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ABSTRACT 

The viscoelastic behavior of semi-crystalline polyamide 6,6 fiber is exploited in viscoelastically 

prestressed polymeric matrix composites.  To understand better the underlying prestress 

mechanisms, strain-time performance of the fiber material is investigated in this work, under high 

creep stress values (330-665 MPa).  A latch-based Weibull model enables prediction of the ‘true’ 

elastic modulus through instantaneous deformation from the creep-recovery data, giving 4.6 ± 0.4 

GPa.  The fiber shows approximate linear viscoelastic characteristics, so that the time-stress 

superposition principle (TSSP) can be implemented, with a linear relationship between the stress shift 

factor and applied stress.  The resulting master creep curve enables creep behavior at 330 MPa to be 

predicted over a large timescale, thus creep at 590 MPa for 24 h would be equivalent to a 330 MPa 

creep stress for ~5200 years.  Similarly, the TSSP is applied to the resulting recovery data, to obtain a 

master recovery curve.  This is equivalent to load removal in the master creep curve, in which the 

yarns would have been subjected to 330 MPa creep stress for ~4.56 × 107 h.  Since our work involves 

high stress values, the findings may be of interest to those involved with long-term load-bearing 

applications using polyamide materials. 

INTRODUCTION 

Viscoelastic behavior can have a profound influence on the mechanical performance of polymeric 

fibers.1  Of particular interest, is polyamide 6,6 fiber, as this has become the most established 

reinforcement in the development of viscoelastically prestressed polymeric matrix composites 

(VPPMCs).  The first VPPMCs to be successfully demonstrated utilized polyamide 6,6 fiber2 and 

their development has progressed, leading to, for example, commingled polyamide 6,6-aramid fiber 

VPPMCs for enhanced mechanical performance.3  Most recently, polyamide 6,6 fiber has been used 

to produce the first bistable morphing structure based on VPPMC principles, and this may provide 

opportunities to develop morphing aerofoils for aerospace and other applications.4  Thus it is the fiber 

material under investigation in this paper.  The fibers are considered to store mechanical energy 

during tensile creep, which is progressively released through viscoelastic recovery following load 

removal.  When constrained in a matrix, contraction of these fibers can impart compressive stresses 

into the matrix, thereby improving the mechanical properties of the resulting VPPMC.5  In a recent 

study, VPPMCs were successfully produced from polyamide 6,6 fibers subjected to higher creep 

stress conditions, as this reduced the processing time.6  Clearly, these first steps towards process 

optimization lead to a requirement for further understanding of the underlying mechanisms.  

Therefore, the aim of the current study is to evaluate the elastic and long-term viscoelastic behavior of 

polyamide 6,6 fiber under high stress conditions.   
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Research into the morphological characteristics of semi-crystalline fibers has resulted in models for 

different fibrous structures,7 i.e. the two-phase Microfibrillar model,8-11 and the three-phase Swiss-

cheese model.12  Though it is still inconclusive on a microstructural scale, the behavior of polyamide 

fibers can be explained by the Swiss-cheese model as first proposed by Prevorsek.13, 14  Briefly, the 

semi-crystalline polyamide fiber is considered to consist of three phases, i.e. crystalline regions 

(anisotropic), isotropic amorphous regions and orientated amorphous domains.  Orientation occurs 

during the drawing process and is associated with re-crystallization,8 i.e. phase transaction.  Therefore, 

differences in the fiber forming process could induce discrepancies on the microstructural scale, and 

affect mechanical properties.  For example, polyamide 6,6 as a fiber material, is shown to exhibit 

linear viscoelasticity below 50 MPa creep stress;15, 16 however, as a matrix material, nonlinear 

viscoelastic characteristics have been demonstrated under creep conditions of up to 40 MPa.17   

The time-dependent properties of polymeric materials can be represented through a spring-dashpot 

latch model.18  The creep, recovery and stress relaxation behavior of a polymeric material correlate 

well with Weibull (stretched exponential) functions.  For viscoelastic materials, tensile stress in 

tensile testing can produce elastic and viscoelastic deformation.  Therefore, to obtain the ‘true’ elastic 

modulus of a viscoelastic solid, the stress-strain relationship from elasticity only is required, and 

clearly, this is not possible from routine tests as no load can be physically applied instantaneously.1  In 

general, the stress-strain characteristics of polymeric materials are highly dependent on strain rate and 

environmental conditions.19  The Young’s modulus of polyamide 6,6 materials can therefore be 

strongly influenced by strain rate and temperature,20, 21 with values ranging from 2.8 to 4.9 GPa.22, 23  

An alternative approach is to exploit the Weibull model as this can fit well to creep strain data,16, 18 

which allows the prediction of purely elastic strain, εi, under different stress levels.  Thus, creep tests 

of polyamide 6,6 fiber, under a range of applied stress values, could provide an actual elastic stress-

strain curve, which enables the ‘true’ elastic modulus of the viscoelastic material to be determined.   

The viscoelastic behavior of polymers is considered to possess an intrinsic time that can be influenced 

by many factors.24-26  To date, the influence of temperature, stress, strain and moisture content on the 

intrinsic time of viscoelastic materials have been intensively investigated in terms of tensile creep,15, 

27-31 flexural creep,32 dynamic tensile modulus33, 34 and stress relaxation.33, 35, 36  Since increased load, 

temperature and moisture content could all shift the polymeric creep curves to shorter timescales,37 

superposition principles can be used to shift different temperatures, humidity and stress levels from 

some convenient short-term scales to construct a master curve with a much wider timescale at a 

constant condition.  This allows prediction of the time-dependent viscoelastic response of materials.  

For polyamide 6,6 fiber, its viscoelastic creep properties have been investigated by Howard and 

Williams15 using low stresses (10 MPa, 35 MPa, 50 MPa) and later by Fancey38, 39 using 282 MPa, 

342 MPa and 401 MPa creep stress values.  In this research, large creep stress values ranging from 

330 MPa to 665 MPa were adopted.  The time-stress superposition principle (TSSP) was applied to 

predict long-term viscoelasticity.  Though the TSSP has been reported to fit well to the creep behavior 

of unoriented polyamide 6,6 monofilaments using low creep stress values (<50 MPa)37, its 

applicability to oriented polyamide 6,6 fiber is still unknown.   

EXPERIMENTAL 

Materials 

The fiber material used in this work was polyamide 6,6, supplied by Ogden Fibers Ltd, UK.  This was 

a continuous untwisted multifilament yarn, with 140 filaments, 26 µm filament diameter and 94 tex.  
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The fiber breaking strength was 700-900 MPa.39  The degree of crystallinity, from X-ray diffraction, 

was 51% in as-received condition and 53% following annealing.40   

Creep and recovery tests 

Creep and recovery measurements followed previously described procedures.41  Briefly, the 

polyamide yarns were first subjected to annealing (150˚C for 30 min).  This was essential to remove 

manufacturing-induced residual stresses.39, 42, 43  Following annealing, at least 0.5 h was allowed to 

elapse for the yarns to regain equilibrium moisture content before performing the creep tests.  A 

vertical stretching rig was used for testing.  Annealed yarn (typically ~1300 mm in length) was folded 

and attached between upper and lower bobbins; the lower bobbin was fixed to a counterbalanced 

platform to accommodate various creep loads.  A period of 24 h was adopted for all creep runs.  Creep 

strain was monitored by measuring the distance between two inked marks on the yarn (300-400 mm 

apart), using a digital cursor with a precision of ± 0.01 mm.  For repeatability, three samples of 

annealed yarn were subjected to creep at each of the designated stress values, and recovery strain was 

subsequently monitored following the creep load removal.  All strain readings were taken under 

ambient conditions of 20.0-21.5°C and 30-40% RH.  A commercially available software package 

(CurveExpert 1.4) was used to fit the Weibull-based equations to the strain-time data, to provide the 

equation parameters and correlation coefficients.   

The first steps towards VPPMC process optimization involved an evaluation of creep-recovery 

behavior at stress values of 330 MPa, 460 MPa and 590 MPa.6  Examination of fibers by scanning 

electron microscopy following the maximum loading condition (590 MPa for 24 h) revealed no fiber 

damage.  In the current work, three more creep stress conditions (395 MPa, 525 MPa and 665 MPa) 

were studied to determine the fiber elastic and long-term viscoelastic characteristics.   

MODELING OF VISCOELASTIC BEHAVIOR   

The creep-strain curve for a polymer may consist of three stages, as represented in Figure 1.  An 

initial, effectively time-independent elongation εi (mainly elastic deformation), is produced once a 

creep load is applied.  In Stage I, the creep rate decreases rapidly with time, which can be attributed to 

molecular chain slippage and reorientation.44  After a certain period, Stage II follows, in which the 

rate reaches a steady-state minimum value, and usually lasts for a relatively long period.  Finally, 

Stage III occurs with a rapid increase in creep rate beyond the yield creep strain, ultimately leading to 

creep fracture of the material.1, 44-46  It should be noted that Figure 1 is somewhat idealized and some 

materials may only possess partial stages of the curve.  This depends on microstructure.1  The creep-

strain behavior in Stages I and II (below the creep yield strain) can be represented by a Weibull 

function, in which the creep strain ctot(t) at time t under a constant stress, follows:16   

 𝜀ctot(𝑡) = 𝜀i + 𝜀c [1 − exp (− (
𝑡

𝜂c
)

𝛽c

)] (1) 

where i is the instantaneous strain from initial application of the stress; the c function is the time-

dependent creep strain, with ηc and βc as the characteristic life and shape parameter respectively.   

The dashed line in Figure 1 shows the recovery strain-time curve after releasing the creep load at t1.  

Following load removal, the polymeric sample undergoes recovery, elastically and viscoelastically.  

Elastic recovery, as represented by e, occurs immediately, while viscoelastic (time-dependent) 
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recovery is represented by the r function.  Following elastic recovery, the remaining recovery strain, 

rvis(t) is:16   

 𝜀rvis(𝑡) = 𝜀r [exp (− (
𝑡

𝜂r
)

𝛽r

)] +𝜀f (2) 

where, ηr and βr are the Weibull parameters analogous to Eq. (1); f is the (non-recoverable) strain 

from viscous flow.   

Figure 2 shows schematically, the stress-strain behavior of elastic and viscoelastic materials at two 

fixed values of elapsed time tʹ and tʹʹ during creep tests.  For a perfectly elastic material, stress is 

directly proportional to strain, giving a constant gradient, i.e. the Young’s modulus.  For a viscoelastic 

material, the stress is a function of strain and time, and the material is considered to be linear 

viscoelastic when stress is directly proportional to the strain with gradients that reduce for increasing 

values of elapsed time.46, 47  Thus, a shift factor αc can be defined mathematically and follows: 

 𝛼c =
𝜀ctot(𝜎0, 𝑡)

𝜀ctot(𝜎1, 𝑡)
 (3) 

where σ0 is the reference stress and σ0<σ1.  Therefore, a higher creep strain (under stress value σ1) 

could be shifted to 𝜀ctot(𝜎0, 𝑡) through αc.   

Analogous to the linear viscoelastic behavior in creep, is αr, which is defined as the recovery shift 

factor: 

 𝛼r =
𝜀rvis(𝜎0, 𝑡)

𝜀rvis(𝜎1, 𝑡)
 (4) 

Thus, recovery strain under σ1 (>σ0) can be shifted to 𝜀rvis(𝜎0, 𝑡) through αr for a linear viscoelastic 

material.   

TIME-STRESS SUPERPOSITION PRINCIPLE   

The TSSP can be developed to predict the viscoelastic response of a material over a large timescale.  

Superposition was originally established between time and temperature, to form the well-known time-

temperature superposition principle (TTSP).48  This is based on the Doolittle formula, in which the 

viscosity is shown to be a function of free volume.49  O’Shaughnessy50 first demonstrated the 

existence of time-stress correspondence through experimental study.  Ferry and Stratton51 found that 

the free volume interpretation of the dependence of viscosity could be extended to molecular 

concentration, pressure, and tensile strain, and this gives the basis for the TSSP.  For polymers with a 

Poisson’s ratio μ less than 0.5, the increase in fractional free volume f from stress-induced strain ε can 

be given by:51 

 𝜕𝑓/𝜕𝜀 = (𝛽𝑓/𝛽)(1/𝑣)(𝜕𝑣/𝜕𝜀) (5) 

where β is the compressibility coefficient; βf is the compressibility of the free volume; v is the specific 

volume.  For a small strain change Δε, the strain shift factor, αε, can be defined as: 
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 log 𝛼𝜀 = −
[1 (2.303𝑓0)]⁄ 𝛥𝜀

𝑓0 (𝛽𝑓 𝛽⁄ )⁄ (1 − 2𝜇) + 𝛥𝜀
 (6) 

where, f0 is the free volume fraction at reference strain.  Since strain ε = σ/E, where σ is the stress 

applied to the polymer and E is the elastic modulus, and assuming ασ is the stress shift factor, then: 

 log 𝛼𝜎 = −
[1 (2.303𝑓0)]⁄ (𝜎 − 𝜎0)

𝐸𝑓0 (𝛽𝑓 𝛽⁄ )⁄ (1 − 2𝜇) + (𝜎 − 𝜎0)
 (7) 

When C3=1/(2.303f0) and C4=Ef0/(βf /β)(1-2μ), Eq. (7) becomes identical to the well-known Williams-

Landel-Ferry (WLF) equation, i.e: 

 log 𝛼𝜎 = −
𝐶3(𝜎 − 𝜎0)

𝐶4 + (𝜎 − 𝜎0)
 (8) 

Therefore, the TSSP shares the same basis as the TTSP, i.e. the free volume theory.  A successful 

transformation of the log αT (temperature shift factor) values from creep15 and stress relaxation35 have 

been reported in relation to predicting the long-term behavior of recovery in polyamide 6,6 fiber39 and 

the (associated) impact toughness in polyamide fiber-based VPPMCs.39, 43, 52  Therefore, in addition to 

creep, the applicability of ασ to recovery behavior was also evaluated in the current work.   

 

RESULTS AND DISCUSSION 

Creep and recovery 

Figure 3(a) shows the creep strain-time performance, together with the curve-fits using Eq. (1).  The 

corresponding equation parameter values are listed in Table 1.  Despite data scatter, the three runs at 

each creep stress demonstrate good repeatability.  As the polyamide 6,6 fiber is multifilament yarn, 

the scatter in data points is primarily due to the inconsistency in physically locating the edges of inked 

marks during strain measurements.  The creep strain clearly increases with applied stress, which in 

terms of a mechanical latch-based spring and dashpot model, may result from more time-dependent 

latch elements being activated under higher creep stresses.16   

The resulting recovery data from the 24 h creep runs in Figure 3(a) are shown in Figure 3(b), the 

strain data being monitored up to approximately two years in real time.  Clearly, there is greater 

scatter with the recovery strain data in Figure 3(b), compared with the creep strain data in Figure 3(a).  

This is attributed to the yarns being held in a high state of tension for the latter case, which facilitated 

measurements.  The corresponding parameter values from Eq. (2) are shown in Table 1.  It is worth 

noting that the value for f from creep at the highest stress (590 MPa) is less than 10-4%; i.e. viscous 

flow effects are predicted to be negligible.  This indicates that most of the available recovery is 

viscoelastic, which, for polyamide fiber VPPMCs, implies that the viscoelastic prestressing 

mechanism would not be limited by an eventual contribution from viscous flow.  This is in 

accordance with previous work.6, 39, 52 

For a particular stress value, the instantaneous elastic recovery e, can be determined from the 

difference between the total strain at the end of the 24 h creep test, and the initial value of recovery 

strain predicted from Eq. (2).16  The predicted e values are shown in Figure 4, together with the i 
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values (strain from creep tests at 0 min) from Table 1.  It shows that for each creep condition, the 

instantaneous elastic strain i compares well with the e value (within <1% difference).  This indicates 

that the elastic strain was fully recovered upon load removal.  Considering that no damage from the 

maximum (24 h) exposure to the 590 MPa creep condition was found in terms of fiber topography,6 it 

may be concluded that there was no creep-induced fracture in the fibers for the creep stress conditions 

used.   

Stress rupture testing 

To determine the fiber failure properties, a higher creep stress was applied to polyamide 6,6 yarn.  

Since the breaking strength of polyamide 6,6 fiber is 700-900 MPa, a 665 MPa creep stress (value 

restricted by the stretching rig) was adopted for rupture testing.  Annealed fiber samples were 

stretched to break and the results are shown in Figure 5.  Again, three samples were tested for 

repeatability purposes.  As samples approached the Stage III region (Figure 1), the creep strain rate 

and probability of fiber fracture progressively increased and only one sample survived to 3 h.  Thus in 

Figure 5, data were available for two runs monitored up to 2 h, and one run up to 3 h.  The yield creep 

strain was found to be ~18%, and this was reached after ~2 h of stretching.  Since Eq. (1) is not 

applicable to creep data beyond the yield point, the curve-fit is limited to the strain-time data below 

18%, and parameter values are listed in Figure 5.   

Predicting the ‘true’ elastic modulus 

The instantaneous elastic strain i in Eq. (1) is a predicted value which cannot be measured.  Thus a 

linear relationship between i and stress σ could enable the ‘true’ modulus of polyamide 6,6 fiber to be 

determined.  As stated in the Introduction section, creep-strain data from both the current study and 

literature15, 39 were considered.  By using Eq. (1), the relationship between i and σ could be 

constructed and is shown in Figure 6.  The gradient from linear regression gives a true modulus value 

of 4.61 GPa.  The scatter in data points may, at least in part, be attributed to differences in the 

microstructural characteristics (e.g. variations in crystallinity) between polyamide 6,6 fibers used in 

the current study and previous work.15, 39  Variations in test conditions (temperature, humidity) would 

also be expected to contribute towards discrepancies between the three data sources.  For the most 

influential data in Figure 6 however (Ref. 39 and current work), ambient conditions in Ref. 39 

(19.5-21.0°C and 25-35% RH) were similar to those of the current study.  Acquisition of data from 

Ref. 15 for use in Eq. (1) has been described in previous work.16  The Ref. 15 data correspond to 

anhydrous fiber at 25°C, but these conditions appear to have little effect in Figure 6, since the stress-

strain values are relatively low.  The dashed lines in Figure 6 are estimated ‘worst case’ gradients on 

both sides of the linear fit with intercepts set at zero, and these give values of 4.07 GPa and 4.91 GPa.  

This provides an indication of the uncertainty, giving the true modulus as 4.6 ± 0.4 GPa. 

Linear viscoelasticity 

Creep strain isochrones (Figure 2) for 1 min, 1 h, and 24 h were produced from the curve fits in 

Figure 3(a), and results are shown in Figure 7.  Although there is some scatter in data points, it is clear 

that the gradient values (from linear regression) decrease with the increase in creep duration, 

indicating that polyamide 6,6 fiber shows approximate linear viscoelastic performance under creep 

deformation at high stress values, i.e. 330-590 MPa.  This corresponds with the creep behavior below 

50 MPa stress.15, 16  

The shift factor αc (for each creep stress value) can be determined using Eq. (3) from curve-fits as 

shown in Figures 3 and 5.  With the 330 MPa creep strain data set as a reference, the resulting data are 
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plotted in Figure 8 which fit well to a linear trend.  Shift parameter αc values in Figure 8 were applied 

to the single creep runs.  The resulting normalized creep strain data in Figure 9, from 330 MPa to 590 

MPa, show a good fit, as most of the shifted data points fall within the scatter area of the 330 MPa 

creep condition.  These results show linear viscoelastic characteristics up to 590 MPa creep stress.  Of 

particular interest in Figure 9, is that approximate linear viscoelastic behavior is observed with the 

665 MPa creep data below 1 h, as highlighted by the broken lines.  It is clear that the rapid growth in 

creep rate (Stage III), started beyond 1 h of creep loading for the 665 MPa runs (Figure 5), thus the 

yield creep strain can be considered as being further limited to ~17.5%.  Therefore, it may be 

concluded that creep behavior of polyamide 6,6 fiber shows linear viscoelastic characteristics below 

the yield strain (~17.5%).   

Since fiber rupture occurred at 665 MPa stress, recovery runs up to 590 MPa stress were used to 

investigate linear viscoelastic recovery.  The same procedures as described earlier were used to 

determine the αr value for each recovery condition, and results are shown in Figure 10.  Again, a 

linear trend can be fitted between αr and applied stress.  Recovery strain-time curves as shown in 

Figure 3(b), were shifted through αr, and normalized results are shown in Figure 11.  The viscoelastic 

recovery of polyamide 6,6 fiber generally aligns with the 330 MPa recovery strain, though there is 

more scatter of data compared with Figure 9, for reasons associated with the measurements in Figure 

3(b).  Despite the data scatter, the recovery behavior indicates approximate linear viscoelasticity.   

These results indicate that polyamide 6,6 fiber shows approximately linear viscoelastic behavior for 

creep and recovery, which in turn makes the linear superposition principle applicable.46  This 

compares well with other findings, in that while the WLF equation has predicted a non-linear 

relationship between temperature and the temperature-shift factor for polymeric materials, a linear 

relationship was obtained for polyamide 6,6 material in terms of long-term creep (<50 MPa stress),15 

stress relaxation,33, 35 and dynamic tensile modulus33 performance.  Since the TSSP shares the same 

free volume theory with the TTSP, speculation can be made that log ασ may also demonstrate linear 

behavior with stress values.  This is further investigated below.   

Application of the time-stress superposition principle 

By using the TSSP, single step short-term (24 h) creep strain-time data as shown in Figure 3(a), could 

be superposed.  Since temperature and humidity for all the creep strain measurements were controlled 

to be under the same conditions, the 330 MPa creep strain was selected as the reference stress, σ0.  

Figure 12 shows the corresponding stress shift factor plotted as (log ασ) versus (σ˗σ0).  Instead of an 

apparent non-linear relationship between log ασ and stress difference as predicted by Eq. (8), a linear 

regression was well fitted to the data points, giving a gradient of 0.024 MPa-1.  This enabled log ασ to 

be determined at 590 MPa relative to 330 MPa, the resulting value being -6.2798.  Thus, for shifting 

strain data from t to t/ασ, the viscoelastic creep using 590 MPa would be ~1,904,800 times faster than 

a creep loading of 330 MPa, i.e. polyamide yarns subjected to 590 MPa for 24 h would be equivalent 

to a 330 MPa creep stress applied for ~5200 years.   

Figure 13 shows the resulting master creep curve, obtained simply through a horizontal shift (i.e. from 

t to t/ασ) of the creep stress curves in Figure 3(a).    Eq. (1) was used for the curve fitting, and 

corresponding parameter values are also shown in Figure 13.  As elastic strain is dependent on stress, 

the value of i for the master curve is equal to the reference creep stress, i.e. 7.956% (Table 1).  It is 

clear that the master curve is well fitted by Eq. (1), which effectively shows the creep deformation at 

330 MPa over a vast timescale.   
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The principle of linear TSSP in creep behavior as discussed above was also applied to the recovery 

results.  Here, the recovery strain under 590 MPa stress was set as the reference, and the same shift 

factor values in Figure 12 were applied to the recovery data in Figure 3(b) in a reversed order.  The 

resulting recovery master curve is shown in Figure 14, which corresponds to load removal on yarns 

being subjected to 330 MPa creep stress for ~4.56×107 h, as represented in Figure 13.  Clearly, this is 

an impractical duration; however, the results do demonstrate long-term linear viscoelastic recovery.  

Eq. (2) was used for curve-fitting, which is shown in Figure 14, together with the parameter values.  

Again, viscoelastic flow effects are predicted to be negligible.   

CONCLUSIONS 

To understand further the mechanisms responsible for generating prestress within VPPMCs, the 

elastic and viscoelastic behavior of polyamide 6,6 fiber under high stress conditions were investigated 

in this work.  The main findings were:   

(i) Creep and recovery tests showed that elastic strains were fully recovered on load removal for 

all the 24 h creep stress values up to 590 MPa; this indicates there was no creep-induced 

damage.  Since viscous flow was found to be negligible for all creep conditions, VPPMC 

prestressing mechanisms would not be limited by this.   

(ii) The yield creep strain was determined from creep rupture tests, in which fiber yarns were 

subjected to 665 MPa creep stress.  Yield strain was achieved after 2 h, which rapidly led to 

fracture beyond ~18% creep strain. 

(iii) The ‘true’ modulus of the fiber was found to be 4.6 ± 0.4 GPa; this was achieved through the 

use of the Weibull-based function from which the pure elastic strain could be determined. 

(iv) The fiber showed approximate linear viscoelastic characteristics at large creep deformations, 

from 330 to 590 MPa.  This enabled the linear TSSP to be implemented; i.e. a linear 

relationship between the stress shift factor, log ασ, and stress was obtained.  The resulting 

master creep curve enabled the creep behavior at 330MPa to be predicted over a large 

timescale. 

(v) The linear TSSP obtained from creep could be applied to corresponding recovery strain data.  

A master recovery curve was developed through the stress shift factor, log ασ, this being 

equivalent to load removal in the master creep curve, in which yarns would have been 

stretched with 330 MPa creep stress for ~4.56×107 h.  Although this is impractical, it does 

demonstrate long-term linear viscoelastic recovery.   

In the broader context, we hope our findings will be of interest to all those involved with long-term 

load-bearing applications using polyamide materials. 
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Table 1 Summary of the creep and recovery parameter values from data in Figure 3 using Eqs. 

(1) and (2); r is the correlation coefficient. 

24 h applied 

stress (MPa) 

Creep parameters 

εc (%) βc ηc (h) εi (%) r 

330* 3.538 0.2245 0.1428 7.956 0.9729 

395 3.665 0.2614 0.1856 9.223 0.9707 

460* 4.317 0.2048 0.1889 10.181 0.9939 

525 4.148 0.2419 0.1418 11.049 0.9926 

590* 5.044 0.2830 0.4256 12.141 0.9957 

24 h applied 

stress (MPa) 

Recovery parameters 

εr (%) βr ηr (h) εf (%) r 

330* 3.052 0.1270 1155 < 10-9 0.9651 

395 3.800 0.1068 7175 < 10-9 0.9795 

460* 4.361 0.1056 9637 < 10-4 0.9865 

525 3.956 0.1734 77400 < 10-4 0.9878 

590* 4.621 0.2062 150468 < 10-5 0.9853 

       * data from Ref. 6    
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FIGURE CAPTIONS 

Figure 1 Schematic of the creep and recovery characteristics of a polymeric material under a 

constant stress.   

Figure 2 Schematic of stress-strain behavior for elastic and viscoelastic materials at two values of 

elapsed time tʹ and tʹʹ.  Redrawn from Ref. 47. 

Figure 3 Strain-time data for (a) 24 h creep and (b) recovery at the five stress values with curve-

fits from Eqs. (1) and (2).  For each stress value: three runs were performed, as 

represented by the different symbols; individual data points from all three runs were used 

to produce the curve fit. 

Figure 4 Plot of instantaneous strain i and elastic recovery strain e values at each creep 

condition.  These values were obtained from Eqs. (1) and (2). 

Figure 5 Strain-time behavior of polyamide 6,6 fiber under 665 MPa creep stress.  Dashed line 

shows the development of Stage III in creep behavior, which is the prelude to fiber 

failure. 

Figure 6 Plot of elastic strain i versus creep stress σ, predicted from Eq. (1) using data from Table 

1 and published work.  The linear regression gives the modulus value of polyamide 6,6 

fiber as 4.61 GPa.  Dashed lines show ‘worst case’ gradients, indicating the uncertainty 

in the modulus result.   

Figure 7 Creep strain isochrones for polyamide 6,6 fiber at 1 min, 1 h and 24 h, respectively.  

Linear regression shows the trends. 

Figure 8 Shift factor αc for each creep stress value, with 330 MPa creep stress as the reference.  

Figure 9 Strain-time relationships normalised to the 330 MPa creep condition through shift factors 

αc from Figure 8. 

Figure 10 Shift factor αr for each recovery curve; recovery strain from 330 MPa creep is set as the 

reference. 

Figure 11 Strain-time relationships after normalising to the 330 MPa recovery condition through 

shift factors αr, as shown in Figure 10.   

Figure 12 Plot of the time-stress shift factor, ασ, as a function of stress difference, σ−σ0. Reference 

creep stress, σ0 is 330 MPa. The equation is from linear regression; r is the correlation 

coefficient.   

Figure 13 Master curve for creep strain versus time in polyamide 6,6 fiber, obtained from the 

TSSP, using data from Figure 3(a).   

Figure 14 Recovery master curve obtained from the TSSP, using data from Figure 3(b).  Applied 

shift factor values are those shown in Figure 12, but in reversed order.   
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