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Beam electrons as a source of Ha flare ribbons
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The observations of solar flare onsets show rapid increase of hard and soft X-rays, ultra-violet

emission with large Doppler blue shifts associated with plasma upflows, and Ha hydrogen

emission with red shifts up to 1–4 Å. Modern radiative hydrodynamic models account well for

blue-shifted emission, but struggle to reproduce closely the red-shifted Ha lines. Here we

present a joint hydrodynamic and radiative model showing that during the first seconds of

beam injection the effects caused by beam electrons can reproduce Ha line profiles with large

red-shifts closely matching those observed in a C1.5 flare by the Swedish Solar Telescope. The

model also accounts closely for timing and magnitude of upward motion to the corona

observed 29 s after the event onset in 171 Å by the Atmospheric Imaging Assembly/Solar

Dynamics Observatory.
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C
omplex processes of plasma heating in solar flares can be
effectively diagnosed from the increase of intensities of
hard X-ray emission combined with soft X-ray, extreme

ultra-violet and ultra-violet emission with blue-shifts reported
from the early space observations1,2. Flare dynamics in the lower
atmosphere can be derived from observations of optical lines
and, in particular, hydrogen Ha line 6563 Å emission with red
shifts3–9. Further space missions uncovered details of this increase
in coronal line intensities with upward velocities reaching
1000 km s� 1 (refs 3–6,10–14). Often flares show soft X-ray
emission of highly ionized ions of FeXXIV or even FeXXV15,16,
which can be only produced by non-thermal processes17 linked to
energetic particles.

Observations of flare emission with blue-shifts in coronal lines
and red-shifts in chromospheric lines were interpreted by
hydrodynamic (HD) responses of flaring atmospheres to heating
by particle beams injected from the top and precipitating to lower
atmospheric levels18–22. There are three types of hydrodynamic
models defined by their initial conditions, from which heating
starts: type 1 uses the quiet Sun chromosphere18,19,20,23

(in Lagrangian coordinates), which is converted by electron
beam heating into a flaring atmosphere with its own corona,
transition region and chromosphere; type 2 uses a pre-heated
flaring atmosphere comprising of semi-empirical model VAL F24

in the chromosphere and the quiet Sun (QS) corona attached
above the transition region in Lagrangian21 or linear22,25

coordinates, which is also heated by precipitating beam
electrons; type 3 uses an isotropic atmosphere evenly heated
over a linear depth by some unspecified agents26.

There are three types of heating function: H1—by beam
electrons in Coulomb collisions with electron density derived
from a continuity equation approach (CEA)18,23,27; H2—by beam
electrons in Coulomb collisions with density derived from a flux
conservation equation20–22,28, which has a serious (infinity)
limitation29,30 at the stopping depths in the chromosphere
for electrons with the lower cutoff energy; H3—by unspecified
agents with equal energy deposition per volume at any
depths14,26. Heating by particle beams is considered to be either
impulsive of 5–10 s18,21–23, or prolonged (30–300 s)14,19,20,25,26

accounting for different types of flaring events.
The cooling in all hydrodynamic models is provided by

radiation from the corona and transition regions, calculated in
optically thin emission for the solar abundances31. The additional
cooling by hydrogen line emission in the chromosphere
is calculated by solving radiative transfer equations21,22, or by
adding hydrogen radiative losses for relevant beam parameters
as arrays to the cooling function23. A hydrodynamic timescale
(10–100 s)32,33 is much longer compared to a radiative timescale
(0.3 s)32,34 that supports a consequential use of hydrodynamic
and radiative models.

Heating of the QS chromosphere by beam electrons
(HD model type 1)18,19,23 is shown to sweep plasma to lower
atmosphere, forming a flaring atmosphere with the new corona,
transition region and chromosphere. This sweeping is followed
by the plasma evaporation back to the corona combined
with formation of a low-temperature condensation in the
chromosphere moving as a shock to the photosphere.
A hydrodynamic heating in the other two types of models
(preheated and isotropic) results in chromospheric plasma
evaporation without sweeping, combined with the shock
moving downwards to the lower atmosphere with smaller
velocities14,21,22,25,26.

Most HD models14,18,20,21,22,25,26 account quite well for
evaporation (upward) velocities and intensities of extreme ultra-
violet emission. However, types 2 and 3 models are less successful
in interpreting the red-shifted Ha line profiles7–9,35. Earlier

calculations of Ha line profiles36–38 carried out for pre-heated
hydrodynamic atmospheres21, with heating function by Nagai
and Emslie20, showed the simulated profiles with blue-shifts,
contrary to the red-shifts observed7–9,35. These discrepancies
were previously attributed to a complex geometric multi-thread
structure of flares36–38.

The advances in space and ground-based instruments with
high spatial and temporal resolution (Interface Region Imaging
Spectrograph (IRIS)39, the Atmospheric Imaging Assembly (AIA)
aboard on the Solar Dynamic Observatory (SDO)40 and notably
the CRisp Imaging Spectro-Polarimeter41 located at the Swedish
1-m Solar Telescope (SST)42,43) helped to eliminate some
effects of spatial inhomogeneities in flaring regions emitting Ha
lines22,44–47. Rubio da Costa et al.47 reported simulated Ha line
profiles with a small red-shift (about 15 km s� 1) at a flare onset
and larger blue-shifts at 52 s later. However, this model still
cannot explain the Ha line observations7,8,35 with larger red-shifts
taken at the flare onsets.

The radiative models describing hydrogen emission in flares
utilize the effects of electron beams in two ways: via heating of the
ambient plasma by beam electrons as considered in HD models,
and via non-thermal ionization and excitation of hydrogen atoms
by beam electrons for a flux conservation approach (FCA)48 and
for a CEA27,49. The heating and non-thermal excitation and
ionization rates of hydrogen atoms are significantly affected by
the approaches used for particle kinetics, producing in FCA
smaller electron numbers at chromospheric levels compared to
CEA. This occurs because of the electron number truncation in
FCA at the upper chromosphere29,30, before a stopping depth of
lower energy electrons, in order to avoid the infinite heating29.
This, in turn, shifts to the upper chromospheric depths the effect
of beam electrons on hydrogen emission in FCA.

The CEA provides very smooth distributions of beam electrons
at all precipitation depths, with maximum heating occurring in
the chromosphere at the stopping depth of electrons with a lower
cutoff energy27. This heating leads to formation of hydrodynamic
shocks in the middle chromosphere, where the Ha line cores are
formed, contrary to the hydrodynamic models type 2 (refs 21,22)
using FCA, where this shock is formed in the upper
chromosphere. Therefore, current radiative hydrodynamic
models of type 2 and 3 cannot explain the red-shifted Ha line
profiles observed at flare onsets reported since early 80s.

In this paper we confirm the earlier observations7,8,35 by
presenting Ha line profiles with strong red shifts recorded using
SST for a flaring event onset in a C1.5 flare. These profiles are
interpreted with a simultaneous hydrodynamic model type 1
(ref. 23) and full non-LTE (NLTE) radiative model for 5 level
plus continuum hydrogen atoms (model HYDRO2GEN) by
considering hydrogen non-thermal excitation and ionization rates
by beam electrons49.

Results
Active region topology and hard X-ray emission. The C1.5 class
flare occurred on 30th June 2013 in the active region (AR) 11778
during the time 09:11–09:27 UT, as per the GOES light curve in
the 1.0–8.0 Å channel (Fig. 1a: black line, with peak indicated by
the grey horizontal line). The flare originated in a complex
configuration of magnetic field with the opposite polarity
connected to another active region located in the south east
(Fig. 1c,d). The initial flare started at 09:13:54 UT (event 1) in the
north-east location of the negative polarity region of the AR11778
(Fig. 1c).

At 09:15:54 UT it continued in the south-west location of the
same region (event 2) (Fig. 1c), where the Ha ribbons were
formed and the line profiles observed. A few minutes later hard
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X-ray emission appeared at the location of the south east active
region (event 3) (Fig. 1d). The GOES light curves include the
contributions from all three events of this active region. Event 2
(Fig. 1c) contributes to this light curve at the times indicated
between the vertical lines in Fig. 1a. The data from the
helioseismic and magnetic imager (HMI) did not detect any
sunquakes50 in these events.

Figure 1b displays the hard X-ray photon spectrum for event 2
measured by RHESSI with detectors 4, 5 and 9. The spectrum was
fitted from 09:15:54 to 09:16:14 UT over the energy range of
7–21 keV using object spectral executive and thermal (green line)
plus single power-law (yellow line) components, giving the total
(magenta line). The background period was 09:38:40 to 09:40:56

UT. The photon spectrum for event 2 can be also fitted by the
thermal function only with the similar accuracy (w2). This
indicates that hard X-ray emission in the vicinity of event 2 has a
strong thermal component related to a difference in spatial
resolution for hard X-ray and Ha observations (see methods
section ‘Reduction of Ha line emission’). For this reason, the hard
X-ray energy spectrum presented in Fig. 1b is for a demonstration
only of a weak non-thermal component with spectral index of 3.8
and a lower cutoff energy of about 7–10 keV.

The hard X-ray contour images in Fig. 1c,d were made using
the CLEAN algorithm and detectors 3–8 with 20 s integration
times. The contour levels in 6–12 keV (red) and 12–25 keV (blue)
are at 30, 50 and 70% of the maximum intensity, covering the
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Figure 1 | The active region topology and hard X-ray emission. (a) The GOES X-Ray light curves of the flare in the 1–8 Å (black) and 0.5–4.0 Å (magenta)

channels. The vertical dashed lines correspond to the time interval of the RHESSI spectrum in event 2. (b) RHESSI photon flux spectrum for event 2 with

residuals derived with CLEAN in the 20 s interval around the time of Ha emission for thermal (green line) plus single power-law (yellow line) components,

giving the total (magenta line). Hard X-ray emission is mostly of thermal nature with a small non-thermal component (see for details the current section

and ’Methods section: Reduction of Ha line emission’) with the parameters: spectral index about 3.8 and initial energy flux can be a factor (0.7–3) of

F0¼ 1010 erg cm� 2 s� 1. (c) The hard X-ray emission contours appearing in event 1 (top) and event 2 (Bottom, blue contour) coinciding with the times of

the observations of Ha kernels with red-shifts in the ribbon (09:16 UT). These are overlaid onto the HMI magnetogram. The response in the 5–12 keV

channel is shown using red contours, and the response in the 12–25 keV channel with blue. (d) Hard X-ray emission overlaid on the HMI magnetogram

appearing with the event 3 occurring B4 min later (09:20 UT), during the maximum in GOES light curve.
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area 6–8 pixels for the latter. The initial energy flux for event 2
was about 1026 erg s� 1. The range of initial energy fluxes F0 for
this event 2 is discussed in the Methods section ‘Reduction of Ha
line emission’.

Ha line and coronal jet images. Ha images. The Ha line
observation sequence occurred from 09:15.54 UT to 10:17:18
UT and was carried out by SST using the CRisp Imaging
Spectro-Polarimeter (CRISP)42. CRISP is especially suited for
spectroscopic imaging of the chromosphere in the popular Ha
line (6,562.8 Å), being equipped with three high-speed, low-noise
CCD cameras that operate at a frame rate of 36 fps. The C1.5 class

flare under investigation was captured in Ha line within the
CRISP Field-of-View (FOV) of 55� 55 centred at heliocentric
coordinates (323.400, � 287.900) (Fig. 2a). We refer to Methods
section ‘Reduction of Ha line emission’ for a description of the
reduction technique used for the CRISP data.

Coronal jet images. The images obtained by AIA instrument
aboard on the SDO AIASDO were used for the background in
Fig. 2 to locate the Ha ribbons. To achieve sub-AIA pixel
accuracy in the temporal and spatial co-alignment of CRISP
images with AIA, the photospheric bright points common to
both FOV were cross-correlated. The AIA images (Fig. 2b) for
the hotter channels (that is, transition region—He ii 304 Å;
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Figure 2 | Observations with AIA. (a) A context image for the observation in AIA 193 Å overlaid with the CRISP FOV outlined in green within AR11778.

Inset left: The co-temporal (09:16:09 UT) CRISP image in the Ha line far red wing reveals bright flare ribbons point to by the white arrow for event 2 that

are co-spatial within RHESSI imaging contours in 6–12 keV (green) and 12–25 keV (purple). Inset right: The Ha dopplergram for the 33 pt. spectral scan per

pixel, containing blue/red-shifted motions marked by the relevant colour presented in the range of ±20 km s� 1. The blue boxes in the insets (a) highlight

the section of the ribbon formation in event 2, which is displayed in b. (b) The image sequence describing evolution of the ribbon in the AIA 94, 171

and 304 Å channels from top to bottom, respectively. These are co-spatial and co-temporal with the bright ribbon features (contoured in red), in the Ha far

red-wing images of þ 1.3 Å. The 171 Å channel reveals a bright jet-like protrusion (within the blue boxed region) that appears to form between the time

frames 09:15:54 UT þ 15 s and þ 29 s (corresponding to 93 km s� 1) in the direction of the blue arrow and disappears by the time frame þ49 s.
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Corona—Fe xii 171 Å; Flaring/hot Corona—Fe xxiii 94 Å) were
reduced and aligned to 1,700 Å, via the aia_prep routine in
SolarSoft Interactive Data Language (SSWIDL). Subsequent images
in all AIA channels were de-rotated to the CRISP start time
(Fig. 2). The SST telescope turret continually tracked the starting
target. Therefore, throughout the observation the CRISP image
sequences are excellently co-aligned with AIA and RHESSI images.

Ha-line profiles. The CRISP observation of event 2 (see ‘Active
Region topology and hard X-ray emission’ and Fig. 1) began at
09:15:54 UT, just before the peak of flux in the GOES light curve
produced by all three events. The Ha line emission was subjected
to data reduction and normalization (see Methods section
‘Reduction of Ha line emission’). Figure 3a shows the full CRISP
field of view image in the Ha line core (6,563 Å) at 09:16:01 UT.
The green box shows the 31� 31 pixel square (1,333 km2) used
for the QS reference intensity, which had no interference from
overlying structures during the relevant observational frames.
The blue rectangle in Fig. 3a displays the zoomed field of view

used in panels b and c. In Fig. 3b we see the image taken in the
red wing of Ha at 6,564.376 Å and Fig. 3c shows the line core. To
assess the feature identified, data was extracted from a 5� 5 pixel
square (215 km2), which contained the region of the greatest red
wing enhancement in the 09:16:01 UT frame. This kernel area is
highlighted by the red square in Fig. 3b.

The resulting Ha line profiles are shown in Fig. 3d,e. The
CRISP observation captured the onset of a strong chromospheric
downflow in the second ribbon area highlighted by the blue box
in Fig. 3a. The red wing enhancement started in the 09:15:54 UT
frame (Fig. 3d, red line), increased between 09:15:54 and 09:16:01
UT and peaked at 09:16:01 UT (Fig. 3d, purple line), 7 s after the
flare onset. Contrary to the symmetric Ha line profile of the QS,
the emission in the red wing exhibited a single-peaked profile
(Fig. 3d). This suggests that the peak can be attributed to a
strong downflow in the chromosphere with Doppler velocity of
45–50 km s� 1. This red wing enhancement was reduced 9 s later,
while the core emission remained at a slightly raised level,
compared to the QS (Fig. 3d, blue line).
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Figure 3 | Ha line profile observations using SST. (a) The CRISP Ha line core image (6,563 Å) with a blue box outlining the part of the flare ribbon under

investigation. The green box corresponds to the pixels selected to construct the average quiet Sun spectral profiles, ie, close to the ribbon formation and

free of any activity, within the time interval of the ribbon formation. (b) The corresponding FOV for the Ha far red wing intensity at þ 1.3 Å, with a red box

corresponding to the region where the spectral profiles of interest are extracted. (c) The contoured ribbons of the Ha line core image for the blue box region

is presented. (d) The averaged and normalized Ha spectral line profiles, determined from the red box pixels, are presented for time intervals corresponding

to the 1st (09:15:54 UT: red solid line), the second (þ 7 s: purple solid line) and the third (þ 16 s: blue solid line) time frames. The Ha line profiles display

exceptionally strong red-shifts. (e) The averaged and normalized Ha spectral line profiles for significantly later time frames corresponding to þ 29 s

(red solid line), þ49 s (purple solid line) and þ 56 s (blue solid line) when there were no longer strong red-shifts but rather core emission with

peaks in both blue and red near wings. The black solid lines describes the averaged QS background Ha profile, deduced from the region defined by the

green box in a. Intensities were normalized against the background levels using the QS intensity of 9,890 counts per pixel at 6561.7 Å; as a reference.
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Throughout observations the blue wing had only a
slightly raised intensity (without peaks) compared to
the QS, in agreement with the wing intensity enhancement,
or background level increase, appropriate to flares. After 29–56 s,
the red wing enhancement was reduced towards the
flare background level and the core intensity was increased
for the times when the Ha line was in emission (Fig. 3e,
blue line).

Hydrodynamic response. The method for calculation of a
hydrodynamic response of the flaring atmosphere to injection of
power-law beam electrons is described in the Methods section
‘Hydrodynamic response to heating by an electron beam’.

Figure 4 shows plots of electron kinetic temperatures (a and d),
macrovelocities (b and e) and plasma number densities (c and f)
as functions of column depth calculated as a hydrodynamic
response of the ambient plasma to injection of a power-law beam
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with the initial flux of 1010 erg cm� 2 s� 1 (F10 model, left panels)
and 3� 1010 erg cm� 2 s� 1 (3F10 model, right panels). The
initial QS chromosphere density is indicated by the straight lines
in Fig. 4c,f. The flaring transition region is swept by the
beam towards 3� 1018 cm� 2 (F10 model) or 9� 1018 cm� 2

(3F10 model), with the flaring chromosphere extending to
8� 1019 cm� 2 (F10 model) or 2� 1020 cm� 2 (3F10 model)
followed by a flaring photosphere (Fig. 4).

Temperatures in the flaring corona are strongly increased
compared to the initial chromospheric temperature, with the
magnitude scaled proportionally with the beam initial flux
(compare Fig. 4a,d). While the ambient density is significantly
reduced from the initial QS chromospheric magnitude
(1010 cm� 3) to 109–108 cm� 3 to form the new corona of a
flaring atmosphere18 (Fig. 4c). These trends are similar to
hydrodynamic models heated by electron beams with the same
parameters reported by Fisher et al.21. The beams with moderate
initial fluxes considered in this study do not heat the flaring
corona to 10 MK (Fig. 4a,d) that is fully acceptable according to
the statistical analysis of soft X-ray emission in flares17. However,
our hydrodynamic model heated by beams with the initial energy
fluxes of 1011 erg cm� 2 s� 1 or greater is proven to produce
coronal temperatures of 10–20 MK (refs 18,23,51).

The upward motion of a flaring plasma is reflected in the
macrovelocity plots (Fig. 4b,e) showing evaporation of chromo-
spheric plasma upwards to the newly formed corona at the
column depths between 1017 and 1019 cm� 2) (Fig. 4b, area below
the box 1). This evaporation lasts, in general, for a few thousand
seconds expanding upwards with increasing velocities even after
the beam is stopped18,23. The evaporation velocities range from a
few tens of km s� 1 (at 1 s) to four hundred km s� 1 (at 20–100 s).
The evaporation will increase the coronal density at later times
(43–5 min) as reported from observations14,19.

At the same time, the beam energy deposition leads to
formation of a low-temperature condensation in the flaring
chromosphere seconds after beam injection begins (Fig. 4a,b,
box 2) with a slightly increased temperature up to 104 K. This
condensation moves as a shock towards the photosphere and
interior51 with velocities from 30 to 35 km s� 1 (7F9 model) up to
50 km s� 1 (F10 model) (Fig. 4b) and up to 90 km s� 1 (3F10
model) (Fig. 4e). The density of this shock is about 1013 cm� 3

(Fig. 4c). This is different from the results of HD models of type
2, where the shock is formed at upper atmospheric depths14,22,25,
because of their different initial atmospheres and heating
functions (see Introduction section). However, both types of the
hydrodynamic models (1 and 2), when simulated for a longer
time (above 100 s considered in this paper) consistently
show chromospheric plasma evaporation to the corona18,23,51

with similar velocities (up to 1000 km s� 1 (refs 14,21) or up to
1500 km s� 1 (refs 18,23,51)).

Probing hydrodynamic results with the AIA observations.
In the considered HD model plasma evaporation (Fig. 4a,b,
box 1) (that can be called ‘smooth evaporation’14,18,21) starts
first from the second of the beam injection and continues
for 100 s (and above, not shown here). For F10–3F10 models
it reaches velocities of 50–100 km s� 1 in the lower flaring
corona and several hundred km s� 1 in the upper flaring corona
(Fig. 4).

AIA observations of event 2 in 94, 171 and 304 Å channels
presented in Fig. 2 have shown rather variable signatures.
A bright, transient jet-like protrusion of plasma from the ribbon
in the 171 Å AIA channel was detected between 15 and 29 s after
the event onset, which appeared linked to the strong downflow
regions in Ha emission (red contours) (Fig. 2b). At the same time,
there are no jets seen in the 94 or 304 Å emission.

The jet velocity in 171 Å, measured 29 s after event 2 (beam
injection) began, was 93 km s� 1. This was derived from the
apparent motion of the jet within the AIA image set in the 171 Å
channel. The error in measurements is sensitive to a pixel size
(0.600), reaching about ±30 km s� 1 in the time frame of jet
propagation. This estimation is accounted for by a height of the
box 1 within Fig. 4b, which shows the macrovelocity within a
range of 63–123 km s� 1 centred at 93 km s� 1. This velocity is
close to other upflow observations of 100 km s� 1 derived for
flares with the similar beam parameters10,11.

Comparison of the models presented in Fig. 4a,b shows that the
coronal temperature variations for 3F10 model would not
account for the observed jet in the AIA 171 Å emission. However,
the temperature profile evolution for F10 model between 5 and
100 s shown in Fig. 4a, box 1, reveals that the plasma can be
detectable in the temperature range of logT¼ 5.2 to logT¼ 6.05 at
the depths of the low flaring corona. The 171 Å channel is the
most sensitive to this range, compared to other available AIA
channels (see Methods section ‘AIA line synthesis’). Moreover,
the velocity range derived from the AIA 171 Å channel, averaged
at 93 km s� 1, closely resembles the predictions of F10 model of a
hydrodynamic response to plasma heating by an electron beam
for a given temperature range, as shown in Fig. 4a.

From the hydrodynamic simulations the response in 94 Å
channel is expected to be rather weak. This is because the 94 Å
emission is detected at a secondary sensitivity peak, at 1 MK
relevant for the flaring corona in this event, and not at the main
sensitivity peak of 10 MK (Fig. 6b, green line, Methods section
‘AIA line synthesis’). There was slightly increased signal in the
94 Å protrusion (Fig. 3b, first row), which was most evident in
171 Å images (Fig. 3b, second row, blue arrow).

The fact that the jet-like feature was seen only in the 171 Å
channel and not in 304 Å or not clearly in 94 Å channel can be
explained by a fast (tens of seconds) reduction of the plasma
temperature and density in the newly formed flaring corona
caused by radiative cooling, thermal conduction and plasma
motion52,53. Indeed, at the later times (20–30 s), after the beam is
off, the coronal temperature was quickly reduced from two
million to the sub-million Kelvin range (Fig. 4a, box 1), and the
plasma density was also reduced from the chromospheric
(1010 cm� 3) to coronal 109 cm� 3 density (Fig. 4c) (see
Methods section ‘AIA line synthesis’).

The cooling process in the hydrodynamic model can quickly
reduce the differential emission measure of a flaring corona, as
demonstrated in Fig. 6 of Somov et al.18, allowing the coronal
emissivity to reach the range matching the AIA sensitivity
window (see Methods section ‘AIA line synthesis’). This made the
plasma upflow detectable only in the AIA 171 Å passband at 29 s
after the event onset, when the coronal temperature in a flaring
corona is dropped to the AIA range. Although, the coronal
temperature in a flaring atmosphere at this time remains still too
high for the intrusion to be clearly seen in the 304 Å passband, it
can be observed later (4100 s) after further cooling.

Simulated radiative response in the Ha line. The simulated Ha
line profiles were calculated for non-thermal excitation and
ionization by an electron beam with the initial fluxes of
1010 erg cm� 2 s� 1 (F10 model), 3� 1010 erg cm� 2 s� 1 (3F10
model), representing an upper estimate of the flux and 7�
109 erg cm� 2 s� 1 (7F9 model), representing a lower estimate
with a beam spectral index of four (Fig. 5a,c), as suggested by the
RHESSI and tuned by Ha observations (see Methods section
‘Reduction of Ha line emission’). For calculation of Ha line
profiles the full NLTE problem for five levels plus continuum
hydrogen atom was solved for the simulated hydrodynamic
models using the approach described in the Methods section
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‘Radiative transfer method’. The simulated profiles are normal-
ized in the similar way to the observed profiles, as described in the
Methods section ‘Reduction of Ha line emission’.

Non-thermal collisions between beam electrons and hydrogen
atoms for all HD type 1 models cause excess excitation to the
upper state (n¼ 3) of the Ha line transition, quickly converting
the Ha spectral line from absorption into emission. The emission
in the near wing wavelengths from the line centre have a lower
optical depth and, thus, less absorption, resulting in the small
intensity increase in the near wings (±0.5 Å) (called ’horns’)
(Fig. 5). However, the main contribution of energetic beam
electrons is the strong ionization of hydrogen atoms in a flaring
atmosphere causing increase of their ionization degree by orders
of magnitude49. This raises the density of the ambient electrons,
compared to the density expected from their kinetic temperature.
This, in turn, produces a significant increase of Ha line wing
intensities owing to Stark’s effect.

The radiative simulations clearly show that in the first seconds
after the beam onset Ha line profiles are dominated by non-
thermal ionization by the beam electrons and the downward
motion of the shock (see Fig. 4b, box 2). For this flaring event the
beam has a relatively low initial energy flux about 0.7–3.0� 1010

erg cm� 2 s� 1 resulting in a moderate increase of the Ha wing
intensity (Fig. 5a). The horn in the near blue wing, about � 0.5 Å

from the central line wavelength (Fig. 5a), is in a normal position
to be caused by a radiative self-absorption as discussed above.
However, the horn in the near red wing reveals a large increase of
the intensity caused by a Doppler-shift of the emission
wavelength caused by a downward movement of the hydro-
dynamic shock (Fig. 4b, box 2) growing from 35 km s� 1 (7F9
model) up to 50 km s� 1 (F10 model) or 90 km s� 1 (for model
3F10) at the times of maximum beam deposition.

When the beam is switched off, thermal heating and slow
recombinations of the ambient electrons with hydrogen atoms
become the main sources of sustaining hydrogen atoms’
excitation and, thus, Ha emission (Fig. 5c,d). One can see a
decrease in the total intensity in the line compared to the intensity
simulated during the beam injection (compare Fig. 5a,c). There is
also a decrease of the red wing intensity over the subsequent 60 s
(Fig. 5c). At later times in simulations, after the beam is off, Ha
emission profiles become standard thermal profiles, exhibiting
after 70 s a small intensity enhancement in the blue horn (Fig. 5c,
blue line).

Comparison with Ha line observations. The simulated Ha line
profiles were compared with the profiles observed by CRISP by
averaging the emission over all the pixels in the red box of Fig. 3b
(with the QS background intensity subtracted) during the flare
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Figure 5 | Simulated and observed Ha line enhancements. (a) the synthetic Ha line normalized intensity versus a distance (l� l0), in Å, from the Ha line

central wavelength, l0 (l0¼ 6563 Å) taken from the simulation at þ 5 s after a beam onset for the F10 model (magenta line), the 3F10 model (cyan line)

and a model with initial flux 7� 109 erg cm� 2 s� 1 (7F9 model, yellow line) (b) the normalized background-subtracted Ha profile observed þ 7 s after the

ribbon onset in the event 2. (c) The Ha line normalized intensity simulated for the F10 model at later times after the beam onset: þ 30 s (red solid line) and

þ 70 s (blue solid line) and (d) the observed Ha profiles at the similar times of þ 29 s (red solid line) and þ 56 s (blue solid line) after the event 2 onset.
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onset (Fig. 5b) and over the next hundred seconds (Fig. 5d). The
simulation produces intensities of Ha line emission from a flaring
atmosphere within the spectral range (±3.0 Å from a central
wavelength) that is broader than the observational range (±1.5 Å).
The simulated profiles are shown to ±2 Å to demon-
strate that the emission profile extended into a far red wing beyond
the range (1.5 Å) defined by CRISP’s current spectral filter.

The red-shift in the simulated Ha line profile reaches a
maximum at (or just after) 5 s of the electron beam onset when
the downward velocity in the hydrodynamic model is maximal
(Fig. 4b, box 2). Only for the F10 model the shape of simulated
Ha line profile and the magnitude of the red shift is closely
matched by the Ha line profile observed by CRISP over the
similar interval (7 s) after the event onset (Fig. 5d), while the
beam with lower or higher energy fluxes produce much smaller or
much higher red shifts, than those observed.

The Ha line core in model F10 is formed at depths of a HD
shock, whose downward motion makes the line intensity red-
shifted by around 1 Å from the central wavelength (l0¼ 6563 Å),
corresponding to a Doppler velocity of 47 km s� 1 (Fig. 5a). This
is very close to the velocities of 45–50 km s� 1 derived from the
observed profile (Fig. 5b). Hence, we present the first successful
interpretation of Ha line red-shifted profiles observed at the onset
of a flare that has been long overdue for the past three decades7,8.

This comparison confirms that the observed red shift in Ha
line can be only caused by beam electrons with the initial flux
close to 1010 erg cm� 2 s� 1. Measuring Doppler shift of the
emission outside of the horns of the Ha line profile is an
alternative method for determining the parameters of electron
beam, allowing us to tune the estimations of initial energy flux
derived from the low-resolution RHESSI data (see Methods
section ‘Reduction of Ha line emission’).

Discussion
In this study we presented multi-wavelength observations of a
flaring event onset obtained with the highest temporal and spatial
resolution from CRISP/SST, AIA/SDO and RHESSI. The C1.5

class flare observed on 30 June 2013 in AR 11778 produced three
flaring events, which contribute to its hard X-ray and soft X-ray
light curves. The flaring event 2 produced two Ha ribbons, in one
of which Ha line profiles were recorded in 5� 5 pixels
using CRISP/SST with the maximum downward velocity of
45–50 km s� 1. There are also plasma upflows of 93 km s� 1

observed in the 171 Å AIA channel 29 s after the event onset,
occurring just above the Ha line ribbon with the downward motion.

These observations were successfully interpreted with the
combined hydrodynamic and full NLTE radiative models
(HYDRO2GEN) affected by power-law electron beams. The
beam parameters for this event are estimated using the hard
X-ray photon spectrum observed by RHESSI and tuned with the
high-resolution Ha observations. Our simulations show that for
this flaring event heating of flaring atmosphere by beam electrons
in the HD model starts from the QS chromosphere, converting it
into a flaring atmosphere with its own corona, transition region
and chromosphere. Beam electrons quickly sweep the ambient
plasma to deeper atmospheric layers causing, in turn, a fast
upward motion of the swept plasma back to the corona and
downward motion as hydrodynamic shocks18,23.

The upward motion, which occurs from the first seconds after
a beam onset, reflects the chromospheric evaporation caused by a
hydrodynamic response of the flaring atmosphere to heating by
electron beam. The chromospheric plasma in this upward motion
for this flaring event is observed injected into a flaring corona 29 s
after the event (or beam) onset that fits very well our
hydrodynamic model and the sensitivity windows of AIA in the
different channels (94, 171 and 304 Å). The plasma jet becomes
only visible in the AIA 171 Å channel, at the times when the
temperatures and densities of the flaring corona are reduced to
the magnitudes detectable within this AIA passband.

Additional support to the proposed HYDRO2GEN model is
provided from fitting the observed Ha-line profiles with large red
shifts with the simulated profiles obtained from a full NLTE
approach applied to 1D flaring atmospheres being a HD response
to electron beam heating. The Ha line in flaring atmospheres is
shown to be dominated by: first, an increase in the line wing
intensities due to Stark’s effect caused by non-thermal ionization
of the ambient hydrogen by beam electrons, and second,
a hydrodynamic shock motion downward leading to large
Doppler-shifts. The combination of these effects for this flaring
event produces a big increase of the Ha line intensity in the
red wing at about 1 Å from the line central wavelength,
corresponding Doppler velocities of 45–50 km s� 1 derived
from the observation. The latter is closely reproduced by the
simulations only for the model F10, clearly restricting the initial
energy flux of beam electrons capable of accounting for such a red
shift. In addition, this close fit highlights a need to extend the
spectral windows for observations of Ha line dynamics in flaring
atmospheres, which will allow capture of the profiles with large
red shifts occurring in the first 100 s of a flaring event.

It should be noted that the ratio of red-to-blue wing intensities
of the simulated Ha line profile is slightly higher than in the
observed profile, by a factor of 1.2. In addition, the wavelength of
the central reversal (with the maximal absorption) in the
simulated Ha line profile at 5 s is slightly blue-shifted from the
central wavelength, compared with the observations (compare
Fig. 5a,b). Such blue shifts of the central reversals in Ha lines
could be real as they were also observed by Ichimoto and
Kurokawa7 for the profiles with strong red shifts (see their Fig. 4a
at 00:19:59 UT).

It appears that small blue (or red) shifts of the central reversals
can reflect the overlying Ha-line emission with strong upward
(or downward) motions produced by different layers of a flaring
event, so that their superposition could shift the central reversal
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emission towards the blue or red wing, accordingly7. There is also
a possibility that the Ha ribbon emission observed with SST
occurred in a much smaller source size than the SST diffraction-
limited resolution of 100 km in Ha. This could lead to over-
smoothing, or averaging, of the observed Ha line intensity over a
larger area than the real emission comes from that causes the
differences in the observed and simulated ratios of the red-to-blue
horn intensities and the blue-shifted central intensity.

While this scenario is plausible, it still assumes that the
observed red-to-blue intensity ratio is perfectly accurate, which
may not be the case, given that we do not have infinite spatial
resolution in the SST observations. Therefore, this outstanding
issue cannot be fully reconciled beyond the limits of the current
state-of-the-art SST observations and needs to be progressed with
observations by the instruments with higher resolution, such as
the Daniel K. Inouye Solar Telescope (DKIST)54.

This study provides a close interpretation of large red-shifted
Ha line observations of solar (and possibly stellar) flares
indicating a need for broader spectral windows capable to fully
capture the dynamics of flaring events.

Methods
Reduction of Ha-line emission. The Ha observations consisted of equidistant
scanning of 33 wavelength points from � 1.38 Å to þ 1.38 Å about the Ha line
centre, resulting in an effective observation cadence of B7.27 s. The image quality
of the time series data significantly benefited from the correction of atmospheric
distortions by the SST adaptive optics system41. Post-processing was applied to the
data sets with the image restoration technique multi-object multi-frame blind
deconvolution (MOMFBD)55. Consequently, every image is close to the theoretical
diffraction limit for the SST with respect to the observed wavelengths. We followed
the standard procedures in the reduction pipeline for the CRISP data56.

The mean Ha profile intensities were taken in each of the 33 spectral positions
of the QS and the flare kernel. Then the data were smoothed, to remove an
instrumental spiking effect between adjacent spectral positions, by creating 32
interpolated spectral data points that are the mean of the two adjacent data points.
Intensities were normalized against background levels using the QS average of
9,890 counts per pixel at 6561.7 Å as a reference. After 7 s, the kernel produced
10,949 counts per pixel at the 6561.7 Å spectral position, and 17,651 counts per
pixel at the peak of the red-shifted intensity (6564.2 Å).

From the CRISP Ha red wing image taken at the time of greatest red wing
enhancement (Fig. 3b), a strong, transient enhancement at 6563þ 1.3 Å can be
registered (depending on the emission level) in a range of 266–712 SST pixels with
the resolution of 0.059200 . Then a single RHESSI pixel (200 � 200) contains 33� 33
E1100 SST pixels. As the RHESSI area was too big (6–8 pixels) and the resolution
too low, the areas of Ha flaring kernels for event 2 were used. Taking into
account that 1¼ 725 km¼ 7.25� 107 cm, the area is estimated to vary within
(0.3–1.4)� 1016 cm2. This leads to the estimation of initial energy flux of hard
X-ray emission for event 2 in the location of Ha ribbon of about
F0E(0.7� 3.0)� 1010 erg cm� 2 s� 1.

In order to derive the observed Ha profile, we used a flaring kernel in
(5� 5)¼ 25 pixels of the SST event 2. The area covered by other (1100–25)¼ 1075
SST pixels (98% of a single RHESSI pixel) is the neighbouring area of this active
region, which is not directly affected by this particular electron beam. This
difference in the spatial resolutions of RHESSI and SST data also can explain a
good fitting to thermal emission in the RHESSI data (coming from the pixels not
associated with the Ha enhancements). Therefore, the RHESSI data should be
(and was) only used for estimating the order of magnitude of the beam flux, while
the other means confirming the precise beam flux are required, for example, from
fitting of the Ha line profiles described in the section ‘Simulated radiative response
in the Ha line’.

Hydrodynamic response to heating by an electron beam. For physical
conditions in a flaring atmosphere and with respect to findings from hard X-ray
emission in the section ‘Active Region topology and hard X-ray emission’, we used
the first part of HYDRO2GEN code simulating a 1D hydrodynamic response of the
ambient plasma heated by a power law electron beam, adopted from Zharkova
and Zharkov23 (see their equations (3–6)) following the model by Somov et al.18

updated with hydrogen radiative losses49.
A hydrodynamic response of the ambient plasma in this event can also be

caused by a high-energy thermal beam because the hard X-ray flux derived from
RHESSI can be equally well fit by the thermal curve (see the section ’Active Region
topology and hard X-ray emission’). However, as simulated by Somov et al.57, the
hydrodynamic response of a flaring atmosphere to a thermal beam is similar to that
of a power-law beam, while raising the additional problem of thermal conductivity
saturation. In order to avoid this problem, in our simulation for event 2, we chose
to heat the flaring plasma by a power-law beam instead.

We consider a limited region of the QS chromosphere with column depths
xminrxrxmax, with xmin¼ 1017 cm� 2 corresponding to the QS transition region,
followed by the chromosphere and at xmax¼ 1022 cm� 2 corresponding to the
upper photosphere.

The initial QS chromosphere is assumed to be in hydrostatic equilibrium and
the temperature is constant,

vð0; xÞ¼0;

Teð0; xÞ¼Tið0; xÞ¼T0¼ const;
ð1Þ

where the initial temperature T0 was derived from the semi-empirical simulations24

equal to 6,700 K (ref. 18).
The initial plasma density of the QS chromosphere is defined as follows

nð0; xÞ¼nmin þ h� 1
0 ðx� xminÞ; ð2Þ

where nmin¼ 1010 cm� 3 and h0 is the height scale in a flaring loop:

h0 ¼
k½1þ xðT0Þ�T0

mgs
; ð3Þ

where k is Boltzmann’s constant, x is the ionization degree, gs is the solar
acceleration of gravity, m¼ 1.44mH is the average atom mass of the ambient
plasma, mH is the mass of hydrogen atom.

Let us neglect any heating fluxes at the top and bottom boundaries, eg,

@Te;i

@x
ði; xminÞ ¼

@Te;i

@x
ði; xmaxÞ ¼ 0; ð4Þ

Let us also consider the upper boundary at the initial time to be a free surface at
the presence of the external pressure pcor described as:

pcorð0; xminÞ ¼ nmink½1þ xðT0Þ�T0: ð5Þ
The plasma velocity at the lower boundary is defined by the equation

@v
@x
ðt; xmaxÞ ¼ 0: ð6Þ

The plasma is heated by an electron beam precipitating from the top boundary
with the heating function derived from continuity equation27. Plasma cooling is
caused by the viscosity, or motion between electrons and ions18 and radiative
cooling31 updated with the hydrogen radiative losses49.

After solving this system of four partial differential equations with the initial
and boundary conditions (1–6) for precipitating electron beam with given
parameters (initial energy flux F0 and spectral index g) we obtain time-dependent
distributions of electron Te and ion Ti temperatures, ambient plasma density T and
macrovelocities, v.

Heating by electron beam is found to sweep the plasma from the QS
chromosphere towards deeper atmospheric levels converting the QS chromosphere
into a flaring atmosphere with its own corona, transition region and
chromosphere18,23. This is different from the other hydrodynamic models (Type 2
and 3 from the Introduction section), which use semi-empirical (pre-heated)
flaring chromospheres VAL F24 with the attached QS corona as the initial
condition21,22. Thus, they are skipping the phase of conversion of the QS
chromosphere into a flaring corona, flaring transition region and flaring
chromosphere. The pre-heated hydrodynamic models work perfectly well for flares
with pre-flare events, while our model is more applicable for the initial flaring
events without prior heating.

The parameters of an injected beam are selected close to the range of
parameters of hard X-ray emission derived from RHESSI for event 2 (see section
‘Active Region topology and hard X-ray emission’): a single power-law energy
spectrum with a spectral index of about 4 based on a comparison of spectral indices
using Fokker–Planck approach (see Fig. 11 in ref. 58), a lower cut-off energy of
7–10 keV (from the total range 7–21 keV recorded by RHESSI). The limits of initial
energy flux of beam electrons in event 2 was estimated from hard X-ray emission
utilizing the areas of Ha kernels because of strong contamination of hard X-ray
with thermal emission of the background corona owing to a much lower spatial
resolution of the RHESSI (2") versus SST (0.0600) pixels (Methods section
‘Reduction of Ha line emission’).

Three hydrodynamic models were produced for heating by beam electrons with
the initial energy fluxes covering the upper and lower estimates: F0¼ 7� 1010

(7F9 model), F0¼ 1010 erg cm� 2 s� 1 (F10 model) and F0¼ 3� 1010 erg cm� 2 s� 1

(3F10 model). The duration of beam injection is chosen as 10 s to match the fast
rise in Ha emission. The initial energy flux of a beam varies as a triangular function
in time, with maximum at 5 s (ref. 23). The NLTE simulations for these HD
atmospheres (called HYDRO2GEN model) enabled us to verify the most applicable
initial electron flux for the event 2 by comparing the observed Ha profiles with the
simulated ones (see Fig. 5a and Discussion).

AIA line synthesis. The HD models of type 1 presented in this paper include
a flaring corona that is obtained from a conversion of the QS chromosphere,
rather than having initially an inherent corona in HD models of type 2. Although,
it should be noted that a large area covered by AIA pixels is the neighbouring
corona, because given the difference in spatial resolutions of the AIA (0.600) and
SST (0.0600) pixels, the minimum area covered by a single AIA pixel includes
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10� 10¼ 100 SST pixels. Within these, only 25 pixels contain Ha emission while
the other 75 pixels are, in fact, the neighbouring corona rather than the flaring
event for which our hydrodynamic model is applicable. Therefore, our model does
not intend to explain the contributions of any neighbouring coronal pixels to the
emission of a flaring corona captured also by AIA, because our model certainly is
not intended and does not solve the quiet Sun coronal heating problem.

Each passband in the images from AIA detects plasmas with different emissivity
defined by the local atmospheric temperature and density. The normalized
instrumental response functions of the AIA channels are shown in Fig. 6, plotted

against log10 of T (temperature) for the spectral lines of interest (94, 171 and
304 Å). The AIA 94 Å channel has its largest sensitivity peak close to 10 MK
combined with a secondary sensitivity peak close to the temperature of 1 MK
(green line in Fig. 6), that is, it is sensitive to the flaring corona temperature peak
(1–2 MK, see Fig. 4a) in the flaring event 2 derived from the F10 model. We
therefore expect to observe slightly enhanced emission from the source of the beam
injection in the 94 Å channel above the observed background level, in addition to a
strong enhancement in the 171 Å channel over the background level (Fig. 7a).

The intensity responses, Ii for each of the AIA channels i, were simulated
following the AIA calibration method, described by Boerner et al.59,

Ii¼
Z

KiðTðzÞÞn2
eðzÞdz; ð7Þ

where Ki(T) is the temperature response function for the AIA channel i (ref. 59),
shown in Fig. 6, ne is the electron density, and the integral is performed over the
height z, of the model atmosphere.

Figure 7a shows the simulated (green line) and observed (green crosses) light
curves for AIA 94 Å channel, and likewise, in yellow, the light curves for the AIA
171 Å channel. There is a small increase above the background levels in the
observed AIA 94 Å emission (green crosses) during the first 20–30 s (Fig. 7a).
Because of the secondary sensitivity peak in AIA 94 Å, this flaring F10 model is
capable of producing the AIA 94 Å enhancements on the order of 1� 2� 102 in
intensity (DN units) (Fig. 7a, green line) at the temperature of 1–2 MK, hence,
confirming that 94 Å emission is detectable from this model.

Most importantly, the F10 HD model leads to a much greater excess of intensity
in the AIA 171 Å channel for some time during and after the beam injection
(Fig. 7a, yellow line), as observed (Fig. 7a, yellow crosses). This AIA 171 Å
enhancement should remain visible during the outflow (jet) process, and is indeed
observed (see Fig. 2b, blue arrow). The simulated jet travels at B90 km s� 1 and the
observed jet traverses 3 pixels in the image space corresponding to B1500 km.
Hence, the simulated jet would take B15–20 s to appear 3 pixels from the Ha
kernel location in the observations (or later if travelling at some angle out of the
plane of observation). So the simulation predicts that we should only expect to see
the displacement of the jet after this time, in agreement with observations (Fig. 2b,
blue arrow).

The simulated light curves in the two channels were normalized to unity at their
peak values (Fig. 7b) and subtracted, in order to analyse the excess of the AIA171 Å
enhancement relative to that in AIA 94 Å. This excess is plotted as a fraction of the
enhancement in the AIA 171 Å channel in Fig. 7c.

The enhancement in AIA 171 Å peaks during the beam injection phase (0–10 s)
and decreases afterwards (Fig. 7a). After 50 s the response in this channel has
returned to background level (Fig. 7a). Because the jet is observed away from the
Ha kernel location after 20 s and the AIA cadence is 12 s, the jet should only be
visible in AIA 171 Å for 1-2 time frames according to the F10 model (as indicated
by the FWHM line plotted in Fig. 7b), which is indeed the case (Fig. 2b).

Figure 7c and shows that at 30 s our model predicts a much greater
enhancement over the AIA 171 Å background than over the AIA 94 Å background.
Therefore, the F10 model predicts the presence of a jet, outflowing from the
chromospheric source of beam heating, that is visible in AIA 171 Å and not AIA
94 Å at around 30 s. The fact that a jet is not observed in AIA 94 Å but only in AIA
171 Å (Fig. 2b), adds further evidence to support the value of the flux used in the
F10 model, because it places an upper boundary on the temperature, T, of the
outflow, ie, T is much o10 MK, and limited to 1–2 MK. At the same time, the jet is
not observed in AIA 304 Å (Fig. 2b) resulting in similar implications for the lower
temperature. One can conclude that the jet must be also much hotter than
100 000 K (the sensitivity peak for the AIA 304 Å channel). This is why this jet is
clearly observed in the AIA 171 Å channel.
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Figure 7 | Simulated and observed AIA light curves. (a) The simulated

light curves in the AIA 94 Å (green line) and 171 Å (yellow line) channels for

contributions from the flaring corona, transition region and chromosphere.

The simulation does not include background from the overlying upper

corona or neighbouring corona. Observed values for the 94 Å (green

crosses) and 171 Å (yellow crosses) channels including this background are

shown. (b) The simulated profiles of the signals in AIA 94 Å (green line)

and 171 Å (yellow line) above background. These profiles have been

normalized to 1 at their peak values. The AIA 171 Å channel is particularly

bright compared to the AIA 94 Å channel at around 30 s. (c) The

normalized fractional excess in AIA 171 Å. The normalized light curves in

panel b were subtracted to find the relative excess in the 171 Å channel.

This excess is plotted as a fraction of the emission in the 171 Å channel at

each instant. The full width half maximum (Horizontal black bar) indicates

the times at which the jet is particularly bright in AIA 171 Å compared to

AIA 94 Å, the vertical bar represents the maximum relative brightness at

around 30 s.
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Radiative transfer method. For the interpretation of hydrogen emission in flaring
atmospheres defined by the hydrodynamic models discussed above we use the
second part of HYDRO2GEN code utilizing a full non-LTE approach for a five
level plus continuum hydrogen model atom. Both radiative and collisional
mechanisms of hydrogen activation and deactivation are considered for thermal
and beam electrons, external and internal diffusive radiation, and three-body
recombinations.

Here we consider hydrogen excitation and ionization by beam electrons in
addition to thermal ones, because only the non-thermal rates can explain the rapid
(one second or so) increase of Ha line emission in the core and wings. Thermal
electrons, even with higher temperatures, cannot account for timing and shape of
the observed Ha line emission.

For non-thermal hydrogen excitation and ionization rates by beam electrons
the analytical formulae by Zharkova and Kobylinskii49 were used, with the beam
electron densities calculated from the continuity equation27,60. Stimulated photo-
excitation, de-excitation and ionization rates by external sources were taken from
Zharkova and Kobylinskii61.

Steady state equations are considered for all the transitions in a 5 level plus
continuum hydrogen atom model. For the lines and Lyman continuum, which are
optically thick, the radiative transfer equations are solved in the integral form,
as follows:

SðtÞ ¼ l
2

Zt0

0

K1ð j t� t j ÞSðtÞdtþ S�ðtÞ; ð8Þ

where S is the source function for the line or continuum, t is an optical depth in the
line centre or the continuum head, l is the survival probability of a scattered
photon, and S� is the initial source function, calculated without diffusive radiation.
The integral was calculated over all the optical depths up to its maximum value for
each different wavelength, t0.

The kernel functions, K1, in the lines and Lyman continuum are given by the
following equations:

K1ð j t j Þ¼FðTÞ
R1
n1c

f1n2 exp � hðn� n1cÞ
kT

h i
E1ð j t j f1Þdn; Lyman continuum

K1ð j t j Þ¼A
R1
�1
ðaðxÞÞ2E1ð j t j aðxÞÞdx: Lines

ð9Þ
F(T) is a normalization coefficient of the kernel functions for the Lyman

continuum, and A is the one for the lines. T is the kinetic temperature of the
plasma, n is the frequency of the radiation and n1c the frequency in the Lyman
continuum head. E1(x) is the exponential integral of the first kind. The absorption
profiles in the lines, a(x), were taken in the form of a Voigt function, where x is a
dimensionless wavelength measured in Doppler half widths from the line central
wavelength. The effective Doppler half widths of spectral lines, DnD, defined by
thermal motion of hydrogen atoms are calculated for the temperature profiles from
the hydrodynamic model for every instant of beam injection by considering the
contribution of the relevant Doppler widths from each layer weighed by the layer
thickness. Turbulent velocities were included in the calculation of the Doppler half
widths62, and were around 1 km s� 1 in the flaring chromosphere. At all depths this
produced only a very small additional contribution to the Doppler half widths due
to thermal velocities. For the Balmer lines Stark’s effect, due to strong electric fields
caused by ionization of the ambient plasma, was also considered.

The absorption profile in the Lyman continuum, f1, is defined as follows:

f1¼
n1c

n

� �3
: ð10Þ

The radiative transfer and statistical equilibrium equations were solved together
to define source functions in each atomic transition and ionization degree of
hydrogen atoms in the atmosphere at any given instant of a hydrodynamic
response. The solutions of the radiative transfer equation (8) were found using
the L2 approximation described by Ivanov and Serbin63. The system of integro-
algebraic, non-linear equations was solved iteratively until all the source functions
are converged with the relative accuracy of 10� 5. Then the simulated Ha line
intensities are calculated from the relevant source function using Voigt’s absorption
profiles. For the ease of comparison with observations, the simulated profiles are
normalized to the same units as the observed intensity.

Data availability. The data sets generated during and/or analysed during the
current study are available in figshare with the identifier 10.6084/
m9.figshare.4907285.
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restoration by use of multi-frame blind de-convolution with multiple objects
and phase diversity. Sol. Phys. 228, 191–215 (2005).
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