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Abstract: The interaction of a series of lanthanide cations (Ln3+) with inverted 

cucurbit[7]uril (iQ[7]) in the presence of [ZnCl4]
2− anions as a structure-directing 

agent have been investigated. Single-crystal X-ray diffraction analysis has revealed 

that the [ZnCl4]
2− anions surround the iQ[7] molecules via outer surface interactions 

of iQ[7]. This results in the formation of honeycomb-like frameworks, and ultimately 

linear supramolecular chains of iQ[7] in which Ln3+ cations occupy voids within the 

framework. Moreover, these iQ[7]/Ln3+-based supramolecular assemblies exhibit 

excellent thermal stability as well as permanent porosity, and in one case screening 
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revealed high CH3OH uptake capacity compared with other porous organic materials 

assembled solely through hydrogen bonding under ambient conditions. 

 

Keywords: inverted cucurbit[7]uril; lanthanide cations; [ZnCl4]
2− anion; coordination; 

supramolecular assemblies
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Introduction 

Inverted cucurbit[n]urils (iQ[n]s, n = 6,7) are characterized by the displacement of 

two methine hydrogen atoms of a glycoluril unit within their cavities, and were first 

reported by Isaacs and Kim in 2005.[1] Subsequently, it was demonstrated that iQ[n]s 

can convert into Q[n]s following heating in concentrated HCl.[2] Given that iQ[7] has 

a slightly smaller cavity than that of Q[7], it can display some different host-guest 

properties. For example, iQ[7] binds aromatic guests tighter than linear aliphatic 

guests.[1] Also, the Ka value of iQ[7] for aromatic guests is somewhat higher than that 

for voluminous guests such as adamantine, which is in sharp contrast to the behaviour 

of Q[7], which displays much higher affinity for adamantine 3 than for aromatic 

guests.[1] However, difficulties associated with the separation of iQ[n]s had hindered 

the investigation of their chemistry. Indeed, only four studies and one patent involving 

iQ[n]s have been reported to date.[2-6] However, recently we found that iQ[6] or iQ[7] 

can be easily isolated from Q[6] or a water-soluble mixture of Q[n]s by column 

chromatography on Dowex resin.[7-9] The subtle difference in the outer surface 

interactions of Q[n] and iQ[n] results in a significant difference in their 

chromatographic behaviour, and their resultant separation has further facilitated the 

development of iQ[n] chemistry.[7] 

Interestingly, polychloride transition metallated anions ([Md-blockClx]
n−), in 

particular, [CdCl4]
2− and [ZnCl4]

2− have proven effective structure directing agents in 

the construction of Q[n]/Metal coordination complexes and supramolecular 
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coordination polymers.[9-12] The interaction of electronegative [Md-blockClx]
n− anions 

and the electropositive outer surface of Q[n]s generally leads to the formation of 

[Md-blockClx]
n−-based honeycomb-like frameworks (the so-called honeycomb effect of 

[Md-blockClx]
n−), resulting in Q[n]–metal-based coordination polymers, which occupy 

the cells of the frameworks.[7,20] Our recent studies have shown that both iQ[6] and 

iQ[7] can coordinate with alkaline-earth metal ions[9] in the presence of the [ZnCl4]
2− 

anion as a structure-directing agent[10-12] resulting in the formation of different 

supramolecular assemblies. More recently, investigation of the interactions of iQ[6] 

with lanthanide cations (Ln3+) in the presence of the [ZnCl4]
2− anion revealed that 

they give rise to different products and isomorphous groups based on increasing 

atomic number. The interaction of iQ[6] with La3+ and Ce3+ immediately yielded 

precipitates, and likewise crystalline solids were obtained with Pr3+ and Nd3+. No 

solids resulted from the coordination of iQ[6] with Sm3+ and Eu3+, whereas crystalline 

solids were obtained from its coordination with the remaining heavy Ln3+, Ln = 

Gd–Lu; such observations demonstrated the recognition of lanthanide cations by 

iQ[6].[8] Moreover, different Q[n]s exhibit different selectivity for Ln3+ and the 

interaction or coordination of Q[n]s with Ln3+ is strongly affected by the synthetic 

conditions employed.[21] Previous studies have proven that Q[n]-based supramolecular 

assemblies could be used as hydrogelators,[13] for the capture of gases such as 

acetylene[14] or carbon dioxide,[15] and that both Q[6]- and Q[8]-based porous 

materials show anisotropic proton conductivity.[16] The combination of Q[n]-based 

coordination complexes and Q[n]-based supramolecular assemblies could open up 
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limitless possibilities. 

In the present work, the coordination chemistry of iQ[7] (Figure 1) towards 

lanthanide cations (Ln3+), in the presence of the [ZnCl4]
2− anion as a 

structure-directing agent, in aqueous HCl has been investigated. Single-crystal X-ray 

diffraction analysis revealed that [ZnCl4]
2− anions surround iQ[7] molecules via outer 

surface interactions and form honeycomb-like frameworks, and ultimately result in 

the formation of linear supramolecular chains of iQ[7] with Ln3+ cations, the latter 

occupying the voids of the framework. Moreover, the linear iQ[7]/Ln3+-based 

supramolecular chains arrange into novel supramolecular assemblies, which in one 

case was shown to exhibit high CH3OH uptake capacity when compared with other 

porous organic materials assembled solely through hydrogen bonding under ambient 

conditions[17-19]. 

 

Fig. 1. Structure of the inverted cucurbit[7]uril as viewed from the top (left) and from 

the side (right). 

 

Results and Discussion 

Description of the crystal structures.  

Figure 2 shows the crystal structure of compound 1 obtained from the 
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iQ[7]−Eu3+−ZnCl2−HCl system. A supramolecular assembly is evident (Figure 2a) in 

which the [ZnCl4]
2− anions are arranged into a honeycomb-like framework (Figure 

2b), and each ‘hollow’ within the honeycomb has one iQ[7]−Eu3+-based “bee pupa” 

(Figure 2a, 2c). Each iQ[7] molecule in the “pupa” is surrounded by seven [ZnCl4]
2− 

anions via the outer surface interactions of iQ[7], including dipole-dipole interactions 

between Cl from [ZnCl4]
2− anions and methine or methylene (black dashed lines) of 

the iQ[7] molecule (Figure 2d). Distances between chloride and methine or methylene 

carbons fall within the range 3.406–3.445 Å. Additional hydrogen bonding 

interactions between the inverted carbonyl oxygens and the methylene groups on the 

outer surface of the iQ[7] molecules (red dashed lines) from two neighbouring linear 

polymers (Figure 2e) are also evident. The distances between the inverted carbonyl 

oxygens (O11) and the hydrogens (H23B and H24A) are in the range 2.543−2.645 Å. 

Unlike the unsubstituted Q[7]/Ln3+-based supramolecular coordination polymers 

where neighbouring Q[7] molecules are linked by direct coordination with Ln3+ 

cations,[8,13] here each iQ[7]−Eu3+-based supramolecular “pupa” is constructed of 1:1 

iQ[7]/Eu3+ complexes. Furthermore, a Eu3+ cation (Eu1) of a iQ[7]/Eu3+ complex 

coordinates at one portal of the iQ[7] molecule, and interacts with the portal of a 

neighbouring iQ[7]/Eu3+ complex via hydrogen bonding (Figure 2f). Each Eu3+ cation 

(Eu1) coordinates with eight oxygen atoms, two carbonyl oxygens (O1, O2) from a 

iQ[7] molecule, and six water molecules (O1W, O2W, O3W, O4W, O5W, O6W), 

which interact with the portal carbonyl oxygens of a neighbouring iQ[7] molecule. 

Some additional interactions exist between the two neighbouring iQ[7] molecules, 
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including: 1) hydrogen bonding between the five coordinated water molecules (O2W, 

O3W, O4W, O5W, O6W) and the portal carbonyl oxygens (O14, O8, O9, O10, O12) 

(2.836–2.887 Å in blue dashed lines, Figure 2f); the hydrogen bonding distances are 

in the range 2.657−2.809 Å. 2) hydrogen bonding interactions between a portal 

carbonyl oxygen of the iQ[7] molecule and a methylene group from the neighboring 

iQ[7] molecule with hydrogen bonding distances in the range 2.867−3.010 Å (red 

dashed lines, Figure 2f). Thus, a combination of all these interactions resulted in the 

formation of the iQ[7]−Eu3+−[ZnCl4]
2− supramolecular coordination assembly. 

 

 
 

Fig. 2. X-ray crystal structure of compound 1: (a) overall view of the supramolecular 
assembly constructed of iQ[7]−Eu3+ complexes and [ZnCl4]

2− anions along the c axis; 

(b) a [ZnCl4]
2−−based honeycomb-like framework; (c) a linear iQ[7]−Eu3+−based 

coordination polymer surrounded by [ZnCl4]
2− anions; (d) interactions between iQ[7] 

molecules and [ZnCl4]
2− anions; (e) interactions between iQ[7] molecules and 

neighbouring linear polymers; (f) interactions between the Eu3+−linked iQ[7] 
molecules. 
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Although compound 2 obtained from the iQ[7]−Yb3+−ZnCl2 −HCl system does 

not belong to the same isomorphous group as that of compound 1, the two compounds 

form similar supramolecular assemblies. Indeed, one can see such a supramolecular 

assembly constructed of iQ[7], Yb3+, and [ZnCl4]
2− anions (Figure 3a). [ZnCl4]

2− 

anions are attracted by the positively charged outer surface of the iQ[7] molecules and 

thus surround them, resulting in the formation of a [ZnCl4]
2−-based honeycomb-like 

framework (the honeycomb effect of the [ZnCl4]
2− anion; Figure 3b). Meanwhile, the 

negatively charged environment around the iQ[7] molecules leads to a strong affinity 

for metal ions, such as Yb3+ cations. Thus, linear iQ[7]/Yb3+-based supramolecular 

chains are formed, which reside in the channels of the [ZnCl4]
2−-based honeycomb 

(Figures 3a, 4c). Typical outer surface interactions of iQ[7]s with [ZnCl4]
2− anions 

comprise mainly dipole−dipole interactions between Cl from [ZnCl4]
2− anions and 

methine or methylene units (black dashed lines) of the iQ[7] molecule (Figure 3d). 

The distances between the chloride and the methine or methylene carbons are in the 

range 3.288−3.423 Å. The hydrogen bonding interactions can also be observed 

between the inverted portal carbonyl oxygen atoms of one iQ[7] molecule and the 

methylene groups on the outer surface of another between neighbouring 

iQ[7]/Yb3+-based supramolecular chains (red dashed lines), with the hydrogen 

bonding distances in the range 2.932−3.129 Å (Figure 3e). Close inspection reveals 

that every two neighbouring iQ[7] molecules in a supramolecular chain are linked by 

one Yb3+ cation (Yb1), which directly coordinates to two carbonyl oxygen atoms (O1, 

O2) from an iQ[7] molecule. Moreover, a coordinated water molecule (O1W) resides 
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at the portal of the iQ[7] molecule. The Yb3+ cation (Yb1) also interacts with the 

neighbouring iQ[7] molecule via hydrogen bonding of coordinated water molecules 

(O2W, O3W, O4W, O5W, O6W; Figure 3f). Thus, the Yb1 cation coordinates with 

eight oxygen atoms. The distances between Yb3+ and the portal carbonyl oxygen 

atoms are in the range 2.289−2.303 Å, and the distances between carbonyl oxygen 

atoms and Owater are in the range 2.710−2.955 Å.  

 

 
Fig. 3.  X-ray crystal structure of compound 2: (a) overall view of the 
supramolecular assembly constructed of iQ[7]−Yb3+ complexes and [ZnCl4]

2− anions 

along the b axis; (b) a [ZnCl4]
2−-based honeycomb-like framework; (c) a linear 

iQ[7]−Yb3+-based coordination polymer surrounded by [ZnCl4]
2− anions; (d) 

interactions between iQ[7] molecules and [ZnCl4]
2− anions; (e) interactions between 

iQ[7] molecules and neighbouring linear polymers; (f) interactions between the 
Yb3+−linked iQ[7] molecules. 

 

Our previous work [20] revealed that normal Q[7] can form crystalline solids with a 
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series of Ln3+ cations under similar experimental conditions, that is, with the aid of 

[ZnCl4]
2− anions as a structure-directing agent. There was apparently no special 

selectivity of the normal Q[7] for the lanthanide cations, with almost all of the 

Q[7]−Ln3+
−[ZnCl4]

2− systems yielding crystalline solids, although they could be 

classified into different isomorphous groups with increasing atomic number of the 

lanthanide. However, the inverted iQ[7] seems to display specific recognition 

properties for the lanthanide cations. Experiments showed that the 

iQ[7]−Ln3+
−[ZnCl4]

2− systems with lighter Ln, that is, La, Ce, Pr, Nd, and Sm, gave 

no precipitate, whereas the remaining heavier Ln gave crystalline solids, which could 

be divided into two isomorphous groups (Table S1 in the SI), for which Eu, Gd, and 

Lu constitute one group, and Tb, Dy, Ho, Er, Tm, and Yb the other. X-ray powder 

diffraction patterns of two representative crystals of each of these compounds, and 

comparison with simulated patterns, revealed that the samples essentially consisted of 

pure crystalline phases (Figure 4).  

 

 

Fig. 4.  X-ray powder diffraction patterns of compounds 1 and 2: as simulated (black) 
from single crystal XRD data, and as experimental (red). 

 

Page 10 of 18RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Sorption properties towards volatile materials: Moreover, both types of crystalline 

materials generally showed porous structural features, which could be utilized for 

selective sorption properties and can therefore be utilized for separation/purification 

applications.[22] Figure 5 displays the sorption profiles for several volatile materials 

when using the iQ[7]-based porous supramolecular assembly 1. A remarkable sorption 

capacity for methanol was observed at over 16 mmol per gram, which is at least 20 

times more than those of the other volatile materials screened at room temperature 

under atmospheric pressure. In contrast, powdered iQ[7] exhibited far less sorption 

capacities for methanol, in fact only one third of that of the iQ[7]-based porous 

materials, although it displayed better sorption capacity for the remaining volatile 

materials. In particular, for acetonitrile, the sorption capacity was about 30 times more 

than that of the iQ[7]-based porous materials (Figure S1 in the SI). 

Comparison of the sorption capacities of iQ[7]-based porous material with those 

of iQ[7], under the same conditions, reveals that 1) the former show more obvious 

selectivity for polar volatile materials, especially methanol, due to the polar channels 

of the porous materials; 2) the channel sizes of the porous materials can influence the 

sorption capacities for polar volatile materials, for example, the significant difference 

between methanol and ethanol; 3) the latter shows no obvious selectivity for these 

volatile materials. These observations suggest that the iQ[7]-based honeycomb-like 

framework play a pivotal role in the sorption processes. 
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Fig. 5. Sorption profiles of volatile materials on the iQ[7]-based porous 
supramolecular assembly 1: (■) methanol, (●) ethanol, (▲) acetone, (◄) 
tetrachloromethane, (▼) acetonitrile 

 

Conclusion 

In continuation of our previous work,[11] we further selected iQ[7] as a ligand, and 

investigated its coordination behaviour and resulting supramolecular assemblies with 

Ln3+ cations in the presence of [ZnCl4]
2− anions as structure-directing agents. 

Single-crystal X-ray diffraction analyses revealed that the honeycomb effect of 

[ZnCl4]
2− anions results in the formation of linear coordination polymers of Ln3+ with 

iQ[7] molecules. The supramolecular assemblies constructed from the 1D 

iQ[7]/Ln3+-based coordination polymers display porous structural features, the 

remarkable selective sorption properties of which have the potential to be used for 

separation/purification technologies. Moreover, unlike Q[7], which shows no special 

selectivity for the lanthanides, iQ[7] displays selectivity for lanthanides in the 

presence of [ZnCl4]
2− anions. In particular, iQ[7] coordinates to heavy lanthanides, 

from Gd to Lu, forming crystalline solids, whereas no solid products are formed with 
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the light lanthanides, from La to Sm. Further investigations into these separation 

properties are ongoing in our laboratory. 

Experimental Section 

Synthesis. Chemicals such as lanthanide metal chlorides or nitrates were of reagent 

grade and were used without further purification. Elemental analyses were carried out 

on a EURO EA-3000 elemental analyzer. iQ[7] was synthesized and separated as 

described in our previous work.[9] 

Preparation of compounds 1 and 2. Similar processes were used to prepare 

crystals of related compounds: Ln(NO3)3 (0.12 mmol) and ZnCl2 (12.18 mg, 0.089 

mmol) were dissolved in 1.0 mL of H2O to prepare solution A, iQ[7] (20 mg, 

0.015mmol) was dissolved in 1.0 mL 3M of HCl to prepare solution B, which was 

then added with stirring to solution A. X-ray quality crystals were obtained from the 

solution on prolonged standing (≤10 days). The data for two representative 

compounds, namely {Eu(H2O)6(iQ[7]}·Cl·2[ZnCl4]·2H3O 10H2O (1), and 

{Yb(H2O)6iQ[7]}2[ZnCl4]·Cl·2H3O·10H2O (2) which were obtained from Eu(NO3)3 

(53.17 mg) and Yb(NO3)3 (53.54 mg) respectively, are presented herein. Anal. calcd. 

for compound 1, C42H100N28O42EuZn2Cl9 (%): C, 22.21; H, 4.44; N, 17.27, found: C, 

22.14; H, 4.48; N, 17.18. Anal. calcd for compound 2, C42H104N28O44YbZn2Cl9 (%): C, 

21.67; H, 4.50; N, 16.84 , found: C, 21.58; H, 4.53; N, 16.73. 

X-ray crystallography. A suitable single crystal (~0.2 × 0.2 × 0.1 mm3) was 

embedded in paraffin oil. The resulting specimen was mounted on a Bruker SMART 
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Apex II CCD diffractometer equipped with a graphite-monochromated Mo-Kα 

radiation source (λ = 0.71073 Å, µ = 0.828 mm-1), which was operated in the ω-scan 

mode at room temperature. Data were corrected for Lorentz and polarization effects 

by using the SAINT program, and semi-empirical absorption corrections based on 

equivalent reflections were also applied by using the SADABS program. The 

structure was elucidated through direct methods and then refined by the full-matrix 

least-squares method on F
2 using the SHELXS-97 and SHELXL-97 program 

packages, respectively.[23,24] All non-hydrogen atoms were refined anisotropically. 

Carbon-bound hydrogen atoms were introduced at calculated positions, and were 

treated as riding atoms with an isotropic displacement parameter equal to 1.2 times 

that of the parent atom. Most of the water molecules in the compounds were omitted 

by using the SQUEEZE option of the PLATON program. There were 22 and 24 

squeezed water molecules for compounds 1 and 2, respectively. Analytical 

expressions for neutral-atom scattering factors were employed, and anomalous 

dispersion corrections were incorporated. Details of the crystal parameters, data 

collection conditions, and refinement parameters for the three compounds are 

summarized in Table 1. In addition, crystallographic data for the reported structures 

have been deposited at the Cambridge Crystallographic Data Centre as supplementary 

publication numbers CCDC 1025388 (1) and 1025389 (2). These data may be 

obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif, by emailing 

data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic 

Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033). 
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〈〈〈〈Table 1〉〉〉〉 
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Table 1. Crystal data and structure-refinement details for compounds 1 and 2 

Compound 1 2 

Chemical formula 

C42 H42 Eu N28 O20, 

2(ZnCl4), Cl. 

2(H3O).10(H2O) 

C42 H42 N28 O20 Yb, 

2(ZnCl4), Cl. 2(H3O). 

10(H2O) 

Formula weight 2078.78 2099.86 

Crystal system Monoclinic Monoclinic 

Space group P 21/c P 21/n 

a, Å 17.837(5) 17.2855(9) 

b, Å 26.629(7) 18.4861(9) 

c, Å 18.949(5) 27.8919(15) 

α, deg 90.00 90.00 

β, deg 104.892(9) 96.995(2) 

γ, deg 90.00 90.00 

V, Å3 8698(4) 8846.3(8) 

Z 4 4 

Dcalcd, g cm-3 1.421 1.413 

T, K 223(2) 223(2) 

µ, mm-1 1.606 1.928 

Unique reflns 20388 20261 

Obsd reflns 12619 14428 

Params 935 937 

Rint 0.0676 0.0494 

R[I> 2σ(I)]a 0.0689 0.0564 

wR[I> 2σ(I)]b 0.2047 0.1729 

R(all data) 0.1066 0.0811 

wR(all data) 0.2331 0.1915 

GOF on F2 1.070 1.045 

a R1 =Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = |Σw(|Fo|
2 − |Fc|

2)|/Σ|w(Fo)
2|1/2, where w = 1/[σ2(Fo

2) +(aP)2+bP]; P = (Fo
2 + 2Fc

2)/3. 
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