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ABSTRACT 

 
1 This paper is concerned with the foaming of a range of fats in the absence of added foaming 

2agent/emulsifier. By controlling the temperature on warming from the solid or cooling from the melt, 

3crystals of high melting triglycerides form in a continuous phase of low melting triglycerides. Such 

4crystal dispersions in oil can be aerated to produce whipped oils of high foamability and extremely 

5high stability. The foams do not exhibit drainage and bubbles neither coarsen nor coalesce as they 

6become coated with solid crystals. The majority of the findings relate to coconut oil but the same 

7phenomenon occurs in shea butter, cocoa butter and palm kernel stearin. For each fat, there exists an 

8optimum temperature for foaming at which the solid fat content reaches up to around 30%. We 

9demonstrate that the oil foams are temperature-responsive and foam collapse can be controllably 

10triggered by warming the foam to around the melting point of the crystals. Our hypothesis is given 

11credence in the case of the pure system of tristearin crystals in liquid tricaprylin.    

 

Keywords: Whipping, saturated fat, crystals, oil foam, temperature-responsive  

 

Highlights 

 Stable air-in-oil foams without added foaming agent 

 Crystals of high melting solid fat coat air bubbles in liquid oil of low melting fat 

 Temperature-responsive oil foams 
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1. INTRODUCTION 
 

 Literature on the preparation and properties of oil foams (or gas-in-oil) is very scant compared  

with that on aqueous foams despite their importance in a number of industries. Due partly to the lower 

surface tension of most oils compared with water, common surfactants are not surface-active at  the oil-

air surface and hence do not stabilise oil foams. In a series of papers, Shrestha and co-workers however 

succeeded in stabilising foams of a range of oils using mono- and diglyceride fatty  acid esters 

(Shrestha, Aramaki, Kato, Takase & Kunieda, 2006; Kunieda, Shrestha, Acharya, Kato, Takase & 

Gutierrez, 2007; Shrestha, Shrestha, Sharma & Aramaki, 2008; Shrestha, Shrestha, Solans, Gonzalez & 

Aramaki, 2010). These surfactants formed either lamellar liquid crystals or surfactant particles in oil 

which were effective at preventing air bubbles from coalescence for a limited time. For a lubricating  oil 

of poly(dec-1-ene), we showed likewise that various surfactants and polymers enabled foam 

stabilisation at conditions close to phase separation of the additive in oil (Binks, Davies, Fletcher & 

Sharp, 2010). By contrast, different kinds  of solid particle have recently been shown to be excellent 

foaming agents of many oils, provided the  oil surface tension is not too low and that particles have the 

appropriate wettability (Murakami & Bismarck, 2010; Binks & Rocher, 2010; Binks, Rocher & 

Kirkland, 2011; Binks & Tyowua, 2013; Binks, Sekine & Tyowua, 2014; Binks, Johnston, Sekine & 

Tyowua, 2015). These foams  can be ultra-stable due to the irreversible adsorption of colloidal particles 

to the liquid surface (Binks & Horozov, 2006). For  hydrocarbon-containing oils, particles of low 

surface energy are required and these have included oligo- or polytetrafluoroethylene (Murakami & 

Bismarck, 2010; Binks & Rocher, 2010; Binks, Rocher & Kirkland, 2011), fluorosilica (Binks & 

Tyowua, 2013) or fluoroclay (Binks, Sekine & Tyowua, 2014; Binks, Johnston, Sekine & Tyowua, 

2015) particles of a variety of shapes and  sizes. 

 A strategy used recently to prepare stable oil foams has been to allow crystals of the additive to  

form within the oil phase on cooling which, after aeration, adsorb to air bubble surfaces endowing the 

foam with high stability to drainage, coalescence and disproportionation. These mixtures can be  

thought of as a high melting point additive (forms crystals) within a low melting point oil (continuous 

phase). In the four examples studied so far, the latter has been a vegetable oil with applications to 

aerated foods, but this is not a requirement (Garvey, 2014). The systems have been a commercial 

mono/diglyceride surfactant in rapeseed oil (Brun, Delample, Harte, Lecomte & Leal-Calderon, 2015), 

long chain alcohols in sunflower oil (Fameau, Lam, Arnould, Gaillard, Velev & Saint-Jalmes, 2015), a 

long chain carboxylic acid in high oleic sunflower oil and other vegetable oils (Binks, Garvey & Vieira, 

2016) and a saturated triglyceride in a  soybean-rapeseed oil mixture (Mishima, Suzuki, Sato & Ueno, 

2016). The oils above are examples of triacylglycerides (TAGs) in which a  high proportion of the long 
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fatty acid (FA) chains are unsaturated such that the melting point of the  oil is low (< 0 °C) and hence 

the oils are liquid at room temperature.    

 Edible compositions in which fat is the continuous phase like butter, margarine and liquid oils 

are well known. They are commonly used as the fat ingredient in baking, as a frying medium or even  

consumed directly like the topping on pancakes or bread. The fat phase of the above is typically a 

mixture of liquid oil (fat that is liquid at room temperature) and fat (which is solid at room temperature). 

The solid fat (sometimes called the hardstock fat) structures the fat phase and, if water  is present as 

droplets, aids in stabilising the emulsion by forming a fat crystal network in thecontinuous phase. It is 

ideal if the solid fat melts or dissolves around the temperature within the mouth otherwise there may be 

a waxy mouth feel. In addition to the ongoing need of manufacturers to  reduce costs, health conscious 

consumers desire reduced fat-containing compositions these days. One  way to achieve this is to replace 

part of the fat with an edible gas. Such aerated food compositions are known, e.g. ice cream, whipped 

cream and mousses, but these are complex colloidal formulations  containing many other ingredients 

(Campbell & Mougeot, 1999). Normally, the gas is present as dispersed bubbles but, in the case of 

aerated fats/oils, their stability is frequently low. Thus, during storage, coarsening and coalescence of 

the bubbles can occur as well as drainage of liquid oil which reduces the aesthetic quality of the product. 

There is thus a need to develop aerated fat-continuous products exhibiting high  stability. At the same 

time, some consumers deem it unhealthy to consume a product which contains  synthetic ingredients 

like fatty acids, E-number emulsifiers and sugar. Unlike the studies referred to  above, we put forward 

here a novel idea for stabilising aerated oils which does not require any additive. Our main objectives 

are: (a) to manipulate the temperature of a fat/oil such that oil foams stabilised by fat crystals can be be 

formed in the absence of any additive and (b) to determine if these crystal-stabilised foams are sensitive 

to temperature approaching the melting point of the crystals. We select triglyceride oils/fats of medium 

chain length (mainly C8-C12) which contain predominantly saturated FA chains such that their melting 

points are around or above room temperature. Since such oils are composed of a mixture of TAGs of 

different chain length/composition, we make use of the selective crystallisation of those TAGs of higher 

melting point within liquid oil of those TAGs of lower melting point, i.e. an oil dispersion of crystals 

forms from one and the same oil. We acknowledge that TAGs can also exist in several polymorphic 

forms  exhibiting different melting temperatures. The question is whether crystals of particular TAGs 

adsorb around air bubbles dispersed in liquid oil composed of other TAGs. The studies focus on the case 

of  coconut oil, whose use is currently experiencing a renaissance (Cassiday, 2016), but we give 

examples for other oils  containing saturated TAGs. We also demonstrate the thermo-responsive nature 

of these oil foams by  destabilising them around the melting point of the crystals. In order to verify our 

hypothesis that crystals of certain TAGs enable foaming of liquid oil of the remaining TAGs, we show 
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that stable foams in a pure short chain liquid TAG (tricaprylin, C8) can be prepared which contain 

adsorbed crystals of a pure long chain solid TAG (tristearin, C18).          

     

2.  MATERIALS AND METHODS 

 

2.1 Materials 

 Refined, bleached and deodorized (RBD) coconut oil (Cocos nucifera) was a gift from AAK, Sweden 

(batch B0364E) with the free FA content being < 0.02%. Coconut oil is an edible oil extracted from the 

kernel of mature coconuts harvested from the coconut palm. RBD oil is made from  dried coconut 

kernel, which is placed in a hydraulic press with added heat, from which the oil is extracted. Because of 

its high saturated fat content, it is slow to oxidise (Moigradean, Poiana & Gogoasa, 2012) and is thus 

resistant to rancidification. Coconut oil contains mainly saturated TAGs (> 90%) and is an excellent 

source of medium chain fatty acids that can be easily burnt for energy. Typically, coconut oil contains 

around  nine FAs of different melting point being caproic (Co, C6:0) 0.7%, caprylic (Cy, C8:0) 8.1%, 

capric  (Ca, C10:0) 6.3%, lauric (La, C12:0) 48.3%, myristic (M, C14:0) 18.1%, palmitic (C16:0) 8.4%, 

stearic (C18:0) 2.4%, oleic (C18:1) 5.9% and linoleic (C18:2) 1.8%. Using HPLC-MS, the most 

abundant TAGs greater than 5% were LaLaM, LaLaLa, LaLaCy, CyLaM and CaLaM accounting for  

over 43% of the TAGs detected (Neff, Byrdwell & List, 2001). Palm kernel oil (Elaeis guineensis) 

Encore 100 was a gift from Cargill Food Ingredients, USA and is in fact palm kernel stearin (Personal 

communication, 2016). It also contains over 90% saturated  TAGs (mainly C12:0 and C14:0). Refined 

cocoa butter (Butyrum theobroma cacao) and refined shea  butter (Butyrospermum parkii) were 

purchased from Naissance, UK and contained no added fragrances or colours. Cocoa butter contains 

around 60% saturated TAGs (mainly C16:0 and C18:0, Firestone, 2013)  whereas shea butter contains 

only around 45% saturated TAGs (mainly C16:0 and C18:0, Firestone, 2013). Tricaprylin, a low 

melting triglyceride (99%, melting point 9.5 °C) and tristearin, a high melting triglyceride (80%, highest 

melting point 73 °C) were purchased from Sigma-Aldrich.   

 

 

2.2  Melting and cooling of coconut oil 

 The solid fat content (SFC) of coconut oil was determined using a Bruker NMR minispec mqone SFC  

analyzer (AOCS Official Method, 2009). In these measurements, the oil was placed in an NMR tube and 

heated to 60 °C for 10 min.  It was then cooled to 0 °C for 1 hr before being placed in a water bath at 

either 10, 20 or 30 °C for 30  min. before measurement of the SFC. Differential scanning calorimetry 

(DSC) measurements were  carried out using a Perkin-Elmer DSC-7 instrument using nitrogen as the 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



6 
 

purge gas (see e.g. Chiavaro, 2015). Calibration was  done using a sample of indium. Coconut oil (2.20 

mg) was placed into a 20 L aluminium pan which  was sealed using a crimper. It was heated from -25 

°C to 60 °C at 10 °C/min followed by cooling from 60 °C to -25 °C at 10 °C/min. 

 

2.3 Aeration of oils 

 Apart from coconut oil, the other food oils were stored in the dark at 18 °C for various lengths of time 

before being warmed at a rate of approximately 0.1 °C/min. Coconut oil was stored in the fridge at 6 °C 

for up to 12 h and subsequently warmed at the same rate. A 250 mL polypropylene bowl containing 70 

g of a solid vegetable oil (coconut oil, shea butter, cocoa butter or palm kernel stearin) was placed in a 

thermostated water bath. A Brannan England thermostat probe was also used to measure the temperature 

of the sample inside the bowl. For the majority of experiments, the initial temperature of the water bath 

was set at 18 oC and it was increased gradually at an approximate rate of 0.1 °C/min. This process 

continued until the desirable  temperature was achieved between 19 and 42 oC depending on the type of 

vegetable oil. For coconut oil, experiments were also conducted in which a clear solution at 30 °C was 

cooled gradually to a set temperature before whipping. At the temperature of interest, the aeration of the  

sample was made with the use of a hand held double beater electric whisk (Argos value range, blade  

size 6 cm) on speed setting 1 (reaching 1,100 rpm). The whipping technique included 5 min whipping 

following by a 5 min resting interval. The procedure was repeated for a total period of 45  min, i.e. 

actual whipping time of 25 min. At the resting intervals, digital photographs were taken to  monitor the 

foamability of the samples. At the end of whipping, a homogeneous sample of the whipped oil was 

transferred into volumetric cylinders or glass beakers to monitor its foam stability  under the same 

temperature conditions. The samples were photographed at fixed times to record the  foam volume for at 

least one month. 

  

2.4 Tristearin in tricaprylin dispersion and aeration 

 2.12 g of tristearin was added to 10 mL of tricaprylin and heated to 75 oC to ensure that the tristearin 

was fully dissolved. The transparent oil dispersion prepared at 75 oC was gradually left to  cool to 15 oC 

at an approximate rate of 2 oC/min. At 15 oC, a semi-solid white opaque oil dispersion  was formed. At 

this temperature, the aeration of the sample was achieved with the use of an IKA  Ultra–Turrax T25 

homogeniser equipped with a metal head of diameter of 18 mm (due to the low  volume of this 

dispersion). This included 5 min at 13,000 rpm followed by a 5 min resting interval.  As in the case of 

the vegetable oils, the total procedure was repeated for a total of 45 min.  

 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



7 
 

2.5 Microscopy of whipped oils  

 The average bubble diameter was measured by optical microscopy with the use of an Olympus BX51 

microscope equipped with an Olympus DP70 camera. A small sample of the non-aqueous foam was 

placed within a dimple cell microscope slide with a coverslip on top. 8-bit grey scale images of 1360 x 

1024 pixel resolution were taken and analysed with ImageJ software. The average  bubble size 

distribution was determined from the measurement of 150 individual bubbles (three images of 50 

bubbles each). The optical microscopy images were captured at fixed intervals immediately after 

preparation and throughout the investigation of foam evolution. A reflected light  analyser (U-AN, 

Olympus) and a U-POT polariser were used to cross-polarise the light. Images were captured of the 

same sample at the same temperature for both non-polarised and polarised miscroscopy. For cryo- 

scanning electron microscopy (SEM), a sample of foam was deposited on a 12 mm aluminium SEM  

stub and submerged into liquid nitrogen slush. The mounted frozen sample was transferred to the  cryo 

system (Quorum Technologies PP3010T) held at -140 °C and 10-6 mbar in a nitrogen gas atmosphere. 

Once coated with platinum, the sample was inserted into the chamber of a Zeiss EVO  60 SEM at – 140 

°C using a beam voltage of 10 kV for examination.  

 
3. RESULTS AND DISCUSSION 

 

 We first describe what happens to coconut oil upon heating or cooling including values of the SFC at 

various  temperatures and the morphology of the crystals. This is followed by the findings on the 

aeration of  coconut oil as a function of temperature in which the foamability and foam stability are 

quantified.  For an otherwise stable oil foam, we then show its thermo-responsive nature by 

progressively destabilising it upon warming. The self-foaming of a range of other vegetable oils, which 

vary both  in the extent of saturation and most abundant chain lengths, is then demonstrated. Finally, 

evidence  is given for the foaming of a pure short chain triglyceride stabilised by crystals of a pure long 

chain  triglyceride. 

 

3.1 Effect of temperature on coconut oil  

 

 The melting point of coconut oil is quoted as around 25 °C but, because it contains numerous  

different TAGs, it melts over a range of temperatures and ≈ 25 °C is in fact the temperature when  all 

the sample is deemed liquid. The melting and crystallisation curves obtained by DSC are given  in 

Figure S1 which are in close agreement with those published by Maruyama et al. (Maruyama, de 

Martini Soares, D’Agostinho, Goncalves, Gioielle & da Silva, 2014) Coconut oil  exhibits an onset 
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melting temperature of 14.0 °C with a peak melting temperature of 21.8 °C and an  enthalpy change H 

of 63.7 J/g. It displays two distinct but overlapping exothermic peaks on cooling, one at 5 °C 

(crystallisation of saturated TAGs, H = -19 J/g) and the other at – 9.8 °C (crystallisation of unsaturated 

TAGs, H = -8 J/g). Using solid-state NMR, the SFC can be determined at different temperatures. This 

is shown in Figure 1 which contains data from our own  sample and a different sample reported in the 

literature (Clarke, 2012). The agreement between the two is excellent. Relevant to the foaming 

discussed later, the solid content of the oil increases from 0% to  around 30% between 27 °C and 21 °C.  

 A sample of coconut oil was taken from the fridge at 6 °C and warmed progressively without  

shaking at a rate of ≈ 0.1 °C/min using a water bath. Representative photographs of the vessel are  

shown in Figure 2(a) at specific temperatures (the complete set is shown in Figure S2). Between 6  °C 

and 24 °C, the sample is solid of white/yellowish colour. The first sign of the liquid state appears  at 25 

°C (outer surface of sample) and an opaque liquid which interestingly foams naturally on release of 

trapped air bubbles occurs between 27 °C and 29 °C. From 30 °C upwards, a transparent  yellow liquid 

is formed which no longer foams. At fixed temperature of 29 °C, the natural foam collapses 

progressively until none remains after 6 hr. The appearance of the vessel on cooling the oil  from 35 °C 

is shown in Figure 2(b), with the complete set being shown in Figure S3. Between 35  °C and 25 °C, the 

oil is liquid and yellow in colour. The first sign of solidification appears at 24 °C  (cloudy) and this 

increases progressively down to at least 20 °C. The slight hysteresis in behaviour  between warming the 

solid and cooling the liquid is common in mixtures and results from the kinetics of either crystal 

dissolution or crystal formation being slow relative to the rate of temperature change used. Crystal 

dissolution is expected to involve little or no energy barrier and is  likely to be fast, whereas crystal 

formation occurs by nucleation and growth which normally requires an energy barrier to be overcome 

and hence can be slow. The crystals which form at 27 °C  (35 °C → 20 °C → 27 °C) are present as 

spherulites of around 100 m in diameter, whose edges  showed small needles (Maruyama, de Martini 

Soares, D’Agostinho, Goncalves, Gioielle & da Silva, 2014) of length around 50 m as seen in Figure 

2(c). Using polarised light microscopy, the isotropic liquid oil appears black and the anisotropic solid 

crystals appear blue.     

 

3.2 Aeration of coconut oil at different temperatures 

 

 In the light of the above, we chose to aerate coconut oil at a variety of fixed temperatures 

achieved by either warming a sample from the fridge (solid) or cooling a sample from 30 °C (liquid). A 

known mass of solid coconut oil was whipped at constant temperature using a double beater for a total 

time of 45 min, involving 5 min of whipping and 5 min resting alternately. Whipping was conducted on 
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separate samples at ten temperatures between 19 °C and 30 °C. As representative examples, we show in 

Figure 3 the appearance of the sample during whipping for a  low, medium and high temperature. At 19 

°C (a), the solid oil flakes can be aerated slightly turning  into a creamy white paste; the incorporation of 

air remains constant however beyond the first 5 min  of whipping. At 28 °C (c), the initial cloudy liquid 

oil clarified during whipping but no air could be  incorporated. By contrast, at 23 °C (b), the initial semi-

solid oil can be aerated to a high degree with the extent of air incorporation increasing with whipping 

time. Observations during whipping at some other temperatures are given in Figure S4.         

 As a measure of foamability, we define the over-run as (vol. after aeration – vol. before 

aeration)/(vol. before aeration); thus a doubling in volume due to aeration has an over-run of 100% 

corresponding to an air volume fraction of 0.5. The influence of whipping time on the over-run for  

samples whipped at different temperatures is shown in Figure 4(a). Apart from 23 °C for which the  

over-run increases progressively with time, the results for most of the other temperatures show an  

increase in over-run initially followed by a slight decrease to a constant value with whipping time.  Both 

trends are reminiscent of the results by Mishima et al. (Mishima, Suzuki, Sato & Ueno, 2016) for added 

fat in a liquid oil  system, although their variable was the type of tempering applied to the mixture prior 

to aeration.  The effect of the whipping temperature on the over-run at the end of whipping is given in 

Figure 4(b) where a marked maximum is seen around 23 °C. At temperatures where coconut oil is too 

solid-like little foaming occurs, whereas at temperatures where it is completely liquid no foaming is  

possible. The result at 28 °C and higher is significant and implies that molecules of any of the TAGs (or 

low levels of mono- or diglycerides if present) do not adsorb at the air-oil surface. This is in agreement 

with the lack of foaming observed in molecular mono-/diglycerides in hydrocarbons (Shrestha, 

Aramaki, Kato, Takase, & Kunieda, 2006) or rapeseed oil (Brun, Delample, Harte, Lecomte & Leal-

Calderon, 2015).  At intermediate temperatures however, where a mixture of  crystals and liquid oil 

coexist, appreciable foaming becomes possible which is very temperature dependent. It occurs for SFC 

values up to 20% (Figure 1). The implication is that TAG crystals which form act as the foaming agent 

and are thus surface-active.   

 The appearance of the foams with time stored at the temperature of preparation can be seen in  

Figure 5 for selected temperatures. Those at all other temperatures are given in Figure S5. At 19 °C  (a), 

the whipped oil was so viscous that it could only be transferred to a wide glass beaker for monitoring. 

Its volume remains constant for over 2 weeks and no drainage of oil occurs. Similar excellent foam 

stability is witnessed at 23 °C (b) although it is less viscous and can be transferred to  a graduated 

cylinder. By contrast, at 27 °C (c), the less viscous foam is stable for at least 2 h but reduces in volume 

within 24 h mainly by the drainage of clear liquid oil containing no crystals. This  continues up to 

around 120 h after which no more oil is released. It is noteworthy that the remaining  foam (of higher air 
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volume fraction than initially) is subsequently stable. All the crystals in the system are associated with 

the foam layer as judged by the clear oil layer below. As a measure of  foam stability, we calculate the 

ratio F being the foam volume after 1 month to that initially. F is  equal to 1.00 ± 0.05 for all 

temperatures between 19 °C and 25 °C, decreasing to 0.5 ± 0.05 at 27 °C  and finally to 0 at 28 °C and 

higher.   

 Optical micrographs of the foams at different storage times are given in Figure 6 for the three  

temperatures shown in Figure 5. At all temperatures, bubble surfaces are rough and textured (due to  

adsorbed TAG crystals) and some bubbles are non-spherical in shape which is characteristic of particle-

coated interfaces. This is due to jamming of adsorbed particles which prevents relaxation of  the 

interface to a spherical geometry (Subramaniam, Abkarian, Mahadevan & Stone, 2005). Importantly, 

there is no noticeable change in the average bubble size with time either demonstrating the superior 

stability to both coalescence of bubbles and  disproportionation of gas between bubbles. The average 

bubble diameter is relatively small compared with surfactant-stabilised aqueous foams, being around 22 

m at 19 °C, 27 m at 23 °C  and 15 m at 27 °C. Using crossed polarisers, anisotropic TAG crystals 

are clearly evidenced mainly at the air-oil interfaces of bubbles but also within the continuous oil phase, 

the latter enabling  gelation and thus reducing the tendency for oil drainage. This is in agreement with 

the findings in  Mishima et al. (Mishima, Suzuki, Sato & Ueno, 2016) using polarised light microscopy 

and microprobe infra-red spectroscopy showing that, during whipping, the relative concentration of fat 

crystals in oil decreased as they adsorbed and stabilised newly created air bubbles. Microscope images 

of the foams prepared and stored at all  other temperatures are shown in Figure S6 and display the same 

behaviour. Cryo-SEM images in  Figure S6(d) of the foam made at 23 °C confirm the bubble sizes and 

reveal the location of TAG  crystals at their surfaces.  

 We decided to investigate how these mixtures whipped after being cooled from 30 °C (as 

opposed to warming) to set lower temperatures being 19, 21, 23, 25 and 27 °C. Photos of the vessels  

during whipping are given in Figure S7 and microscopy of the whipped oils after whipping is seen  in 

Figure S8 at these temperatures. These mixtures can be aerated to similar over-run values at the  

corresponding temperature as samples which were warmed, apart from at 23 °C where the over-run  is 

significantly less (see Figure 4(b)). A possible explanation for this is that the SFC-temperature  curve 

can display hysteresis between heating and cooling cycles where the SFC on heating is higher  than that 

of cooling at the same temperature. This is all linked to the kinetics of melting or crystallisation relative 

to the rate of temperature change. Given the relatively fast cooling rate employed  here, we suspect that 

the concentration of crystals formed at 23 °C on cooling is less than that on  heating leading to a lower 

over-run. Despite this, the oil foams prepared at temperatures between 19  °C and 25 °C were stable to 

drainage and coalescence for over 1 month (F = 1.0) with no change in  the average bubble diameter. By 
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27 °C however (as opposed to 28 °C earlier), no foam could be prepared.  

 

3.3 Influence of storage temperature on coconut oil aerated at 23 °C  

 

 Given the fact that in a stable coconut oil foam the air bubbles are coated with TAG crystals in  

addition to crystals present in the continuous oil phase, such foams should be temperature-responsive on 

warming as the crystals begin to melt (Fameau, Lam, Arnould, Gaillard, Velev & Saint-Jalmes, 2015; 

Binks, Garvey & Vieira, 2016). We chose to investigate this possibility with  the whipped oil prepared 

at 23 °C (upon warming) which is otherwise completely stable at rest at  this temperature. After a period 

of one week at 23 °C, the foam was warmed in a water bath by 1 °C every 12 h until the final 

temperature of 30 °C was reached. The appearance of the foam at different  temperatures after heating is 

shown in Figure 7. Between 23 °C and 27 °C, the foam appearance and stability remains unchanged at 

least for 12 h. At 28 °C, visible oil drainage occurs below theremaining foam and larger bubbles are 

visible within the foam. The extent of oil drainage increases  at 29 °C and the foam shows extensive 

signs of collapse with very large bubbles forming as well as  huge air voids developing between the 

foam and the vessel walls. Virtually no foam remains at 30  °C and the system reverts to a clear, yellow 

liquid oil. The influence of storage temperature on both  the volume of foam and the volume of drained 

oil is shown in Figure 8. A progressive destabilisation of the foam begins just above 27 °C and ends at 

30 °C. The melting of crystals within  the foam occurs at similar temperatures to the melting observed in 

samples of neat coconut oil (Figure 2(a)). As adsorbed crystals around air bubbles melt, they no longer 

prevent coalescence between bubbles and foam collapse ensues. Microscopy images of the foam at 

different temperatures upon warming are given in Figure S9. The average bubble diameter remains 

constant  at 25 ± 2 m up to 27 °C after which it increases markedly due to coalescence. We also 

confirmed  that a stable oil foam could be prepared again after cooling the solution formed at 30 °C to 

either 25  °C or 23 °C demonstrating the reversible nature of the melting and crystallisation of the 

crystals and  their ability to stabilise foams.  

 

3.4  Aeration of other medium chain length vegetable oils 

 

 In order to verify if fractional crystallisation of an oil enables its subsequent aeration, we 

investigated three other vegetable oils of relatively high saturated fatty acid content of medium chain  

length. These were palm kernel stearin, cocoa butter and shea butter which possess different melting  

temperature ranges. The results refer to the case where the oils were warmed from room temperature (all 

solid) to the respective temperature. After whipping, the variation of the over-run  with whipping 
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temperature is given in Figure 9 where the data for coconut oil is included for comparison (Figure S10 

displays how the over-run varies with whipping time at different temperatures for these oils). In all 

cases, the over-run exhibits a maximum value at a particular temperature which varies from 23 °C to 34 

°C depending on the oil. The maximum over-run for cocoa butter and shea butter is similar and slightly 

lower than that of coconut oil, whereas that for  palm kernel stearin is markedly lower. At the optimum 

temperatures, the SFC is between ≈ 15%  and ≈ 30% for these oils (Personal communication, 2016; 

Torbica, Jovanovic & Pajin, 2006; Salas, Martinez, Bootello, Venegas & Garces, 2011), i.e. best 

aeration occurs when they are quite soft solids. No foaming  is possible at temperatures where the oils 

are completely liquid. It is worth noticing that the curve  for cocoa butter is very sharp between 34 °C 

and 35 °C, consistent with its widespread use in chocolate which melts within the mouth around this 

temperature. Photos of the whipped vegetable  oils and microscope images of bubbles within them are 

given in Figure 10. In all cases, non-spherical bubbles exist and anisotropic crystals are predominantly 

arranged at bubble surfaces giving  them a textured appearance. Foams prepared at the optimum 

temperature were stable for at least 2  months when stored at this temperature; they could however be 

controllably destabilised upon warming as with coconut oil above. 

 It is likely that the lamellar planes (or faces) of the TAG crystals are aligned parallel to the air-

oil surface of bubbles but are randomly arranged within the continuous oil phase. This has recently  

been shown unequivocally using micro-X-ray diffraction experiments on foams stabilised by crystals of 

a commercial saturated TAG in salad oil (Mishima, Suzuki, Sato & Ueno, 2016). The driving force for 

the adsorption of the TAG crystals from the oil phase to the air-oil surface is to reduce the relatively 

high surface energy  of the latter, e.g. the surface tension of the liquid triglyceride triolein is around 31.6 

mN/m compared with that of the hydrocarbon decane which is 23.8 mN/m at 20 °C (Jasper, 1972). 

Since the surface energies of TAG crystals are not available, we take the case of the -crystals of stearic 

acid (C18) as  an example. Calculations reveal that the surface energy of the faces (001 plane) was 43.5 

mN/m whereas that of the edges (100 plane) is much higher at 86.5 mN/m (Beckmann & Boistelle, 

1984). A plausible arrangement of  the TAG crystals here is such that their faces composed of low 

energy methyl (-CH3) groups are in  contact with the air phase on one side and the oil phase on the 

other, whilst their edges composed  mainly of methylene (-CH2) groups and glycerol units interact with 

each other laterally through neighbouring crystals adsorbed at the air-oil surface.  

  

3.5  Tristearin in tricaprylin system    

 

 In order to support our hypothesis that crystals of a particular TAG (or TAGs) stabilise air 

bubbles in liquid oil comprising other TAGs, we briefly investigated the pure system of tristearin  (high 
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melting) in tricaprylin (low melting). For 20 wt.% tristearin in tricaprylin, Figure 11 shows  that it is a 

clear solution at 75 °C (a) but then becomes a crystal dispersion on cooling to 15 °C (b). The optical 

microscope image of this dispersion reveals a high concentration of aggregated tristearin crystals (c). 

Several isolated crystals can be discerned however (right hand side of image) and these are plate-like of 

side length around 10 m (see also Figure S11(a)). It was shown recently  that the crystals were 

exclusively those of the  polymorph (Fletcher, Roberts & Urquhart, 2016). Since we were limited to 

low volumes  (due to the expensive tristearin), we aerated the dispersion using a rotor-stator 

homogeniser. Figure  12 (and Figure S11(b)) reveals that air can be incorporated as bubbles, some of 

which are non-spherical, with anisotropic crystals bring present both at bubble surfaces and in the 

continuous tricaprylin phase. The foam was stable for at least 2 weeks at 15 °C. The over-run is much 

higher however in oil foams in which commercial fat crystals of fully hydrogenated rapeseed oil rich in 

behenic acid are added to liquid salad oil (Mishima, Suzuki, Sato & Ueno, 2016).       

 

4. CONCLUSIONS 

 

 For fats containing a substantial proportion of saturated fatty acids in their triglyceride chains, 

we show that whipped oils can be produced in the absence of any other additive simply by controlling 

the temperature. Upon warming from the solid or cooling from the melt, crystals of high  melting TAGs 

form in liquid oil of low melting TAGs. These dispersions can be aerated and the  foams so produced 

are extremely stable containing bubbles coated with crystals. The over-run exhibits a maximum with 

respect to temperature and optimum foaming occurs when the solid fat content is around 20-30%. The 

foams are temperature-responsive and can be progressively collapsed upon increasing their temperature 

to around the melting point of the crystals. The work  opens up the possibility of preparing aerated food 

compositions containing no additive, a challenge  currently being addressed by several companies. 
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Figure 1. Variation of the solid fat content of coconut oil with temperature for our sample (open 

points) and the sample used in  Clarke (2012) (filled points).  
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Figure 2. (a) Close up photos of the vessel containing 5 g of coconut oil as it is warmed at 0.1 

°C/min from 6 °C. Inset is a photo’ of the entire vessel.  

(b) As in (a) but in which the liquid oil at 35 °C is cooled at 0.1 °C/min.  

(c) Polarised optical micrograph of coconut oil at 27 °C (after heating from 6 °C to 35 °C 

and then cooling to 20 °C) showing spherulites of needle-like crystals dispersed in liquid 

oil. 

   

(a) 

 

(b) 

 

(c) 
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Figure 3. Photographs from above during whipping of coconut oil after warming from 6 °C to 

either (a) 19 °C, (b) 23 °C or (c) 28 °C. Inset is photo’ from vessel side. 

  

(a)    

 

(b)    

 

(c)   
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Figure 4. (a) Over-run of coconut oil at different times during whipping for different whipping 

temperatures (given). Samples were warmed from 6 °C.   

(b) Over-run of coconut oil after whipping versus whipping temperature. Samples are 

either after warming from 6 °C (filled points) or after cooling from 30 °C (open points). 

(a)  

 

(b) 
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Figure 5.  Appearance of whipped coconut oil as a function of storage time (at the temperature of 

whipping) for samples whipped at (a) 19 °C, (b) 23 °C and (c) 27 °C after warming from 

6 °C.  
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Figure 6. Optical microscopy of coconut oil whipped and stored at different temperatures for 

different times after preparation (warmed from 6 °C); (a) 19 °C, (b) 23 °C and (c) 27 °C. 

The first two images for 23 °C refer to 24 h and include a polarising microscopy image 

whilst the third refers to 168 h.  

(a) 

  

 

(b)  
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Figure 7.  Photos of vessel containing coconut oil whipped at 23 °C as it is warmed to different 

temperatures given.  
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Figure 8. Variation of foam volume (filled points) and released oil volume (open points) after 12 h 

with storage temperature for coconut oil whipped at 23 °C. 

 

 

 

  

0

10

20

30

40

50

60

70

22 24 26 28 30 32

fo
am

 o
r 

oi
l v

ol
um

e/
m

L

temperature/oC

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



27 
 

Figure 9.  Over-run of coconut oil (filled circles), palm kernel stearin (open circles), shea butter 

(filled diamonds) and cocoa butter (open triangles) after whipping versus whipping 

temperature. Samples were warmed from room temperature. 
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Figure 10. (a) Photos from above of whipped shea butter at 33 °C (left), whipped cocoa butter at 34 

°C (middle) and whipped palm kernel stearin at 31 °C (right) immediately after 

whipping. Inset is photo’ from vessel side.  

 (b) Optical microscope images for systems in (a) respectively.   

(a) 

 

 

(b) 
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Figure 11. Photo’ of vessel containing 20 wt.% tristearin in tricaprylin (a) after warming to 75 °C 

and (b) after cooling to 15 °C. (c) Optical microscopy of oil dispersion at 15 °C. 

 

              (a)         (b)                   (c) 
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Figure 12. (a) Appearance of 20 wt.% tristearin in tricaprylin after whipping at 15 °C and (b) optical 

and polarised microscopy of system in (a). 
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