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Abstract 18 

Virus-like particles (VLPs) are potential oral vaccine candidates, as their highly compact 19 

structure may allow them to withstand the harsh conditions of the gastro-intestinal (GI) 20 

environment. Hepatitis B core antigen (HBcAg) is an immunogenic protein that assembles into 21 

30 or 34 nm diameter VLPs. Here, the stabilities of both the HBcAg polypeptide itself and the 22 

three-dimensional structure of the VLPs upon exposure to in vitro and ex vivo simulated gastric 23 

and intestinal fluids were investigated. Plant-expressed HBcAg VLPs were efficiently purified 24 

by sucrose density gradient and characterized. The purified VLPs did not show major chemical 25 

or physical instability upon exposure to the low pH conditions typically found in the stomach; 26 

however, they completely agglomerated upon acidification and subsequent pH neutralization. 27 

The HBcAg polypeptide was highly digested upon exposure to pepsin in simulated gastric fluids. 28 

HBcAg appeared more stable in both simulated and ex vivo intestinal fluids, where despite a 29 

partial digestion of the HBcAg polypeptide, the VLPs maintained their most immunogenic 30 

epitopes and their particulate conformation. These results suggest that HBcAg VLPs are likely to 31 

be unstable in gastric fluids, yet if the gastric instability could be bypassed, they could maintain 32 

their particulate structure and immunogenicity in intestinal fluids. 33 

 34 

Keywords: HBcAg; VLPs; oral delivery; proteins; gastrointestinal fluids; gastrointestinal 35 

stability 36 
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1. Introduction 38 

The mucosal delivery of protein-based therapeutics, including vaccines, is one of the greatest 39 

challenges of today’s drug delivery research. For instance, in the case of the oral route, the harsh 40 

gastric and intestinal fluids pose severe obstacles to the stability of protein drugs (Lee, 2002). 41 

The first physicochemical barrier encountered in the gastro-intestinal (GI) tract is constituted by 42 

the stomach fluid: the pH in the stomach generally ranges from pH 1.0 to 2.5 in the normal fasted 43 

state condition (Evans et al., 1988). Furthermore, the stomach fluid is rich in the enzyme pepsin 44 

that constitutes a further biochemical barrier to proteins (Mahato et al., 2003). The intestine has a 45 

more neutral pH than the stomach, generally ranging from pH 6.3 to 7.5 (Evans et al., 1988). 46 

However, the intestinal fluid also represents a biochemical threat to the stability of therapeutic 47 

proteins, mainly due to the presence of pancreatic enzymes including trypsin and chymotrypsin 48 

(Mahato et al., 2003). In  recent years, systems based on the use of nanoparticulate carriers, 49 

encapsulating and hence protecting labile proteins through their passage in the GI tract, have 50 

been investigated as possible options for the successful oral delivery of proteins (Kammona and 51 

Kiparissides, 2012).  52 

 53 

Virus-like particles (VLPs) are viral mimics, whose structure resembles the antigenic 54 

conformation and repetitive nature of the whole virus from which they are derived, yet are non-55 

infectious as they do not contain the viral genome (Jennings and Bachmann, 2008). VLPs differ 56 

from conventional nanoparticles, as the virus-derived protein antigen self-assembles into 57 

particles and hence the carrier is the antigen itself. Moreover, VLPs could be particularly suitable 58 

oral vaccine candidates, as it has been suggested that their highly compact structure could enable 59 

them to withstand the harsh GI environment (Herbst-Kralovetz et al., 2010; Huang et al., 2005). 60 
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For example, Norwalk VLPs, derived from Norwalk virus, a major pathogen responsible for 61 

human gastro-enteritis, have been shown to be stable at low pH and are trypsin resistant (Ausar 62 

et al., 2006). 63 

 64 

Hepatitis B virus (HBV) is a major human pathogen. Chronic infection with HBV is associated 65 

with cirrhosis and primary liver cancer. The 42 nm HBV virion is formed by an external 66 

envelope surrounding an internal nucleocapsid, containing partially double-stranded DNA (Seitz 67 

et al., 2007). This internal nucleocapsid results from the self-assembly of the nucleocapsid 68 

protein, a 21 kDa protein called Hepatitis B core antigen (HBcAg): 180 or 240 HBcAg 69 

monomers are arranged into 30 or 34 nm icosahedral particles (Birnbaum and Nassal, 1990; 70 

Crowther et al., 1994). HBcAg VLPs can be produced as a recombinant protein in a variety of 71 

hosts, including plants (Huang et al., 2006; Mechtcheriakova et al., 2006; Sainsbury and 72 

Lomonossoff, 2008). HBcAg has been shown to induce potent B and T cell responses (Milich et 73 

al., 1997, 1987). The very strong immunogenicity of HBcAg is believed to be related to its 74 

particulate and polymeric nature. Over the years, HBcAg has also earned the reputation of being 75 

an exceptionally promising carrier for foreign epitope sequences: the conjugation of such 76 

epitopes to particulate carriers allows high density and repetitive display of these epitopes on the 77 

surface of particles (Grgacic and Anderson, 2006). In addition, HBcAg is non-cytotoxic and is 78 

well tolerated in humans (Whitacre et al., 2009). 79 

 80 

In this study, HBcAg VLPs were produced in Nicotiana benthamiana using a transient 81 

expression system (Sainsbury and Lomonossoff, 2008). The aim of this study was to investigate 82 

both the chemical and physical stability of HBcAg VLPs upon exposure to several digestive and 83 
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denaturing conditions simulating the variable conditions of the GI environment. Such studies are 84 

a prelude to the development of plant-HBcAg VLPs as a source of oral vaccines. 85 

 86 

2. Experimental Section 87 

2.1. Materials 88 

pEAQ-HT-HBcAgΔ176 (Peyret et al., 2015a; Sainsbury et al., 2009) is a construct designed to 89 

express the N-terminal 176 amino acids of HBcAg from the pEAQ transient expression vector. 90 

Monoclonal mouse HBcAg antibody 10E11 was purchased from Abcam (UK). Anti-mouse HRP 91 

conjugated antibody was obtained from Invitrogen (UK) or Amersham Bioscience (UK). 92 

Complete® Protease inhibitor tablets were purchased from Roche (UK), Miracloth from Merck 93 

(UK) and dialysis tubes from Spectrum Laboratories (Europe) or from Sigma -Aldrich (UK). 94 

SDS-NuPAGE gels bis-tris Mini, NuPAGE MOPS buffer and NuPAGE LDS Sample Buffer 95 

were purchased from Invitrogen (UK). β-Mercaptoethanol, Brilliant Blue R Concentrate, 96 

3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB) substrate were purchased from Sigma 97 

(UK). InstantBlue stain was bought from Expedon (UK), SuperSignal West Dura 98 

Chemiluminescent Substrate from Thermo Scientific (UK) and polyvinylidene fluoride (PVDF) 99 

membranes and Hyperfilm from Amersham (UK). Pepsin (Ph Eur) from porcine gastric mucosa 100 

and pancreatin (≥ 3× USP) from porcine pancreas were purchased from Sigma-Aldrich (UK). A 101 

full-length intestine was obtained from a freshly killed pig at a local abattoir (H. G. Blake, 102 

Costessey Ltd, Norwich, UK). The animal was processed under standard UK legislation for 103 

food-producing animals, the intestine extracted within a few hours of slaughter, transported 104 

intact to the laboratory on ice and the intestinal fluids extracted within a short time. 105 

 106 
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2.2. HBcAg VLP expression, purification and characterization  107 

2.2.1. Plant growth, protein expression, extraction and detection techniques 108 

Nicotiana benthamiana plants were grown in a glasshouse at a fixed temperature of 25 ºC and 109 

used 3 to 4 weeks after pricking out. Suspensions of Agrobacterium tumefaciens (strain LBA 110 

4404) containing pEAQ-HT-HBcAgΔ176 were pressure-infiltrated into N. benthamiana leaves, 111 

using needle-less syringes as described previously 20. Infiltrated leaves were harvested 6 to 7 112 

days post-infiltration. Extraction of the protein from the leaves was performed at 4 ºC by 113 

homogenisation in three volumes of extraction buffer 1 (50 mM Tris-HCl, pH 7.25 : 150 mM 114 

NaCl, 2 mM ethylenediaminetetraacetic acid (EDTA), 0.1% w/v Triton X-100, 1 mM 115 

dithiothreitol and Complete® tablet) or extraction buffer 2 (10 mM Tris-HCl, pH 8.4 : 120 mM 116 

NaCl, 1 mM EDTA, 0.75% w/v sodium deoxycholate, 1 mM dithiothreitol and a Complete® 117 

Protease inhibitor tablet). The whole extract was then passed through a double layer of Miracloth 118 

and subsequently clarified by centrifugation at 12,000 x g in order to remove most plant cell 119 

debris. All extractions were performed at 4 ºC. Plant expressed HBcAg VLPs were further 120 

purified by centrifugation of the protein extracts on 10-60% w/v sucrose density gradients 121 

prepared in 10 mM Tris-HCl pH 8.4, 120 mM NaCl. The gradients were centrifuged for 2.5 122 

hours at 4°C at either 40,000 rpm in a SW41Ti rotor or at 30,000 rpm in a Surespin 630 rotor. 123 

After centrifugation, the gradients were fractionated and the fractions dialysed against 10 mM 124 

Tris-HCl, 120 mM NaCl, pH 8.4 or phosphate buffer saline (PBS).  125 

 126 

2.2.2. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) - 127 

Coomassie Blue Staining 128 
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Proteins were reduced and denatured by adding one volume of 3X LDS β-mercaptoethanol to 129 

two volumes of the samples. Samples were then heated to 100 ºC for 5 minutes. NuPAGE gels 130 

were run in 3-(N-morpholino)propanesulfonic acid (MOPS) buffer following the manufacturer’s 131 

instructions. After electrophoresis, the protein bands were visualised by addition of Coomassie 132 

blue-protein stain for at least 1 hour.  133 

 134 

2.2.3. Dot blot 135 

Three μL of each sample were spotted onto PDVF membranes using 10 μL tips. Membranes 136 

were left to dry for 30 minutes and then blocked with the blocking buffer (5% w/v dried milk, 137 

0.1% v/v Tween 20 in PBS) at 4 ºC overnight, before being incubated with monoclonal mouse 138 

HBcAg antibody, diluted 1:5000 in dot blot blocking buffer, for 2 hours. The membranes were 139 

then probed with anti-mouse horseradish peroxidase (HRP) conjugated secondary antibody, 140 

diluted 1:5000 in blocking buffer for a further 2 hours. Chemiluminescent HRP substrate was 141 

used for the detection of the secondary antibody and captured on Hyperfilm (Sainsbury and 142 

Lomonossoff, 2008). 143 

 144 

2.2.4. Western blot  145 

SDS-PAGE gels were run as described above and the proteins transferred to PVDF membranes 146 

immediately after the electrophoresis. The membranes were blocked with the blocking buffer 147 

(1% w/v bovine serum albumin, 1% w/v casein, 0.05% v/v Tween 20 in PBS) at 4 ºC overnight 148 

and before being incubated with anti-mouse horseradish peroxidase (HRP) conjugated secondary 149 

antibody, diluted 1:5000 in blocking buffer for 2 hours. Chemiluminescent HRP substrate was 150 
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used for the detection of the secondary antibody and captured on Hyperfilm (Peyret et al., 2015a; 151 

Sainsbury and Lomonossoff, 2008). 152 

 153 

2.2.5. Transmission Electron Microscopy (TEM)  154 

Samples diluted to an approximate concentration of 0.1 mg/mL were adsorbed onto hexagonal, 155 

plastic and carbon-coated copper grids, which were then washed three times with water. The 156 

grids were negatively stained with 2% w/v uranyl acetate before being imaged using a FEI 157 

Tecnal G2 20 Twin TEM with a built-in digital camera. 158 

 159 

2.2.6. Native agarose gel electrophoresis 160 

Agarose gels [1.2% w/v agarose in Tris/Borate/EDTA (3.03 g/L Tris-HCl, 5.5 g/L boric acid, 2 161 

mM EDTA)] were usually run in duplicate at 60 V for 90 minutes (Aljabali et al., 2012). One gel 162 

was stained with a 0.5 μg/mL solution of ethidium bromide for 30 minutes and then visualised 163 

under UV light (wavelength = 302 nm). The other gel was stained with Brilliant Blue R 164 

Concentrate (Coomassie stain) for 30 minutes. 165 

 166 

2.3. HBcAg Stability in Simulated Gastric Fluid (SGF) 167 

2.3.1. HBcAg Stability in Simulated Gastric Fluid (SGF) without Pepsin 168 

VLP-rich fractions corresponding to 30 and 40 % w/v sucrose density bands were pooled 169 

together and were then diluted 1:5 with a solution of 80 mM HCl and 34 mM NaCl, resulting in a 170 

final pH of 1.2, matching SGF (British Pharmacopeia, 2012). The HBcAg solution in SGF was 171 

incubated at 37 °C for two hours. After incubation, it was layered on the top of a pH 1.2, 10 to 172 

45% w/v sucrose density step gradient. Alternatively, purified HBcAg VLP preparations were 173 
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incubated at pH 1.2 for two hours as described previously. At the end of the two hour incubation, 174 

the pH of the sample was neutralised by initial dropwise addition of 1 M NaOH. The neutralising 175 

agent was switched to 0.1 M NaOH once the pH became closer to neutrality. The sample was 176 

then layered on the top of 10 mM Tris-HCl, 120 mM NaCl pH 8.4, 10 to 45% w/v sucrose 177 

density step gradient. As a control, the purified HBcAg particles were diluted in a 10 mM Tris-178 

HCl pH 8.4, 120 mM NaCl solution. After two hours incubation, the control sample was layered 179 

on the top of a 10 mM Tris-HCl pH 8.4, 10 to 45% w/v sucrose density step gradient. Following 180 

ultracentrifugation, fractions were collected from the sucrose gradients and analysed by 181 

Coomassie stained SDS-PAGE. If a precipitate formed at the bottom of the tube upon 182 

ultracentrifugation, it was re-suspended in 10 mM Tris-HCl, 120 mM NaCl pH 8.4 and analysed 183 

by Coomassie stained SDS-PAGE and Western blot. 184 

 185 

For native agarose gel analysis, purified HBcAg VLPs in water were diluted 1:4 in each of the 186 

four acidic solutions: 10 mM HCl (pH 2) with 34 mM NaCl, 3.2 mM HCl (pH 2.5) with 34 mM 187 

NaCl, 1 mM HCl (pH 3) with 34 mM NaCl and 0.32 mM HCl (pH 3.5) with 34 mM NaCl. After 188 

two hours incubation, the four samples were loaded on agarose gel for electrophoresis. For TEM 189 

analysis, purified HBcAg VLPs in water were diluted 1:6 with a solution of 73 mM HCl to a 190 

final pH of 1.2. After two hours incubation at 37 °C, the pH was neutralised using aliquots of 191 

400 mM NaHCO3. The resulting sample was used for imaging.  192 

 193 

2.3.2. HBcAg Stability in Simulated Gastric Fluid (SGF) with Different Pepsin 194 

Concentrations 195 
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Purified HBcAg VLPs were incubated at pH 1.2 with different concentrations of pepsin and a 196 

control with no pepsin (10, 3.2, 1, 0.5, 0.2, 0.1, 0.05, 0.01 and 0 mg/mL). After two hours 197 

incubation at 37 ºC, the samples were boiled to stop the enzymatic reaction and the proteins 198 

analysed by Western blotting.  199 

 200 

2.4. HBcAg Stability in in vitro and ex vivo Intestinal Fluid 201 

2.4.1. HBcAg Stability in Simulated Intestinal Fluid (SIF) 202 

Simulated intestinal fluid (SIF) with pancreatin was prepared by mixing 7.7 mL of 0.2 M 203 

NaOH with 25 mL of a solution containing 6.8 g of K2PO4 and 50 mL of water. Porcine 204 

pancreatin (≥ 3× USP), 333 mg, was then added. The pH was then adjusted to 6.8 and the 205 

volume diluted to 100 mL with water (British Pharmacopeia, 2012). SIF without pancreatin was 206 

prepared identically, but omitting the pancreatin. Before the stability experiment, a protease 207 

inhibitor tablet was diluted in 5 mL SIF without pancreatin. For Coomassie stained SDS-PAGE 208 

and Western blot analysis, five samples of purified HBcAg diluted 1:19 in SIF were incubated at 209 

37 ºC for 240, 180, 120, 60 and 30 minutes. After the incubation the (10 x) protease inhibitor 210 

solution was diluted 1:9 in each digestion sample to stop the enzymatic reaction and samples 211 

were immediately cooled on ice. A 1:19 dilution of HBcAg in SIF without pancreatin was used 212 

as a positive control. A 1:19 dilution of water in SIF was used as a negative control. All samples 213 

were analysed by Coomassie stained SDS-PAGE and Western blotting. 214 

 215 

For dot blot analysis, the sample resulting from the digestion and the positive control were 216 

loaded onto six different 10-60% w/v sucrose density gradients. After ultracentrifugation, 217 

fractions from the sucrose gradients were collected and subjected to dot blot analysis.  218 
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 219 

For native agarose gel electrophoresis, purified HBcAg was diluted 1:9 in SIF and incubated at 220 

37º C for 30, 60, 120, 180 or 240 minutes. After the incubation the protease inhibitor solution 221 

was diluted 1:9 in each sample corresponding to different incubation times and they were 222 

immediately cooled on ice. A 1:9 dilution of HBcAg in SIF without pancreatin was used as 223 

positive control and a 1:9 dilution of water in SIF was used as a negative control. All samples 224 

were used for ethidium bromide stained and Coomassie stained agarose gel electrophoresis. 225 

 226 

For TEM imaging, HBcAg was diluted 1:6 in SIF and the sample was incubated for 120 227 

minutes. The enzymatic reaction was then stopped by 1:9 dilution of protease inhibitor solution 228 

in the digestion sample. The sample was kept cool on ice. TEM imaging was carried out within 229 

two hours of the end of the incubation. 230 

 231 

2.4.2. Ex Vivo HBcAg Stability in Natural Intestinal Fluid (natIF) 232 

Pig intestinal fluids were chosen as natural intestinal fluids (natIFs). The full-length intestine 233 

collected from the freshly killed animal was immediately transported to the laboratory and used 234 

for the collection of the luminal fluids. Four segments of approximately the same size from the 235 

proximal to the distal small intestine were divided and luminal fluid content was collected from 236 

each of the four segments separately. Small aliquots were made and frozen at – 80 ºC until use. 237 

Digestion experiments were conducted within ten weeks of collection of the fluids. For the SDS-238 

PAGE analysis, aliquots from the four different segments of the small intestine were thawed and 239 

the solid content was pelleted by centrifugation at 9300 x g for 10 minutes. Aliquots from the 240 

most proximal part of the intestine (i.e. duodenum) were centrifuged twice to separate the more 241 
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viscous phase. The supernatants constituted the natural intestinal fluid (natIF) of this study. The 242 

four natIFs from the proximal to the distal small intestine are referred to as natIF 1, natIF 2, natIF 243 

3 and natIF 4 for the studies detailed below. Purified HBcAg aliquots were diluted 1:19 in each 244 

of the four natIFs and incubated at 37 ºC for 4 hours. At the end of the incubation, 1:3 dilutions 245 

of the four samples in water where made and then boiled to stop the enzymatic reaction. For a 246 

positive control, HBcAg aliquots were diluted 1:19 in PBS. Moreover, enzymatically inactive 247 

natIFs media were also used as positive controls: 1:3 dilutions of the natIFs in water and LDS β-248 

mercaptoethanol were boiled for 10 minutes and then cooled and purified HBcAg was added in 249 

the same ratio as in the digestion samples. Negative controls were also created by diluting the 250 

PBS in natIFs. All samples were then analysed by Coomassie staining SDS-PAGE and Western 251 

blot. 252 

 253 

For dot blots, purified HBcAg aliquots were diluted 1:19 in the four natIFs and incubated at 37 254 

ºC for four hours. Then the proteolysis was stopped by the addition of 1:9 dilution of protease 255 

inhibitor solutions. For a positive control, HBcAg was diluted 1:19 in PBS. The control and the 256 

digestion samples were loaded onto five identical sucrose density gradients. After 257 

ultracentrifugation, fractions from the sucrose gradients were collected and analysed by dot blot 258 

using anti-HBcAg mouse monoclonal antibody. 259 

 260 

3. Results and Discussion 261 

3.1 Purification and analysis of plant-expressed HBcAg 262 

Sainsbury and Lomonossoff 14 showed that HBcAg could be expressed using the CPMV-HT 263 

system up to yields of approximately 1 g per kg of fresh weight tissue. Subsequently methods for 264 
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the efficient purification of plant-expressed HBcAg VLPs have been developed (Peyret, 2015; 265 

Peyret et al., 2015a, 2015b). Here, the final purification of VLPs from the crude extract was 266 

carried out by sucrose density gradient ultracentrifugation. Seven fractions, each approximately 267 

corresponding to the density layers of sucrose and to the supernatant, were collected from the 268 

bottom of the tube (Figure 1. A) and analysed by Coomassie stained SDS-PAGE and Western 269 

blot (Figure 1. B left and right side, respectively). 270 

 271 

The Coomassie stained gel (Figure 1. B left side) showed a 20 kDa band, corresponding to the 272 

size of the 176 amino acid long monomeric HBcAg, in the 30, 40 and 50% w/v sucrose gradient 273 

fractions. The same band was, however, absent from the 60% w/v sucrose fraction. Most plant 274 

protein bands remained in the supernatant and in the 10 and 20% w/v sucrose fractions. The anti-275 

HBcAg Western blot (Figure 1. B right side) confirmed that the 20 kDa band, detected in the 30, 276 

40 and 50 % w/v sucrose fractions in the Coomassie stained SDS-PAGE gel, corresponded to 277 

HBcAg. As expected, HBcAg was also detected in the original crude extract (lane E). In the 278 

HBcAg-rich lanes, it is also possible to notice a persistent 40 kDa band. The band was also 279 

observed by others and corresponds to HBcAg dimers, which are resistant to denaturation 280 

(Huang et al., 2006; Mechtcheriakova et al., 2006). Even larger size HBcAg multimeric 281 

structures have been detected in denaturing gel electrophoresis (Broos et al., 2007). Weaker 282 

bands of circa 15 kDa monomeric HBcAg and its dimer of 30 kDa can also be seen and they are 283 

possibly the result of partial enzymatic digestion of HBcAg by plant proteins. 284 

 285 

These results are in accordance with previous studies on HBcAg (Birnbaum and Nassal, 1990; 286 

Broos et al., 2007; Huang et al., 2006). Furthermore, when a sample containing the dialysed 30 287 
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and 40% w/v sucrose gradient fractions was examined by native agarose gel (Figure 1. C), a 288 

clear band could be seen in the both the Coomassie- and ethidium bromide-stained gels. The two 289 

signals had the same electrophoretic mobility, suggesting that the VLP protein core, stained by 290 

the Coomassie, encapsidated nucleic acids, stained by ethidium bromide, consistent with 291 

previous reports (Newman et al., 2003). The presence of intact VLPs was further confirmed by 292 

TEM images (Figure 1. D) of the dialysed 30 and 40% w/v sucrose gradient fractions: intact 293 

VLPs were clearly visible and their diameter (circa 30 to 35 nm) matches the size documented in 294 

the literature (Lee and Tan, 2008; Wingfield et al., 1995). Overall, the Coomassie-stained SDS-295 

PAGE gel, the native agarose gel and the TEM showed a very high degree of purification of the 296 

VLPs upon ultracentrifugation. Approximately, a purity of > 90% could be estimated by 297 

visualization of the Coomassie-stained gel (Figure 1 B left side, lanes 4 and 5). 298 

 299 

 300 
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301 

302 

 303 

Figure 1. HBcAg purification and characterization. (A) Diagram of sucrose gradient (7 fractions 304 

from the supernatant to 60% w/v sucrose); (B) Coomassie stained SDS-PAGE (left side) and 305 

Western blot (right side) of the fractions. The lanes arrangement was as follows: crude extract 306 

(lane E), supernatant (lane S), 10 to 60% w/v sucrose fractions (lane 1 to lane 6). (C) Native 307 

agarose gel electrophoresis - stained with Coomassie stain (lane 1) or with ethidium bromide 308 
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(lane 2); and (D) TEM images of Purified HBcAg samples, dialysed from 30 and 40% w/v 309 

sucrose gradient fractions.  310 

311 

3.2. HBcAg in vitro and ex-vivo stability in gastro-intestinal media  312 

A previous study on plant-expressed HBcAg VLPs showed that oral administration of plant 313 

extracts containing HBcAg elicited only poor immunogenicity in mice and it was speculated that 314 

this could have been due to the gastric degradation or the physical disassembly of the antigen 315 

(Huang et al., 2006). Hence, the stability of plant-expressed HBcAg VLPs in gastric and 316 

intestinal conditions was investigated here: each experiment consisted of incubation of purified 317 

VLPs in the bio-relevant media, followed by a post-incubation assessment of their physical and 318 

chemical stability. 319 

 320 

3.2.1. HBcAg Stability in Simulated Gastric Fluid (SGF) 321 

Initially the stability of plant-expressed HBcAg VLPs was investigated at the acidic pH of the 322 

SGF (pH 1.2). Three experiments were carried out ( 323 

Figure 2. A, B and C): in one case purified HBcAg VLPs were incubated for 2 hours at pH 8.4 324 

and then separated by sucrose gradient ultracentrifugation, with fractions of the gradient 325 

prepared at the same pH (control,  326 

Figure 2. A). In the second case HBcAg VLPs were incubated for 2 hours at pH 1.2 and then 327 

sample separated by sucrose gradient ultracentrifugation, set up in a way to maintain the pH of 328 

the sucrose fractions consistent with the incubation pH ( 329 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



17 

 

Figure 2. B). In the third case, HBcAg VLPs were incubated for 2 hours at pH 1.2, then, 330 

following neutralization, the sample was separated by sucrose gradient ultracentrifugation, with 331 

sucrose fractions prepared at pH 8.4 ( 332 

Figure 2. C). 333 

 334 

SDS-PAGE followed by Coomassie Blue staining of the collected fractions shows that the 335 

acidic pH of the SGF did not chemically degrade the HBcAg polypeptide, which ran as a circa 336 

20 kDa protein band ( 337 

Figure 2. B), as in the control ( 338 

Figure 2. A). HBcAg migrated towards the bottom of the density gradient in the control sample 339 

incubated at pH 8.4 ( 340 

Figure 2. A), as indicated by the presence of the 20 kDa band only in the lanes corresponding 341 

to 30 and 40% w/v sucrose fractions (lanes 6 to 8), suggesting physically intact VLPs. However, 342 

in the sample incubated in SGF and analysed on a sucrose gradient at pH 1.2 ( 343 

Figure 2. B), the 20 kDa band could be seen in most of the fractions (lanes 1 to 8). This result 344 

clearly suggests that the capsid structure of HBcAg VLP exhibits a certain degree of physical 345 

instability on exposure to the acidic conditions. In the case of the sample of VLPs initially 346 

exposed to pH 1.2 and then neutralized and separated by ultracentrifugation containing fractions 347 

at pH 8.4, the Coomassie stained gel ( 348 

Figure 2. C) showed that a 20 kDa protein band, corresponding to HBcAg, was not present in 349 

any of the gradient fractions. 350 

 351 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



18 

 

However, a precipitate was visible at the bottom of the tube used for the ultracentrifugation of 352 

the sample. This precipitate was re-suspended and analysed by SDS-PAGE, revealing the 353 

presence of a band of a similar size to HBcAg, which reacted with anti-HBcAg antibodies in a 354 

Western blot (Fig. 2C). The fact that HBcAg was not found in any of the fractions of the gradient 355 

but in a precipitate at the bottom of the tube indicates that HBcAg was not present as intact VLP, 356 

nor as a disassembled monomeric or multimeric form but as a high molecular weight aggregate. 357 

 358 

For a final characterisation of HBcAg in SGF without pepsin, purified HBcAg particles were 359 

incubated in SGF at pH 1.2 for two hours and then the acidity was neutralised. This sample was 360 

used for TEM imaging. The TEM image ( 361 

Figure 2. D) showed that the typical HBcAg VLPs detected in the control sample could not be 362 

found in the acidified and neutralised sample; instead aggregates could be seen, probably 363 

representing aggregated VLPs.  364 

 365 
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366 

 367 

Figure 2. HBcAg stability in simulated gastric fluid (without pepsin). (A) Purified HBcAg was 368 

incubated in the control (pH 8.4) and then after 2 hours incubation, separated by density gradient 369 

ultracentrifugation at pH 8.4 - supernatant (lanes 1 to 3), 10 to 45% w/v sucrose fractions (lanes 370 

4 to 8). (B) Purified HBcAg was incubated in SGF (pH 1.2) and then, after 2 hours incubation, 371 

separated by density gradient ultracentrifugation at pH 1.2 - supernatant (lanes 1 to 3), 10 to 45% 372 

w/v sucrose fractions (lanes 4 to 8). (C) Purified HBcAg was incubated in SGF (pH 1.2) and then 373 

after 2 hours incubation, the pH was neutralized and the sample separated by density gradient 374 

ultracentrifugation at pH 8.4 - supernatant (lane 1), 10 to 45% w/v sucrose fractions (lanes 2 to 375 

7); precipitate (lane P); at the right side of the image the same precipitate was examined by 376 

Western blot. (D) TEM images: a control HBcAg sample (left image), an HBcAg sample after 2 377 

hours acidification in SGF and subsequent neutralisation (right image). 378 

 379 
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These results taken together indicate that the HBcAg polypeptide is chemically stable at pH 380 

1.2. However, the VLPs tend to partially disassemble at this pH ( 381 

Figure 2. B). When the pH is raised the dissociated subunits tend to form aggregates rather 382 

than reassemble into VLPs. ( 383 

Figure 2. C and D). These results demonstrate that HBcAg VLPs are likely to be physically 384 

unstable in the stomach environment of humans. Although it is possible that the low pH would 385 

not cause a complete disassembly of the capsid, the subsequent passage to a more neutral pH in 386 

the intestine would induce aggregation. However, the actual pH of human gastric fluid in fasted 387 

state is not strictly 1.2, but is in the range between 1.0 and 2.5 (Evans et al., 1988). Hence, to 388 

better delineate HBcAg VLP physical stability in gastric conditions, the threshold pH for HBcAg 389 

VLP stability was investigated using native agarose gel electrophoresis. 390 

 391 

The ethidium bromide-stained agarose gel (Figure 3. - left side) showed the presence of 392 

nucleic acids trapped in the wells of samples incubated at pH 2.0 (lane 1) and pH 2.5 (lane 2). 393 

The sample incubated at pH 3.0 (lane 3) showed a smear of nucleic acids in the gel, while a 394 

discrete band was visible in the sample incubated at pH 3.5 (lane 4). The Coomassie stained gel 395 

(Figure 3. - right side) confirmed the presence of a protein smear in the sample incubated at pH 3 396 

(lane 3); furthermore, a protein band could be seen in the sample incubated at pH 3.5 (lane 4): 397 

this band showed an identical electrophoretic migration to the respective lane in the ethidium 398 

bromide gel. These results suggest that HBcAg VLP quaternary structure is physically stable 399 

upon incubation in acid at pH 3.5 for two hours but is only partially stable when incubated at pH 400 

3.0. Considering the previous finding that HBcAg VLPs appeared to partially dissociate and then 401 

aggregate upon acidification and subsequent neutralisation ( 402 
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Figure 2. C and D), it is likely that HBcAg VLPs treated at pH 2.0 and pH 2.5 underwent a 403 

similar process upon neutralisation by the Tris/Borate/EDTA (TBE) buffer present in the gel, 404 

leading to observed trapping in the wells.  405 

406 

Figure 3. HBcAg VLP stability in different acidic conditions. HBcAg was incubated at different 407 

pH and the samples run in an ethidium bromide stained native agarose gel (left) and an identical 408 

Coomassie stained gel (right): pH 2 (lane 1); pH 2.5 (lane 2); pH 3 (lane 3) and pH 3.5 (lane 4). 409 

410 

This result is in accordance with Newman et al 25: in that case, it was shown that bacterially 411 

expressed HBcAg incubated at pH 2.0 for only 30 minutes was unstable and it remained blocked 412 

in the well (Newman et al., 2003). Overall, in the current study, the native agarose gel 413 

electrophoresis revealed that this complete loss of the physical stability upon incubation of 414 

HBcAg for two hours in acid and further neutralisation occurs at pH values below 3 to 3.5 415 

(Figure 3). The fact that the VLP particulate structure was lost upon incubation in media at pH 416 

values lower than pH 3 to 3.5 suggests that HBcAg would be unstable in the fasted gastric 417 

environment, i.e. pH 1 to pH 2.5 (Evans et al., 1988). However, it was reported that the average 418 

stomach pH can remain > 3.5 for the first three hours after a meal (Kalantzi et al., 2006). 419 

Therefore, it could be expected that the VLP structure could be physically stable at the pH of the 420 

fed stomach. 421 

 422 

  1       2        3       4        1       2       3       4       

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



22 

 

The stability of purified plant-expressed HBcAg was also evaluated after 2 hours incubation in 423 

SGF in the presence of the enzyme pepsin. The British Pharmacopoeia (2012) formula of SGF 424 

has a fixed 3.2 g/L pepsin (Ph Eur) concentration; however variations of pepsin activity up to 425 

four orders of magnitude have been reported in humans (Gomes et al., 2003). For this reason it 426 

was decided to incubate several aliquots of HBcAg in SGF at pH 1.2 containing pepsin at 427 

concentrations ranging from 10 g/L to 0.01 g/L. After two hours incubation, the samples were 428 

analysed by Western blotting (Figure 4.). The Western blot shows that the 20 kDa band, present 429 

in the control and corresponding to intact HBcAg, was absent in the sample of HBcAg incubated 430 

in SGF containing 3.2 g pepsin/L, i.e. the concentration specified in the British Pharmacopoeia 431 

(2012). Furthermore, some digestion of HBcAg occurred at all concentrations of pepsin. For 432 

concentrations of pepsin ≥ 0.5 g/L (lanes 2 to 5), no anti-HBcAg signal could be detected; 433 

however, for concentrations of pepsin ≤ 0.2 g/L (lanes 7 to 10) a circa 14 kDa band of anti-434 

HBcAg immunoreactivity could be visualised. Only when the concentration of pepsin was as low 435 

as 0.01 g/L (lane 10) was a detectable amount of 20 kDa HBcAg present.  436 

437 

Figure 4. HBcAg digestion in SGF (with pepsin). HBcAg was incubated for two hours in SGF 438 

containing different concentrations of pepsin. The digested samples were then analysed by 439 

Western blot: SGF without pepsin (lane 1 and lane 6); 10 g/L pepsin (lane 2); 3.2 g/L pepsin 440 

(lane 3); 1 g/L pepsin (lane 4); 0.5 g/L pepsin (lane 5); 0.2 g/L pepsin (lane 7); 0.1 g/L pepsin 441 

(lane 8); 0.05 g/L pepsin (lane 9) and 0.01 g/L pepsin (lane 10). 442 
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 443 

This result suggests that HBcAg is extremely sensitive to chemical digestion by pepsin, not 444 

only at the pharmacopoeial pepsin concentration of SGF, but at thousands-fold lower 445 

concentrations. Wang et al (2015) have recently shown that there is a good correlation between 446 

the stability of peptides in SGF and native human gastric fluids. Hence, according to the data 447 

presented here, it is likely that HBcAg, aside from being physically unstable, would also be 448 

highly digested in the gastric fluid in vivo. 449 

450 

3.2.2 HBcAg in Intestinal Fluids: An In Vitro and Ex Vivo Stability Approach 451 

The second barrier that HBcAg will encounter upon oral administration is the harsh 452 

environment of the small intestine: it contains several enzymes, including trypsin and 453 

chymotrypsin, which could digest a protein antigen. The ability of HBcAg to withstand the 454 

intestinal digestive environment was investigated from two angles: firstly HBcAg was incubated 455 

in a conventional in vitro model of intestinal fluid containing pancreatic enzymes. Then a more 456 

bio-relevant study was carried out using natural small intestinal fluids from pig, in order to more 457 

closely mimic the in vivo scenario in humans. Similar trends in the degradation of peptides in 458 

native human intestinal fluids, native pig intestinal fluids and simulated human intestinal fluids 459 

were observed by Wang et al (2015), validating the approach used. 460 

 461 

The results of the experiments examining the chemical and physical stability of HBcAg VLPs 462 

incubated in SIF are shown in Figure 5. The Coomassie stained gel (Figure 5. A) shows that the 463 

circa 20 kDa band, seen in the positive control (lane 1) and corresponding to HBcAg, slightly 464 

overlaps with a much fainter band of the same size in the negative control (lane 2). For this 465 
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reason, careful consideration is required when interpreting these results. The different protein 466 

bands visible in the negative control are probably pancreatic proteins and enzymes. At all 467 

incubation times in SIF, HBcAg was partially digested to give predominantly a circa 17 kDa 468 

protein band. The intensity of this band seems to increase proportionally with the incubation time 469 

in SIF. These results were confirmed by the Western blot, which shows that the strongest anti-470 

HBcAg signal in the samples incubated in SIF (lanes 3 to 7) was the circa 17 kDa band, though a 471 

series of HBcAg-specific bands of intermediate sizes between the full-length and the 17 kDa 472 

version were also present in smaller quantities. As expected a circa 20 kDa band, corresponding 473 

to undigested HBcAg is seen in the positive control (lane 1) and no bands are present in the 474 

negative control (lane 2). Considering that the anti-HBcAg mouse monoclonal primary antibody 475 

used has specificity for the first 10 amino acids at the N-terminal, it is evident that the digestion 476 

is expected to have only occurred at the C-terminus. In contrast, digestion at the N-terminal 477 

would have resulted in loss of affinity of HBcAg to this given antibody, resulting in a lack of 478 

immunoreactivity. The above results demonstrated that HBcAg was digested to a smaller protein 479 

after exposure to SIF. 480 

 481 

To determine whether the major digestion product (17 kDa) was in the form of VLPs, the 482 

digested samples were examined on sucrose gradients. Figure 5. C, D and E illustrate the effect 483 

of the incubation of HBcAg in SIF with pancreatin on its physical stability. The dot blot (Figure 484 

5. C) represents the HBcAg sedimentation upon ultracentrifugation of the samples undergoing 485 

the proteolytic treatment. Irrespective of the incubation time in SIF with pancreatin, most 486 

HBcAg immunoreactivity could be visualised in dots corresponding to the 30 and 40% w/v 487 

sucrose fractions, as in the undigested VLP positive control. This result suggests that HBcAg 488 
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maintained its particulate form after digestion. This was also confirmed by native agarose gel 489 

electrophoresis (Figure 5. D). HBcAg incubated in SIF (lanes 2 to 7) showed electrophoretic 490 

migration almost identical to that of the untreated VLP of the control sample (lane 1). Finally, 491 

TEM imaging (Figure 5. E) showed that VLPs were still present after incubation of HBcAg in 492 

SIF with pancreatin for 120 minutes. These results taken together indicate that HBcAg was 493 

partially digested upon treatment in SIF; however the digestion did not seem to interfere with 494 

physical stability of the VLPs. 495 

 496 

 497 

Figure 5.  HBcAg chemical stability in SIF. Aliquots of purified HBcAg were incubated in SIF 498 

with pancreatin for different time intervals. All the resulting digestion samples were analysed by 499 

different techniques. (A) Coomassie stained SDS-PAGE and (B) Western blot: positive control 500 
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(lane 1); negative control (lane 2); 30 minutes digestion (lane 3); 60 minutes (lane 4); 120 501 

minutes (lane 5); 180 minutes (lane 6); 240 minutes (lane 7). (C) Dot blot of sucrose gradient 502 

fractions: percentages indicate the approximate concentration of the sucrose density fraction (S = 503 

supernatant), while incubation times are listed vertically; (P = positive control). (D) Native 504 

agarose gel of the digested samples : positive control (lane 1); negative control (lane 2); 30 505 

minutes (lane 3); 60 minutes (lane 4); 120 minutes (lane 5); 180 minutes (lane 6); 240 minutes 506 

(lane 7). (E) TEM image of HBcAg incubated in SIF with pancreatin for two hours. 507 

 508 

The pancreatin present in the SIF contains several pancreatic proteases, including trypsin, 509 

chymotrypsin and elastase, which could potentially digest antigens. Interestingly, it was reported 510 

in a virology study, that HBcAg, expressed in Xenopus oocytes, was partially digested into 511 

smaller proteins upon incubation in trypsin: the main residue was a circa 17 kDa protein, but 512 

several intermediate forms ranging between 17 and 21 kDa were also detected, corresponding to 513 

different cleavage sites for trypsin at the C-terminus. The trypsin digestion did not seem to affect 514 

the particle assembly (Seifer and Standring, 1994). It is worth remembering that HBcAg bears in 515 

its monomeric structure a C-terminal tail arginine-rich domain. This domain is not essential for 516 

the assembly and stabilisation of the monomers into a VLP (Birnbaum and Nassal, 1990; Zheng 517 

et al., 1992). Intriguingly, it was demonstrated that the trypsin digests only these C-terminus 518 

sequences, which were “non-essential” for the particle assembly. The authors suggested that 519 

these C-terminal regions are accessible to the enzymatic attack, while other possible cleavage 520 

sites are relatively sequestered inside the VLP structure. Moreover, it was shown that the 521 

maximal trypsin cleavage was achieved after only 8 minutes of incubation (Seifer and Standring, 522 

1994). The results obtained in SIF with pancreatin strongly suggest that the main pancreatic 523 
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enzyme involved in the digestion of HBcAg is trypsin. In fact the intestinal bio-relevant media 524 

used determined a similar pattern of digestion to that indicated in the study, described by Saifer 525 

and Standring (Seifer and Standring, 1994). 526 

 527 

These results suggest that HBcAg VLPs, though partially digested, could still withstand the 528 

intestinal environment while maintaining the particulate morphology and immunogenicity. In 529 

fact, it was found that all the major epitopes mediating T- and B-cell responses are not found in 530 

the C-terminal arginine rich region (Vanlandschoot et al., 2003), which is digested by the trypsin. 531 

 532 

Despite the fact that pancreatic enzymes are the main proteases in the intestine, it has been 533 

recently reported that pancreatic proteases only partially contribute to the total intestinal 534 

enzymatic activity in animal models (Reuter et al., 2009). Therefore, the stability of HBcAg in 535 

natural intestinal fluid (natIF) of the pig was investigated, in order to complement the in vitro 536 

model. The whole pig small intestine was divided into four parts of approximately same length 537 

and natIFs were collected from the resulting four sections and named natIF 1, natIF 2, natIF 3 538 

and natIF 4 from the proximal to the distal regions. For evaluating the extent of digestion, 539 

HBcAg VLPs were incubated in each of these natural media at 37 ºC for 4 hours and the fate of 540 

HBcAg was subsequently evaluated. 541 

 542 

Figure 6. shows the Coomassie stained SDS-PAGE, Western blot and dot blot of sucrose 543 

gradient fractions. As a negative control, natIF diluted in water was used. Positive controls, 544 

including a dilution of HBcAg in PBS and a dilution in previously boiled, and thus enzymatically 545 

inactive, natIFs were used. The Coomassie stained gel (Figure 6. A) showed a faint 20 kDa band 546 
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corresponding to HBcAg in the positive control in PBS (lane 1). However, it was difficult to 547 

identify HBcAg in the other samples containing natIFs due to the very high content of proteins of 548 

various sizes present in these media and also visible in the negative control. Nevertheless, the 549 

Western blot of the same samples (Figure 6. B) showed that anti-HBcAg immunoreactivity was 550 

detected at circa 20 kDa in all positive controls where natIFs had been previously inactivated 551 

(lanes 2 to 5). In contrast, for the actual digestion samples where active natIFs were present 552 

(lanes 6 to 9), HBcAg was mainly visible as a circa 16-17 kDa band. The intensity of the band 553 

was the highest in natIF 1 (lane 6) and reached a minimum in natIF 2 (lane 7), then it gradually 554 

increased in natIF 3 (lane 8) and natIF 4 (lane 9). In natIF 4 a weak 20 kDa band was also 555 

present, probably corresponding to intact HBcAg. As expected, no bands were seen in the 556 

negative controls (lanes 11 to 14). 557 

 558 

In a similar experiment samples were not boiled, so that the VLPs could maintain their native 559 

physical structure. However, the enzymatic reaction was stopped at the end of the digestion study 560 

by adding a protease inhibitor solution. Sucrose density gradient ultracentrifugation was then 561 

carried out in parallel for the four samples, corresponding to the digestion of HBcAg in the four 562 

natIFs, and for the control sample of HBcAg in PBS. After ultracentrifugation, fractions were 563 

collected and analysed by dot blot. Figure 6. C shows that in the positive control anti-HBcAg 564 

immunoreactive dots were found mainly in the 30 and 40 % w/v sucrose fractions, as typical for 565 

intact HBcAg VLPs. For samples digested in the natIFs, HBcAg was still detected mainly in the 566 

30 and 40% w/v sucrose density fractions; however, some immunoreactivity was also present in 567 

the less dense fractions of the gradient.  568 
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 569 

Figure 6. Ex vivo HBcAg stability in pig intestinal fluids. Stability studies were carried out in 570 

four NatIFs collected from pig, named natIF 1, natIF 2, natIF 3, natIF 4 from the proximal to the 571 

distal small intestine, respectively. HBcAg was incubated in each of the aforementioned media at 572 

37 ºC for four hours. (A) and (B) represent the Coomassie stained SDS-PAGE and Western blot 573 

(monoclonal antibody), respectively. The two gels were run identically: HBcAg in PBS (lane 1); 574 

HBcAg in inactive natIF 1 to natIF 4 (lanes 2 to 5, respectively); HBcAg in natIF 1 to natIF 4 575 

(lanes 6 to 9); empty lane (lane 10); PBS in natIF 1 to natIF 4 (lanes 11 to 14). (C) shows the dot 576 

blot (monoclonal antibody) of fractions collected from sucrose density gradient 577 

ultracentrifugation of different HBcAg samples incubated in each of the aforementioned natIFs. 578 

The sucrose concentrations corresponding to density fractions collected are indicated 579 
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horizontally; the incubation samples analysed are indicated vertically. P = positive control 580 

(HBcAg in PBS); S = supernatant. 581 

 582 

These results suggest that, despite the fact that the natural intestinal fluids have a much wider 583 

pool of proteases than just the pancreatic proteases used in vitro (Reuter et al., 2009), the main 584 

product of HBcAg digestion appears to be the same, i.e. a 16-17 kDa immunogenic protein still 585 

assembled as a VLP. In terms of physical stability of HBcAg in pig small intestinal fluids, the 586 

detection of some minor anti-HBcAg signal in the less dense fractions of the gradient suggested 587 

that partial disassembly took place upon incubation of HBcAg natIFs. However most of the 588 

immunoreactivity was still detected in the 30 and 40% w/v sucrose gradient fractions, where 589 

usually intact VLPs are found. It can be concluded that HBcAg appeared chemically unstable 590 

upon incubation in pig intestinal fluids. However, these data also suggest that the principal 591 

digestion products were still immunoreactive and that HBcAg was still mainly present as a VLP. 592 

The use of the pig natIFs here was part of a preliminary study to explore their use in the 593 

evaluation of the intestinal fate of administered pharmaceutical products. Here, the results of the 594 

pig natIF experiments were in line with those of the more conventional SIF experiments, 595 

suggesting that this approach has merit and agreeing with the previous work in this area by Wang 596 

et al (2015). 597 

 598 

4. Conclusions 599 

This study aimed to gain a better understanding of the stability of purified HBcAg in the 600 

gastro-intestinal (GI) tract: it was demonstrated that HBcAg VLPs were highly physically and 601 

chemically unstable in simulated human gastric media. Moreover, it was shown that HBcAg was 602 
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digested in simulated human intestinal fluid (SIF) and ex-vivo pig intestinal fluids, but 603 

surprisingly the main digested form of HBcAg maintained the particulate three-dimensional 604 

structure and the most antigenic epitopes. This offers an important prediction about the stability 605 

of HBcAg administered orally and can help interpret previous findings: previous research 606 

showed that HBcAg could elicit only weak immunogenicity upon oral administration in mice, 607 

hence it was speculated that exposure to the gastric environment could have resulted in either 608 

major chemical degradation or particulate disassembly before the VLP could enter into contact 609 

with the mucosal surfaces of the intestine (Huang et al., 2006). This assumption is supported by 610 

the current work, which indicates that HBcAg gastric instability, both in terms of chemical 611 

digestion and physical disassembly, can constitute a major obstacle to HBcAg oral delivery. The 612 

measured stability of HBcAg in SGF, SIF and natIFs in this study is likely to closely reflect its 613 

human in vivo stability, as it has recently been demonstrated that trends of digestion of peptide 614 

drugs in these media correlated well with their digestion in human fluids. The current findings 615 

are an important step towards understanding the complex oral immunogenicity of HBcAg. 616 

However, the current results also suggest that if the gastric instability could be bypassed, HBcAg 617 

could circulate through the human small intestine withstanding major degradation. Our current 618 

work is investigating this with a view to developing a patient-friendly orally-administered 619 

formulation which will protect the HBcAg from the harsh conditions in the stomach but release it 620 

intact in the intestine where it can exert its immunogenic effect. 621 

 622 

Finally, in this paper a novel methodology to investigate the oral stability of VLPs has been 623 

put forward: the fate of the VLP was evaluated not only in terms of chemical digestion of the 624 

primary structure, but also in terms of the stability of the three-dimensional quaternary structure.  625 
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