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Abstract

A functional is said to be maxitive if it commutes with the (pointwise)
supremum operation. Such functionals find application in particular in
decision theory and related fields. In the present paper, maxitive func-
tionals are characterized as integrals with respect to maxitive measures
(also known as possibility measures or idempotent measures). These max-
itive integrals are then compared with the usual additive and nonadditive
integrals on the basis of some important properties, such as convexity,
subadditivity, and the law of iterated expectations.

Keywords: maxitive measures, nonadditive integrals, Choquet integral,
convexity, subadditivity, law of iterated expectations.

1 Introduction

The standard integral of a function with respect to a probability measure (i.e.,
its expectation) can be interpreted as a weighted average of the function values.
Such averages play a central role in the theory of decision making under risk,
in which decisions are selected by maximizing expected utility or minimizing
expected loss. However, in practice decisions are often selected on the basis of
best-case or worst-case evaluations. Such evaluations are described by integrals
that are maxitive (i.e., the integral of a pointwise maximum of functions is the
maximum of their integrals), while the standard integral is additive (i.e., the
integral of a pointwise sum of functions is the sum of their integrals). More
generally, maxitive integrals appear as aggregation functionals in many fields of
application, such as operations research, information fusion, or control theory
(see for example Grabisch et al., 2009; Torra and Narukawa, 2007; Calvo et al.,
2002).

Maxitive integrals can be seen as extensions of maxitive measures (i.e., the
measure of a union of sets is the maximum of their measures). These nonadditive
measures play a central role in possibility theory and tropical or idempotent
mathematics (they are also called possibility measures or idempotent measures),
but have been studied also in other contexts (see for instance Dubois and Prade,
1988; Kolokoltsov and Maslov, 1997; Wang and Klir, 2009). Contrary to the
case of additivity, the countable (or even uncountable) maxitivity of measures
and integrals does not pose particular difficulties, and measurability restrictions
are thus unnecessary. This is discussed in the next section.

The rest of the paper can be divided into two parts. The first part (cor-
responding to Sections 3–5) studies the integral of nonnegative functions that
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was introduced by Shilkret (1971) and is characterized by maxitivity and posi-
tive homogeneity. Some of its properties, such as subadditivity and the law of
iterated expectations, are derived and compared with corresponding properties
of alternative definitions of integral. In particular, new results about the Cho-
quet integral (Choquet, 1954; Denneberg, 1994) are also presented: necessary
and sufficient conditions for countable comonotonic additivity and for the law
of iterated expectations.

The second part corresponds to Section 6 and pursues the definition of a
maxitive integral for all real functions. In fact, the Shilkret integral cannot be
extended in a satisfactory way to a maxitive integral of real functions. Instead,
the integral characterized by maxitivity and additive homogeneity is introduced
and named convex integral. The reason for the name is its convexity, which is
derived besides other properties, such as the law of iterated expectations. The
convex integral is strictly related to the idempotent integral of tropical or idem-
potent mathematics (Kolokoltsov and Maslov, 1997) and to convex measures of
risk (Föllmer and Schied, 2011).

2 Maxitive measures

Let Ω be a nonempty set, and let A ⊆ P(Ω) be a collection of subsets of Ω.
When κ is a cardinal, A is said to be closed under κ-union if and only if

⋃
B ∈ A

for all nonempty B ⊆ A such that |B| ≤ κ. An extended real-valued set function
µ : A → R is said to be κ-maxitive if and only if µ(

⋃
B) = supA∈B µ(A) for all

nonempty B ⊆ A such that |B| ≤ κ and
⋃
B ∈ A. Furthermore, µ is said to

be monotonic if and only if µ(A) ≤ µ(B) for all A,B ∈ A such that A ⊆ B.
Monotonicity is implied by finite maxitivity (i.e., 2-maxitivity), while countable
maxitivity (i.e., ℵ0-maxitivity) was assumed by Shilkret (1971) in his definition
of maxitive measures.

Theorem 1. Let κ be a cardinal, and let µ : A → R be κ-maxitive. If A is
closed under κ-union, or A is a ring (i.e., closed under finite union and finite
intersection), then there is a κ-maxitive extension of µ to P(Ω).

Proof. The cases with κ ≤ 1 or A = ∅ are trivial, so assume κ > 1 and
A ̸= ∅. Consider first the case with A closed under κ-union, and define µ′ :
A 7→ infB∈A :A⊆B µ(B) on P(Ω), where inf ∅ = +∞. Since µ is monotonic, µ′

is a monotonic extension of µ. Therefore, in order to prove the κ-maxitivity of
µ′, it suffices to show µ′(

⋃
B) ≤ supA∈B µ′(A) for all nonempty B ⊆ P(Ω) such

that |B| ≤ κ and supA∈B µ′(A) < +∞. When B is such a set, for each A ∈ B
and each ε ∈ R>0 there is an Aε ∈ A such that A ⊆ Aε and µ(Aε) < µ′(A) + ε,
and thus

µ′
(⋃

B
)
≤ inf

ε∈R>0

µ

( ⋃
A∈B

Aε

)
≤ inf

ε∈R>0

sup
A∈B

(µ′(A) + ε) = sup
A∈B

µ′(A).

Now let A be a ring and let κ be infinite (the case with finite κ has already
been considered above). If B,B′ ⊆ A are two nonempty sets with cardinality at
most κ, and

⋃
B =

⋃
B′, then

sup
A∈B

µ(A) = sup
A∈B

µ

( ⋃
B∈B′

(A ∩B)

)
= sup

A∈B
sup
B∈B′

µ(A ∩B) = sup
B∈B′

µ(B).

2

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



Hence, the function µ̃ :
⋃
B 7→ supA∈B µ(A) on Ã = {

⋃
B : B ⊆ A, 0<|B| ≤ κ}

is a well-defined extension of µ. In order to complete the proof of the theorem,
it suffices to show that Ã is closed under κ-union and µ̃ is κ-maxitive, and this
follows easily from the fact that (assuming the axiom of choice) the product of
two infinite cardinals is their maximum.

Since the focus of the present paper is on maxitive measures and inte-
grals, Theorem 1 implies that measurability restrictions are unnecessary, and
A = P(Ω) can always be assumed. Moreover, in order to simplify the following
results, only nonnegative real-valued set functions µ : P(Ω) → R≥0 are consid-
ered, and without real loss of generality µ(Ω) = 1 is imposed. A set function
µ : P(Ω) → R is said to be a capacity on Ω (in the most general sense) if and
only if µ is monotonic, µ(∅) = 0, and µ(Ω) = 1.

Capacities µ on Ω are often used in applications as quantitative descriptions
of uncertain belief or information about ω ∈ Ω. The larger the value µ(A),
the larger the plausibility of ω ∈ A, or the larger the implausibility of ω /∈
A. This is in agreement with the monotonicity of µ, while the requirements
µ(∅) = 0 and µ(Ω) = 1 can be interpreted as meaning that ω ∈ ∅ is impossible
and that nothing speaks against ω ∈ Ω, respectively. For example, finitely
additive capacities are the quantitative descriptions of uncertain belief used
in the Bayesian theory (de Finetti, 1974–1975; Savage, 1972), while countably
additive capacities are used in standard probability theory (Kolmogorov, 1956).

As quantitative descriptions of uncertain belief or information, maxitive ca-
pacities play a central role in possibility theory (Zadeh, 1978; Dubois and Prade,
1988), but they also appear for instance as consonant plausibility functions in
the theory of belief functions (Shafer, 1976), or as supremum preserving upper
probabilities in the theory of imprecise probabilities (de Cooman and Aeyels,
1999). Moreover, the description of uncertain belief by means of maxitive ca-
pacities also corresponds for example to the descriptions by means of degrees of
potential surprise (Shackle, 1949), or of degrees of support by eliminative induc-
tion (Cohen, 1966). Of particular importance in statistical applications is the
fact that the likelihood (ratio) of composite hypotheses is a maxitive capacity
(Neyman and Pearson, 1928; Cattaneo, 2013a).

A capacity µ on Ω has a particularly simple description when it is κ-maxitive
with κ the cardinality of Ω. In fact, µ is then completely described by its
values on the singletons: µ(A) = supω∈A µ ({ω}) for all nonempty A ⊆ Ω. This
implies in particular the κ-maxitivity of µ for all cardinals κ, also called complete
maxitivity. For example, in statistics, the likelihood of composite hypotheses is a
completely maxitive capacity: Λ(H) = supθ∈H L(θ) for all composite hypotheses
H ⊆ Θ, where Θ is a set of simple hypotheses, and L is the (relative) likelihood
function on Θ.

3 Characterization of integrals

Let F be the set of all extended real-valued functions on Ω, and let F+ ⊂ F
be the subset of all nonnegative functions. When S ⊆ F is a set of functions
and κ is a cardinal, a functional F : S → R is said to be κ-maxitive if and only
if F (supf∈T f) = supf∈T F (f) for all nonempty T ⊆ S such that |T | ≤ κ and
supf∈T f ∈ S, where supf∈T f denotes the pointwise supremum of the functions
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in T . Furthermore, F is said to be monotonic if and only if F (f) ≤ F (g) for
all f, g ∈ S such that f ≤ g holds pointwise. As in the case of measures,
monotonicity is implied by finite maxitivity.

When functions f ∈ S are interpreted as descriptions of the (uncertain, since
dependent on ω ∈ Ω) utility or loss of possible decisions, monotonic functionals
F : S → R can represent their evaluation on the basis of some criterion, and deci-
sion making then corresponds to maximizing or minimizing F (f). For example,
the Bayesian theory prescribes the use of the expectation functional (i.e., the
integral with respect to the finitely additive capacity describing the uncertain
belief about ω ∈ Ω), and decision making consists in maximizing the expected
utility or minimizing the expected loss. This corresponds to evaluating decisions
by averaging their possible consequences. By contrast, maxitive functionals cor-
respond to best-case or worst-case evaluations of decisions. A simple example of
completely maxitive functional on F is the supremum f 7→ supω∈Ω f(ω), which
corresponds to decision making by maximax utility or minimax loss. Weighted
versions of these decision criteria correspond to the completely maxitive func-
tionals f 7→ supω∈Ω f(ω)w(ω) on F+, where w : Ω → R>0 is a weighting
function.

In order to simplify the interpretation, the consequences of decisions are
expressed in terms of loss (or minus utility) in the rest of the paper. Hence,
maxitive functionals represent worst-case evaluations of decisions. This can be
seen as follows. If F (f) is a worst-case evaluation of a function f ∈ F , then for
each nonempty A ⊂ Ω, it is the maximum (i.e., the worst-case) of the evaluations
FA(f) and FΩ\A(f) of f on A and Ω \ A, respectively. Therefore, given two
functions f, g ∈ F and a nonempty set A ⊂ Ω such that f ≥ g and f ≤ g hold
pointwise on A and Ω\A, respectively, since the evaluations are monotonic, the
evaluation of the pointwise maximum f ∨ g of f and g satisfies

F (f ∨ g) = max
{
FA(f), FΩ\A(g)

}
= max

{
FA(f), FA(g), FΩ\A(g), FΩ\A(f)

}
= max {F (f), F (g)} .

Hence, worst-case evaluations of decisions are represented by finitely maxitive
functionals (infinite maxitivity can be obtained analogously by considering in-
finite partitions of Ω).

The Shilkret integral of a function f ∈ F+ with respect to a capacity µ on
Ω is denoted by

∫
Sf dµ and is defined as∫ S

f dµ = sup
x∈R>0

xµ ({ω ∈ Ω : f(ω) > x}) .

The Shilkret integral has a particularly simple expression when µ is completely
maxitive:

∫
Sf dµ = supω∈Ω :µ({ω})>0 f(ω)µ ({ω}) for all f ∈ F+. As noted

above, in statistics, the likelihood of composite hypotheses is a completely max-
itive capacity Λ on Θ, and thus the Shilkret integral with respect to Λ cor-
responds to decision making by likelihood-weighted minimax loss:

∫
Sf dΛ =

supθ∈Θ f(θ)L(θ), where f : Θ → R≥0 describes the loss of a possible decision
and L is the likelihood function on Θ (Cattaneo, 2013a).

Example 1. Let µ be the capacity on Ω = R such that µ(A) = 1 when supA =
+∞, and µ(A) = 1/2 otherwise, for all nonempty sets A ⊆ R. Then µ is finitely
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maxitive, but not countably maxitive, and for all f ∈ F+,∫ S

f dµ = max

{
lim sup
x→+∞

f(x),
1

2
sup
x∈R

f(x)

}
.

The function in F taking the same values as f ∈ F on A ⊆ Ω and the value x
on Ω\A is denoted by Af,x. In particular, A1,0 is the usual indicator function of
A. Since

∫
SA1,0 dµ = µ(A) for all A ⊆ Ω, the Shilkret integral can be seen as an

extension of the capacity µ (see also Cattaneo, 2014). The next lemma (which
is a direct consequence of the definitions) shows that this extension maintains
maxitivity.

Lemma 1. Let µ be a capacity on Ω, and let κ be a cardinal. The functional
f 7→

∫
Sf dµ on F+ is κ-maxitive if and only if µ is κ-maxitive.

It is interesting to compare the properties of the Shilkret integral with the
properties of alternative definitions of integral. In particular, an important
integral with respect to nonadditive measures is the Choquet integral (see for
example Choquet, 1954; Denneberg, 1994). The Choquet integral of a function
f ∈ F+ with respect to a capacity µ on Ω is denoted by

∫
Cf dµ and is defined

as ∫ C

f dµ =

∫ +∞

0

µ ({ω ∈ Ω : f(ω) > x}) dx,

where the integral on the right-hand side is a well-defined improper Riemann
integral.

Example 2. Let µ be the capacity on Ω = R defined in Example 1. Then, for
all f ∈ F+, ∫ C

f dµ =
1

2

(
lim sup
x→+∞

f(x)

)
+

1

2

(
sup
x∈R

f(x)

)
.

The standard integral with respect to additive measures can also be gener-
alized as follows to the case of nonadditive measures. The standard integral of
a function f ∈ F+ with respect to a capacity µ on Ω is denoted by

∫
f dµ and

is defined as ∫
f dµ =

∑
x∈f [Ω]

xµ ({ω ∈ Ω : f(ω) = x})

when f is a simple function (i.e., its image f [Ω] is a finite subset of R), while
otherwise it is defined as ∫

f dµ = sup
s∈Sf

∫
sdµ,

where Sf denotes the set of all simple functions s ∈ F+ such that s ≤ f holds
pointwise. This corresponds to the usual integral when µ is finitely additive
(see for example Bhaskara Rao and Bhaskara Rao, 1983), and to the Lebesgue
integral when µ is countably additive (see for instance Ash, 1972).

Example 3. Let µ be the capacity on Ω = R defined in Example 1. Then, in
particular, for all non-simple f ∈ F+,∫

f dµ =
1

2

∑
x∈R

f(x).
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Let U ⊂ F be the subset of all functions bounded above, and define U+ =
U ∩F+. The next theorem characterizes the above three integrals as functionals
on the set U+ of all bounded, nonnegative real-valued functions on Ω. The
following definitions are needed for this characterization. Two functions f, g ∈ F
are said to be comonotonic if and only if f(ω) > f(ω′) implies g(ω) ≥ g(ω′) for
all ω, ω′ ∈ Ω. When S ⊆ F is a set of functions, a functional F : S → R is said
to be finitely (comonotonic) additive if and only if F (f + g) = F (f) + F (g) for
all (comonotonic) f, g ∈ S such that f +g and F (f)+F (g) are well-defined and
f + g ∈ S. Furthermore, F is said to be positively homogeneous if and only if
F (α f) = αF (f) for all α ∈ R>0 and all f ∈ S such that α f ∈ S.

Theorem 2. Let F : U+ → R≥0 be a functional such that F (1) = 1, and define
µ : A 7→ F (A1,0) on P(Ω).

(i) F is finitely additive if and only if µ is a finitely additive capacity and
F : f 7→

∫
f dµ.

(ii) F is finitely comonotonic additive and monotonic if and only if µ is a
capacity and F : f 7→

∫
Cf dµ.

(iii) F is finitely maxitive and positively homogeneous if and only if µ is a
finitely maxitive capacity and F : f 7→

∫
Sf dµ.

Proof. See Bhaskara Rao and Bhaskara Rao (1983, Chapter 4) for the “if” part
of (i). The “only if” part can be proved as follows. Since F is finitely additive,
it is also monotonic, and µ is a finitely additive capacity. The finite additivity
of F implies also F (α f) = αF (f) for all α ∈ Q>0 and all f ∈ U+. The positive
homogeneity of F follows then from its monotonicity. Therefore, F (f) =

∫
f dµ

holds for all simple functions f ∈ U+. The result for all functions f ∈ U+

follows from the monotonicity of F and the fact that for each ε ∈ R>0 there is
a simple function s ∈ U+ such that s ≤ f ≤ s+ ε holds pointwise.

The “if” part of (ii) is proved in Schmeidler (1986, Remark 4). For the “only
if” part, since F is finitely comonotonic additive and monotonic, µ is a capacity,
and the rest can be shown as in Schmeidler (1986, Proof of the Theorem).

The “if” part of (iii) is a direct consequence of the definitions (and Lemma 1).
The “only if” part can be proved as follows. Since F is finitely maxitive and
positively homogeneous, it is also monotonic, and µ is a finitely maxitive capac-
ity. Moreover, F (f) = maxx∈f [Ω] xµ ({ω ∈ Ω : f(ω) = x}) =

∫
Sf dµ holds for

all simple functions f ∈ U+. The result for all functions f ∈ U+ follows as in
the proof of (i).

For a (monotonic) functional describing the evaluation of the loss or utility
of possible decisions, positive homogeneity means that the unit in which these
are measured is of no concern in the decision making. In all three cases of
Theorem 2, the functional F is monotonic and positively homogeneous. Hence,
the characterizing properties of the standard, Choquet, and Shilkret integrals on
bounded, nonnegative functions are finite additivity, finite comonotonic additiv-
ity, and finite maxitivity, respectively. These properties do not characterize the
integrals on unbounded, nonnegative functions, but their countable versions do,
as shown in the next theorem. The following definitions are needed for this char-
acterization. When S ⊆ F is a set of functions, a functional F : S → R is said to
be countably (comonotonic) additive if and only if F (

∑
n∈N fn) =

∑
n∈N F (fn)
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for all sequences (fn)n∈N of (pairwise comonotonic) functions fn ∈ S such that∑
n∈N fn and

∑
n∈N F (fn) are well-defined and

∑
n∈N fn ∈ S. A capacity µ on

Ω is said to be 0-continuous if and only if µ(
⋃

n∈N An) = 0 for all nondecreasing
sequences (An)n∈N of sets An ⊂ Ω with µ(An) = 0.

Theorem 3. Let F : F+ → R≥0 be a functional such that F (1) = 1, and define
µ : A 7→ F (A1,0) on P(Ω).

(i) F is countably additive if and only if µ is a countably additive capacity
and F : f 7→

∫
f dµ.

(ii) F is countably comonotonic additive and monotonic if and only if µ is a
0-continuous capacity and F : f 7→

∫
Cf dµ.

(iii) F is countably maxitive and positively homogeneous if and only if µ is a
countably maxitive capacity and F : f 7→

∫
Sf dµ.

Proof. See Ash (1972, Corollary 1.6.4) for the “if” part of (i). The “only if” part
can be proved as follows. Since F is countably additive, it is also monotonic and
finitely additive, and µ is a countably additive capacity. Thus, Theorem 2 (i)
implies F (f) =

∫
f dµ for all f ∈ U+. The result for all f ∈ F+ follows

from the fact that there is a sequence (fn)n∈N of functions fn ∈ U+ such that
f =

∑
n∈N fn, and therefore F is uniquely determined by µ.

The “if” part of (ii) can be proved as follows. The monotonicity of F is a
direct consequence of the definitions. In order to show that F is also count-
ably comonotonic additive, let (fn)n∈N be a sequence of pairwise comonotonic
functions fn ∈ F+, and define f =

∑
n∈N fn. Then

∫
Cf dµ ≥

∑
n∈N

∫
Cfn dµ

follows from the finite comonotonic additivity of F , which is proved for example
in Wakker (1989, Theorem 2) and Cattaneo (2007, Theorem 2.25). Assume thus∑

n∈N
∫
Cfn dµ < +∞, and define the set I = {ω ∈ Ω : f(ω) = +∞}, the values

xn = supω∈Ω\I fn(ω), and the functions gn = fn ∧ xn and g =
∑

n∈N gn on Ω,
where ∧ denotes the pointwise minimum.

If µ(I) = 0, then
∫
Cfn dµ =

∫
Cgn dµ for all n ∈ N, and

∫
Cf dµ =

∫
Cg dµ,

because the functions fn are pairwise comonotonic, and therefore fn(ω) ≥ xn

and gn(ω) = xn for all n ∈ N and all ω ∈ I. Hence, in order to prove the “if”
part of (ii), it suffices to show µ(I) = 0 and

∫
Cg dµ =

∑
n∈N

∫
Cgn dµ.

In order to show µ(I) = 0 when I ̸= ∅, define for each ω ∈ I the set
Iω =

⋂
n∈N {ω′ ∈ I : fn(ω

′) ≥ fn(ω)}. Then µ(Iω) = 0 for all ω ∈ I, be-
cause

∑
n∈N

∫
C(Iω)fn(ω),0 dµ ≤

∑
n∈N

∫
Cfn dµ < +∞. Furthermore, since the

functions fn are pairwise comonotonic, the sets Iω are nested (i.e., Iω ⊆ Iω′

or Iω′ ⊆ Iω for all ω, ω′ ∈ I), and {ω′ ∈ I : fn(ω
′) > fn(ω)} ⊆ Iω for all

n ∈ N and all ω ∈ I. Hence, if there is an n ∈ N such that the function
fn does not take the value infω∈I fn(ω) in I, then I =

⋃
n∈N Iωn

for a se-
quence (ωn)n∈N of points ωn ∈ I such that limn→∞ fn(ωn) = infω∈I fn(ω).
Therefore, in this case µ(I) = 0 because µ is 0-continuous and the sets Iω are
nested. On the other hand, if for each n ∈ N there is a point ωn ∈ I such that
fn(ωn) = minω∈I fn(ω), then either I =

⋃
n∈N Iωn

, or there is a point ω ∈ I
such that fn(ω) = minω′∈I fn(ω

′) for all n ∈ N, and thus I = Iω. In both cases,
µ(I) = 0.

In order to show
∫
Cg dµ =

∑
n∈N

∫
Cgn dµ, it suffices to prove that there

is a sequence (un)n∈N of continuous, nondecreasing functions un : R≥0 → R≥0
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with gn = un ◦ g and such that
∑

n∈N un is the identity function on R≥0.
The desired result then follows from Denneberg (1994, Proposition 4.1) and
Ash (1972, Corollary 1.6.4). The existence of the functions un can be proved
analogously to Denneberg (1994, Proposition 4.5), since the functions gn are
pairwise comonotonic, and g(ω) = +∞ is possible only if gn(ω) = xn for all
n ∈ N. This concludes the proof of the “if” part of (ii).

The “only if” part of (ii) can be proved as follows. Since F is countably
comonotonic additive and monotonic, it is also finitely comonotonic additive,
and µ is a capacity. In order to show that µ is 0-continuous, let (An)n∈N be an
nondecreasing sequence of sets An ⊂ Ω with µ(An) = 0. Then µ(

⋃
n∈N An) ≤∑

n∈N µ(An) = 0, because the functions (An)1,0 are pairwise comonotonic. Fur-
thermore, Theorem 2 (ii) implies F (f) =

∫
Cf dµ for all f ∈ U+. The result for

all f ∈ F+ follows from the fact that there is a sequence (fn)n∈N of pairwise
comonotonic functions fn ∈ U+ such that f =

∑
n∈N fn, and therefore F is

uniquely determined by µ.
The “if” part of (iii) is a direct consequence of the definitions (and Lemma 1).

The “only if” part follows from Theorem 2 (iii) and the fact that for each f ∈ F+

there is a sequence (fn)n∈N of functions fn ∈ U+ such that f = supn∈N fn, and
thus F is uniquely determined by µ.

The necessary and sufficient condition of 0-continuity of the capacity for
the countable comonotonic additivity of the Choquet integral seems to be a
new result, though related results were obtained by Wu and Zhou (2006). An
alternative characterization of the Shilkret integral on unbounded, nonnegative
functions, in which countable maxitivity is weakened to countable comonotonic
maxitivity was given by Benvenuti et al. (2002, see also Benvenuti and Vivona,
2000). In this characterization, the Choquet and Shilkret integrals appear as
special cases of a more general notion of integral, but the stronger condition of
continuity from below of the capacity is assumed instead of its 0-continuity.

The next corollary shows that the Choquet integral is a generalization to the
case of nonadditive measures of the standard integral with respect to additive
measures, while the Shilkret integral is an alternative definition of integral also
in the case of additive measures. A set function µ : P(Ω) → R is said to be
binary if and only if it takes only two values. Hence, in particular, a capacity
is binary if and only if it takes only the values 0 and 1.

Corollary 1. Let µ be a capacity on Ω.

(i)
∫
f dµ =

∫
Cf dµ for all f ∈ F+ if and only if µ is finitely additive.

(ii)
∫
Cf dµ =

∫
Sf dµ for all f ∈ F+ if and only if µ is binary.

(iii)
∫
Sf dµ =

∫
f dµ for all f ∈ F+ if and only if µ is finitely additive and

binary.

Proof. The “if” part of (i) can be proved as follows. Theorem 2 (i) implies that
the functional f 7→

∫
f dµ on U+ is finitely additive, and thus also monotonic.

Hence, Theorem 2 (ii) implies
∫
f dµ =

∫
Cf dµ for all f ∈ U+. The result for

all f ∈ F+ follows from the fact that for both definitions of integral, the integral
of f is the limit of the one of f ∧ n as n ∈ N tends to infinity. The “if” part
of (ii) is a direct consequence of the definitions, while the “if” part of (iii) is
implied by the corresponding parts of (i) and (ii).
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In order to prove the “only if” parts, let A,B ⊆ Ω be disjoint and x ∈ R>0,
and define fx = Ax+1, 0 + B1,0. Then

∫
fx dµ = µ(B) + (x + 1)µ(A), while∫

Cfx dµ = µ(A ∪ B) + xµ(A) and
∫
Sfx dµ = max {µ(A ∪B), (x+ 1)µ(A)}.

The limits of these integrals as x tends to 0 imply the finite additivity of µ
in (i) and (iii). The binarity of µ in (ii) and (iii) follows from the fact that
when B = Ω \ A, the function x 7→

∫
Sfx dµ is affine on R>0 if and only if

µ(A) ∈ {0, 1}.

4 Subadditivity

A particularly important result for nonadditive integrals is the characterization
of the nonadditive measures with respect to which they are at least subadditive
(see for example Denneberg, 1994, Chapter 6). When S ⊆ F is a set of functions,
a functional F : S → R is said to be finitely subadditive if and only if F (f+g) ≤
F (f) + F (g) for all f, g ∈ S such that f + g and F (f) + F (g) are well-defined
and f + g ∈ S. Furthermore, F is said to be finitely convex if and only if
F (λ f + (1− λ) g) ≤ λF (f)+(1−λ)F (g) for all λ ∈ (0, 1) and all f, g ∈ S such
that f+g and F (f)+F (g) are well-defined and λ f+(1−λ) g ∈ S. A set function
µ : P(Ω) → R is said to be submodular if and only if µ(A ∪ B) + µ(A ∩ B) ≤
µ(A)+µ(B) for all A,B ⊆ Ω. Hence, in particular, all finitely additive capacities
and all finitely maxitive capacities are submodular.

Theorem 4. Let µ be a capacity on Ω.

(i) The functional f 7→
∫
f dµ on F+ is finitely subadditive if and only if µ

is finitely additive.

(ii) The functional f 7→
∫
Cf dµ on F+ is finitely subadditive if and only if µ

is submodular.

(iii) The functional f 7→
∫
Sf dµ on F+ is finitely subadditive if and only if µ

is finitely maxitive.

Proof. In order to prove the “if” part of (i), it suffices to show that if f, g ∈ F+

and s ∈ Sf+g, then
∫
sdµ ≤

∫
f dµ +

∫
g dµ. This inequality is implied by

Theorem 2 (i), since s ∧ f and s − s ∧ f are bounded, and s ∧ f ≤ f and
s− s∧ f ≤ g hold pointwise. The “only if” part of (i) follows from the fact that
for all disjoint A,B ⊆ Ω,

2µ(A) + µ(B) =

∫
((A ∪B)1,0 +A1,0) dµ ≤ µ(A ∪B) + µ(A)

=

∫
(A1,0 +B1,0) dµ+ µ(A) ≤ 2µ(A) + µ(B).

See Denneberg (1994, Chapter 6) for the proof of (ii).
In order to prove the “if” part of (iii), it suffices to show that if f, g ∈ F+ and

x ∈ R>0, then xµ ({ω ∈ Ω : f(ω) + g(ω) > x}) ≤
∫
Sf dµ +

∫
Sg dµ. Following

Shilkret (1971, page 113), assume thus
∫
Sf dµ+

∫
Sg dµ < +∞, and note that

9
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for all λ ∈ (0, 1),

xµ ({ω ∈ Ω : f(ω) + g(ω) > x})
≤ xµ ({ω ∈ Ω : f(ω) > λx} ∪ {ω ∈ Ω : g(ω) > (1− λ)x})

= max

{
xµ

({
ω ∈ Ω :

1

λ
f(ω) > x

})
, x µ

({
ω ∈ Ω :

1

1− λ
g(ω) > x

})}
≤ max

{
1

λ

∫ S

f dµ,
1

1− λ

∫ S

g dµ

}
.

The desired result is obtained by letting λ tend to 0 or 1 when
∫
Sf dµ = 0 or∫

Sg dµ = 0, respectively, and by setting

λ =

∫
Sf dµ∫

Sf dµ+
∫
Sg dµ

otherwise. The “only if” part of (iii) follows from the fact that for all disjoint
A,B ⊆ Ω and all λ ∈ (0, 1), if λµ(A ∪B) > max {µ(A), µ(B)}, then

µ(A ∪B) ≤
∫ S

(A1,0 +Bλ,0) dµ+

∫ S

B1−λ,0 dµ

= λµ(A ∪B) + (1− λ)µ(B) < µ(A ∪B).

Convexity is a very important property for functionals F : S → R describing
the evaluation of the loss (or minus utility) f ∈ S of possible (investment)
decisions. In fact, the convexity of the evaluation functional then represents the
desirability of investment diversification (see for example Föllmer and Schied,
2011; Artzner et al., 1999). For positively homogeneous functionals on F+ or
F , convexity and subadditivity are equivalent.

Theorem 4 gives necessary and sufficient conditions on the capacities for
the finite subadditivity (or convexity) of the integrals. Countable subaddi-
tivity (or convexity) is implied by finite subadditivity (or convexity) when
the integrals satisfy a monotone convergence theorem. When S ⊆ F is a
set of functions, a functional F : S → R is said to be countably subaddi-
tive if and only if F (

∑
n∈N fn) ≤

∑
n∈N F (fn) for all sequences (fn)n∈N of

functions fn ∈ S such that
∑

n∈N fn and
∑

n∈N F (fn) are well-defined and∑
n∈N fn ∈ S. The functional F is said to be countably convex if and only if

F (
∑

n∈N λn fn) ≤
∑

n∈N λn F (fn) for all sequences (λn)n∈N of values λn ∈ (0, 1)
such that

∑
n∈N λn = 1 and all sequences (fn)n∈N of functions fn ∈ S such that∑

n∈N λn fn and
∑

n∈N λn F (fn) are well-defined and
∑

n∈N λn fn ∈ S. Further-
more, F is said to satisfy monotone convergence if and only if it is monotonic
and F (limn→∞ fn) = limn→∞ F (fn) for all pointwise nondecreasing sequences
(fn)n∈N of functions fn ∈ S such that limn→∞ fn ∈ S, where limn→∞ fn denotes
the pointwise limit of the sequence. A monotonic set function µ : P(Ω) → R is
said to be continuous from below if and only if µ(

⋃
n∈N An) = limn→∞ µ(An)

for all nondecreasing sequences (An)n∈N of sets An ⊂ Ω.

Lemma 2. Let µ be a capacity on Ω.
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(i) The functional f 7→
∫
f dµ on F+ satisfies monotone convergence if and

only if µ is countably additive.

(ii) The functional f 7→
∫
Cf dµ on F+ satisfies monotone convergence if and

only if µ is continuous from below.

(iii) The functional f 7→
∫
Sf dµ on F+ satisfies monotone convergence if and

only if µ is continuous from below.

Proof. The “if” part of (i) follows from Theorem 3 (i). See Denneberg (1994,
Theorem 8.1) for the “if” part of (ii). The “if” part of (iii) can be proved
analogously: for all pointwise nondecreasing sequences (fn)n∈N of functions
fn ∈ F+,∫ S(

lim
n→∞

fn

)
dµ = sup

x∈R>0

xµ

(⋃
n∈N

{ω ∈ Ω : fn(ω) > x}

)

= sup
x∈R>0

x sup
n∈N

µ ({ω ∈ Ω : fn(ω) > x}) = lim
n→∞

∫ S

fn dµ.

For the “only if” parts, the continuity from below of µ is a direct conse-
quence of the fact that all three integrals are extensions of µ (when sets are
identified with their indicator functions). In (i) µ is also finitely additive (and
thus countably additive), since µ(A ∪ B) = limλ↑1

∫
(Aλ,0 + B1,0) dµ for all

disjoint A,B ⊆ Ω.

Corollary 2. Let µ be a capacity on Ω.

(i) The functional f 7→
∫
f dµ on F+ is countably subadditive if and only if

µ is countably additive.

(ii) The functional f 7→
∫
Cf dµ on F+ is countably subadditive if µ is sub-

modular and continuous from below.

(iii) The functional f 7→
∫
Sf dµ on F+ is countably subadditive if µ is count-

ably maxitive.

Corollary 2 gives sufficient conditions on the capacities for the countable sub-
additivity (or convexity) of the integrals. For the Choquet and Shilkret integrals
these conditions are not necessary, as shown in the next example. Necessary
and sufficient conditions on the capacities for the countable subadditivity (or
convexity) of the Choquet and Shilkret integrals are an open problem.

Example 4. The capacity µ on Ω = R defined in Example 1 is finitely maxi-
tive, but not countably maxitive (and thus submodular, but not continuous from
below). However, both functionals f 7→

∫
Cf dµ and f 7→

∫
Sf dµ on F+ are

countably subadditive. In order to prove this, it suffices to show

lim sup
x→+∞

∑
n∈N

fn(x) ≤
∑
n∈N

lim sup
x→+∞

fn(x)

for all sequences (fn)n∈N of functions fn ∈ F+ such that
∑

n∈N supx∈R fn(x) <
+∞. This property follows from the fact that for each ε ∈ R>0 there is a finite
N ⊂ N such that

∑
n∈N\N supx∈R fn(x) ≤ ε, and therefore

lim sup
x→+∞

∑
n∈N

fn(x) ≤ lim sup
x→+∞

(
ε+

∑
n∈N

fn(x)

)
≤ ε+

∑
n∈N

lim sup
x→+∞

fn(x).

11

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



5 Law of iterated expectations

For an integral describing the evaluation (or expectation) of a function with
respect to a measure, it is important to satisfy a law of iterated expectations (or
evaluations). In fact, backward induction can then be applied and conditional
evaluations can be used as an intermediate step toward the (unconditional)
evaluation of a function. When F : F+ → R≥0 is a functional such that
µ : A 7→ F (A1,0) on P(Ω) is a capacity, the conditional evaluation by F of
a function f ∈ F+ with respect to a partition C ⊆ P(Ω) of Ω is denoted by
F (f | C) and is defined as F (f | C) =

∑
C∈C CF (f |C),0, where F (f |C) = 0 when

µ(C) = 0, and

F (f |C) =
F (Cf,0)

µ(C)

otherwise. When κ is a cardinal, F is said to be κ-decomposable if and only if
F (F (f | C)) = F (f) for all f ∈ F+ and all partitions C ⊆ P(Ω) of Ω such that
|C| ≤ κ.

Lemma 3. Let µ be a capacity on Ω, and let κ be a cardinal. The functional
f 7→

∫
Sf dµ on F+ is κ-decomposable if µ is κ-maxitive.

Proof. Lemma 1 implies that the functional F : f 7→
∫
Sf dµ on F+ is κ-

maxitive. Let f ∈ F+ be a function, and let C ⊆ P(Ω) be a partition of Ω such
that |C| ≤ κ. Then F (f |C)µ(C) = F (Cf,0) for all C ∈ C, and therefore∫ S

(∫ S

f dµ | C

)
dµ = sup

C∈C

∫ S

CF (f |C),0 dµ = sup
C∈C

∫ S

Cf,0 dµ =

∫ S

f dµ.

The next theorem gives necessary and sufficient conditions on the capacities
for the finite decomposability (i.e., 2-decomposability) of the integrals. It gener-
alizes in particular a result of Yoo (1991, see also Dominiak, 2013), by showing
that the Choquet integral can satisfy a (finite) law of iterated expectations only
if it corresponds to the standard integral (when the capacity is finitely additive)
or to the Shilkret integral (when the capacity is finitely maxitive and binary).

Theorem 5. Let µ be a capacity on Ω with positive values for at least 3 pairwise
disjoint subsets of Ω.

(i) The functional f 7→
∫
f dµ on F+ is finitely decomposable if and only if

µ is finitely additive.

(ii) The functional f 7→
∫
Cf dµ on F+ is finitely decomposable if and only if

µ is finitely additive or µ is finitely maxitive and binary.

(iii) The functional f 7→
∫
Sf dµ on F+ is finitely decomposable if and only if

µ is finitely maxitive.

Proof. The “if” part of (i) can be proved analogously to Lemma 3, using the
finite additivity instead of the κ-maxitivity. The finite additivity of f 7→

∫
f dµ

on F+ follows from Theorem 4 (i) and the fact that for all f, g ∈ F+, if s ∈ Sf

and s′ ∈ Sg, then s + s′ ∈ Sf+g, and thus
∫
sdµ +

∫
s′ dµ ≤

∫
(f + g) dµ is

implied by Theorem 2 (i). The “if” part of (iii) is a special case of Lemma 3,

12

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



while the “if” part of (ii) is implied by the corresponding parts of (i) and (iii)
using Corollary 1 (i) and (ii), respectively.

For the “only if” parts, first note that for all A,B ∈ Ω, if µ(B) = 0, then
µ(A ∪ B) = µ(A), since the conditional evaluations of (A ∪ B)1,0 with respect
to the partition {A, Ω \ A} take the value 0 on Ω \ A. In particular, if µ is
binary, then it is finitely maxitive. Furthermore, for all A ⊆ Ω, at least one of
A and Ω \ A is the union of two disjoint subsets with positive capacity values,
because µ has positive values for at least 3 pairwise disjoint subsets of Ω, and
the previous result implies that for each of these 3 subsets, the intersections
with A and Ω \A cannot both have capacity value 0.

The “only if” part of (i) can be proved by contradiction as follows. Assume
that there are A,B ⊆ Ω disjoint and such that µ(A ∪B) ̸= µ(A) + µ(B). Then
µ(A) > 0 and µ(B) > 0, and thus∫ (∫

(A ∪B)1,0 dµ | {A, Ω \A}
)

dµ =

∫ (
A1,0 +

µ(B)

µ(Ω \A)
(Ω \A)1,0

)
dµ

implies µ(B) = µ(Ω \ A) and µ(A ∪ B) = 1. Hence, µ(A) + µ(Ω \ A) < 1, and
at least one of A and Ω \ A, say A, is the union of two disjoint subsets with
positive capacity values: C and A \ C. Therefore,∫ (∫ (

µ(A)

µ(C)
C1,0 + (Ω \A)1,0

)
dµ | {A, Ω \A}

)
dµ =

∫
1 dµ

implies µ(A) = µ(C), and µ(A) = µ(A \ C) follows by symmetry. As shown
above, µ(A) ̸= µ(A) + µ(A \ C) implies µ(A) = 1, leading to a contradiction:

1 + 2µ(Ω \A) =
∫ (∫

A1,2 dµ | {C, Ω \ C}
)

dµ =

∫
C1, 1+2µ(Ω\A) dµ

= 2 + 2µ(Ω \A).

In order to prove the “only if” part of (ii), it suffices to show that if µ is not
finitely additive, then it is binary. Assume thus that µ is not finitely additive:
there are A,B ⊆ Ω disjoint and such that µ(A ∪ B) ̸= µ(A) + µ(B). Then
µ(A) > 0 and µ(B) > 0, and for all x ∈ R>0,

µ(A ∪B) + xµ(B) =

∫ C
(∫ C

((A ∪B)1,0 +Bx,0) dµ | {A, Ω \A}

)
dµ

=

∫ C(
A1,0 +

(1 + x)µ(B)

µ(Ω \A)
(Ω \A)1,0

)
dµ.

This implies µ(B) = µ(Ω \A) and thus µ(A∪B) = 1, because µ(B) < µ(Ω \A)
would imply

µ(A ∪B) + xµ(B) = µ(A) +
(1 + x)µ(B)

µ(Ω \A)
(1− µ(A))

for sufficiently small x ∈ R>0, which means µ(Ω\A) = 1−µ(A) and µ(A∪B) =
µ(A)+µ(B). Hence, µ(A)+µ(Ω \A) ̸= 1. Now, for all C ⊆ Ω \A, if µ(C) > 0,
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then

µ(A ∪ C) + µ(Ω \A)− µ(C)

=

∫ C
(∫ C(

A1,0 +
µ(Ω \A)

µ(C)
C1,0

)
dµ | {A, Ω \A}

)
dµ =

∫ C

1 dµ

implies µ(A∪C) ̸= µ(A)+µ(C), and as shown above, from this follows µ(C) =
µ(Ω \ A). By symmetry, for all C ⊆ A, if µ(C) > 0, then µ(C) = µ(A). In
order to complete the proof of the “only if” part of (ii), it suffices to show
µ(A) = µ(Ω \ A) = 1, because µ(D) ∈ {0, 1} for all D ⊆ Ω then follows from
µ(D ∩A), µ(D \A) ∈ {0, 1}. In order to show µ(A) = µ(Ω \A) = 1, remember
that at least one of A and Ω\A, say A, is the union of two disjoint subsets with
positive capacity values: E and A \E. Hence, µ(A) = µ(E) = µ(A \E), and as
shown above, µ(A) ̸= µ(E) + µ(A \E) implies µ(A) = 1. Finally, µ(Ω \A) = 1
follows from

1 + µ(Ω \A) =
∫ C

(∫ C

(E1,0 + (Ω \A)2,0) dµ | {E, Ω \ E}

)
dµ

=

∫ C

E1, 2µ(Ω\A) dµ = max {1, 2µ(Ω \A)} .

The “only if” part of (iii) can be proved by contradiction as follows. Assume
that there are A,B ⊆ Ω disjoint and such that µ(A ∪ B) > max {µ(A), µ(B)}.
Then µ(A) > 0 and µ(B) > 0, and thus

∫ S
(∫ S

(A ∪B)1,0 dµ | {A, Ω \A}

)
dµ

=

∫ S(
A1,0 +

µ(B)

µ(Ω \A)
(Ω \A)1,0

)
dµ = max

{
µ(B)

µ(Ω \A)
, µ(A)

}
implies µ(Ω \A) < 1 and µ(B) = µ(Ω \A)µ(A ∪B). Therefore,

max {µ(A ∪B), µ(Ω \A)}

=

∫ S
(∫ S(

A1,0 +
µ(Ω \A)

µ(B)
B1,0

)
dµ | {A, Ω \A}

)
dµ =

∫ S

1 dµ

implies µ(A ∪B) = 1 and µ(B) = µ(Ω \A). Hence, max {µ(A), µ(Ω \A)} < 1,
and at least one of A and Ω \ A, say A, is the union of two disjoint subsets
with positive capacity values: C and A \ C, with µ(Ω \ C) ≥ µ (Ω \ (A \ C)).
As shown above, if µ ((Ω \A) ∪ C) > max {µ(Ω \A), µ(C)}, then µ(Ω \ A) =
µ(Ω \ C), and thus µ (Ω \ (A \ C)) > µ(Ω \ C). Therefore, µ ((Ω \A) ∪ C) =
max {µ(Ω \A), µ(C)}, but this leads to a contradiction:

1 =

∫ S
(∫ S(

(A \ C)1,0 +
1

µ(C)
C1,0 +

1

µ(Ω \A)
(Ω \A)1,0

)
dµ | {A, Ω \A}

)

=

∫ S( 1

µ(A)
A1,0 +

1

µ(Ω \A)
(Ω \A)1,0

)
dµ > 1.
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Countable decomposability (i.e., ℵ0-decomposability) is implied by finite de-
composability when the integrals satisfy monotone convergence.

Corollary 3. Let µ be a capacity on Ω with positive values for at least 3 pairwise
disjoint subsets of Ω.

(i) The functional f 7→
∫
f dµ on F+ is countably decomposable if and only

if µ is countably additive.

(ii) The functional f 7→
∫
Cf dµ on F+ is countably decomposable if and only

if µ is countably additive or µ is countably maxitive and binary.

(iii) The functional f 7→
∫
Sf dµ on F+ is countably decomposable if µ is count-

ably maxitive.

Proof. The “if” parts can be proved as follows using Lemma 2 and Theorem 5.
Let F : F+ → R≥0 be a finitely decomposable functional satisfying monotone
convergence, let f ∈ F+ be a function, and let (Cn)n∈N be a nondecreasing
sequence of finite sets Cn ⊆ P(Ω) such that C =

⋃
n∈N Cn is a partition of Ω.

Then

F (F (f | C)) = lim
n→∞

F

(∑
C∈Cn

CF (f |C),0

)

= lim
n→∞

F

(
F

((⋃
Cn
)
f,0

| Cn ∪
{
Ω \

⋃
Cn
}))

= F

(
lim
n→∞

(⋃
Cn
)
f,0

)
= F (f).

The “only if” part of (i) can be proved by contradiction as follows. As-
sume that there is a sequence (An)n∈N of pairwise disjoint sets An ⊆ Ω such
that µ(

⋃
n∈N An) ̸=

∑
n∈N µ(An). Theorem 5 (i) implies that µ is finitely addi-

tive, and thus µ(
⋃

n∈N An) >
∑

n∈N µ(An). Therefore, infinitely many An have
positive capacity values, since∫ ∫ (⋃

n∈N
An

)
1,0

dµ | {An : n ∈ N}

 dµ =

∫  ⋃
n∈N :µ(An)>0

An


1,0

dµ.

Hence, µ takes infinitely many values, and Schervish et al. (1984, Theorem 3.1)
implies that there are a set A ⊆ Ω and a countable partition C of Ω such that
µ(A) > supC∈C

(∫
A1,0 dµ |C

)
, leading to a contradiction:

µ(A) =

∫ (∫
A1,0 dµ | C

)
dµ ≤

∫ (
sup
C∈C

(∫
A1,0 dµ |C

))
dµ < µ(A).

For the “only if” part of (ii), Theorem 5 (ii) implies that µ is finitely additive
or binary. If µ is finitely additive, then (i) and Corollary 1 (i) imply that µ is
also countably additive. If µ is binary, then it is also countably maxitive when
µ(
⋃

n∈N An) = 0 for all sequences (An)n∈N of pairwise disjoint sets An ⊂ Ω with
µ(An) = 0, and this follows from∫ C

∫ C
(⋃

n∈N
An

)
1,0

dµ | {An : n ∈ N}

 dµ =

∫ C

0 dµ.
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Corollary 3 gives sufficient conditions on the capacities for the countable
decomposability of the integrals. For the Shilkret integral the condition may
not be necessary, but the running example is not a counterexample.

Example 5. The capacity µ on Ω = R defined in Example 1 is neither countably
additive, nor countably maxitive, and the standard, Choquet, and Shilkret inte-
grals with respect to µ are not countably decomposable. More generally, if a func-
tional F : F+ → R≥0 is positively homogeneous and satisfies F (A1,0) = µ(A)
for all A ⊆ R, then it is not countably decomposable. In order to prove this, de-
fine for each n ∈ N the set Cn = {n+em−e : m ∈ N}. Since e is transcendental,
the sets Cn are pairwise disjoint, and thus

F

(
F

(
N1,0 | {Cn : n ∈ N} ∪

{
R \

⋃
n∈N

Cn

}))
= F

1

2

(⋃
n∈N

Cn

)
1,0


=

1

2
̸= 1 = F (N1,0).

6 Maxitive integrals of real functions

Theorem 2 (iii) characterizes the Shilkret integral as finitely maxitive, positively
homogeneous functional on all bounded, nonnegative functions. But the next
example shows that finite maxitivity and positive homogeneity are not sufficient
to characterize an integral on all bounded functions.

Example 6. Let Ω = N, and let F, F ′ : F → R be the functionals defined
by F (f) = f(1) when supn∈N f(n) < 0, and F (f) = max {f(1), 0} otherwise,
and by F ′(f) = f(1) when f(n) < 0 for all n ∈ N, and F ′(f) = max {f(1), 0}
otherwise, respectively, for all f ∈ F . Then F, F ′ are finitely maxitive and
positively homogeneous, and F (f) = F ′(f) for all simple functions f ∈ F , with
in particular F (x) = F ′(x) = x for all x ∈ R. However, F ̸= F ′, since for
instance F (f) = 0 ̸= −1 = F ′(f) when f : n 7→ −1/n.

The next theorem shows that not even countably maxitive, positively homo-
geneous functionals F : F → R with F (±1) = ±1 are uniquely determined by
the capacity µ : A 7→ F (A1,0) on P(Ω). A set function ν : P(Ω) → R is said to
be a penalty on Ω if and only if ν is monotonic, ν(∅) = −∞, and ν(Ω) = 0.

Theorem 6. Let F : F → R be a functional such that F (1) = 1 and F (−1) =
−1, and define µ : A 7→ F (A1,0) and ν : A 7→ F (A−1,−∞) + 1 on P(Ω), and
D = {D ⊂ Ω : F (D1,−∞) = −∞}. Then F is countably maxitive and positively
homogeneous if and only if µ is a countably maxitive capacity, ν is a countably
maxitive penalty, D is a σ-ideal such that µ(D) = 0 and ν(D) = −∞ for all
D ∈ D, and

F : f 7→
{

supx∈R>0
xµ ({ω ∈ Ω : f(ω) > x}) if {ω ∈ Ω : f(ω) > 0} /∈ D,

supx∈R<0
x (1− ν({ω ∈ Ω : f(ω) > x})) if {ω ∈ Ω : f(ω) > 0} ∈ D.

Proof. The “if” part can be proved as follows. Let T ⊆ F be a set of functions
such that 0 < |T | ≤ ℵ0. Since D is a σ-ideal,

{
ω ∈ Ω : supf∈T f(ω) > 0

}
∈ D

if and only if {ω ∈ Ω : f(ω) > 0} ∈ D for all f ∈ T . The countable maxitivity
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of F follows now from the countable maxitivity of µ and ν, while the positive
homogeneity of F is a direct consequence of the definitions.

For the “only if” part, since F is countably maxitive and positively ho-
mogeneous, it is also monotonic, µ is a countably maxitive capacity, ν is a
countably maxitive penalty, and D is a σ-ideal. Furthermore, if D ∈ D, then
µ(D) = F (D1,−∞ ∨ 0) = 0 and ν(D) ≤ F (D1,−∞) + 1 = −∞. If A /∈ D,
then F (A1,−∞) = µ(A), because F (A1,−∞) ∈ R<0 would imply F (A2,−∞) =
2F (A1,−∞) < F (A1,−∞). The desired result follows from the fact that for all
f ∈ F ,

F (f) = sup
x∈Q̸=0

F
(
{ω ∈ Ω : f(ω) > x}x,−∞

)

= max

 supx∈Q>0
xF

(
{ω ∈ Ω : f(ω) > x}1,−∞

)
,

supx∈Q<0
(−x)F

(
{ω ∈ Ω : f(ω) > x}−1,−∞

)  ,

and thus F is uniquely determined by D, µ, ν.

The functionals F : F → R considered in Theorem 6 extend the Shilkret
integral to functions taking also negative values, since F (f) =

∫
Sf dµ for all

f ∈ F+. Some non-maxitive extensions of the Shilkret integral to functions
taking also negative values were introduced by Greco and Rindone (2013). The
next lemma shows that all such extensions can be finitely subadditive only when
µ is binary.

Lemma 4. Let µ be a capacity on Ω, and let F : F → R be a functional
such that F (−1) = −1 and F (f) =

∫
Sf dµ for all f ∈ F+. If F is finitely

subadditive, then µ is binary.

Proof. If µ is not binary, then there are an A ⊂ Ω with µ(A) /∈ {0, 1} and
an x ∈ R>0 with (1 + x)µ(A) < 1, and thus F is not subadditive, because
F (Ax,0) = xµ(A) > 1− 1 = F (Ax+1, 1) + F (−1).

In order to make the functionals F : F → R considered in Theorem 6
uniquely determined by the capacity µ : A 7→ F (A1,0) on P(Ω), their homogene-
ity can be assumed instead of positive homogeneity. This means additionally
assuming F (−f) = −F (f) for all f ∈ F . But the next lemma shows that this is
only possible when µ is binary. When S ⊆ F is a set of functions, a functional
F : S → R is said to be homogeneous if and only if F (α f) = αF (f) for all
α ∈ R ̸=0 and all f ∈ S such that α f ∈ S.
Lemma 5. Let F : F → R be a functional such that F (1) = 1, and define
µ : A 7→ F (A1,0) on P(Ω). If F is finitely maxitive and homogeneous, then µ is
a finitely additive, binary capacity.

Proof. Since F is finitely maxitive and homogeneous, it is also monotonic, and
µ is a finitely maxitive capacity. The desired result follows from the fact that
for all A ⊆ Ω, not only max {µ(A), µ(Ω \A)} = 1, but also

min {µ(A), µ(Ω \A)} = −max {F (−A1,0), F (−(Ω \A)1,0)} = 0.

Corollary 4. Let Ω be a nonempty set such that there is no σ-complete, non-
principal ultrafilter on Ω, and let F : F → R be a functional such that F (1) = 1.
Then F is countably maxitive and homogeneous if and only if there is a point
ω ∈ Ω such that F : f 7→ f(ω).
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Proof. The “if” part is a direct consequence of the definitions. The “only if”
part can be proved as follows. Theorem 6 and Lemma 5 imply that the set
function µ : A 7→ F (A1,0) on P(Ω) is a countably additive, binary capac-
ity, D = {D ⊂ Ω : F (D1,−∞) = −∞} ⊆ {D ⊂ Ω : µ(D) = 0}, and F (f) ≥ 0
for all f ∈ F+. Thus F (f) =

∫
Sf dµ for all f ∈ F+ follows from Theo-

rem 3 (iii). In particular, F (A−1,−∞) = −
∫
SA1,+∞ dµ = −1 when µ(A) = 1,

and F (A−1,−∞) = −∞ otherwise, for all A ⊆ Ω. Furthermore, if D ⊂ Ω with
µ(D) = 0, then D ∈ D, because min {F (D1,−∞), 0} = −

∫
SD0,+∞ dµ = −∞.

Hence, the set P(Ω) \D = {A ⊆ Ω : µ(A) = 1} is a σ-complete ultrafilter on Ω,
and thus there is a point ω ∈ Ω such that P(Ω) \ D = {A ⊆ Ω : ω ∈ A}, and
F : f 7→ f(ω) follows then from Theorem 6.

Theorem 6 implies that positive homogeneity is too weak a property to
determine a maxitive integral of real functions with respect to a capacity, while
Lemma 5 shows that homogeneity is too strong. Alternative strengthenings of
positive homogeneity are possible, but rather arbitrary. It is more interesting
to replace positive homogeneity by additive homogeneity. When S ⊆ F is a
set of functions, a functional F : S → R is said to be additively homogeneous
if and only if F (f + α) = F (f) + α for all α ∈ R and all f ∈ S such that
f + α ∈ S. For a functional describing the evaluation of the loss or utility of
possible decisions, additive homogeneity means that these can be measured on
an interval scale, since the location of the zero point is of no concern in the
decision making (Stevens, 1946).

The convex integral of a function f ∈ F with respect to a penalty ν on Ω is
denoted by

∫
Xf dν and is defined as∫ X

f dν = sup
x∈R

(x+ ν ({ω ∈ Ω : f(ω) > x})) .

The convex integral has a particularly simple expression when ν is completely
maxitive:

∫
Xf dν = supω∈Ω : ν({ω})>−∞ (f(ω) + ν ({ω})) for all f ∈ F . For

example, in statistics, the log-likelihood of composite hypotheses is a completely
maxitive penalty: ℓ(H) = supθ∈H lnL(θ) for all composite hypotheses H ⊆ Θ,
where ln 0 = −∞ and, as above, Θ is a set of simple hypotheses and L is the
(relative) likelihood function on Θ. Hence, the convex integral with respect
to ℓ corresponds to decision making by log-likelihood-penalized minimax loss
(or maximin utility):

∫
Xf dℓ = supθ∈Θ (f(θ) + lnL(θ)), where f : Θ → R

describes the loss (or minus utility) of a possible decision. Furthermore, the
convex integral with respect to completely maxitive penalties is strictly related
to the idempotent integral of tropical or idempotent mathematics (Kolokoltsov
and Maslov, 1997) and to convex measures of risk (Föllmer and Schied, 2011).
Note however that the notion of convex integral considered in the present paper
(and in Cattaneo, 2014, 2013b) is different from the one introduced by Mesiar
et al. (2015).

Example 7. Let ν be the penalty on Ω = R such that ν(A) = 0 when supA =
+∞, and ν(A) = −1/2 otherwise, for all nonempty sets A ⊆ R. Then ν is
finitely maxitive, but not countably maxitive, and for all f ∈ F ,∫ X

f dν = max

{
lim sup
x→+∞

f(x), sup
x∈R

f(x)− 1

2

}
.
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In particular, µ : A 7→
∫
XA1,0 dν on P(R) is the capacity defined in Example 1.

The next three corollaries correspond to Lemma 1, Theorem 2 (iii), and
Theorem 3 (iii), respectively, since

∫
Xf dν = ln

∫
Sef deν for all f ∈ F and

all penalties ν on Ω, where the logarithm and the exponential functions are
extended continuously to R≥0 and R, respectively.

Corollary 5. Let ν be a penalty on Ω, and let κ be a cardinal. The functional
f 7→

∫
Xf dν on F is κ-maxitive if and only if ν is κ-maxitive.

Corollary 6. Let F : U → R be a functional such that F (0) = 0, and de-
fine ν : A 7→ F (A0,−∞) on P(Ω). Then F is finitely maxitive and additively
homogeneous if and only if ν is a finitely maxitive penalty and F : f 7→

∫
Xf dν.

Corollary 7. Let F : F → R be a functional such that F (0) = 0, and define
ν : A 7→ F (A0,−∞) on P(Ω). Then F is countably maxitive and additively
homogeneous if and only if ν is a countably maxitive penalty and F : f 7→∫
Xf dν.

Since
∫
XA0,−∞ dν = ν(A) for all A ⊆ Ω, the convex integral can be seen as

an extension of the penalty ν. Corollary 5 shows that this extension maintains
maxitivity, while Corollaries 6–7 characterize the convex integral as maxitive,
additively homogeneous functional. The value −∞ plays the same role in the
extension of the penalty ν by the convex integral as the value 0 does in the
extension of the capacity µ by the standard, Choquet, and Shilkret integrals.
The reason is that −∞ is the identity element of the maximum on R and the
absorbing element of the addition on R \ {+∞}, while 0 is the identity element
of the maximum or addition on R≥0 and the absorbing element of the multipli-
cation on R≥0 \ {+∞}. By contrast, the definition of a maxitive, homogeneous
integral is problematic, because the identity element of the maximum on R is
−∞, while the absorbing element of the multiplication on R is 0.

The next theorem characterizes the penalties with respect to which the con-
vex integral is convex, and is the reason for its name.

Theorem 7. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F is

finitely convex if and only if ν is finitely maxitive.

Proof. In order to prove the “if” part, it suffices to show that if λ ∈ (0, 1)
and f, g ∈ F are two functions such that f + g and

∫
Xf dν +

∫
Xg dν are

well-defined, and x ∈ R, then x + ν ({ω ∈ Ω : λ f(ω) + (1− λ) g(ω) > x}) ≤
λ
∫
Xf dν + (1 − λ)

∫
Xg dν. Assume thus

∫
Xf dν +

∫
Xg dν < +∞, and note

that for all α ∈ R,

x+ ν ({ω ∈ Ω : λ f(ω) + (1− λ) g(ω) > x})
≤ x+ ν ({ω ∈ Ω : f(ω) > x+ (1− λ)α} ∪ {ω ∈ Ω : g(ω) > x− λα})

= max

{
x+ ν ({ω ∈ Ω : f(ω)− (1− λ)α > x}) ,
x+ ν ({ω ∈ Ω : g(ω) + λα > x})

}
≤ max

{∫ X

f dν − (1− λ)α,

∫ X

g dν + λα

}
.

The desired result is obtained by letting α tend to −∞ or +∞ when
∫
Xf dν =

−∞ or
∫
Xg dν = −∞, respectively, and by setting α =

∫
Xf dν −

∫
Xg dν oth-

erwise.
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The “only if” part follows from the fact that for all disjoint A,B ⊆ Ω and
all x ∈ R>0, if ν(A ∪B)− x > max {ν(A), ν(B)}, then

ν(A ∪B) ≤ 1

2

∫ X

(A0,−∞ ∨Bx,−∞) dν +
1

2

∫ X

(A0,−∞ ∨B−x,−∞) dν

=
1

2
ν(A ∪B) +

1

2
(ν(A ∪B)− x) < ν(A ∪B).

Theorem 7 gives a necessary and sufficient condition on the penalty for the
finite convexity of the integral. Countable convexity follows from finite convexity
when the integral satisfies a version of Fatou’s lemma, implied by monotone
convergence. The next corollary corresponds to Lemma 2 (iii).

Corollary 8. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F

satisfies monotone convergence if and only if ν is continuous from below.

Corollary 9. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F is

countably convex if ν is countably maxitive.

Proof. Let (λn)n∈N be a sequence of values λn ∈ (0, 1) such that
∑

n∈N λn = 1,
let (fn)n∈N be a sequence of functions fn ∈ F such that

∑
n∈N λn fn and∑

n∈N λn

∫
Xfn dν are well-defined, and let (Nm)m∈N be a nondecreasing se-

quence of finite sets Nm ⊂ N such that
⋃

m∈N Nm = N. Corollary 8 and
Theorem 7 imply that the functional f 7→

∫
Xf dν on F satisfies monotone

convergence and is finitely convex, and thus∫ X
(∑

n∈N
λn fn

)
dν = lim

m→∞

∫ X
(

inf
k∈N : k≥m

∑
n∈Nk

λn fn

)
dν

≤ lim inf
m→∞

∫ X
( ∑

n∈Nm

λn fn

)
dν ≤

∑
n∈N

λn

∫ X

fn dν.

Corollary 9 gives a sufficient condition on the penalty for the countable
convexity of the integral. This condition is not necessary, as shown in the next
example. A necessary and sufficient condition on the penalty for the countable
convexity of the convex integral is an open problem.

Example 8. The penalty ν on Ω = R defined in Example 7 is finitely maxitive,
but not countably maxitive. However, the functional f 7→

∫
Xf dν on F is

countably convex, as can be proved analogously to Example 4.

For positively homogeneous functionals on F+ or F , convexity and subad-
ditivity are equivalent. But the next lemma shows that only with respect to
binary penalties (i.e., penalties taking only the values −∞ and 0) is the convex
integral positively homogeneous.

Lemma 6. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F is

positively homogeneous if and only if ν is binary.

Proof. The “if” part is a direct consequence of the definitions. The “only if”
part follows from the fact that for all A ⊆ Ω, if ν(A) > −∞, then ν(A) =
−
∫
XA−2 ν(A), 0 dν = −2

∫
XA−ν(A),0 dν = 0.
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Corollary 10. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F is

finitely subadditive if and only if ν is finitely maxitive and binary.

Proof. If the functional f 7→
∫
Xf dν on F is finitely subadditive, then ν is

binary, since ν(A) = −
∫
XA−2 ν(A), 0 dν ≥ −2

∫
XA−ν(A),0 dν = 0 for all A ⊆ Ω

such that ν(A) > −∞. The desired result follows now from Theorem 7 and
Lemma 6.

Corollary 11. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F is

countably subadditive if and only if ν is countably maxitive and binary.

Proof. The “if” part is implied by Corollary 9 and Lemma 6. For the “only
if” part, Corollary 10 implies that ν is finitely maxitive and binary. Hence, ν
is also countably maxitive when ν(

⋃
n∈N An) = −∞ for all sequences (An)n∈N

of pairwise disjoint sets An ⊂ Ω with ν(An) = −∞, and this follows from∫
X(
⋃

n∈N An)1,0 dν ≤
∑

n∈N
∫
X(An)1,0 dν = 0.

The convex integral, interpreted as the evaluation (or expectation) of func-
tions with respect to a penalty, satisfies a law of iterated expectations, if con-
ditional evaluations are defined accordingly. When F : F → R is a functional
such that ν : A 7→ F (A0,−∞) on P(Ω) is a penalty, the conditional evaluation
by F of a function f ∈ F with respect to a partition C ⊆ P(Ω) of Ω is denoted
by F (f | C) and is defined as F (f | C) =

∑
C∈C CF (f |C),0, where F (f |C) = −∞

when ν(C) = −∞, and F (f |C) = F (Cf,−∞) − ν(C) otherwise. When κ is a
cardinal, F is said to be κ-decomposable if and only if F (F (f | C)) = F (f) for
all f ∈ F and all partitions C ⊆ P(Ω) of Ω such that |C| ≤ κ. The next two
corollaries correspond to Lemma 3 and Theorem 5 (iii), respectively.

Corollary 12. Let ν be a penalty on Ω, and let κ be a cardinal. The functional
f 7→

∫
Xf dν on F is κ-decomposable if ν is κ-maxitive.

Corollary 13. Let ν be a penalty on Ω with finite values for at least 3 pairwise
disjoint subsets of Ω. The functional f 7→

∫
Xf dν on F is finitely decomposable

if and only if ν is finitely maxitive.
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