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The effects of robot assisted gait training on temporal-spatial 

characteristics of people with spinal cord injuries: A systematic review 

 

Context: Robotic assisted gait training (RAGT) technology can be used as a rehabilitation tool 

or as an assistive device for spinal cord injured (SCI) individuals. Its impact on upright stepping 

characteristics of SCI individuals using treadmill or overground robotic exoskeleton systems 

has yet to be established. 

 

Objective: To systematically review the literature and identify if overground or treadmill based 

RAGT use in SCI individuals elicited differences in temporal-spatial characteristics and 

functional outcome measures. 

 

Methods: A systematic search of the literature investigating overground and treadmill RAGT 

in SCIs was undertaken excluding case-studies and case-series. Studies were included if the 

primary outcomes were temporal-spatial gait parameters. Study inclusion and methodological 

quality were assessed and determined independently by two reviewers. Methodological quality 

was assessed using a validated scoring system for randomised and non-randomised trials. 

 

Results: Twelve studies met all inclusion criteria. Participant numbers ranged from 5-130 with 

injury levels from C2 to T12, American Spinal Injuries Association A-D. Three studies used 

overground RAGT systems and the remaining nine focused on treadmill based RAGT systems. 

Primary outcome measures were walking speed and walking distance. The use of treadmill or 

overground based RAGT did not result in an increase in walking speed beyond that of 

conventional gait training and no studies reviewed enabled a large enough improvement to 

facilitate community ambulation. 
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Conclusion: The use of RAGT in SCI individuals has the potential to benefit upright 

locomotion of SCI individuals. Its use should not replace other therapies but be incorporated 

into a multi-modality rehabilitation approach. 

 

Keywords: spinal cord injury, robot assisted gait training, overground gait, treadmill 

gait, temporal-spatial characteristics. 

Subject classification codes: 130.160 Physical Medicine and Rehabilitation / Locomotor 

Training 
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Introduction 

An estimated 500,000 spinal cord injuries (SCIs) occur worldwide every year.1  The most life-

impacting result of a spinal cord injury is paralysis or mobility impairment.2-5 In most cases of 

SCI, the subsequent requirement of a wheelchair enforces the user to adopt a seated position 

from which activities of daily living, social interaction and mobility are undertaken.6, 7 A 

number of SCI comorbidities are negatively impacted by a continuously seated posture and a 

less active lifestyle; reduced bone mineral density,8, 9 increased chance of pressure sores,10 

reduced respiratory capacity,6, 10 increased risk of coronary heart disease11 and bladder and 

bowel dysfunction.12 These sequelae, along with a reduced capacity for mobility, have a direct 

impact on the quality of life of SCI individuals.13, 14 There is currently no treatment that can 

completely restore motor and or sensory function after an SCI.15 The primary goal of 

rehabilitation must therefore be to improve the quality of life for SCI individuals by attenuating 

the deleterious consequences of the associated comorbidities.16  

 

Upright mobility may have a beneficial effect on a number of SCI comorbidities, 

including those listed above,13, 17 therefore upright locomotor training can be an effective 

component of physical rehabilitation for patients with a number of neurological injuries and 

disorders (including stroke, multiple sclerosis, cerebral palsy and SCI).18 In incomplete spinal 

cord injured (iSCI) individuals, locomotor training has the potential to facilitate improved 

functional ambulation by driving neural plasticity at the spinal level, through afferent feedback 

to central pattern generators.19 Although voluntary movement below the level of lesion in 

complete spinal cord injured (cSCI) individuals cannot be recovered, the negative effects of 

being chair- or bed-bound are temporarily reduced through upright stepping.19 There are 

currently a number of locomotor training methods available to SCI individuals; these include 

body weight support treadmill training or overground gait training20 with either manual 
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assistance from therapists, functional electrical stimulation, robotic assisted gait training 

(RAGT) or a combination of these to facilitate stepping.3, 7, 15, 21-23 A number of RAGT systems 

have been developed, both treadmill-based and overground.24  

 

Limited information is available regarding physiotherapeutic gait improvement 

programmes25 and the prescription of RAGT in SCI rehabilitation in the UK. The clinical 

guidelines provided by the UK’s National Spinal Cord Injury Strategy Board and the National 

Health Service (NHS) Clinical Advisory Group only detail care from pre-admission to acute 

rehabilitation (2010). Other guidelines provided by various clinical bodies advise on pressure 

ulcer management,26 movement and handling of individuals with SCI27 and guidance on 

standing post SCI.27 Information linked directly to the use of RAGT is limited to NICE medtech 

innovation briefings (MIB93)28 and in the NICE clinical guidelines for stroke rehabilitation in 

adults (CG162) where electromechanical gait training is advised as part of research studies.29 

In conjunction with the limited information available from formal guidelines, there is no 

consensus among practitioners and clinical researchers regarding the efficacy of RAGT2 and 

which types of RAGT system are most beneficial for the user. Thus it is difficult to determine 

which systems will provide the most appropriate treatment for each individual based on their 

clinical need and associated comorbidities. 

 

A number of different RAGT systems have become commercially available and others 

are in development. The choice of system is often governed by availability, with the main 

considerations centred around user safety and the users’ current capacity. Although these 

considerations are of the utmost importance, the potential exists for different types of RAGT 

systems to be more appropriate for use with specific populations due to the nature of an 

individuals’ injury and the clinical goals of the locomotor training. Therefore, the aim of the 
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current systematic review was to identify if overground and treadmill-based RAGT systems 

produced different upright stepping characteristics in SCI populations. It is acknowledged that 

most facilities will only possess a single RAGT system but will treat a broad spectrum of 

patients. Rehabilitation centres and healthcare professionals need evidence-based information 

to make the most suitable choice when purchasing rehabilitation equipment. A secondary aim 

was to identify any differences in the use of RAGT systems for cSCI and iSCI populations. The 

final aim was to identify if an overground or treadmill-based RAGT system resulted in greater 

improvements in functional gait outcome measures in SCI individuals.  

 

Overground RAGT requires balance and postural control to facilitate ambulation unlike 

treadmill-based RAGT systems where individuals can rely on the body weight support 

component of the system to facilitate standing.21 Based on this principle, the primary hypothesis 

of this review was that overground RAGT systems would facilitate the appearance of more 

natural upright stepping in SCI individuals than treadmill-based RAGT systems. The secondary 

hypothesis was that overground systems would be most effective in a rehabilitation 

environment for iSCI individuals based on the training principles of specificity, repartition and 

problem solving in motor learning2, 30, 31 and that cSCI individuals would receive the same 

benefits from both overground and treadmill-based RAGT. The final hypothesis was that 

overground RAGT training would result in improvements in functional gait outcome measures 

including greater distance walked in the six-minute walk test (6MWT) and faster times in the 

ten meter walk test (10MWT). 
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Methods 

A systematic computer-based search of the literature was conducted to identify studies using 

RAGT devices with SCI populations. Titles and abstracts were screened by two independent 

reviewers using pre-defined inclusion and exclusion criteria. Quality assessment of the included 

papers and data extraction were completed by the same independent researchers. Upright 

stepping parameters were identified as walking speed, step length, cadence, stride width, toe 

clearance height, duration of gait cycle, duration of stance phase and duration of swing phase.32, 

33  

 

Search Strategy 

A search of the literature was performed for the period of January 1990 to May 2015 in the 

following databases: PubMed (Medline), Web of Science (Thomson Reuters), Physiotherapy 

Evidence Database (PEDro, Centre of Evidence-Based Physiotherapy) and the Cochrane 

Library (Cochrane Controlled Trials Register, Wiley Online Library). A manual search of 

reference lists of relevant reviews and included studies was also conducted by the same single 

reviewer. The search strategy was devised using the PICO (Population, Intervention, 

Comparison and Outcome) methodology.34 This methodology allows the search strategy to be 

formulated by identifying search terms under one of the four headings listed (Table 1). Key 

words and phrases were combined from the four categories using Boolean operators (AND, 

OR, NOT) to search each database; MeSH (Medical Subject Headings) terms were used to 

search PubMed and the Cochrane Library. Using the inclusion/exclusion criteria, two 

researchers completed an independent screen of the collated publications to identify eligible 

papers based on their titles, key words and abstracts. A consensus method was used to agree 

the preliminarily accepted studies35; full-text copies of papers were obtained and reviewed 

independently against the inclusion and exclusion criteria by the same two researchers. 
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Table 1. Search terms and phrases associated with each variable of the PICO methodology 
used in the search strategy. The Boolean operator OR was used between terms in each column 
and the term AND was used between columns.  

 

 

Inclusion and exclusion criteria 

The inclusion/exclusion criteria was formulated using the same PICO methodology.34 

Inclusion 

Studies were included if: 

• The population consisted of adult (18+ years) human participants with at least one group 

of SCI individuals (cervical, thoracic or lumbar). Studies with SCI individuals with 

either complete or incomplete lesions with an A – D American Spinal Injury Association 

(AISA) Impairment Score4 were accepted. 

• They used any overground or treadmill-based robotic locomotor training system with a 

primary focus on gait function in or out of the assistive device. 

Population Intervention Comparison Outcome 
Spinal cord injury / 
injuries 
 
Spinal fractures  
 
SCI  
 
Paraplegia / paraplegic  
 
Quadriplegia / 
Quadriplegic  
 
Paralysis 

Lower extremity gait  
 
lower limb gait  
 
gait ataxia 
 
Lower extremity 
robotics 
 
lower limb robotics 
 
Motorised / robotic 
rehabilitation  
 
Motorised / robotic 
physical rehabilitation  
 
Motorised / robotic 
medicine 
 
Motorised / robotic gait 
 

Treadmill  
 
Overground 
 
Complete SCI 
 
Incomplete SCI 
 
Physical therapy 
 
Gait training 

Walking 
 
Unaided gait / walking 
  
Gait / walking endurance 
 
Temporal-spatial parameters:  
Speed / velocity 
Cadence / step rate  
Step / stride length 
 
Robotic assisted independence 
 
Reduced impairment to body 
function 
 
Self-reported quality of Life 
 
Spasticity 
 
ROM / range of motion  
 
FIM / functional independence 
measure 
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• Comparisons were made between: conventional therapies and robotic locomotor 

systems, overground systems and treadmill-based systems or, cSCI populations and 

iSCI populations. 

• Temporal-spatial gait parameters were reported. Studies may also have included 

variables related to quality of life, social participation, range of motion, balance, 

spasticity, kinematics and/or kinetics and subjective independence measures.  

All forms of study design were included apart from case reports or case series in order to 

maximise the data available.  

 

Exclusion 

Studies were specifically excluded if: 

• The focus was on populations of stroke or hemiplegia patients or if comparisons were 

made between any populations other than able-bodied and SCI individuals.  

• They used only body weight support systems or orthotics with no robotic limb driving 

component or used functional electric stimulation in conjunction with RAGT. 

• The primary outcome measure was cardio respiratory or related to bone mineral density. 

 

Data Extraction 

Data were extracted from each study under seven categories by the lead researcher, reference 

information, study design, population, intervention, comparison groups, outcome measures and 

results. Reference data included the year of publication, country of origin and the journal name. 

Population was inclusive of participant sex, mean age, injury level, American Spinal Injury 

Association Impairment Scale classification (AIS), time since injury, sample size, sample drop 

out and sample size using RAGT. Intervention recorded the device(s) used, session duration 

and frequency and training walking speed. Comparison groups detailed which comparisons 
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were made by each study; either population to population, intervention types or both. The 

primary outcomes extracted from each study were walking speed, temporal-spatial parameters 

and functional walking test data. Secondary outcomes were the Functional Independence 

Measure-Locomotor section (FIM–L),36 Lower Extremity Motor Score (LEMS)37  and the 

Walking Index for Spinal Cord Injury (II) (WISCI-II).38 

 

Quality Assessment 

Each study was evaluated using a checklist devised to assess the methodological quality of 

randomised and non-randomised studies.39 The checklist comprised of 27 questions over five 

sections: reporting, external validity, internal validity - bias, internal validity – confounding and 

power. Each question was scored out of one except questions five and 27 which were scored 

out of two and five respectively, with a maximum score of 32 possible. The higher the score 

the higher the quality of the study. Each study was assessed independently by two researchers 

and discrepancies were resolved by discussion.  

 

Results 

Search Results 

The initial search returned 3252 studies (PubMed 1843, Web of Knowledge 1314, 

Physiotherapy Evidence Database 0 and Cochrane Library 95). Duplicate studies (396) were 

removed leaving 2856 papers for the first stage of review. After the initial review process based 

on title, keywords and abstracts 25 studies remained. A single study was identified in manual 

searches of the reference sections of pertinent studies.  Full text copies of the remaining 25 

studies were obtained for evaluation against the full inclusion exclusion criteria (Figure 1). 

Three of the studies were identified to have been based on the same cohort with one of the 
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studies published prior to study completion as a preliminary report; this study was excluded 

from this review. The remaining two studies were included as they focused on different aspects 

of gait and upright stepping using the same participant cohort. A total of twelve studies were 

included in the final analysis. 

 

 

Figure 1. Search methodology and results PRISMA flowchart. 

 

Included studies 

Descriptive data of the included studies are reported in Table 2. There was a sum of 521 

participants; 505 participants were SCI individuals and the remaining 16 were able-bodied 

individuals. The number of participants recruited ranged from five40 to 130.41 Eight of the 

studies included participants with American Spinal Injury Association (ASIA) scores C and 

D.21, 41-47 Hornby et al.45 also included SCI individuals with ASIA B and Benito-Penalva et al.41 

included participants with ASIA A and B. The remaining three studies only included 

participants with ASIA levels A – B.40, 48, 49 The injury level of participants recruited ranged 

from C1 to L3 although one study did not report the injury levels included.41 
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Table 2. Study characteristics and population data for included studies. 

 

  Population 

Study Study type 
Country of 

origin 
Sample 
size (N) 

RAGT 
users (N) 

Non-RAGT 
users / Controls 

(N) 

Drop out 
(N) 

Sex 
Mean age 
(Years) 

ASIA  
Injury 
level 

TSI 
(years) 

Alcobendas-Maestro (2012) RCT Spain 80 40 (40) SCI 5 M / F 47 C-D C2-T12 0.25 - 0.5 

Arazpour (2013) CT Cross-over Iran 5 5 (5) SCI 0 M / F 27 A-B T6-T12 0.75 - 
4.25 

Arazpour (2014) CT Iran 7 7 (3) AB 0 M / F 28 A-B T6-T12 0.75 - 
4.25 

Benito-Penalva (2012) Longitudinal  Spain 130 46 (84) SCI 25 M / F 45 A-D NR NR 

Esclarin (2014) Randomised Open Control Spain 88 44 (44) SCI 5 M / F 42 C-D C2-L3 0.3 - 0.4 

Nooijen (2009) RCT USA 85 12 (39) SCI  
(10) AB 

24 M / F 38 C-D C3-T10 >1 

Field-Fote (2011) RCT USA 74 15 (59) SCI 10 M / F 41 C-D C3-T10 >1 

Fineberg (2013) Cross Sectional USA 9 6 (3) AB 0 M / F 44 A-B T1-T11 6.25 

Hornby (2005) RCT USA 35 10 (25) SCI 5 NR NR B-D T10 ↑ <1 

Labruyère (2014) Randomised Cross-over Switzerland 9 9 (9) SCI 1 M / F 59 C-D C4-T11 >1 

Nui (2014) CT USA 40 20 (20) SCI 0 M /F 46 B-D T10 ↑ 8.2 

Varoqui (2014) CT USA 30 15 (15) SCI 0 M / F 48 C-D T10 ↑ 9.9 

AB = Able-Bodied, ASIA = American Spinal Injury Association, CT = Controlled Trial, NA = Not applicable, NR = Not Reported, RCT = Randomised Controlled Trial, SCI = Spinal cord injury, TSI = Time since injury. 



13 
 

Excluded studies 

Thirteen studies were excluded from this review based on the full text review process. Eight of 

the excluded studies were case series and three studies had no temporal spatial parameters 

reported. One study was excluded as no RAGT system was used and another was only a 

preliminary report of the work by Field-Fote and Roach44 and Nooijen et al.7  

 

Quality assessment 

A quality assessment tool designed to evaluate randomised and non-randomised trials was used 

to assess study quality for this review as few randomised control trials have been completed in 

this subject area and none were identified using overground RAGT systems. The twelve studies 

included in the current review were independently quality assessed by both reviewers; after the 

initial review process differences in quality assessment scores were discussed and a consensus 

was reached. Table 3 presents the results of this assessment and overall scores for each study. 

The median total score for the 11 studies was 24 out of 32. The larger randomised controlled 

trials received the higher scores. The study by Esclarín-Ruz et al.43 received the highest score 

of 25 and the lowest score of 13 was attributed to the study by Hornby et al.45 The majority of 

studies performed poorly in reporting adverse events and in all three questions related to 

external validity. The three overground RAGT studies scored poorly in internal validity-

confounding and power relative to the other studies.  
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Table 3. Methodological quality assessment scoring using an assessment tool for randomised and non-randomised trials (Downs & Black, 1998). 

Study 

Reporting External Validity Internal Validity - Bias Internal Validity - Confounding Power  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
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Alcobendas
-Maestro 
(2012) 

1 1 1 1 1x 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 5 23 

Arazpour 
(2013) 

1 1 1 1 1x 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 3 18 

Arazpour 
(2014) 

1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 2 15 

Benito-
Penalva 
(2012) 

1 1 0 1 1x 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 5 22 

Esclarin 
(2014) 

1 1 1 1 2 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1 5 25 

Nooijen 
(2009) 

1 1 1 1 2 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 5 23 

Field-Fote 
(2011) 

1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 5 23 

Fineberg  
(2013) 

1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 2 15 

Hornby 
(2005) 

0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 5 13 

Labruyèrel 
(2014) 

1 1 1 1 2 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 3 19 

Nui     
(2014) 

1 1 1 1 2 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 5 24 

Varoqui 
(2014) 

1 1 1 1 2 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 5 24 

1 = Yes, item addressed appropriately, 0 = No, item not addressed or unable to determine. Q5 1x = Partially addressed, 2 = item addressed appropriately  
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Interventions 

Table 4 presents intervention information. Only three of the studies included in this review 

examined overground RAGT systems , one used the ReWalkTM (ARGO Medical Technologies 

Ltd., Yokneam, Israel)49 a commercially available overground RAGT system and two used a 

custom-built powered gait orthosis.40, 48 Nine of the studies included in this review used the 

Lokomat® (Hocoma AG, Volketswil, Switzerland), a commercially available treadmill-based 

RAGT system. The number of sessions each participant received using the RAGT system 

ranged from 11 to 60 across four to 24 weeks (Table 4). Walking speeds of the RAGT systems 

were set relative to the participant’s capacity in eight of the twelve included studies. Two of the 

studies selected specific speeds, 1.5 and 2.0 km/h,41, 45 and one of the studies did not report 

training speed. Population and intervention comparisons were made across the different studies, 

three studies compared RAGT use in SCI individuals to able-bodied controls7, 48, 49 and two of 

these studies investigated overground RAGT systems. No studies were found that reported a 

direct comparison between overground RAGT and treadmill-based RAGT systems. 
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Table 4. Intervention data for included studies, detailing RAGT device used, outcome measures and training protocol parameters. 
Study Device 

Total Number 
of session  

Duration 
(weeks) Training Speed 

Control - Comparison 
Group 

Outcome Measures 

Alcobendas-Maestro (2012) Lokomat® 40 8 NR SCI - OGT 10mWT, 6MinWT, FIM-L, WISCI II, LEMS, 

Arazpour (2013) 
 

PGO 24 8 Patient centred SCI - HKAFO 
SCI - IRGO 

Speed recorded during testing, distance walked 
without stopping 

Arazpour (2014) 
 

PGO 30 6 Patient centred AB control Speed recorded during testing, step length, cadence, 
Joint ROM 

Benito-Penalva (2012) Lokomat® 40 8 1.5 km/h SCI - Gait Trainer 10mWT, WISCI II, LEMS 
 

Esclarin (2014) Lokomat® 40 8 Patient centred SCI - OGT 10mWT, 6MinWT, FIM-L, WISCI II, LEMS 
 

Nooijen (2009) 
 

Lokomat® 50 12 As fast as 
possible 

SCI - TM+PT 
SCI - TM+ES 

SCI - OGT +ES 
AB control 

Cadence, step length, stride length, symmetry index, 
intra-limb coordination, timing of knee extension 

onset 

Field-Fote (2011) 
 

Lokomat® 60 12 As fast as 
possible 

SCI - TM+PT 
SCI - TM+ES 

SCI - OGT +ES 

10mWT, 2MinWT, LEMS 

Fineberg (2013) ReWalkTM 11-41 20-24 Patient centred AB control Speed recorded during testing, vGRF 

Hornby (2005) 
 

Lokomat® 24 8 2.0 km/h SCI - TM BWS+PT 
SCI - BWS OGT 

10mWT, 6MinWT, FIM-L, WISCI II, LEMS, TUG 

Labruyère (2014) Lokomat® 16 4 1-2 km/h SCI - Strength training 10mWT, gait symmetry, WISCI II, LEMS, BBS 

Nui (2014) Lokomat® 12 4 1.5 – 3.4 km/h SCI - Control group 10mWT, 6minWT, TUG, ankle MVC 

Varoqui (2014) Lokomat® 12 4 1.5 – 3.0 km/h SCI - Control Group 10mWT, 6minWT, TUG, ankle ROM and ankle 
MVC 

AB = Able-Bodied,  BBS = Borg Balance Scale, BWS = body weight support,  ES = electrical stimulation,  FIM-L = Functional independence measure – Locomotor section,  HKAFO = Hip knee ankle foot 
orthosis, IRGO = Isocentric reciprocating gait orthosis, LEMS = Lower Extremity Motor Score,  MVC = Maximal Voluntary Contraction,  NR = not reported,  OGT = Overground Gait Training,  PGO = 
Powered Gait Orthosis PT = Physiotherapist,  ROM = Range of Motion,  TM = treadmill,  TUG = Timed Up and Go,  WISCI II = Walking Index for Spinal Cord Injury, 10mWT = 10 meter timed walk test, 
2minWT = 2 minute walk test, 6minWT = 6 minute walk test. Gait Trainer = a cable driven platform step simulating gait training device 
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Walking speed 

Walking speed was recorded as an outcome measure in all of the studies and reported in 

eleven of the studies (speed and distance walked were reported in Field-Fote and Roach44  

but not in Nooijen et al.7 as the two studies reported different aspects of the same data 

set). Eight studies provided walking speed based on the 10mWT; each of these reported 

walking speed pre- and post-intervention and demonstrated an increase in speed 

irrespective of the intervention method (Table 5). Hornby et al.45 did not find any 

significant differences between interventions in speed and did not report any values. The 

three studies that focused on overground RAGT systems recorded speed during their 

respective data collection procedures and not as part of a standardised test.  

 

Table 5. Average walking speed for treadmill and overground RAGT and control 
groups. 

Study 
(Treadmill RAGT) 

Walking Speed (m/s) 
RAGT Control 

Pre Post Diff Pre Post Diff 
Alcobendas-Maestro (2012) 0.3* 0.4* 0.1 0.3* 0.3* 0.0 

Benito-Penalva (2012) 0.06 0.25 0.19 0.09 0.28 0.18 

Esclarin (2014) 0.36 0.47 0.11 0.32 0.42 0.10 

Field-Fote (2011) 0.17 0.18 0.01 0.18 0.24 0.06 

Labruyère (2014) 0.62 0.66 0.04 0.58 0.64 0.06 

Nui (2014) 0.48 0.56 0.08 0.53 NR NA 

Varoqui (2014) 0.56 0.64 0.08 0.56 NR NA 

Hornby (2005) No significant differences between groups (data NR) 

Study 
(Overground RAGT) SCI Control 

Arazpour (2013) RAGT 0.35 HKAFO 
IRGO 

0.23 
0.25 

Arazpour (2014) SCI 
RAGT 

0.40 AB Control            
AB RAGT 

1.22 
0.87  

Fineberg (2013) Min assist 
No assist 
 

0.16 
0.31 
 

AB Control 1.36 

AB = Able-Bodied, HKAFO = Hip knee ankle foot orthosis, IRGO = Isocentric reciprocating gait orthosis, NA = Not 
applicable, NR = Not Reported, Min = Minimum. 

* Only reported to 1 decimal place. 

The values reported are averages for all participants associated with each group irrespective of completeness or level of injury.  
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The average walking speeds reported by Arazpour et al.40, 47 for the SCI 

individuals using the overground RAGT system were greater than either SCI group in the 

study by Fineberg et al.49 The average post-intervention walking speed reported for cSCI 

individuals only in the study by Benito-Penalva et al.41 was 0.207 m/s; this was slower 

than the participants who walked without assistance in all three overground RAGT studies. 

It was however faster than the ReWalk walking speed for the group requiring minimal 

assistance.49 Further comparison is difficult as time since injury and injury level were not 

reported by Benito-Penalva et al.41  

 

Walking distance 

Walking distance was reported by seven of the 12 studies (Table 6). Hornby et al.45 

reported that no significant difference existed between groups but did not provide any 

data to support this claim. Two of the remaining studies showed a significant increase in 

walking distance after RAGT-use compared to traditional overground gait training (p < 

0.05 and p = 0.047,42, 43 respectively, and two of the studies showed no significant 

between-group differences.46, 47 Field-Fote and Roach44 recorded the distance walked 

over a two-minute time period and found that non-RAGT overground gait training 

produced a significant improvement in walking distance whereas RAGT use did not. 

Walking distance was only reported by a single study for overground RAGT systems; 

cSCI participants using the overground RAGT were able to walk approximately a third 

further (120 meters) when compared to using a non-powered reciprocating gait orthosis 

(90 – 96 meters).40 
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Table 6. Walking distances from studies reporting distance of treadmill or overground 
RAGT groups and control groups. 

Study 
Walking Distance (m) 

RAGT Control 
Pre Post Diff Pre Post Diff 

Alcobendas-Maestro (2012) 110.1  169.4 59.3 82.3 91.3 9.0 

Esclarin (2014) 102.5 172.51 70.01 93.8 132.52 38.72 

Field-Fote & Roach (2011) 16.8 17.9 1.2 22.2 28.6 6.4 

Nui (2014) 160.84 165.20 4.36 163.22 NR NA 

Varoqui (2014) 206.96 208.87 1.91 205.6 NR NA 

Hornby (2005) No significant differences between groups (data NR) 

Study 

(Overground RAGT) 
SCI Control 

Arazpour (2013) RAGT 120 HKAFO 
IRGO 

90.2 
96.4 

Diff = Difference, HKAFO = Hip knee ankle foot orthosis, IRGO = Isocentric reciprocating gait orthosis, NA = Not applicable, 
NR = Not Reported. 

 

Stepping characteristics 

Three studies measured temporal-spatial parameters other than walking speed (Table 7). 

Cadence and step length were reported by two studies7, 48 and symmetry was reported by 

Nooijen et al.7 and Labruyere and van Hedel.21 Arazpour et al.48 reported average cadence 

and step length for each group identifying a reduced cadence and step length compared 

to able-bodied normal walking. Furthermore, they demonstrated that step length was 

restricted by the RAGT system but that cadence was controlled by the individual as able-

bodied individuals using the RAGT had an increased cadence compared to normal 

walking (Table 7). Nooijen et al.7 did not report values for cadence and step length but 

provided the average differences for pre- and post-intervention. However the results in 

Table 7 suggest that the treadmill-based RAGT system was less effective at maximising 

stepping characteristics than the other interventions used. Nooijen et al.7 identified 

significantly reduced cadence for SCI individuals pre- and post-training and a 

significantly shorter step length was identified for the weaker leg pre-training, which was 

consistent with the study by Arazpour et al.48 No significant differences were identified 
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between pre- and post-training interventions in either study reporting symmetry data7, 21 

(Table 7). 

 

Table 7. Stepping characteristics of SCI and able-bodied controls from those studies 
reporting temporal-spatial data other than walking speed. 

Study 
Stepping Characteristics 

Cadence (steps/min) 
Arazpour (2014) SCI RAGT 

AB Control 
AB RAGT 

49 
90 
106 

 

 Cadence (steps/min) pre-post intervention difference 
Nooijen (2009) RAGT 

TM+PT 
TM+ES 
OGT +ES 

↑1.5 
↑2.3 
↑3.9 
↑5.0 

AB vs SCI  
SCI took significantly less steps both pre- and 
post-training 

 Step Length (cm) 
Arazpour (2014) SCI RAGT 

AB Control 
AB RAGT 

44.15 
62.66 
49.00 

 

 Step Length (cm) pre-post intervention difference 
Nooijen (2009) RAGT 

TM+PT 
TM+ES 
OGT +ES 

≤0.01 
↑2.3 
↑3.9 
↑5.0 

AB vs SCI  
SCI took significantly shorter steps with the 
weaker leg pre-training in RAGT group. Post-
training weaker and pre- and post- with 
stronger (e.g., no significant differences). 

 Symmetry Index pre-post intervention difference 
Labruyère (2014) RAGT 

ST 
6-month Follow Up 

↑0.02  (pre 0.91 post 0.93) 
↑0.03  (pre 0.93 post 0.96) 
0.92 

Nooijen (2009) No significant difference identified 
pre- and post-training  
p > 0.05 

AB vs SCI  
SCI symmetry significantly lower pre-training. 
Post-training no significant difference 

ES = Electrical Stimulation, OGT = Overground Gait Training, PT = Physiotherapist, ST = strength training, TM = Treadmill, 
↑= increase. 

 

Functional gait measures 

Table 8 presents the results of the functional measures used in each study to assess 

physical improvement and gait quality. The LEMS was reported by six studies and all 

demonstrated an increase in score post-training irrespective of the intervention type. The 

WISCI-II was reported by five studies producing similar findings to the LEMS. All 

studies showed an increase in WISCI-II score post-intervention. The results for these two 
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measures provided by Labruyère & van Hedel21 did not show the marked improvents seen 

in the other studies. This is most likely due to the higher scores achieved prior to 

intervention; the pre intervention scores reported by Labruyère & van Hedel21 are greater 

than the majority of scores reported by the other studies post intervention. Only three 

studies used the FIM-L; all three demonstrated an improvement post-intervention. No 

functional measures were used by any of the studies that used an overground RAGT 

system. 

 

Table 8. Change in functional outcome measure scores reported by treadmill-based 
RAGT studies. 

 

 

 

 

 

 

 

 

 

 

Study 
LEMS WISCI-II FIM-L  

RAGT Control RAGT Control RAGT Control 
Alcobendas-Maestro (2012) ↑7 ↑5 ↑12 ↑5 ↑6 ↑3 

Benito-Penalva (2012) ↑7.1 ↑9.3 ↑5.3 ↑5.1 NM 

Esclarin (2014) ↑7.2 ↑3.9 ↑7.0 ↑6.0 ↑3.4 ↑2.9 

Field-Fote (2011) ↑1.2 ↑1.4 NM NM 
Hornby (2005) Significant increase for 

all modalities (data NR) 
Significant increase for 
all modalities (data NR) 

Significant increase for 
all modalities (data NR) 

Labruyère (2014) ↑0.7 ↑1.0 ↑0.8 ↑0.4 NM 

FIM-L = Functional Independence Measure – Locomotor section, LEMS = lower extremity motor score, NM = not measured, 
WISCI-II = Walking Index for Spinal Cord Injury, ↑= increase. 
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Discussion 

The primary aim of this review was to identify if overground or treadmill-based RAGT 

systems produced different upright stepping characteristics in SCI individuals. The 

limited number of studies included in this review, that focused on the use of overground 

RAGT systems, and the low quality scores of said studies, highlight that the evidence 

related to the use of overground RAGT is limited. A recent systematic review into gait 

speed in overground RAGT use only identified a total of 106 independent studies of 

which 15 were deemed eligible for inclusion but none of these were randomised 

controlled trials.50 A larger body of evidence on the use of treadmill-based RAGT systems 

was available, however comparisons across studies were still limited due to the 

differences in participant demographics and training protocols. The single temporal-

spatial parameter reported by all of the studies included in the current review was walking 

speed and even this was measured using different methods. The treadmill-based RAGT 

studies all measured walking speed using a 10mWT whereas the overground based 

studies all measured walking speed over different distances. Further temporal-spatial 

characteristics were only reported by three of the included studies limiting the conclusions 

that could be drawn on the effectiveness of the different RAGT devices to improve 

stepping characteristics. As a result of these limitations it is not possible to accept or reject 

the primary hypothesis about whether overground RAGT systems encourage the 

appearance of a more stereotypical upright stepping pattern compared to treadmill-based 

RAGT systems. 

 

The secondary aims of this review were to identify any differences in the use of 

RAGT systems with respect to the completeness of injury and to identify if any 

differences were evident between treadmill and overground RAGT systems relative to 
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functional outcome measures post-training. Research into the use of treadmill-based 

RAGT is predominantly focused on the iSCI populations and no studies using overground 

RAGT based systems were identified by this review that recruited iSCI individuals. The 

novel concept that overground RAGT systems have been designed as functional mobility 

aids for everyday use51 has dominated the scope of the research into these devices rather 

than their capacity in rehabilitative therapy. As such research has tended to focus on 

safety and functional capacity of the device3, 52 rather than the potential for rehabilitation. 

More research investigating the use of RAGT systems in iSCI vs cSCI is warranted.  

 

Temporal-spatial characteristics 

Walking speed as an indicator of walking capacity in populations with mobility deficits 

has been well documented.53-55 Standardised methods of assessment such as the 10mWT 

have been developed, their level of reliability and validity must be reported according the 

specific clinical population. Validity and reliability data are available for different 

populations including SCI.54, 56, 57 The larger and higher scoring methodological studies 

included in this review (predominantly those focusing on treadmill RAGT systems) used 

the 10mWT as an outcome measure for walking speed. Four of the studies found no 

significant difference in walking speed between the RAGT training interventions and the 

more conventional training methods.41-43, 45 However, Field-Fote and Roach44 and 

Labruyère and van Hedel21 found the RAGT to be less effective than the alternative 

methods. This suggests that the use of treadmill-based RAGT is no better than 

conventional gait training methods to improve walking speed. Two studies compared 

treadmill RAGT use to control groups with no intervention. Varoqui et al.47 found the use 

of treadmill RAGT training to have a significant impact on walking speed with an 

increase of 0.08 m/s (Table 5) equivalent to 13.4%. Although Nui et al.46 showed an 
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overall improvement in walking speed, they explicitly differentiated between individuals 

with high and low walking capacity and advocated the use of RAGT in individuals with 

a higher functional capacity. This approach to identifying patients based on high or low 

walking capacity would exclude the use of treadmill RAGT in cSCI populations. 

 

The 10mWT completed in the treadmill RAGT studies was always carried out 

overground and without the aid of robotic devices, however individuals were able to use 

orthotics and walking aids (i.e. elbow crutches) to facilitate ambulation. Conversely, the 

overground RAGT studies always measured walking speed with the device. Arazpour et 

al.48 calculated the average speed of five trials over a six-meter walkway. Fineberg et al.49 

calculated walking speed for each individual once participants were capable of 

ambulating ten meters using the RAGT system without pausing and Arazpour et al.40 

measured walking speed around a 40-meter rectangular walkway. All of the SCI 

participants had complete injuries and would not have been able to ambulate without 

some form of mechanical assistance. The principles of motor learning may have played a 

substantial role in the outcome of these results.19 Participants in the treadmill-based 

studies may not have performed as well in an overground walking test due to task 

specificity.  

 

Categories of functional ambulation post-SCI have been identified, with specific 

walking speeds used to define thresholds for each.53 The SCI participants not requiring 

assistance in the overground RAGT studies achieved average speeds between 0.31 - 0.4 

m/s (Table 5). These speeds were below the threshold of 0.44 m/s that differentiates 

someone who can ambulate outdoors with aid from someone who can walk indoors but 

is dependent upon a wheelchair outdoors. Only four of the studies using treadmill-based 
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RAGT systems reported speeds that were above this threshold post intervention, however 

the initial average walking speed for three of these four studies was already faster than 

0.44 m/s (Table 5). Although faster walking speed was identified by most of the studies 

included in this review, no rehabilitation modality enabled a large enough improvement 

to facilitate community ambulation in participants below the 0.44 m/s threshold.  

 

This review identified limited evidence of other stepping characteristics reported 

during and post-RAGT use in SCI individuals. The nature of the overground RAGT 

systems and the requirement for the user to shift their own body weight in order to initiate 

and or control ambulation can impact stepping characteristics such as step length, cadence, 

stance and swing time.3, 52 The body weight support component and passive, cyclic, 

predefined movements produced by a treadmill-based RAGT system using a trajectory 

control strategy51 will eliminate natural variation in stepping characteristics.58, 59 Field-

Fote and Roach44 found that the use of the treadmill-based RAGT system was the only 

modality they tested not to show an increase in walking speed post-training and similarly 

Nooijen et al.7 found that the RAGT group showed the least improvement in cadence and 

step length. Field-Fote and Roach44 suggested that training should potentially focus on 

repetitive step initiation rather than taking advantage of afferent activation of the spinal 

locomotor centres being triggered by the continuous movement of the treadmill belt. 

Although overground RAGT still uses a trajectory control strategy to move the lower 

limbs, balance and postural control of the upper body are needed to maintain smooth 

ambulation. This suggests that the use of overground RAGT, in conjunction with other 

rehabilitative modalities, such as strength training may be an effective strategy for gait 

rehabilitation in iSCI individuals. 
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Functional outcomes 

Six treadmill-based RAGT studies reported distance walked as a functional outcome; 

only one overground RAGT study reported walking distance. Alcobendas-Maestro et 

al.42 and Esclarin et al.43 both found treadmill RAGT training produced larger 

improvements in walking distance than conventional overground gait training. The 

remaining four studies did not find treadmill RAGT to elicit any increase in walking 

distance (Table 6). Field-Fote and Roach44 used a two-minute walk test, instead of the 

six-minute test used by the other studies. Consequently, direct comparisons were not 

possible as fatigue may have had an effect.  Mechanical or reciprocating gait orthoses 

have been designed to enable paraplegic individuals to ambulate. In some cases, without 

their assistance, walking would not be possible; however, they have been shown to 

produce an inefficient gait with high energy costs.60 The use of overground RAGT 

systems can significantly reduce the energy costs of walking for the SCI population 

resulting in an increase in walking distance and ambulation time.40  

 

None of the overground RAGT based studies provided data on any other 

functional outcome measures. A number of the treadmill-based RAGT studies provided 

results from functional outcome measures that demonstrated an increase in capacity 

irrespective of rehabilitation modality (Table 8). Although balance is an important 

component of walking, only one study included in this systematic review presented data 

from a clinical balance measure, Berg balance scale.21 They identified no significant 

differences in balance between treadmill RAGT and strength training. The body weight 

support component of treadmill RAGT prevents the possibility of individuals falling, thus 

minimising the requirement of balance control,21 unlike in overground RAGT where 

balance is constantly required to initiate and maintain stepping.  



27 
 

Clinical implication 

The general consensus from this systematic review is that the use of RAGT, in any form, 

can be positive for both cSCI and iSCI individuals as long as it is not used as the sole 

rehabilitation method. The secondary hypotheses can therefore be partially accepted as 

cSCI individuals will receive the same benefits in terms of gait training from both system 

types and RAGT can be part of a rehabilitation programme leading to improved 

functional gait outcomes. Evidence suggests that specificity is one of the most important 

factors of gait training. Both the highest and lowest scoring studies in this review 

identified the potential benefits of the stimulation of central pattern generators in the 

spinal locomotor centres that can lead to positive neural plastic changes.43, 45  Esclarín-

Ruz et al.,43 Alcobendas-Maestro et al.,42 and Labruyère and van Hedel21 also identified 

strength increases as one of the key contributors to improved gait in iSCI individuals.  

 

Passive movement has been identified as a potential limitation for RAGT both by 

a number of studies included7, 21, 44 and excluded from this review.22, 59, 61 Adaptive 

programmes providing resistance to movement at specific phases of the gait cycle are 

now possible in treadmill-based RAGT systems.61, 62 This development encourages 

patient engagement during rehabilitation and has the potential to introduce task variability, 

facilitating motor learning.21, 22, 58 

 

The practical implications of the different types of RAGT systems have been 

acknowledged from two perspectives which may be relevant to clinicians. Field-Fote and 

Roach44 suggested that overground walking was potentially a more cost effective and 

appropriate intervention as the equipment was cheaper than a RAGT system. However 
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the use of RAGT reduces the number of staff required to train a single patient, limits the 

physical exertion by therapists, and allows for longer and more intense training sessions.45 

 

Strengths and limitations 

The strengths of this systematic literature review include identifying and evaluating 

studies related to RAGT use in SCI populations and providing an up to date overview of 

the current literature. The use of a methodological assessment tool has enabled study 

quality to be quantified, thereby identifying research strengths and areas of good practice 

such as the use of valid and reliable data collection tools, excellent intervention 

compliance and clear outcome reporting. Furthermore, the identification of areas of poor 

practice, with associated limitations, have been highlighted, focusing on the reporting of 

adverse events and external validity, specifically associated with the representation of the 

entire population. The limitations of this review are predominantly related to the small 

number of research studies in this field, the varied outcome measures used by researchers 

working with SCI populations and the number of papers excluded based on the lack of 

temporal-spatial data. As such it was difficult to answer fully some of the aims presented 

at the start of this review. Finally, overground RAGT studies appear to be in their infancy 

and more research needs to be undertaken relative to their capacity as rehabilitative 

devices.  

 

Conclusion  

The evidence discussed above suggests that RAGT has the potential to provide SCI 

individuals with benefits related to upright locomotion. However, there is no consensus 

about which systems are most effective for particular patient groups based on temporal-

spatial characteristics alone. The use of RAGT in SCI rehabilitation appears to have a 
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number of positive effects beyond the scope of this review, but the most important and 

clinically meaningful finding is that RAGT should be used as part of a multi-modality 

rehabilitation approach and not as a replacement for other therapies.  
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