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Abstract. We characterize the automorphism groups of circulant digraphs whose connection sets are
relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the au-
tomorphism group or we show that the graph is a “normal” circulant, so the automorphism group is
contained in the normalizer of a cycle. Then we use these characterizations to prove results on the
automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open
problems on graphs, number theory, groups and semigroups.

1. Introduction

The description of automorphisms has a long tradition in mathematics. Regarding automorphisms of

semigroups, the pioneering work of Schreier [36] and Mal’cev [32] – proving that the group of automor-

phisms of the full transformation monoid Tn is isomorphic to the symmetric group Sn – was followed

by a long sequence of similar descriptions (see [1, 4, 5, 6, 8, 9, 7, 10, 11, 12, 22, 25, 26, 27, 30, 31,

33, 37, 38, 39, 45] and the references therein). The effort to find the automorphisms of transformation

semigroups containing all constants culminated in 1972 with the description, provided by Vaz̆enin [41],

of the automorphisms of the endomorphism monoid End(Γ), where Γ is a reflexive digraph containing

an edge that is not contained in a cycle (of length at least 2). This result contained as particular cases

many older theorems and, in some sense, was the best possible at the time since a full treatment of the

cases left open (the digraphs in which every edge is contained in a cycle) is probably impossible without

the classification of finite simple groups, not available in 1972.

Circulant digraphs have been intensively studied (with more than 400 papers written on them since

1979) and they are obvious examples of digraphs in which every edge is contained in a cycle. In this

paper we use the classification to prove some results on automorphisms of circulant digraphs Γ and then

use those results to describe the automorphisms of the endomorphism monoid of Γ.

The automorphisms of a digraph Γ and the automorphisms of the endomorphism monoid of Γ are

linked by the following general procedure. Suppose we have a semigroup S and want to calculate its

automorphisms; then we should try to find a subsemigroup T ≤ S such that:

(1) T is characteristic in S; that is, the restriction to T of an automorphism of S is an automorphism

of T ;

(2) we can describe the automorphisms of T ;

(3) we can find the extensions of the automorphisms of T to automorphisms of S.
1
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Now suppose Γ is a circulant digraph and End(Γ) is its endomorphism monoid. Then a natural

characteristic subsemigroup of End(Γ) is its group Aut(Γ) of units. To realize (2) and (3) above, we

need to:

(a) have a handy description of the automorphisms of Aut(Γ);

(b) find the extensions of the automorphisms of Aut(Γ) to automorphisms of End(Γ).

Recently, there has been significant progress on determining the automorphism group of a circulant

digraph Γ (see Theorem 3.1), which has been used to produce a polynomial time algorithm that finds

generators of Aut(Γ). In general, however, it seems difficult to give a “closed form” description of Aut(Γ),

although this may be possible for certain families of circulant digraphs. We give such a description for

two families of circulant digraphs that have received considerable attention in the literature, namely

circulant digraphs of small valency (Theorem 4.2) and unit circulant digraphs (Theorem 5.2).

Considering the case of small valency is a standard approach to take when studying vertex-transitive

graphs (graphs whose automorphism group is transitive on the vertex set), with the first results obtained

in a celebrated paper of Tutte [40]. The precise meaning of “small valency” that we will adopt was first

introduced by Babai [13, Theorem 3.6] with regard to the Cayley isomorphism problem. This problem

asks for necessary and sufficient condition to determine if two Cayley digraphs of the same group G are

isomorphic. The most common results here state that for a given group G, two Cayley digraphs of G

are isomorphic if and only if they are isomorphic by a group automorphism of G.

A CI-digraph is a Cayley digraph of a group such that every isomorphic Cayley digraph of the same

group is isomorphic via a group automorphism. A group G is a CI-group if every Cayley digraph of G

is a CI-digraph of G. Babai showed that Cayley graphs of G of small valency are CI-digraphs of G. The

property of a Cayley digraph Γ being a CI-digraph is known to be related to properties of Aut(Γ) (see

[3, Theorem 1] or more generally [13, Lemma 3.1]). Therefore, it is reasonable to suspect that circulant

digraphs of small valency have “nice” automorphism groups.

Unit circulant digraphs are also known to be CI-digraphs [17, 35] as was conjectured by Toida, so

again one would expect them to have “nice” automorphism groups. Also, in recent years the unitary

Cayley graphs (the unit circulant digraphs for which the connection set is all of Z∗n) have been studied,

and the problem of finding the automorphism groups of these graphs was posed [21, Problem 1]. This

problem was solved in [2, Theorem 4.2], and our result greatly generalizes this solution.

In Section 2, we introduce definitions and basic facts about circulant digraphs. The results of this

paper rely on some deep recent results, proved in a different setting. In Section 3, we translate these

results into the language of groups and circulant digraphs. Sections 4 and 5 contain descriptions of

the automorphism groups of circulant digraphs of small valency (Theorem 4.2) and of unit circulant

digraphs (Theorem 5.2). In Section 6, we extract the corollary (from the two theorems mentioned

above) that gives the normalizer of Aut(Γ) for these two types of circulant graphs Γ (Corollary 6.2).

We then use this corollary to describe the automorphism groups of the endomorphism monoids of the

corresponding reflexive circulant digraphs (Theorem 6.4 and Corollaries 6.10 and 6.5). Finally, Section 7

contains some open problems.
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2. Preliminaries

This section contains definitions and notation that will be needed to describe the automorphism

groups of the circulant digraphs under discussion.

Definition 2.1. Let n be a positive integer and S ⊆ Zn. A circulant digraph of order n with connection

set S, denoted Γ(Zn, S), is the digraph with vertex set Zn and edge set {ij : i − j ∈ S}. Each vertex

of Γ(Zn, S) has in-valency and out-valency |S|. So Γ(Zn, S) is 2|S|-regular and we will say that the

valency of Γ(Zn, S) is 2|S|.

Recent deep results about Schur rings have provided us with considerable information about the

automorphism groups of circulant (di)graphs. Using these results we will determine the automorphism

groups of circulant digraphs of small valency (circulant digraphs whose valency is at most twice the

smallest prime divisor of their order), and unit circulant digraphs (circulant digraphs whose connection

sets consist entirely of units). In each case, we will show that every such digraph lies in one of a few

classes. Furthermore, we will either explicitly give the automorphism group of the digraph (in some

cases in terms of the automorphism groups of strictly smaller digraphs in the same family), or show that

a regular cyclic subgroup of the automorphism group is normal in the full automorphism group, so that

the full automorphism group is contained in the normalizer of a cycle and can be efficiently computed.

Before we can classify the digraphs in these families, we need some definitions. The Schur ring results

(as we present them, in a form that has been translated into the language of algebraic graph theory)

involve 2-closed groups, and generalized orbital digraphs. For a set X, we denote by SX the symmetric

group of permutations on X.

Definition 2.2. Let Ω be a set and G ≤ SΩ be transitive. Let G act on Ω × Ω by g(ω1, ω2) =

(g(ω1), g(ω2)) for every g ∈ G and ω1, ω2 ∈ Ω. We define the 2-closure of G, denoted G(2), to be the

largest subgroup of SΩ whose orbits on Ω × Ω are the same as the orbits of G. If G = G(2), we say

that G is 2-closed. Let O1, . . . ,Or be the orbits of G acting on Ω × Ω. Define digraphs Γ1, . . . ,Γr by

V (Γi) = Ω and E(Γi) = Oi. Each Γi, 1 ≤ i ≤ r, is an orbital digraph of G, and G(2) = ∩ri=1 Aut(Γi). A

generalized orbital digraph of G is the edge-disjoint union of orbital digraphs of G. A vertex-transitive

digraph is a digraph whose automorphism group acts transitively on the vertices of the digraph. Clearly

the automorphism group of a vertex-transitive digraph is 2-closed. As every circulant digraph is vertex-

transitive, the automorphism group of every circulant digraph is 2-closed.

One of the basic structures that arises in circulant digraphs and impacts directly on the automorphism

group, is the wreath product.

Definition 2.3. Let Γ1 and Γ2 be vertex-transitive digraphs. Let

E = {((x, x′), (y, y′)) : xy ∈ E(Γ1), x′, y′ ∈ V (Γ2) or x = y and x′y′ ∈ E(Γ2)}.

Define the wreath product of Γ1 and Γ2, denoted Γ1 o Γ2, to be the digraph such that V (Γ1 o Γ2) =

V (Γ1)× V (Γ2) and E(Γ1 oΓ2) = E. We remark that the wreath product of a circulant digraph of order

m and a circulant digraph of order n is circulant.
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The name “wreath product” for these digraphs comes from the fact that their automorphism groups

are often wreath products.

Definition 2.4. Let G be a group of permutations on a set X and let H be a group. Denote by HX

the set of all functions α : X → H and note that HX with multiplication defined by

(α1α2)(x) = α1(x)α2(x) (α1, α2 ∈ HX , x ∈ X)

is a group. Define multiplication on the set G×HX by

(g1, α1)(g2, α2) = (g1g2, α
g2
1 α2),(2.1)

where αg2
1 ∈ HX is defined by αg2

1 (x) = α1(g2(x)), so for every x ∈ X,

(αg2
1 α2)(x) = α1(g2(x))α2(x).

It is straightforward to verify that G×HX with multiplication (2.1) is a group. It is called the wreath

product of G and H (with respect to the set X), and denoted by G oH.

If H is a group of permutations on a set Y , then the wreath product G oH acts on the set X × Y by

(g, α)(x, y) = (g(x), (α(x))(y)), so it is a group of permutations on X × Y .

Remark 2.5. The wreath product Sm o Sk is a permutation group that has a unique nontrivial block

system, consisting of m blocks of size k, the orbits of 1Sm oSk. The reason we use G oH, rather than the

more standard H o G, for the wreath product is that in Definition 2.4, G acts on HX by (g, α) → αg,

where αg(x) = α(g(x)). On the other hand, in the more traditional definition of H oG, G acts on HX

by (g, α)→ αg, where αg(x) = α(g−1(x)). We find the former action more suitable for our purposes.

A basic method for analyzing the structure of vertex-transitive digraphs, is to consider subsets of the

vertices on which the automorphism group continues to act nicely.

Definition 2.6. Let G be a permutation group with a block system B [16, page 12]. Each g ∈ G

induces a permutation in SB, denoted by g/B. Set G/B = {g/B : g ∈ G}. Denote the kernel of this

action by fixG(B), so fixG(B) = {g ∈ G : g/B = 1/B}. That is, fixG(B) is the set-wise stabilizer of each

block B ∈ B. For a digraph Γ such that G ≤ Aut(Γ), denote by Γ/B the digraph with vertex set B and

BB′ ∈ E(Γ/B) if and only if bb′ ∈ E(Γ) for some b ∈ B, b′ ∈ B′. If G acts on Ω and S ⊆ Ω, define

S/B = {B ∈ B : s ∈ B for some s ∈ S}.

Finally, we introduce a piece of notation that we will use throughout this paper.

Definition 2.7. Throughout this paper, define ρ : Zn → Zn by ρ(i) = i + 1. Thus 〈ρ〉 = (Zn)L is

the left and right regular representation of Zn. For H ≤ Zn, we denote by HL the subgroup of (Zn)L

consisting of all maps x → x + h, where h ∈ H. Note that 〈ρ〉 ≤ Aut(Γ) for any circulant digraph of

order n. All permutation groups of degree n in this paper will contain ρ.
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3. The Main Tools

The following result [29, Theorem 2.3] is a translation into a group theoretic language of results

contained in [20, 23, 24], which have been proved using Schur rings. We have modified part (1) slightly to

clarify the meaning. In the special case of circulant digraphs of square-free order n, a result equivalent to

this result was proved independently in [18]. This will be our main tool for analyzing the automorphism

group of a circulant digraph.

Theorem 3.1. Let G ≤ Sn contain a regular cyclic subgroup 〈ρ〉. Then one of the following statements

holds:

(1) there exist integers n1, . . . , nr such that n = n1n2 · · ·nr and gcd(ni, nj) = 1 for i 6= j, and there

exist groups G1, . . . , Gr such that Gi ≤ Sni, Gi is either Sni or it contains a normal regular

cyclic group of order ni, and G(2) = G1 × · · · ×Gr;

(2) G has a normal subgroup M whose orbits form a nontrivial block system B of G such that each

connected generalized orbital digraph contains a subdigraph Γ which is an orbital digraph of G

and has the form Γ = (Γ/B) o K̄b, where b = |M ∩ 〈ρ〉|, and K̄b is the complement of a complete

graph of order b.

It will be shown below that if the automorphism group of a digraph has form (2) from this theorem,

it satisfies the definition of a generalized wreath circulant digraph.

Definition 3.2. A circulant digraph Γ with connection set S is said to be a (K,H)-generalized wreath

circulant digraph (or just a generalized wreath circulant digraph) if there exist groups H, K with 1 <

K ≤ H < Zn such that S \H is a union of cosets of K.

There are actually many alternative ways of looking at the automorphism group of a generalized

wreath circulant digraph. Although we do not require all of these in this paper, various characterizations

have been used by different authors in the literature, so we believe that it is useful to show that they

are all equivalent. We require one definition before stating the result.

Definition 3.3. Let B be a block of G. The action of G on B is faithful if for every g ∈ G that fixes

B, g|B = 1|B implies g = 1. For block systems B and C, we write B � C if every block of C is a union

of blocks of B.

Lemma 3.4. Suppose that G ≤ Sn contains a regular cyclic subgroup 〈ρ〉. Then the following are

equivalent:

(1) G is the automorphism group of a generalized wreath circulant digraph;

(2) G has a normal subgroup M whose orbits form a nontrivial block system B of G such that each

connected generalized orbital digraph contains a subdigraph Γ which is an orbital digraph of G

and is of the form Γ = (Γ/B) oK̄b, where b = |M ∩〈ρ〉|, and K̄b is the complement of a complete

graph of order b;

(3) there exist nontrivial block systems B � C of 〈ρ〉 ≤ H ≤ G such that fixH(2)(B)|C ≤ G(2) for

every C ∈ C;
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(4) G has a nontrivial block system D such that fixG(2)(D) does not act faithfully on D ∈ D, and

fixG(D)|D is primitive; and

(5) G(2) = G1∩G2, where G1 = Sr oH1 and G2 = H2 oSk, H1 and H2 are 2-closed groups, r | (n/k),

and 1 < r, k < n.

Proof. (1)⇔(3): This is [14, Lemma 2.9].

(2)⇒(3): This is [14, Lemma 2.8].

(3)⇒(4): Choose D � B to be nontrivial such that there exists no nontrivial E ≺ D. Let D ∈ D.

By [17, Lemma 1.14], fixG(2)(D)|D is primitive. If StabG(D)|D is imprimitive with nontrivial block

system E ′, then by [16, Exercise 1.5.10] G admits a nontrivial block system E ≺ D with the blocks of

E ′ also being blocks of E . Then E is a block system of G(2) by [42, Theorem 4.11]. So StabG(D)|D is

primitive. If fixG(D)|D is imprimitive, then as fixG(D)/StabG(D) we have g(E ′) is also a block system

of fixG(D)|D. However, as fixG(D)|D contains a regular cyclic subgroup, fixG(D)|D has a unique block

system with blocks of a given size. Then g(E ′) = E ′ for every g ∈ StabG(D) and so E ′ is a block system

of StabG(D)|D, a contradiction. Thus fixG(D)|D is primitive. As D � B � C and (3) holds, we have

fixG(2)(D)|C ≤ G(2) for every C ∈ C, so fixG(2)(D) does not act faithfully on D ∈ D.

(4)⇒(5): This is [18, Lemma 28] (and we remark that it is not necessary that n be square-free in the

hypothesis of Lemma 28).

(5)⇒(2): Let H̄1 be the largest subgroup of H1 that has a block system of n/(rk) blocks of size k

(so Sr o H̄1 has a block system of n/k blocks of size k), and H̄2 the largest subgroup of H2 that has a

block system of r blocks of size n/(rk) (so H̄2 oSk has a block system consisting of r blocks of size n/r).

As any block system of either Sr oH1 or H2 o Sk is also a block system of G(2), G(2) has a block system

B of n/k blocks of size k and a block system C of r blocks of size n/r. Note that as G(2) contains a

regular cyclic subgroup 〈ρ〉, there is exactly one block system with blocks of a given size t formed by the

orbits of the unique subgroup of 〈ρ〉 of order t. We conclude that B � C and that B and C are the block

systems that we have determined of both Sr o H̄1 and H̄2 o Sk. We also have G(2) = (Sr o H̄1)∩ (H̄2 o Sk)

since G(2) cannot contain any elements that do not preserve B and C.
Now, 〈ρn/k〉 ≤ fixG(B), and we claim that ρn/k|C ∈ G(2) for every C ∈ C. This follows as ρn/k|C is

certainly in Sr o H̄1, and ρn/k|C is in H̄2 o Sk as ρn/k|B is in H̄2 o Sk and B ∈ B � C. As every block

system of G(2) is also a block system of G [42, Theorem 4.11] ([42] is included in the more accessible

[43]), both B and C are also block systems of G. Set M = fixG(B)/G. As G contains a regular cyclic

subgroup, the orbits of M form B. Now let Γ be a connected generalized orbital digraph. As Γ is

connected, there exist distinct blocks B,B′ ∈ B such that ~xy ∈ E(Γ) for some x ∈ B, y ∈ B′ and

B ⊂ C, B′ ⊂ C ′, C,C ′ ∈ C and C 6= C ′. Let Γxy be the orbital digraph of G such that ~xy ∈ E(Γxy).

Then G(2) ≤ Aut(Γxy) so that ρn/k|C , ρn/k|C′ ∈ Aut(Γxy). We conclude that ~x′y′ ∈ E(Γxy) for every

x′ ∈ B, y′ ∈ B′. Furthermore, as B is a block system of G, Γxy contains no edges whose endpoints are

within a block of B. Then Γxy = Γxy/B o K̄k, and the result follows with b = k. �

The next lemma will prove useful in analyzing the structure of a circulant digraph, if (1) of Theorem

3.1 applies to its automorphism group. It is essentially a special case of a lemma that appears in [14].
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Lemma 3.5. Suppose that n is a positive integer with m|n, m ≥ 4, and gcd(m,n/m) = 1, and that

Γ = Γ(Zn, S) where Aut(Γ) = Sm×K. Let B be the block system formed by the orbits of Sm×1K . Then

S ∩ B ∈ {∅, {h}, B − {h}, B} for every B ∈ B, where h is the unique element of 〈m〉 ∩ B (recall that

V (Γ) = Zn, 〈m〉 ≤ Zn is the unique subgroup of order n/m, and B is a coset of the unique subgroup

〈n/m〉 ≤ Zn of order n/m).

Proof. For this to be immediate from [14, Lemma 2.16], we need only show that K is 2-closed. Now,

by [15, Theorem 5.1], (Sm×K)(2) = S
(2)
m ×K(2) = Sm×K(2), so since G = Aut(Γ) is a 2-closed group,

we have

Sm ×K = G = G(2) = (Sm ×K)(2) = Sm ×K(2),

giving K = K(2). �

The following theorem gives the automorphism group of a wreath product digraph.

Theorem 3.6. [19, Theorem 5.7] For any finite vertex-transitive digraph Γ ∼= Γ1 o Γ2, if Aut(Γ) 6=
Aut(Γ1) o Aut(Γ2) then there are some natural numbers r > 1 and s > 1 and vertex-transitive digraphs

Γ′1 and Γ′2 for which either

• Γ1
∼= Γ′1 oKr and Γ2

∼= Ks o Γ′2; or

• Γ1
∼= Γ′1 o K̄r and Γ2

∼= K̄s o Γ′2,

and Aut(Γ) ∼= Aut(Γ′1) o (Srs oAut(Γ′2)).

With these tools in hand, we are ready to examine the circulant digraphs of small valency.

4. Circulant digraphs of small valency

In this section, we will analyze the structure and the automorphism groups of circulant digraphs of

order n whose valency is no greater than 2p, where p is the smallest prime divisor of n.

We require some additional definitions to perform our analysis.

Definition 4.1. A circulant digraph Γ of order n is called a normal circulant digraph if (Zn)L/Aut(Γ).

Normal circulant digraphs have been introduced in the more general context of normal Cayley graphs

of a group G by M. Y. Xu [44]. By Z∗n we denote the group of units of Zn.

Theorem 4.2. Let Γ = Γ(Zn, S) be a circulant digraph of order n such that Γ has valency d ≤ 2p,

where p is the smallest prime divisor of n. Then one of the following is true:

(1) Γ is connected and one of the following is true:

(a) Γ is a normal circulant digraph of Zn;

(b) d = 2p−2, S = (u+ 〈n/p〉)−{h} for some u ∈ Z∗n, and h ∈ (u+ 〈n/p〉)∩〈p〉. Furthermore,

p2 does not divide n. In this case, Aut(Γ) = Zn/p × Sp;

(c) d = 2p and S = {n/p, 2n/p, . . . , (p− 1)n/p,w}, where w ≡ 0 (mod p) and w (mod n/p) is

a unit. In this case, Aut(Γ) = Zn/p × Sp;
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(d) d = 2p and S = [(u+ 〈n/p〉)− {h}] ∪ {w}, where u ∈ Z∗n, h ∈ (u+ 〈n/p〉), w ≡ 0 (mod p),

and 〈u (mod n/p), w (mod n/p)〉 = Zn/p. In this case, Aut(Γ) = Zn/p × Sp;

(e) d = 2p, Γ = Cn/p o K̄p, where Cn/p is a directed cycle of length n/p. In this case, Aut(Γ) =

Zn/p o Sp.

(2) Γ is disconnected and

(a) Γ has no edges. In this case, Aut(Γ) = Sn; or

(b) Γ ∼= K̄m o Γ′, where Γ′ is a connected circulant digraph of order k, mk = n (and so Γ′ is

one of the digraphs listed in part (1)). In this case, Aut(Γ) = Sm oAut(Γ′).

Proof. Let G = Aut(Γ), so G = G(2).

If Γ is disconnected, then the components of Γ form a block system C. Since any disconnected vertex-

transitive digraph can be written as a wreath product of a graph with no edges and any connected

component of the digraph, we have Γ ∼= K̄m o Γ[C] where C ∈ C has order k, mk = n, and Γ[B] denotes

the subgraph of Γ induced by B. The hypotheses of this theorem hold with respect to Γ[C], and Γ[C]

is connected. As G = Sm oAut(Γ[C]) by Theorem 3.6, the proof is complete in this case.

We now assume that Γ is connected. By Theorem 3.1 and Lemma 3.4, one of the following is true:

(i) there exist nontrivial block systems B � C of G such that fixG(B)|C ≤ G for every C ∈ C, or

(ii) there exist integers n1, . . . , nr such that n = n1n2 · · ·nr and gcd(ni, nj) = 1 for i 6= j, and there

exist groups G1, . . . , Gr such that Gi ≤ Sni , Gi is either Sni or it contains a normal regular

cyclic group of order ni, and G(2) = G1 × · · · ×Gr.

Suppose (i) occurs and some vertex v ∈ B ∈ B is out-adjacent to some vertex of B′ ⊂ C ′, where

B 6⊂ C ′, C ′ ∈ C. Since fixG(B)|C′ ≤ G fixes v and is transitive on B′, we see that v has out-valency (and

in-valency) at least |B| ≥ p, and so valency at least 2p. Consequently every vertex has valency exactly

2p, and so B consists of n/p blocks of size p. As Γ is connected, so is Γ/B, and the only edge directed

from B is to B′, so B has outdegree (and indegree) 1 in Γ/B. We conclude that Γ/B is a directed cycle,

Γ = Cn/p o K̄p, and (1e) follows.

If (ii) occurs and n = p, then either G is doubly-transitive or G < AGL(1, p) by Burnside’s Theorem

[16, Theorem 3.5B] (and the fact that AGL(1, p) is itself doubly-transitive). If G < AGL(1, p) then Γ

is a normal circulant digraph, so (1a) follows. Otherwise, Γ is complete, G = Sp, and (1b) occurs.

If (ii) occurs and n > p, then since p | n, we have n ≥ p+ 2. We conclude that Γ 6= Kn. This follows

since Kn has valency 2n− 2 ≥ 2p + 2 > 2p, a contradiction. Also, if Γ is a normal circulant then (1a)

follows, so the only remaining possibility is that some Gi = Sni and Sni does not have a normal cyclic

subgroup. Hence ni 6= 2 or 3.

If some Gi = Sni , with ni 6= p, then G has a block system C with ni blocks of size n/ni formed by

the orbits of G1 × · · · ×Gi−1 ×Gi+1 × · · · ×Gr. The action of G/C = Sni is doubly-transitive and so if

a vertex v ∈ C ∈ C is out-adjacent to a vertex in C ′ ∈ C with C ′ 6= C, then v is out-adjacent to at least

ni − 1 vertices of Γ. So v has valency at least 2(ni − 1) ≤ 2p and ni − 1 ≤ p. Since ni − 1 ≥ p− 1 and

ni 6= p, we conclude that ni − 1 = p. As p is the smallest prime divisor of n, ni is prime, and so both p

and p+ 1 are prime. This implies that p = 2 and ni = 3, a contradiction. Hence ni = p ≥ 5.
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Since ni = p ≥ 5 and gcd(ni, nk) = 1 if i 6= k, we see that gcd(p, n/p) = 1. Let B be the block system

of G formed by the orbits of 1Sn/p
× Sp. By Lemma 3.5, S ∩B ∈ {∅, {h}, B − {h}, B} for every B ∈ B,

where h is the unique element of 〈p〉 ∩B. As 1Sn/p
× Sp ≤ G, we see Γ[B] = Kp or K̄p for every B ∈ B.

If Γ[B] = Kp, then as Γ is connected Γ has valency at least 2p, and so has valency exactly 2p. As

Γ[B] has valency 2p − 2, Γ/B has valency 2 and so is a directed cycle. Let B0 ∈ B with 0 ∈ B0, so

that B0 = {0, n/p, 2n/p, . . . , (p− 1)n/p} and {n/p, 2n/p, . . . , (p− 1)n/p} ⊂ S. Then 0 is outadjacent to

exactly one vertex w outside of B0, and as 1Sn/p
× Sp ≤ G, it follows that Stab1Sn/p

(0) = Stab1Sn/P
(`p)

for every integer `. Then w ≡ 0 (mod p). As 0 is outadjacent to exactly one vertex w outside of

B0 and Γ is connected, we see Γ/B is a directed cycle and therefore w (mod n/p) is a unit. Finally,

Zn/p = Aut(Γ/B) ≥ Aut(Γ)/B ≥ Zn/p, and so G/B = Zn/p. Then G = Zn/p × Sp and (1c) follows.

As Γ is connected, there exists u ∈ S such that u 6≡ 0 (mod p). Let B ∈ B such that u ∈ B. As

gcd(n/p, p) = 1 and each block of B is a coset of the unique subgroup of Zn of order p, we see that each

block B′ ∈ B contains exactly one element vB′ ∈ Zn that is 0 modulo p. Since 1Sn/p
× Sp ≤ G, each

B′ ∈ B is the union of two orbits of 1Sn/p
× Sp, namely {vB′} and B′ − {vB′}. Then S ∩B = B − {h},

where h = vB is the unique element of 〈p〉 ∩B, or the upper bound on the valency would force Γ to be

a wreath product, and G would not satisfy (ii).

If |S| = p − 1, then S = B − {h} = (u + H) − {h}. Since p ≥ 5 is the smallest prime divisor of n,

n/p is odd. Hence, u (mod n/p) 6≡ −u (mod n/p), and Γ/B is a directed cycle whose automorphism

group is Zn/p. Thus G/B = Zn/p and G = Zn/p × Sp. Finally, as Γ/B is a directed cycle, we see that

u (mod n/p) is a unit, and as u 6≡ 0 (mod p) and gcd(p, n/p) = 1, u ∈ Z∗n. Thus (1b) occurs.

If |S| = p, then there exists w ∈ S such that w 6∈ (u+H)− {h} and w 6∈ 〈n/p〉. As Γ is connected,

Γ/B is connected, and so 〈u,w (mod n/p)〉 = Zn/p. Additionally, as d = 2p, we see w ≡ 0 (mod p) by

Lemma 3.5. Now suppose that G/B 6= Zn/p. As (ii) holds, G/B contains a nontrivial automorphism of

Zn/p. As gcd(n/p, p) = 1, we see that G contains a nontrivial automorphism α of Zn such that α/B 6= 1.

Now, α cannot fix both u and w, as otherwise α fixes every element of 〈u,w〉 = Zn. Let w ∈ B′ ∈ B
(and recall that u ∈ B ∈ B). As p 6= 2, |S ∩B| 6= |S ∩B′|, and so α cannot map B to B′ or vice versa.

We conclude |S| ≥ p+ 1, a contradiction. Hence G/B = Zn/p and G = Zn/p × Sp, and (1d) follows. �

5. Unit circulant digraphs

In this section, we examine the full automorphism group of circulant digraphs of order n whose

connection set S is contained in Z∗n. We will need a definition before we can state the main result.

Definition 5.1. For a positive integer m and a digraph Γ, we denote by mΓ the digraph consisting of

m vertex-disjoint copies of Γ. The digraph Γ o K̄m −mΓ is a deleted wreath product. Thus this digraph

is the digraph whose vertex set is the vertex set of Γ o K̄m and whose edge set is the edge set of Γ o K̄m

with the edges of mΓ removed.

Theorem 5.2. Let Γ be a nonempty unit circulant digraph of order n. Then one of the following is

true:

(1) Γ is a normal circulant digraph;
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(2) Γ ∼= Γ1 o K̄`, where `|n and Γ1 is a unit circulant digraph of order n/` that cannot be written as

a nontrivial wreath product. Thus Aut(Γ) = Aut(Γ1) o S`. Furthermore, if p | ` is prime, then

p | (n/`) as well;

(3) Γ ∼= Γ1 o K̄p−pΓ1, where p is prime, gcd(n/p, p) = 1, and Γ1 is a unit circulant digraph of order

n/p that cannot be written as a nontrivial wreath product. Thus Γ is a deleted wreath product,

and Aut(Γ) = Aut(Γ1)× Sp.

Proof. Let Γ = Γ(Zn, S), where S ⊆ Z∗n, and let G = Aut(Γ). By Theorem 3.1, one of the following is

true:

(a) there exist integers n1, . . . , nr such that n = n1n2 · · ·nr and gcd(ni, nj) = 1 for i 6= j, and there

exist groups G1, . . . , Gr such that Gi ≤ Sni , Gi is either Sni or it contains a normal regular

cyclic group of order ni, and G(2) = G1 × · · · ×Gr, or

(b) Aut(Γ) has a normal subgroup M whose orbits form a block system B of Aut(Γ) such that each

connected generalized orbital digraph contains a subdigraph Γ′ which is an orbital digraph of

Aut(Γ) and is of the form Γ′ ∼= (Γ′/B) o K̄b, where b = |M ∩ 〈ρ〉|.

We consider the cases above separately.

If (b) occurs, then by Lemma 3.4 (3) (with G = Aut(Γ) = Aut(Γ)(2)) there exists a nontrivial block

system B � C of Aut(Γ) such that fixAut(Γ)(B)|C ≤ Aut(Γ) for every C ∈ C. So if G has blocks of size i,

then since 〈n/i〉∩S = ∅, the induced subgraph of Γ on any block is K̄i. In particular, if Γ = Γ1 oΓ2 then

Γ2 is an empty digraph. Observe that since B � C, and B is formed by the orbits of KL ≤ 〈ρ〉 while

C is formed by the orbits of HL ≤ 〈ρ〉, we have K ≤ H. As fixAut(Γ)(B)|C ≤ Aut(Γ) and the induced

subgraph on C is empty for any C ∈ C, between blocks of B there must either be no edges, all directed

edges, or all edges in one direction and none in the other. Clearly then Γ = Γ′ o K̄k, for some circulant

digraph Γ′ of order m, where mk = n and k = |B|. Also, if Γ = Γ′′ o K̄k′ for some Γ′′ and k′, and Γ is

a unit circulant, it is easy to see Γ′′ is also a unit circulant. Choose t maximal such that Γ = Γ1 o K̄t.

As noted earlier, if Γ1 = Γ′1 o Γ2 then Γ2 is empty, contradicting the maximality of t. Then Γ1 is a unit

circulant digraph that cannot be written as a nontrivial wreath product, and Aut(Γ) = Aut(Γ1) o S` by

Theorem 3.6.

It now only remains to show that if p | ` is prime, then p | (n/`) as well. Suppose otherwise, and

let k be the largest positive integer such that pk | `. Then Γ = (Γ1 o K̄`/pk) o K̄pk . Let L ≤ Zn be the

unique subgroup of Zn of order pk, so that S is a union of cosets of L. Observe that if u ∈ Z∗n, then

u+ L contains a nonunit of Zn. The result then follows.

If (a) occurs, then Aut(Γ) has block systems B1,B2, . . . ,Br formed by the orbits of Gi (viewed as an

internal direct product), and block systems C1, . . . , Cr, where Cj is formed by the orbits of Πr
i=1,i 6=jGi.

Also, Γ cannot be written as a nontrivial wreath product (since its automorphism group is not a

wreath product, by Theorem 3.6), and so Γ is connected. If Γ is normal, then we have (1) and are

done, so we assume that Γ is not normal. Hence some Gi = Sni with ni ≥ 4. By Lemma 3.5,

S ∩B ∈ {∅, {h}, B−{h}, B} for every B ∈ Bi, where h is the unique element of 〈m〉∩B. Since h ∈ 〈m〉
and Γ is a unit circulant, h 6∈ S, so in fact we can conclude that S ∩B ∈ {∅, B−{h}} for every B ∈ Bi.
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Note that for some B ∈ Bi, we have S ∩ B = B − {h}, since Γ is nonempty. If ni is composite, then

observe that every coset of 〈n/ni〉 contains at least two nonunits as gcd(n/ni, ni) = 1 and Zni contains

at least two nonunits. So B contains at least two nonunits, at least one of which much be in S, a

contradiction that shows that ni is prime. This shows Γ ∼= Γ1 o K̄ni − niΓ1. Clearly, since Γ is a unit

circulant, Γ1 is also a unit circulant.

Note that Aut(Γ)/Bi ≤ Aut(Γ1), so Aut(Γ) ≤ Aut(Γ1)× Sni . Conversely, let g ∈ Aut(Γ1). Viewing

Zn as Zn/ni
× Zni , we certainly have (g, σ) ∈ Aut(Γ1 o K̄ni) for every σ ∈ Sni . Also, niΓ1 = K̄ni o Γ1 so

Aut(niΓ1) = Sni oAut(Γ1). We conclude that (g, σ) ∈ Aut(niΓ1), for every σ ∈ Sni , so (g, σ) ∈ Aut(Γ).

Thus Aut(Γ1) × Sni ≤ Aut(Γ) and so Aut(Γ) = Aut(Γ1) × Sni . It now only remains to show that Γ1

cannot be written as a nontrivial wreath product.

If Γ1 = Γ2 oΓ3, where Γ2 and Γ3 are circulant digraphs of orders s and t, respectively, then since Γ1 is a

unit circulant, by arguments above Γ3 = K̄t with t chosen to be maximal. Then Aut(Γ1) = Aut(Γ2) oSt
and so Aut(Γ) = (Aut(Γ2) oSt)×Sp. Hence (1Ss oSt)× 1Sp/Aut(Γ), and so the orbits of (1Ss oSt)× 1Sp

form a block system C consisting of sp blocks of size t, and (1Ss o St) × 1Sp ≤ fixAut(Γ)(C). Then

fixAut(Γ)(C) does not act faithfully on C ∈ C, and fixAut(Γ)(C)|C is primitive for every C ∈ C. By Lemma

3.4, Γ is generalized wreath circulant and satisfies (b), a contradiction. �

6. Endomorphism monoids of reflexive circulant digraphs

In this section, we use a technique described in [4] to determine the automorphism groups of the

endomorphism monoids of reflexive circulant digraphs of two types. These types correspond to the

families discussed in the previous sections. (Note that Γ(Zn, S) is reflexive if and only if 0 ∈ S.) This

technique uses the notion of the normalizer of a monoid of transformations on Zn.

Definition 6.1. Let T be a semigroup of transformations on the set Zn. Then

NSn(T ) = {g ∈ Sn : gTg−1 = T}

is called the normalizer of T in Sn. It is clear that NSn(T ) is a subgroup of Sn.

Theorems 4.2 and 5.2 enable us to describe the normalizer of Aut(Γ), where Γ is a circulant graph

from one of the two families under discussion.

Corollary 6.2. Let Γ = Γ(Zn, S) be either a circulant digraph of valency at most 2p, where p is the

smallest prime divisor of n, or a unit circulant digraph. Then NSn(Aut(Γ)) = Aut(Γ) ·Aut(Zn).

Proof. By [4, Theorem 4.4] and the fact that all such graphs are CI-graphs (see [28, Theorem 1.1

(1)], and [17] or [35]), we have NSn(Aut(Γ)) ≤ Aut(Γ) · Aut(Zn). We need only show that Aut(Zn)

normalizes Aut(Γ). Let n = pa11 · · · parr and m =
∑r

i=1 ai. Observe first that if (Zn)L/Aut(Γ), then the

result is true. This follows as Aut(Zn) · (Zn)L/(Zn)L = Aut(Zn) is abelian, and so every subgroup of

Aut(Zn) · (Zn)L/(Zn)L is normal. This implies that every subgroup of Aut(Zn) · (Zn)L that contains

(Zn)L is normal in Aut(Zn) · (Zn)L, and so Aut(Γ)/Aut(Zn) · (Zn)L. We proceed by induction on m.
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If m = 1, then either Aut(Γ) < AGL(1, n) or Aut(Γ) = Sn. The latter case is trivial, while in

the former case (Zn)L/Aut(Γ). So we assume the result is true for all such circulant digraphs with∑r
i=1 ai = m, and let Γ be an appropriate circulant digraph with

∑r
i=1 ai = m + 1. By arguments

above, we may assume that Γ is not a normal circulant digraph. By Theorems 4.2 and 5.2 there are

three possibilities for Aut(Γ), which we now consider in turn.

If Aut(Γ) = Aut(Γ1) × Sp where p is prime and Γ1 is a circulant digraph of order n/p relatively

prime to p, and either Aut(Γ1) = Zn/p or Γ1 is a unit circulant digraph, then by induction, Aut(Zn/p)

normalizes Aut(Γ1). As gcd(n/p, p) = 1,

Aut(Zn) = Aut(Zn/p)×Aut(Zp) ≤ Aut(Zn/p)× Sp

and Aut(Zn/p)× Sp normalizes Aut(Γ1)× Sp. Hence Aut(Zn) normalizes Aut(Γ) as required.

If Aut(Γ) = Aut(Γ1) o S` where Γ1 is a unit circulant digraph of order n/`, then by the induction

hypothesis Aut(Zn/`) normalizes Aut(Γ1) and by [4, Lemma 4.10] we see that Aut(Zn/`)×S` normalizes

Aut(Γ). As Aut(Γ) = Aut(Γ1)oS` normalizes Aut(Γ), we have Aut(Zn/`)oS` normalizes Aut(Γ). Clearly

Aut(Zn) ≤ Aut(Zn/`) o S`, and so Aut(Zn) normalizes Aut(Γ).

If Aut(Γ) = Sm o Aut(Γ′) where Γ′ is a connected circulant of order n/m whose valency is at most

2p where p is the smallest prime divisor of n, then both Aut(Γ) and (Zn)L · Aut(Zn) have a block

system C formed by the connected components of Γ. Hence Aut(Zn)/C ≤ Sm = Aut(Γ)/C. Let

α ∈ Aut(Zn). Now there exists γ ∈ Sm × 1Sn/m
≤ Aut(Γ) such that γα/C = 1. Let H be the unique

subgroup of (Zn)L of order n/m, so both γ and α normalize H. Applying [16, Corollary 4.2B] we obtain

γα|C ≤ (Zn/m)L ·Aut(Zn/m). Now observe that every element of Zn may be written uniquely as i+ jm

where 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n/m− 1. As γα/C = 1, we see that γα(i+ jm) = i+ δi(j)m, where

δi ∈ Sn/m. Since γα|C ≤ (Zn/m)L · Aut(Zn/m), it follows that δi(j) = αij + bi, where αi ∈ Z∗n/m and

bi ∈ Zn/m. As 1Sm o (Zn/m)L ≤ Aut(Γ), the map δ which maps i+ jm to i+ (j − bi)m is in Aut(Γ) and

normalizes H. Hence δγα(i + jm) = i + αijm. Define ρ : Zn 7→ Zn by ρ(i + jm) = i + (j + 1)m so

that H = 〈ρ〉. Then (δγα)ρ(δγα)−1(i + jm) = i + (j + αi)m, and (δγα)ρ(δγα)−1 ∈ H. We conclude

that αi = αi′ for all 0 ≤ i, i′ ≤ n/m − 1. As Aut(Zn/m) normalizes Aut(Γ′) by induction, we see that

δγα normalizes Aut(Γ), and since δ, γ ∈ Aut(Γ), we have α normalizes Aut(Γ), so Aut(Zn) normalizes

Aut(Γ). �

Let Γ = Γ(Zn, S) be a reflexive circulant digraph, so 0 ∈ S. We will say that Γ is a 0-unit circulant

graph if every element of S except 0 is a unit of Zn. It is clear that Aut(Γ(Zn, S)) = Aut(Γ(Zn, S−{0})).
Thus Corollary 6.2 extends to 0-unit circulant graphs. Moreover, Γ(Zn, S − {0}) has valency at most

2p if and only if |S| ≤ p+ 1, so Corollary 6.2 also extends to reflexive circulant graphs with |S| ≤ p+ 1.

Finally, by [4, Theorem 4.11], NSn(Aut(Γ)) = Aut(Γ) · Aut(Zn) holds whenever n is square free. We

summarize these observations in the following proposition.

Proposition 6.3. Let Γ = Γ(Zn, S) be a reflexive circulant digraph of order n ≥ 2 and let p be the

smallest prime that divides n. If n is square free, or |S| ≤ p+ 1, or Γ is a 0-unit circulant digraph, then

NSn(Aut(Γ)) = Aut(Γ) ·Aut(Zn).
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An endomorphism of a circulant digraph Γ is any mapping β : Zn → Zn that preserves edges. That

is, whenever ij is an edge in Γ then β(i)β(j) is also an edge in Γ. The set End(Γ) of all endomorphisms

of Γ is a monoid under composition of mappings, called the endomorphism monoid of Γ. The group

Aut(Γ) is then the group of units of End(Γ). For any monoid M , we have the group of automorphisms

of M :

Aut(M) = {φ : M →M : φ is a bijection and for all x, y ∈M , φ(xy) = φ(x)φ(y)}.

Suppose that Γ is reflexive. To describe Aut(End(Γ)), we follow the technique presented in [4,

Section 4.2]. First, by [4, Theorem 1.1],

(6.1) Aut(End(Γ)) ∼= NSn(End(Γ)).

Therefore, the description of Aut(End(Γ)) reduces to that of NSn(End(Γ)). Let δ ∈ NSn(End(Γ)). Then

clearly δ ∈ NSn(Aut(Γ)).

Suppose that Γ is as in Proposition 6.3. Then δ = ωα for some ω ∈ Aut(Γ) and α ∈ Aut(Zn). Since

Aut(Γ) is a subgroup of NSn(End(Γ)), ωEnd(Γ)ω−1 = End(Γ). Thus

δ End(Γ)δ−1 = End(Γ)⇔ (ωα) End(Γ)(ωα)−1 = End(Γ)

⇔ ω(αEnd(Γ)α−1)ω = End(Γ)

⇔ αEnd(Γ)α−1 = ω−1 End(Γ)ω

⇔ αEnd(Γ)α−1 = ω−1(ωEnd(Γ)ω−1)ω

⇔ αEnd(Γ)α−1 = End(Γ).

It follows that

(6.2) δ ∈ NSn(End(Γ))⇔ α ∈ NSn(End(Γ)).

It is well known that for every α ∈ Aut(Zn), there is a unit k ∈ Zn such that xα = xk for every

x ∈ Zn. Consequently, Aut(Zn) is isomorphic to the group of units Z∗n of Zn via the isomorphism

α → k, where α and k are as above. We will identify α ∈ Aut(Zn) with the corresponding unit k. As

in [4, Section 4.2], we consider

US(Zn) = {k ∈ Z∗n : kEnd(Γ)k−1 = End(Γ)},

which is a subgroup of Z∗n. Now, by Proposition 6.3, (6.1), and (6.2), we obtain the following result,

which extends [4, Theorem 4.12].

Theorem 6.4. Let Γ = Γ(Zn, S) be a reflexive circulant digraph of order n ≥ 2 and let p be the smallest

prime that divides n. If n is square free, or |S| ≤ p+ 1, or Γ is a 0-unit circulant digraph, then

Aut(End(Γ)) ∼= Aut(Γ) ·US(Zn).

To obtain a complete description of Aut(End(Γ)), we need to determine US(Zn) for a given S ⊆ Zn.

Some progress in the description of US(Zn) was made in [4] for circulant digraphs with 2-cycles and for

certain 3-circulant digraphs.
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Let Γ = Γ(Zn, S) be a circulant digraph. For x, y ∈ Zn and u ∈ S, we will write x
u→ y if y = x+ u,

that is, if there is an edge from x to y labeled u. We will write x→ y if y = x+ u for some u ∈ S. Let

x0, x1, . . . , xk, y0, y1, . . . , yk−1 (k ≥ 1) be elements of Zn (not necessarily distinct) such that xi → xi+1,

for every i ∈ {0, 1, . . . , k − 1}, yi → yi+1, for every i ∈ {0, 1, . . . , k − 2}, and yk−1 → y0. The subgraphs

x0 → x1 → · · · → xk and y0 → y1 → · · · → yk−1 → y0 of Γ will be called a path (of length k) and a cycle

(of length k), respectively. We will say that y0 → y1 → · · · → yk−1 → y0 is a minimal cycle containing

y0 if k ≥ 2, y0, y1, . . . , yk−1 are pairwise distinct, and there is no shorter cycle of length ≥ 2 with distinct

vertices that contains y0. For example, if Γ = Γ(Z10, S) with S = {0, 2, 3}, then 0→ 3→ 6→ 8→ 0 is

a minimal cycle (of length 4) containing 0.

6.1. Circulant digraphs with 2-cycles. Suppose that 0 ∈ S and there is a nonzero s ∈ Zn such

that s,−s ∈ S. This happens if and only if Γ = Γ(Zn, S) is reflexive and every vertex lies on a 2-cycle

x→ x′ → x with x 6= x′. Following [4, Section 4.3], we consider the following sets:

−S = {−x : x ∈ S},

W (S) = {(x, y) ∈ (S ∩ (−S))× (S ∩ (−S)) : x+ y /∈ S},

U±S (Zn) = {k ∈ Z∗n : kS = S or kS = −S}.

It was proved in [4, Section 4.3] that if there exists (x, y) ∈W (S) such that x+ y ∈ −S, then US(Zn) =

U±S (Zn). This gives us the following corollary of Theorem 6.4, which extends [4, Theorem 4.18].

Corollary 6.5. Let Γ = Γ(Zn, S) be a reflexive circulant digraph such that s,−s ∈ S for some nonzero

s ∈ Zn. Let p be the smallest prime that divides n. Suppose that there is (x, y) ∈ W (S) such that

x+ y ∈ −S. If n is square free, or |S| ≤ p+ 1, or Γ is a 0-unit circulant digraph, then Aut(End(Γ)) ∼=
Aut(Γ) ·U±S (Zn).

The group U±S (Zn) can be easily calculated. For example, consider Γ(Z9, S), where S = {0, 2, 4, 5, 7, 8}.
Note that Γ(Z9, S) is a reflexive 0-unit circulant digraph with 2,−2 ∈ S. We have:

−S = {0, 1, 2, 4, 5, 7},

S ∩ (−S) = {0, 2, 4, 5, 7},

W (S) = {(2, 4), (4, 2), (5, 5), (5, 7), (7, 5)}.

Now, (5, 5) ∈ W (S) and 5 + 5 = 1 ∈ −S, so the hypothesis of Corollary 6.5 is satisfied. Thus to

determine Aut(End(Γ(Z9, S))), it is enough to find all k ∈ Z∗9 = {1, 2, 4, 5, 7, 8} such that kS = S or

kS = −S. The set of all such k contains 1 and is closed under negatives, so it is enough to check

k = 2, 4. We have 2S = {0, 4, 8, 1, 5, 7} 6= S or −S and 4S = {0, 8, 7, 2, 1, 5} 6= S or −S. Hence

U±S (Z9) = {1,−1}, and so Aut(End(Γ(Z9, S))) ∼= Aut(Γ(Z9, S)) · {1,−1}.

6.2. 3-circulant digraphs. If |S| = k, we say that Γ = Γ(Zn, S) is k-circulant. Suppose that S =

{0, s,−s}, where s ∈ Z∗n. It was proved in [4, Section 4.4] that if S = {0, s,−s}, then US(Zn) = {1,−1}
for every n. Thus, since Γ is a 0-unit circulant digraph, we have another corollary of Theorem 6.4,

which extends [4, Corollary 4.19] (where it is assumed that n is square free).
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Corollary 6.6. Let Γ = Γ(Zn, S), where S = {0, s,−s} with s ∈ Z∗n. Then Aut(End(Γ)) ∼= Aut(Γ) ·
{1,−1}.

Suppose that S = {0, s, t} with s, t ∈ Z∗n and s 6= t,−t. [4, Theorem 4.21] states that for such an S,

End(Γ) = Aut(Γ) ∪ {β : Zn → Zn : | im(β)| = 1}.

However, there is a gap in the proof of [4, Theorem 4.21]. In the two paragraphs following equation

(4.6) in [4], we have the following implications in Zn:

m2(k − 1) = (1− k)⇒ m2 = −1,

m2(k − 1) = 0⇒ m2 = 0,

where k = s−1t and m2 is an integer such that 0 ≤ m2 ≤ k. These implications hold when n is prime,

and this hypothesis should be added to the statement of the theorem.

For a composite n, [4, Theorem 4.21] does not hold. Let m be any number of the form m = lq + 1

with l ≥ 1 and q ≥ 3, and set n = (q− 1)m+ 1. Let S = {0, 1,m}, and consider Γ = Γ(Zn, S). Now let

β be the function that maps each k ∈ Zn to rm, where 0 ≤ r ≤ q − 1 is given by r ≡ k (mod q). The

image of β is {0,m, 2m, . . . , (q − 1)m}, which forms a cycle of Γ. It is now straightforward to confirm

that β is an endomorphism of Γ that is neither an automorphism nor a constant.

We will prove a weaker version of [4, Theorem 4.21], which will be true for a general n (see Theo-

rem 6.9). First, we need some lemmas.

Lemma 6.7. Let Γ = Γ(Zn, S), where S = {0, s, t} with s, t ∈ Z∗n and t 6= s,−s. Then β ∈ End(Γ) is

a constant if and only if there exist x ∈ Zn and u ∈ {s, t} such that β(x+ u) = β(x).

Proof. Let β ∈ End(Γ). If β is a constant, then the desired x and u clearly exist. Conversely, suppose

that there exist x ∈ Zn and u ∈ {s, t} such that β(x + u) = β(x). We may assume that u = s, so

β(x+ s) = β(x). We wish to prove that β is a constant.

Consider the following cycle in Γ:

(6.3) 0 = x0
s→ x1

s→ · · · s→ xn−1
s→ x0.

Since s is a unit in Zn, x0, x1, . . . , xn−1 are pairwise distinct, that is, (6.3) is a cycle containing all

vertices of Γ. Since β ∈ End(Γ), we obtain the corresponding cycle of images:

β(x0)→ β(x1)→ · · · → β(xn−1)→ β(x0).

Since {x0, x1, . . . , xn−1} = Zn, x = xi for some i. Thus β(xi+1) = β(xi + s) = β(x+ s) = β(x) = β(xi).

Suppose there exists a minimal cycle containing x = xi with at least two edges labeled s. Since any

permutation of labels of edges in a cycle also gives a cycle, we have a minimal cycle containing xi that

begins with two edges labeled s:

xi
s→ xi+1

s→ xi+2 → z3 → · · · → zl−1 → xi.

Since β(xi+1) = β(xi), we have the corresponding cycle of images:

β(xi)→ β(xi)→ β(xi+2)→ β(z3)→ · · · → β(zl−1)→ β(xi).(6.4)
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By [4, Lemma 4.20], either β({xi, xi+1, xi+2, z3, . . . , zl−1}) = {β(xi)} or (6.4) is a minimal cycle contain-

ing β(xi). The latter is impossible because of the initial repetition, and so β(xi) = β(xi+2). There exists

a minimal cycle containing xi+1 with at least two edges labeled s. (If y
u1→ y1

u2→ · · ·
ul−1→ yl−1

ul→ y is a

minimal cycle containing y, then the cycle z
u1→ z1

u2→ · · ·
ul−1→ zl−1

ul→ z is a minimal cycle containing z.)

Hence we may repeat the previous argument to show that β is a constant.

Suppose there is no minimal cycle containing x = xi with at least two edges labeled s. Then every

minimal cycle containing x = xi must have at least two edges labeled t. (Since t 6= −s, any minimal

cycle has length at least 3.) Hence, every minimal cycle containing any z ∈ Zn must have at least two

edges labeled t.

Suppose β(z + t) = β(z) for some z ∈ Zn. Then, by the foregoing argument with s replaced by t, β

is a constant.

Suppose β(z + t) 6= β(z) for every z ∈ Zn. Consider any minimal cycle containing x:

(6.5) x
u1→ y1

u2→ y2
u3→ · · · ul−1→ yl−1

ul→ x,

and the corresponding cycle of images:

(6.6) β(x)→ β(y1)→ β(y2)→ · · · → β(yl−1)→ β(x).

We know that at least two edges in (6.5) are labeled t. Since the cycle (6.5) is minimal, it must have an

edge labeled s. (Otherwise, (6.5) would have length n. Then the cycle (6.3) would be minimal, which

would contradict our assumption that there is no minimal cycle containing x with at least two edges

labeled s.) We may assume that u1 = s and u2 = t. Then y1 = x+ s, and so β(y1) = β(x+ s) = β(x).

Hence (6.6) is not a minimal cycle, and so β({x, y1, y2, . . . , yl−1}) = {β(x)} by [4, Lemma 4.20]. Then

β(y1 + t) = β(y2) = β(y1), which contradicts the assumption that β(z + t) 6= β(z) for every z ∈ Zn.

Therefore, the latter is impossible, which concludes the proof. �

Lemma 6.8. Let Γ = Γ(Zn, S), where S = {0, s, t} with s, t ∈ Z∗n and t 6= s,−s. Let k = s−1t and

d = n
gcd(n,k−1) . Suppose that either (i) k − 1 is a unit in Zn or (ii) d > k + 1. Let β ∈ End(Γ) be such

that β is not a constant. Consider the path z0
s→ z1

s→ · · · s→ zk. Then all edges in the corresponding

path

(6.7) β(z0)→ β(z1)→ · · · → β(zk)

are labeled s.

Proof. In this proof all calculations and equalities are modulo n unless otherwise indicated. First note

that, since t 6= ±s, 2 ≤ k ≤ n−2. Let m1 be the number of edges in (6.7) labeled s, and m2 the number

of edges in (6.7) labeled t. Then m1 + m2 = k in Z since, by Lemma 6.7, β(x + s) 6= β(x) for every

x ∈ Zn, and so no edge in (6.7) can have label 0. Since z0
ks→ zk and ks = t, we have β(z0)

u→ β(zk)

with u = s or u = t = ks. (Note that u cannot be 0 since β(zk) = β(z0 + t) 6= β(z0) by Lemma 6.7.)

Suppose u = s. Then, by (6.7), m1s+m2ks = s, and so m1 +m2k = 1. Since m1 +m2 = k (in Z and

hence in Zn), it easily follows that (m2 + 1)(k − 1) = 0. If k − 1 is a unit in Zn, then m2 + 1 = 0, and

so m2 = n− 1 in Z (since m2 ≥ 0), which is a contradiction since k = m1 +m2 in Z and 2 ≤ k ≤ n− 2.
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Thus k− 1 is not a unit, which implies d > k+ 1. Let e = gcd(n, k− 1). Then in Z: n = de, k− 1 = qe

for some q ∈ Z, and d and q are relatively prime. Since (m2 +1)(k−1) = 0, we have (m2 +1)(k−1) = jn

in Z, for some j ∈ Z. Thus in Z: (m2 + 1)qe = jne, and so (m2 + 1)q = jd. Since d and q are relatively

prime, it follows that d divides m2 + 1 in Z. This is a contradiction since d > k + 1 ≥ m2 + 1.

Thus we must have u = t = ks. Then, by (6.7), m1s + m2ks = ks, and so m1 + m2k = k. Since

m1 + m2 = k, it follows that m2(k − 1) = 0. If k − 1 is a unit in Zn, then m2 = 0, and so m2 = 0 in

Z (since 0 ≤ m2 ≤ k ≤ n − 2). Suppose that d > k + 1. Then, by the foregoing argument applied to

m2(k− 1) = 0 instead of (m2 + 1)(k− 1) = 0, we obtain d divides m2 in Z. As d > k+ 1 > m2 ≥ 0, we

also get that m2 = 0 in Z.

We have proved that m2 = 0 in Z. Thus m1 = k in Z, that is, all edges in (6.7) are labeled s. �

Theorem 6.9. Let Γ = Γ(Zn, S), where S = {0, s, t} with s, t ∈ Z∗n and t 6= s,−s. Let k = s−1t and

d = n
gcd(n,k−1) . If either (i) k − 1 is a unit in Zn or (ii) d > k + 1, then

End(Γ) = Aut(Γ) ∪ {β : Zn → Zn : | im(β)| = 1}.

Proof. Suppose that either (i) or (ii) holds. Let β ∈ End(Γ) such that β is not a constant. We want to

show that β is an automorphism. As in the proof of Lemma 6.7, consider the cycle

(6.8) 0 = x0
s→ x1

s→ · · · s→ xn−1
s→ x0,

which contains all vertices of Γ, and the corresponding cycle of images:

(6.9) β(x0)→ β(x1)→ · · · → β(xn−1)→ β(x0).

As β is not a constant and 1 < k < n, we may apply Lemma 6.8 to every subpath of (6.8) of length

k. It follows that all edges in (6.9) are labeled s. As s is a unit, β(z0), β(z1), . . . , β(zn−1) are pairwise

distinct, and so β is a bijection.

We have proved that every β ∈ End(Γ) is either a constant or a bijection, which gives End(Γ) ⊆
Aut(Γ)∪{a : Zn → Zn : | im(a)| = 1}. This concludes the proof since the reverse inclusion is obvious. �

Let Γ be as in Theorem 6.9. Then for every α ∈ Aut(Zn),

αEnd(Γ)α−1 = End(Γ)⇔ αAut(Γ)α−1 = Aut(Γ).

By Proposition 6.3, αAut(Γ)α−1 = Aut(Γ) for every α ∈ Aut(Zn), which implies that US(Zn) = Z∗n.

Thus, by Theorem 6.4, we obtain the following corollary, which is a correct version of [4, Corollary 4.22].

The latter depends on [4, Theorem 4.21], and so the hypothesis that n is prime must be added to its

statement.

Corollary 6.10. Let Γ = Γ(Zn, S), where S = {0, s, t} with s, t ∈ Z∗n and t 6= s,−s. Let k = s−1t and

d = n
gcd(n,k−1) . If either (i) k − 1 is a unit in Zn or (ii) d > k + 1, then Aut(End(Γ)) ∼= Aut(Γ) · Z∗n.

For example, let n = 2m, where m > 1 and m is not divisible by 2 or 3. Let S = {0, 1, 3}, so 1

and 3 are units in Zn and 3 6= −1. We have k = 1−1 · 3 = 3, gcd(k − 1, n) = gcd(2, n) = 2, and

d = n
gcd(n,2) = m. Thus k − 1 = 2 /∈ Z∗n, but d > k + 1 (since k + 1 = 4 and d = m ≥ 5). Thus (ii) of

Corollary 6.10 is satisfied, and so Aut(End(Γ)) ∼= Aut(Γ) · Z∗n.
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Let S = {0, s, t}, where s, t ∈ Z∗n and s 6= t,−t. Note that in Corollary 6.10, we can switch s and t.

Let k1 = s−1t, k2 = t−1s, d1 = n
gcd(n,k1−1) , and d2 = n

gcd(n,k2−1) . We note that k2 = k−1
1 , and it is easy

to check that d1 = d2 =: d, and if k1 − 1 ∈ Z∗n, then k2 − 1 ∈ Z∗n. By Corollary 6.10, if k1 − 1 ∈ Z∗n
or d > k1 + 1 or d > k2 + 1, then US(Zn) = Z∗n. On the other hand, if k1 − 1 /∈ Z∗n, d ≤ k1 + 1, and

d ≤ k2 + 1, then we do not know what US(Zn) is. However, the calculation of US(Zn) can be facilitated

by Corollary 6.12. The corollary follows from Lemma 6.11, which states that multiplying S by units of

a certain form does not preserve endomorphisms of Γ that are not automorphisms or constants.

Lemma 6.11. Let S = {0, s, t}, where s, t ∈ Z∗n and s 6= t,−t. Let k = s−1t, d = n
gcd(n,k−1) , and

k − 1 6∈ Z∗n. Then for all β ∈ End(Γ(Zn, S)) and l ∈ Z∗n such that l 6≡ ±1 (mod d),

if β ∈ End(Γ(Zn, lS)), then β is either an automorphism of Γ(Zn, S) or a constant.

Proof. Let β ∈ End(Γ(Zn, S)) and l ∈ Z∗n with l 6≡ ±1 (mod d). Suppose that β ∈ End(Γ(Zn, lS)).

Note that k− 1 6∈ Z∗n implies that d ≥ 2. Suppose that β is not constant. We want to show that β is an

automorphism of Γ(Zn, S). By Lemma 6.8, β(x + s) 6= β(x) for every x ∈ Zn. Let x0 ∈ Zn. Consider

the path

x0
s→ x1

s→ x2
s→ · · · s→ xls

in Γ(Zn, S), and the corresponding path of images

(6.10) β(x0)→ β(x1)→ β(x2)→ · · · → β(xls).

Let m1 be the number of edges in (6.10) labeled s, and m2 the number of edges in (6.10) labeled t.

Note that m1 + m2 = l since β(x + s) 6= β(x) for every x ∈ Zn, so no edge in (6.10) can be labeled 0.

As β ∈ End(Γ(Zn, lS)) and x0
ls→ xls, we have β(x0)

u→ β(xls), where u ∈ {0, ls, lt}. We will consider

these possibilities in turn.

• If u = 0, then we have (in Zn)

m1s+m2t = 0⇒ (l −m2)s+m2sk = 0⇒ m2(k − 1) = −l,

which is impossible as l is a unit in Zn and k − 1 is not.

• If u = ls, then (in Zn)

m1s+m2t = ls⇒ (l −m2)s+m2sk = ls⇒ m2(k − 1) = 0,

which implies that d = n
gcd(n,k−1) divides m2 in Z.

• If u = lt, then (in Zn)

m1s+m2t = lt⇒ m1s+ (l −m1)sk = lsk ⇒ m1(1− k) = 0,

which implies that d divides m1 in Z.

So d divides either m1 or m2. We may assume that d divides m1. Then l = m1 + m2 ≡ m2 (mod d),

and so m2 6≡ ±1 (mod d). Consider the path

x1
s→ x2

s→ x3
s→ · · · s→ xls

s→ x(l+1)s
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in Γ(Zn, S), and the corresponding path of images

(6.11) β(x1)→ β(x2)→ β(x3)→ · · · → β(xls)→ β(x(l+1)s).

Define m′1 and m′2 in the analogous way to m1 and m2, but with respect to (6.11). As the paths (6.10)

and (6.11) overlap, we have m2 − m′2 ∈ {−1, 0, 1}. Our prior argument for (6.10), applied to (6.11),

shows that d divides m′1 or d divides m′2. The latter is impossible since it would imply m2 ≡ ±1

(mod d) or m2 ≡ 0 (mod d). However, we know that m2 6≡ ±1 (mod d). Moreover, m2 6≡ 0 (mod d)

since otherwise d would divide l = m1 + m2, which is not possible since d ≥ 2, d divides n, and l is a

unit in Zn.

Hence d divides m′1, and so d divides m1 −m′1. Since we also have m1 −m′1 ∈ {−1, 0, 1} and d ≥ 2,

it follows that m1 = m′1 (which implies m2 = m′2). This is only possible if the label in β(x0) → β(x1)

is the same as the label in β(xls)→ β(x(l+1)s).

Consider the cycle

0
s→ s

s→ 2s
s→ · · · s→ (n− 1)s

s→ 0

in Γ(Zn, S), and the corresponding cycle of images

(6.12) β(0)→ β(s)→ β(2s)→ · · · → β((n− 1)s)→ β(0).

By the foregoing argument, the labels of edges in (6.12) form a pattern that is periodic with period l.

As l is a unit in Zn, such a pattern is only possible when all edges are labeled s or all edges are are

labeled t. In both cases, β is an automorphism of Γ(Zn, S). �

Corollary 6.12. Let S = {0, s, t}, where s, t ∈ Z∗n and s 6= t,−t. Let k = s−1t, d = n
gcd(n,k−1) , and

k − 1 6∈ Z∗n. Suppose that there exists β ∈ End(Γ(Zn, S)) that is not an automorphism or a constant.

Then for every l ∈ Z∗n such that l 6≡ ±1 (mod d), l /∈ US(Zn).

Proof. By [4, (4.2)], US(Zn) = {k ∈ Z∗n : End(Γ(Zn, S)) = End(Γ(Zn, kS))}. Hence, the result follows

from Lemma 6.11. �

Corollary 6.12 allows us to eliminate units from consideration for US(Zn) in those cases when we know

that there is at least one endomorphism that is not an automorphism or a constant, which can reduce

the complexity when working with concrete examples. Moreover, in suitable situations, Corollary 6.12

allows us to obtain further results.

For example, consider n = 2p, where p > 2 is prime, and let t be odd with p < t < 2p. Let

S = {0, 1, t}. We have k = t, gcd(k − 1, n) = 2, and d = p. Note that in this case k − 1 is not a unit

and d < k + 1, hence our previous results do not apply.

If l ∈ Z∗n with l ≡ ±1(mod d), then l is either one of the trivial units ±1, or l = p ± 1. However,

p − 1 and p + 1 are both even and hence are not units. It then follows by Corollary 6.12 that US(Zn)

can only be either {1,−1} or Z∗n, with US(Zn) = {−1, 1} if End(Γ(Zn, S)) contains an endomorphism

that is neither an automorphism nor a constant, and US(Zn) = Z∗n otherwise.
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7. Problems

To extend the results of Section 6, the following problems must be solved.

Problem 1: Determine US(Zn) for the circulant digraphs considered in Corollary 6.5 such that

W (S) = ∅. (Note that W (S) = ∅ if and only if (S ∩ (−S),+) is a subgroup of (Zn,+).)

Problem 2: Determine US(Zn) for the circulant digraphs considered in Corollary 6.5 such that

W (S) 6= ∅ but x+ y /∈ −S for all (x, y) ∈W (S).

Problem 3: Determine US(Zn) for reflexive 3-circulant digraphs other than those considered in

Corollary 6.10.

Another natural problem that so far has received little or no attention is the following. We recall

that a core is a graph in which all endomorphisms are automorphisms.

Problem 4: Classify the core circulant digraphs.

A particular instance of Problem 4 is its restriction to the types of circulant digraphs considered in this

paper.

Problem 5: Classify the core circulant digraphs of small valency and the core unit circulant

digraphs.
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