running the approach on
this “Sparse” set revealed that the performance is slightly
reduced.

A second issue related to the use of the this generator
is that although it generates random models, the number of
attributes that each node has is always the same for nodes of
the same type. However, this does not always work in favour

123

Type inference in flexible model-driven engineering using classification algorithms

of our approach, because in cases where two different types
have the same number of attributes, all instanceswill have the
same value in the attributes feature in their signature. Awork-
around for this would be the injection of noise in the number
of attributes that each node has by running a post-generation
script that randomly deletes attributes from elements. Plans
for future work are described in Sect. 7.

In the experiment, 10 metamodels were used in total from
which a number ofmuddleswere generated. Themetamodels
were picked randomly from a zoo of 500metamodels with no
specific criterion other than that of describing a domain that
most of the readers are familiar with. The number of types
in these varied from 2 up to 19 as shown in Table 4. It would
be of interest to experiment with even larger metamodels,
although our experience with working on muddles suggests
that having a flexiblemodel withmore than 20 different types
is a marginally realistic scenario.

Finally, the number of instances that the experiment was
ran on is sufficient as it complies with the standard 10-fold
methodology used in the domain of classification algorithms.

6 Related work

Flexible modelling is one of the methods proposed in the lit-
erature for tackling the symmetry of ignorance gap [7] inDSL
development, i.e. the fact that domain experts do not usually
possess language development expertise, and language engi-
neers do not have domain knowledge.

One of the common activities of flexible modelling is the
inference of a modelling language from a set of examples.
This language can be textual or graphical. Roth et al. [30]
propose an approach to the bottom-up development of textual
DSLs. More particularly, their tool can infer a grammar from
a set of textual examples. These examples are snippets of free
text entered in a dedicated text editor. The grammar inference
is based on regular expressions and lexical analysis.

Cuadrado et al. [6] propose an interactive and tool-
supported approach to metamodel inference for DSLs. Their
main goal is to actively engage the domain experts dur-
ing the DSL development process. Domain experts can use
either sketching tools such as Dia8 or a dedicated textual
notation to specify model fragments, which capture domain
knowledge. Such fragments consist of untyped nodes and
relations.Once a fragment is defined, a language engineer can
enhance its semantics by annotating it with additional infor-
mation (e.g. typing information). Semantically enhanced
model fragments can then be consumed by the provided tool
in order to infer a metamodel.

A similar approach is the MLCBD process [5]. This pro-
cess consists of three phases. First, domain experts use shapes

8 http://projects.gnome.org/dia/.

and connectors to define model examples. These examples
are then annotated with domain-specific information, and
finally these annotated examples guide the metamodel infer-
ence.

The two aforementioned approaches to metamodel infer-
ence rely on simple rectangular shapes and connectors
between them for expressing model fragments. Kuhrmann
[20] andWuest et al. [39] proposemoreflexible approaches in
whichmodel fragments can be expressed in free-form shapes.
Type annotations can be assigned to the various elements
of the model fragment, and a metamodel can be inferred
from the annotated example. The novelty of these approaches
lies in sketch recognition algorithms, which assign typing
information to new free-form shapes by matching them to
annotated ones.

Metamodel inference is not used only in the context
of flexible modelling. The MARS tool [14] supports meta-
model inference from a set of models after migrating or
losing their metamodel. This tool relies on a transforma-
tion engine, which converts models expressed in XMI to a
domain-specific representation, and on an inference engine,
which uses grammar inference techniques on the new repre-
sentation in order to infer the metamodel.

The main goal of the aforementioned approaches is quite
different from ours. Their goal is to infer a metamodel from a
set of model fragments, which are assumed to be correct and
complete. However, in our work we assume that model frag-
ments in the context of flexible modelling can be incorrect
and incomplete, since their correctness and completeness is
not enforced by a modelling tool. Therefore, our approach
is complementary to the aforementioned approaches. It can
support the user during the definition of model fragments,
and once correct and complete fragments are defined meta-
models can be inferred automatically.

Work of partial modelling is also relevant to our work.
In the literature there are different definitions of model
partiality. In [8], a partial model is a system model, in
which uncertainty about an aspect of the system is captured
explicitly. In this context, “uncertainty”means “multiple pos-
sibilities”; for example a model element may be present or
not. In contrast to [8], in our work model partiality means
that a model fragment contains incomplete information. For
example element types can be missing. Our notion of model
partiality is close to the one of [29,31].

Rabbi et al. [29] propose a diagrammatic approach to
the completion of partial models based on category theory.
Similarly, in [31] the authors use constraint logic program-
ming (CLP) to assign appropriate values for every missing
property in the partial model so that it satisfies the struc-
tural requirements imposed by the metamodel. The aim of
both approaches is to provide model completion in order to
reduce modelling effort in the same manner that code com-
pletion provided by programming language editors reduces

123

http://projects.gnome.org/dia/

A. Zolotas et al.

coding effort. Moreover, these approaches rely on a meta-
model and they are not directly applicable in the context of
flexible modelling.

Antkiewicz et al. [1] propose an approach to partial model
completion based on theClafer [2] language,which is amod-
elling language with first class support for feature modelling.
The main aim of this approach is to use model examples for
improving domain comprehension. In this work, partialmod-
els are expressed inClafer and then an inference engine uses a
metamodel and the initial set of examples in order to derive a
complete model. Compared to this work, our approach does
not rely on a metamodel. Moreover, our approach is more
generic, since it does not depend on a dedicated modelling
environment.

In the context of MDE, model examples are used not
only for metamodel inference but also for otherMDE-related
activities. Faunes et al. [9] propose an approach for infer-
ring metamodel well-formedness rules from sets of valid and
invalid models. The rule inference is based on genetic pro-
gramming, and the derived rules are in the form of OCL
invariants.

Furthermore, model transformation by-example (MTBE)
approaches (e.g. [17,21,32,34]) have been proposed for
automatically deriving model transformation rules. These
approaches rely on user-defined examples of input and out-
put models, and the inference is based on various techniques
such as metaheuristics, model comparison and induction. A
literature survey, which summarises the research in this area,
is provided in [16].

7 Conclusions and future work

In this paper, we built atop our previous work presented
in [43] to support type inference in flexibleMDE approaches,
providing support for moving from partially typed example
models tomore complete ones. In our previouswork,we used
a single classification algorithm,CART. In thiswork,we used
a second algorithmbasedon randomforests to assess how this
will affect the prediction accuracy. The results showed that
CART has already maximised the prediction performance
and the use of an algorithm that belongs to the same cate-
gory does not improve the results. For the random forests
algorithm, we used 7 different values for the number of trees
that the algorithm is trained with, identifying a point (50
trees) after which the prediction accuracy reaches a plateau.
In addition, in this work, we injected noise in 4 out of the 5
variables used by creating more “Sparse” example models.
The results showed that this has an impact in somemetamod-
els. Finally, we calculated the importance of each variable in
both algorithms.

The approach is intended to be used to support flexible
modelling, where examples can be created in ways that are

not restricted by metamodels. However, it could be applied
directly to traditional MDE, for instance, to infer types for
an already typed model, which may potentially reveal poor
or incorrect type assignments or misuses of the metamodel.

In the future, we plan to make use of additional features.
Work in this direction was presented in [44] where 4 spatial/-
graphical related features are used (i.e. colour of the node,
width and height, shape). A user study in which domain
experts will create real examplemodels using a flexibleMDE
approach (e.g.Muddles) is of interest. Thiswill also allow the
combination of the four features based on spatial characteris-
tics mentioned above with those presented in this work. This
is not possible at this point as all the nodes of the synthetic
muddles created as part of this work have exactly the same
graphical characteristics (i.e. shape, colour and dimensions).

In addition, the names that the domain experts choose
to assign to the semantic characteristics (e.g. types, refer-
ences or attributes) could also be assessed to improve the
predictions.We could in principle enumerate all known type-
s/references/attributes, calculate the distance of the label to
each other and then use all of these distances within the
input features. However, this would significantly increase
the dimensionality of the feature space, which would then
likely decrease the accuracy of the predictive model due
to the low number of sample data points. Another possible
approach would be that of the direct use of string similarity
algorithms where elements are matched based on the dif-
ferences between their types, references or attributes. Initial
work in this direction has been carried out in [41, Chapter 5]
using a widely used similarity algorithm, called similarity
flooding [25]. Results suggest that a combination with the
approaches presented in this work is possible and could
improve prediction results. As mentioned before, we base
this work on the assumption that domain experts may use
different naming conventions to express the same structural
information. However, we could overcome this by assigning
weights to the importance of name-matching feature: if the
examples are generated by more than one domain experts
then decrease the impact of the name matching in the predic-
tion.

Acknowledgements This work was carried out in cooperation with
Digital Lightspeed Solutions Ltd and was supported by the EPSRC
through the LSCITS initiative and part supported by the EU, through
the MONDO FP7 STREP Project (#611125).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Type inference in flexible model-driven engineering using classification algorithms

References

1. Antkiewicz, M., Bak, K., Czarnecki, K., Diskin, Z., Zayan,
D., Wasowski, A.: Example-driven modeling using clafer. In:
MDEBE@MoDELS, vol. 1104, pp. 32–41. CEUR-WS.org (2013)

2. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.:
Clafer: unifying class and feature modeling. Softw. Syst. Model.
15(3), 1–35 (2015)

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).
https://doi.org/10.1023/A:1010933404324

4. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification
and regression trees. CRC Press, Boca Raton (1984)

5. Cho, H., Gray, J., Syriani, E.: Creating visual domain-specific
modeling languages from end-user demonstration. In: 2012 ICSE
Workshop on Modeling in Software Engineering (MISE), pp. 22–
28. IEEE (2012)

6. Cuadrado, J.S., de Lara, J., Guerra, E.: Bottom-upmeta-modelling:
an interactive approach. In: MODELS’12: ACM/IEEE 15th Inter-
national Conference on Model Driven Engineering Languages and
Systems, LNCS 7590, pp. 3–19. Springer, Berlin (2012)

7. Dillenbourg, P.: What do you mean by collaborative learning. Col-
lab. Learn. Cogn. Comput. Approach. 1, 1–15 (1999)

8. Famelis, M., Salay, R., Chechik, M.: Partial models: towards
modeling and reasoning with uncertainty. In: 34th International
Conference on Software Engineering (ICSE), pp. 573–583. IEEE
(2012)

9. Faunes, M., Cadavid, J., Baudry, B., Sahraoui, H., Combemale,
B.: Automatically searching for metamodel well-formedness rules
in examples and counter-examples. In: Model-Driven Engineering
Languages and Systems, pp. 187–202. Springer, Berlin (2013)

10. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical
learning. Springer series in statistics, vol. 1, pp. 587–604. Springer,
Berlin (2001)

11. Gabrysiak, G., Giese, H., Lüders, A., Seibel, A.: How can meta-
models be used flexibly. In: Proceedings of ICSE 2011 Workshop
on Flexible Modeling Tools, Waikiki/Honolulu, vol. 22 (2011)

12. Izquierdo, J.L.C., Cabot, J.: Community-driven language devel-
opment. In: 2012 4th International Workshop on Modeling in
Software Engineering (MISE), pp. 29–35. IEEE (2012)

13. Izquierdo, J.L.C., Cabot, J.: Enabling the collaborative definition
of DSMLs. In: Advanced Information Systems Engineering, pp.
272–287. Springer, Berlin (2013)

14. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: MARS: a metamodel
recovery system using grammar inference. Inf. Softw. Technol.
50(9), 948–968 (2008)

15. Jiawei, H., Kamber, M.: Data mining: concepts and techniques,
vol. 5. Morgan Kaufmann, San Francisco (2001)

16. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wim-
mer, M.: Model transformation by-example: a survey of the first
wave. In: Düsterhöft, A., Klettke, M., Schewe, K.-D. (eds.) Con-
ceptual Modelling and Its Theoretical Foundations, pp. 197–215.
Springer, Berlin (2012)

17. Kessentini,M., Sahraoui,H., Boukadoum,M.,Omar,O.B.: Search-
basedmodel transformation by example. Softw. Syst.Model.11(2),
209–226 (2012)

18. Kolovos, D.S., Matragkas, N., Rodríguez, H.H., Paige, R.F.:
Programmaticmuddlemanagement. In:XM2013—ExtremeMod-
eling Workshop (2013)

19. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object
language (EOL). In: Rensink, A., Warmer, J. (eds.) Model
DrivenArchitecture—Foundations andApplications, pp. 128–142.
Springer, Berlin (2006)

20. Kuhrmann, M.: User assistance during domain-specific language
design. In: FlexiTools Workshop (2011)

21. Langer, P., Wimmer, M., Kappel, G.: Model-to-model transforma-
tions by demonstration. In: Tratt, L., Gogolla,M. (eds.) Theory and
Practice of Model Transformations, pp. 153–167. Springer, Berlin
(2010)

22. Liaw,A.,Wiener,M.: Randomforest: Breiman andCutler’s random
forests for classification and regression. Version: 4.6-12. https://
cran.r-project.org/web/packages/randomForest/index.html (2015)

23. López-Fernández, J.J., Cuadrado, J.S., Guerra, E., de Lara, J.:
Example-driven meta-model development. Softw. Syst. Model.
14(4), 1–25 (2013)

24. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding
variable importances in forests of randomized trees. In: Advances
in Neural Information Processing Systems, pp. 431–439 Cur-
ran Associates, Inc. (2013). http://papers.nips.cc/paper/4928-
understanding-variable-importances-in-forests-of-randomized-
trees.pdf

25. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a
versatile graph matching algorithm and its application to schema
matching. In: Proceedings of the 18th International Conference on
Data Engineering, 2002, pp. 117–128. IEEE (2002)

26. Meyer, B.: Object-Oriented Software Construction, vol. 2. Prentice
Hall, New York (1988)

27. Mitchell, T.M.: Machine learning, vol. 45. McGraw Hill, Burr
Ridge (1997)

28. Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N., Polack, F.A.:
The design of a conceptual framework and technical infrastruc-
ture for model management language engineering. In: 14th IEEE
International Conference on Engineering of Complex Computer
Systems, pp. 162–171. IEEE (2009)

29. Rabbi, F., Lamo, Y., Yu, I.C., Kristensen, L.M., Michael, L.: A
diagrammatic approach to model completion. In: 4th Workshop
on the Analysis of Model Transformations (AMT)@ MODELS,
vol. 15 (2015)

30. Roth, B., Jahn, M., Jablonski, S.: On the way of bottom-up design-
ing textual domain-specific modelling languages. In: Proceedings
of the ACM Workshop on Domain-Specific Modeling, pp. 51–56
(2013)

31. Sen, S., Baudry, B., Precup, D.: Partial model completion in
model driven engineering using constraint logic programming. In:
International Conference on the Applications of Declarative Pro-
gramming. Citeseer (2007)

32. Strommer, M., Wimmer, M.: A framework for model transforma-
tion by-example: concepts and tool support. In: Paige, R.F., Meyer,
B. (eds.) Objects, Components, Models and Patterns, pp. 372–391.
Springer, Berlin (2008)

33. Therneau, T.M., Atkinson, E.J., et al.: An introduction to recur-
sive partitioning using the rpart routines. Technical report Mayo
Foundation (2015)

34. Varró, D., Balogh, Z.: Automating model transformation by exam-
ple using inductive logic programming. In: Proceedings of the 2007
ACM Symposium on Applied Computing, pp. 978–984. ACM
(2007)

35. Volter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M.,
Kats, L.C.L., Visser, E., Wachsmuth, G.: DSL Engineering—
Designing, Implementing and Using Domain-Specific Languages.
dslbook.org (2013). http://www.dslbook.org

36. Williams, J.R., Paige, R.F., Kolovos, D.S., Polack, F.A.: Search-
based model driven engineering. Technical Report, Technical
Report YCS-2012-475, Department of Computer Science, Univer-
sity of York (2012)

37. Williams, J.R., Zolotas, A.,Matragkas, N.D., Rose, L.M., Kolovos,
D.S., Paige, R.F., Polack, F.A.: What do metamodels really look
like? EESSMOD@ MoDELS 1078, 55–60 (2013)

38. Wüest, D., Seyff, N., Glinz, M.: Flexisketch: a mobile sketching
tool for software modeling. In: Uhler, D., Mehta, K., Wong, J.L.

123

https://doi.org/10.1023/A:1010933404324
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
http://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees.pdf
http://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees.pdf
http://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees.pdf
http://www.dslbook.org

A. Zolotas et al.

(eds.) Mobile Computing, Applications, and Services, pp. 225–
244. Springer, Berlin (2013)

39. Wuest, D., Seyff, N., Glinz, M.: Semi-automatic generation of
metamodels frommodel sketches. In: 2013 IEEE/ACM 28th Inter-
national Conference on Automated Software Engineering (ASE),
pp. 664–669. IEEE (2013)

40. Yohannes, Y., Webb, P.: Classification and regression trees, CART:
a user manual for identifying indicators of vulnerability to famine
and chronic food insecurity, vol. 3. International Food Policy
Research Institute, Washington, D.C. (1999)

41. Zolotas, A.: Type inference in flexible model-driven engineering.
Ph.D. Thesis, University of York, York, United Kingdom. http://
etheses.whiterose.ac.uk/16380/1/main.pdf (2016)

42. Zolotas, A., Clariso, R., Matragkas, N., Kolovos, D.S., Paige,
R.F.: Constraint programming for type inference in flexible model-
driven engineering. Comput. Lang. Syst. Struct. (2016). https://doi.
org/10.1016/j.cl.2016.12.002

43. Zolotas, A., Matragkas, N., Devlin, S., Kolovos, D., Paige, R.:
Type inference in flexible model-driven engineering. In: Taentzer,
G., Bordeleau, F. (eds.) Modelling Foundations and Applications,
LectureNotes inComputer Science, vol. 9153, pp. 75–91. Springer,
Berlin (2015)

44. Zolotas, A., Matragkas, N., Devlin, S., Kolovos, D.S., Paige, R.F.:
Type inference using concrete syntax properties in flexible model-
driven engineering. In: 1st Flexible Model-Driven Engineering
Workshop (2015)

Athanasios Zolotas is a Research
Associate at the Computer Sci-
ence department of University of
York, UK. He is member of the
Enterprise Systems research group.
Athanasios received his EngD in
Large-Scale Complex IT Systems
from the University of York in
2017. His research interests are in
model-driven engineering, safety
critical systems and requirements
engineering.

Nicholas Matragkas is a Lec-
turer of Software Engineering at
the University of Hull, UK. He
is a member of the Dependable
Systems research group. Nicholas
received his Ph.D. in Computer
Science from the University of
York in 2011. His current research
interests include model-driven engi-
neering, model management, soft-
ware analytics and software test-
ing.

Sam Devlin received an M.Eng.
degree in Computer Systems and
Software Engineering from the
University of York, UK, in 2009.
In 2013, he completed his Ph.D.
on multi-agent reinforcement learn-
ing at the University of York and
visited Oregon State University
funded by a Santander Interna-
tional Connections Award. His
research interests are focused on
machine learning and artificial intel-
ligence. He was a Research Asso-
ciate from 2013–2015, working
on data mining for collective game

intelligence. He now holds a permanent academic role as a transitional
fellow in the Digital Creativity Labs.

Dimitrios S. Kolovos is a Professor
at the University of York. He has
co-authored more than 150 scien-
tific papers in international jour-
nals, conferences and workshops
in the field of model-driven soft-
ware engineering and has been
an Eclipse Foundation commit-
ter leading the development of
the Epsilon opensource project
(eclipse.org/epsilon) since 2006,
and the Emfatic project (eclipse.
org/emfatic) since 2010.

Richard F. Paige is Professor of
Enterprise Systems at the Univer-
sity of York, UK, where he leads
the Enterprise Systems research
group that specialises in Model-
Driven Engineering. He has
chaired numerous leading software
engineering conferences and work-
shops, is on the editorial boards of
Software and Systems Modeling,
the Journal of Object Technology
and Empirical Software Engineer-
ing. His research interests are in
model management, formal meth-
ods, software processes, agile meth-

ods and safety critical systems.

123

http://etheses.whiterose.ac.uk/16380/1/main.pdf
http://etheses.whiterose.ac.uk/16380/1/main.pdf
https://doi.org/10.1016/j.cl.2016.12.002
https://doi.org/10.1016/j.cl.2016.12.002

	Type inference in flexible model-driven engineering using classification algorithms
	Abstract
	1 Introduction
	2 Background: Muddles
	2.1 Overview
	2.2 Example

	3 Type inference
	3.1 Model analysis and feature selection
	3.2 Training and classification

	4 Experiment
	5 Results and discussion
	5.1 Quantitative analysis for CART
	5.2 Quantitative analysis for RF
	5.3 Comparison
	5.3.1 Normal versus Sparse
	5.3.2 CART versus RF

	5.4 Variables importance
	5.5 Qualitative analysis
	5.6 Threats to validity

	6 Related work
	7 Conclusions and future work
	Acknowledgements
	References

