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Abstract 

We hypothesized that elevated non-esterified fatty acids (NEFA) modify in vitro bovine oviduct 

epithelial cell (BOEC)-metabolism and barrier function. Hereto, BOECs were studied in a polarized 

system with 24h-treatments at day 9: 1) CONTROL (0µM NEFA + 0%EtOH), 2) SOLVENT CONTROL 

(0µM NEFA + 0.45%EtOH), 3) BASAL NEFA (720µM NEFA + 0.45%EtOH in the basal compartment), 4) 

APICAL NEFA (720µM NEFA + 0.45%EtOH in the apical compartment). FITC-albumin was used for 

monolayer permeability assessment, and related to Transepithelial Electric Resistance (TER). Fatty 

acid (FA), glucose, lactate and pyruvate concentrations were measured in spent medium. 

Intracellular lipid droplets (LD) and FA-uptake were studied using Bodipy 493/503 and 

immunolabelling of FA-transporters (FAT/CD36, FABP3 and CAV1). BOEC-mRNA was retrieved for 

qRT-PCR. Results revealed that APICAL NEFA reduced relative TER-increase (46.85%) during 

treatment, and increased FITC-albumin flux (27.59%) compared to other treatments. In BASAL NEFA, 

FAs were transferred to the apical compartment as free FAs: mostly palmitic and oleic acid increased, 

respectively 56.0 % and 33.5% of initial FA-concentrations. APICAL NEFA allowed no FA-transfer, but 

induced LD-accumulation and upregulated FA-transporter expression (↑CD36, ↑FABP3, ↑CAV1). Gene 

expression in APICAL NEFA indicated increased anti-apoptotic (↑BCL2) and anti-oxidative (↑SOD1) 

capacity, upregulated lipid metabolism (↑CPT1, ↑ACSL1 and ↓ACACA), and FA-uptake (↑CAV1). All 

treatments had similar carbohydrate metabolism and oviduct function specific gene expression 

(=OVGP1, ESR1, FOXJ1). Overall, elevated NEFAs affected BOEC-metabolism and barrier function 

differently depending on NEFA-exposure side. Data substantiate the concept of the oviduct as a 

gatekeeper that may actively alter early embryonic developmental conditions. 
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Introduction 

In dairy cattle, extensive genetic selection to promote milk yield has led to a drastic increase in 

energetic demands and reduced fertility (Leroy et al. 2008a, Leroy et al. 2008b). To support increased 

milk production, dairy cow metabolism shifts to prioritize lactation, causing metabolic stress, which 

can be manifested through increased lipolysis and elevated serum concentrations of non-esterified 

fatty acids (NEFAs) (Leroy et al. 2005). Similar observations have been described in women where 

metabolic stress, associated with e.g. obesity and type II diabetes, is linked with lipolytic disorders 

(Lash & Armstrong 2009). 

Elevated serum NEFAs are reflected in the ovarian follicular fluid (Leroy et al. 2004, Leroy et al. 2005, 

Robker et al. 2009) and are recognized as important factors affecting fertility. As such, NEFAs have 

direct detrimental effects on murine folliculogenesis (Valckx et al. 2014), bovine oocyte nuclear 

maturation and developmental capacity (Jorritsma et al. 2004, Leroy et al. 2005, Aardema et al. 

2011, Van Hoeck et al. 2011) and the quality of the resulting embryo (Van Hoeck et al. 2011). In 

women and mice, oocyte quality has also been related to metabolic alterations in follicular fluid 

(Valckx et al. 2012, Valckx et al. 2015) with potentially lasting adverse effects in the offspring 

(Jungheim et al. 2011).  

In addition, it has been demonstrated that elevated NEFAs can affect in vitro bovine oviduct 

epithelial cell (BOEC) physiology (Jordaens et al. 2015). Elevated NEFAs hampered BOEC physiology 

by reducing cell proliferation, cell migration capacity, cell functionality and monolayer integrity, in a 

cell polarity dependent manner. However, insights in the pathways associated to these observations 

and in cellular responses arising from NEFA-exposure are currently lacking. Furthermore, it’s 

important to learn ‘how’, ‘whether’ and ‘to which extent’ intracellular fatty acid (FA)-uptake and 

transepithelial transfer of these FAs can occur. Recent in vivo experiments indeed indicated that the 

conditions in the reproductive tract define its ability to sustain early embryo development (Rizos et 

al. 2010, Maillo et al. 2012, Matoba et al. 2012). As such, the oviductal environment in metabolically 

stressed lactating dairy cattle was less supportive for blastocyst formation compared to heifers (Rizos 
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et al. 2010) and to non-lactating cows (Maillo et al. 2012). In vitro reports suggest this may be due to 

direct environmental effects of elevated NEFAs, as NEFA-exposure during bovine embryo culture 

jeopardized embryo quality through reduced blastocyst formation and cell number, with a 

concomitant rise in apoptosis (Van Hoeck et al. 2013) and internalization of FAs (Listenberger et al. 

2003, Leroy et al. 2010). In mice, similar observations have been made as exposure of murine 

embryos to pathological NEFA-concentrations during in vitro culture, induced effects on embryo 

metabolism and growth (Jungheim et al. 2011). However, whether or not elevated serum NEFAs can 

be transferred across the oviduct epithelial lining and are actually reflected in the oviductal lumen, 

where they may contribute to suboptimal embryo growth conditions, remains to be elucidated. 

It is furthermore unknown whether elevated NEFA concentrations may influence oviduct specific 

characteristics such as permeability. Earlier Roche et al. (2001), reported that FAs altered in vitro 

Caco-2 monolayer confluency by affecting transepithelial electric resistance (TER) and expression of 

tight junctions. In oviductal cells, a reduced TER and cell migration capacity were observed in the 

presence of elevated NEFAs (Jordaens et al. 2015) but mechanistic insights are currently lacking. 

Affecting oviduct epithelial permeability and thereby altering the oviduct gatekeeper function would 

reflect in the overall composition of the oviduct micro-environment as different molecules may be 

filtered from the serum to the oviductal lumen (Leese et al. 2007). NEFAs may therefore also 

indirectly affect early embryo development. 

Studies expanding on the consequences of elevated NEFAs on oviduct cell function and micro-

environment are scarce. Possibly, since in vivo studies remain challenging to perform due to 

specialist equipment and techniques, and difficult to interpret considering the complexity of the 

whole organism (Velazquez et al. 2010). Hereto, an in vitro  polarized cell culture (PCC) system with 

hanging inserts (Miessen et al. 2011; Tahir et al., 2011) may provide a valid alternative, since it 

promotes preservation of both morphology and biology of native oviduct epithelium (Fotheringham 

et al. 2011) while focusing on immediate cellular responses of oviduct epithelial cells exclusively. It is 

therefore considered as a valuable tool to acquire primary mechanistic insights in the direct effects of 
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NEFAs on BOEC physiology. In particular BOEC metabolism and barrier function, oviduct specific 

functions such as oviduct specific glycoprotein secretion, anti-oxidative and anti-apoptotic 

characteristics, and cellular FA-transfer or uptake are of interest, as they may influence early embryo 

development. 

Therefore, in the present study, we hypothesized that elevated NEFA-concentrations can affect BOEC 

physiology by altering BOEC metabolism and barrier function. Hereto, we aimed to obtain a more 

profound understanding in the direct effects of elevated NEFAs on BOEC physiology and gatekeeper 

features in a PCC by observing 1) BOEC monolayer integrity and permeability, 2) FA-transfer across 

the monolayers, 3) intracellular lipid accumulation, 4) BOEC FA-transporters, 5) BOEC energy 

metabolism, and 6) mRNA expression of genes related to BOEC viability, oxidative stress, BOEC 

specific functions and both carbohydrate and lipid metabolism. This research may ultimately further 

elucidate the direct effects of NEFAs on the oviductal micro-environment, affecting pre-implantation 

embryo development. This may contribute to the complex pathogenesis of infertility associated with 

lipolytic metabolic disorders. 

Materials and Methods  

All chemicals were purchased from Thermo Fisher Scientific® (Carlsbad, California, USA), unless 

stated otherwise. 

Primary BOEC-culture: isolation and culture in a polarized cell culture (PCC) system 

BOECs were isolated and cultured as described previously (Jordaens et al. 2015). Briefly, in each 

replicate 4 bovine oviducts from cows in the early luteal phase (days 3 to 5 of the estrous cycle) and 

ipsilateral to the ovulation site  were obtained from a local slaughterhouse. As the pre-implantation 

embryo interacts with both ampulla and isthmus, BOECs from whole oviducts were mechanically 

isolated within 3h after slaughter. BOEC number and viability were determined, using Trypan Blue 

exclusion and a hemocytometer, and seeded at a density of 1 x 106 cells/mL in a polarized cell culture 

(PCC) system with hanging inserts (Corning, Snapwell, 6-well). Each compartment contained 2mL 

culture medium, based on DMEM/F12 (containing 0.75% w/v BSA (essentially FA free; Sigma-Aldrich, 



6 
 

St-Louis, MO, USA), 5% v/v serum (2.5% v/v Fetal Bovine serum, Greiner Bio-One, Frickenhausen, 

Germany; and 2.5% v/v Newborn Calf Serum, Sigma-Aldrich, St-Louis, MO, USA), 2.5% v/v 

penicillin/streptomycin and 2% v/v amphotericin B), and was renewed initially after 24h, 

subsequently every 48h. 

Preparation of the treatments 

The types and concentrations of free FAs used are based on the in vivo concentrations found in the 

serum of high yielding dairy cows in negative energy balance (NEB) (Leroy et al. 2005). To mimic the 

FA-profile during NEB, NEFA-concentrations of 720µM (i.e. 230µM Palmitic Acid (PA) + 280µM Stearic 

Acid (SA) + 210µM Oleic Acid (OA)) were implemented as a pathological condition, and prepared as 

described by Van Hoeck et al. (2011). Solubility of lipophilic NEFAs into hydrophilic culture was 

spectrophotometrically confirmed prior to use.  

Experimental design 

BOECs were maintained in hanging inserts and supported by medium replenishments of both 

compartments  every 48h until they reached confluency, as confirmed by Transepithelial Electrical 

Resistance (TER) using an Avometer (Millicell-ERS®, Millipore, Massachusetts, USA). Monolayer 

formation was defined confluent  when the TER-recordings exceeded 700 Ω.cm2 (Chen et al. 2015) at 

Day 9. Ultimately at Day 9 pre-exposure medium samples were collected after which 4 treatments 

were established: 1) CONTROL: 0µM NEFA in both compartments, 2) SOLVENT CONTROL: 0µM NEFA 

+ 0.45% v/v EtOH in both compartments , 3) BASAL NEFA: 720µM NEFA + 0.45%v/v EtOH in the basal 

compartment, and 4) APICAL NEFA: 720µM NEFA + 0.45% v/v EtOH in the apical compartment. 

Preparations of NEFA were added to the monolayers at Day 9 for 24h as depicted in figure 1. After 

24h (Day 10), outcome parameters were assessed, spent medium from both compartments in all 

wells was sampled, and BOECs were either collected using EDTA-trypsin for mRNA-extraction or fixed 

in 4% paraformaldehyde for immunofluorescent staining. Per outcome parameter, samples from a 

total of 16 animals were used, and analysed as four pools of  four. 

Outcome parameters: 
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1. BOEC-integrity and monolayer permeability 

TER-measurements were recorded, both prior (Day 9) and post NEFA-exposure (Day 10), to observe 

monolayer confluence and integrity. Hereto, a Millicell-ERS (Millipore, Massachusetts, USA) was used 

according to the manufacturer’s instructions. Monolayers were considered confluent when TER-

values ranged between 700 and 1100 .cm2 (Chen et al. 2015). Data were expressed as relative TER-

increase over the 24h treatment period. At Day 10 and immediately after NEFA-exposure, monolayer 

permeability was determined by measuring macro-molecular transport of 66kDa FITC-labelled 

albumin across the monolayers, as described by Chang et al. (2013) in endothelial cells with some 

modifications to suit our design, objective and cell type. Briefly, in 4 repeats (2 inserts per flux 

direction within each treatment group and per replicate, total number of inserts n= 54) FITC-albumin 

(15µM) was dissolved in HBSS without phenol red and added to either the apical or the basal 

chamber (each 2 wells per treatment per replicate) to observe albumin flux in either direction. 

Unseeded inserts were used as a positive control to exclude effects due to the membrane properties. 

After 3h, medium in each compartment was mixed by pipetting and 20µL samples were submitted 

for FITC measurement at 490 nm excitation/ 530nm emission using a Tecan microplate reader, 

Infinite® 200 Pro (Tecan Trading AG, Switzerland). Both the supplemented and the non-

supplemented compartment were sampled in order to retrospectively correlate the decrease in 

fluorescence from the supplemented compartment to the increase in fluorescence in the non-

supplemented compartment. Standard curves ranged from 0 to 2µM, however, to match the FITC-

albumin concentrations in the supplemented compartment a 10x dilution was required. R2-values of 

>0.99 and CV<10% were considered valid. 

2. BOEC fatty acid transfer capacity 

Spent medium from both NEFA-supplemented and their opposite compartments were 

spectrophotometrically analyzed for total FA-concentrations, gas chromatographically for individual 

FA-concentrations, and for FA-profiles per FA-fraction (free or esterified) in 4 repeats.  

 2.1. Total FA-concentrations 
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Total FA-concentrations were measured at the ‘Algemeen Medisch Labo’ (AML, Antwerp, Belgium), 

using commercial photometric assays, RX Daytona (Randox Laboratories) in 4 replicates with 3 

observations per treatment. Measurements were carried out according to manufacturer’s 

instructions. The intra- and interassay coefficients of variation for all analyses were <5%. 

 2.2 FA-profiles per FA-fraction (free or esterified) 

FAs in spent medium (in 4 replicates using a pool of 2 inserts per treatment) were extracted as 

described by Löfgren et al. (2012), with heneicosanoic acid (5 µg) and triheptadecanoin (5 µg) as 

internal standard. The FA-extract was divided in three aliquots for determination of i) total FAs, ii) 

FAs in triacylglycerols, cholesteryl-esters and glycerophospholipids (esterified) and iii) non-esterified 

fatty acids (free).  

Total FAs were methylated by a consecutive base-catalyzed and an acid-catalyzed step (Vlaeminck et 

al. 2014). Esterified FAs (in triacylglycerols, cholesteryl-esters and glycerophospholipids) were 

methylated using only the base-catalyzed step.  For separation of the free FAs, the NEFA-containing 

hexane layer was methylated using an acid catalysed step. Fatty acid methyl esters were 

subsequently extracted with hexane. 

Composition analysis of FA-methyl esters was carried out by gas chromatography (HP7890A, Agilent 

Technologies, Diegem, Belgium) with a split-splitless injector and flame ionization detector using a 

SP-2560 column (75m x 0.18 mm ,i.d. x 0.14 µm thickness, Supelco Analytical, Bellefonte, USA). The 

carrier gas was hydrogen (flow rate: 1 mL/min) with splitless injection (t°: 50°C for 2.5 min, 175°C for 

13 min, and 215°C for 25 min). Inlet and detector temperatures were 250 and 255°C, respectively. 

Peaks were identified based on retention time comparisons with a mixture of FAME standards 

(GLC463, Nu-Check-Prep., Inc., Elysian, MN, USA). Quantification of FA-methyl esters was based on 

the area of the internal standard and on the conversion of peak areas to the weight of FAs by a 

theoretical response factor for each FA (Ackman & Sipos 1964, Wolff et al. 1995). 

3. Intracellular lipid accumulation 
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In three replicates, monolayers from 3 inserts per treatment were fixed at Day 10 of culture (and 

after NEFA-exposure according to figure 1) in 4% phosphate buffered paraformaldehyde for 10 

minutes. BOECs were washed twice with DPBS, and permeabilized with saponin (0.1% w/v) (Carl Roth 

GmbH&Co, Karlsruhe, Germany). Nuclei were stained with 5 µg/mL DAPI (Molecular Probes, Eugene, 

OR) for 5 minutes and subsequently washed with DPBS. Neutral lipids were stained with BODIPY 

493/503 (Molecular Probes, Ghent, Belgium) (20 µg/mL) in DPBS for 1h, according to a modified 

protocol of Van Hoeck et al. (2013). After staining the insert membranes and monolayers were 

removed from the insert housing and mounted on a microscope slides with Citifluor (VWR, Haasrode, 

Belgium). High resolution images were obtained using Nikon Eclipse Ti-E inverted microscope, 

attached to a microlens-enhanced dual spinning disk confocal system (UltraVIEW VoX; PerkinElmer, 

Zaventem, Belgium) equipped with 405 and 488nm diode lasers for excitation of blue and green 

fluorophores, respectively. For each monolayer, 10 random z-stack of 20 µm with each 1 µm 

intervals, were made starting at the level of the insert membrane. In extended focus images neutral 

lipid accumulation was compared qualitatively among treatments.  

4. BOEC fatty acid transporters 

At Day 10 of culture (and after NEFA-exposure according to figure 1), 1 BOEC monolayer per 

treatment was fixed in 4% phosphate buffered paraformaldehyde for 10 minutes in 3 replicates. 

Monolayers were submitted to immunofluorescent staining, using polyclonal anti-FABP3 rabbit anti-

bovine antibodies (MyBiosource), polyclonal anti-CD36 rabbit anti-bovine antibodies (ThermoFisher 

Scientific), or polyclonal anti-CAV1 rabbit anti-bovine antibodies (Cell Signaling Technology). FITC-

conjugated goat anti-rabbit IgG (ThermoFisher Scientific) was used as secondary antibody according 

to manufacturer’s instructions. Protocols were tested for non-specific primary and secondary 

antibody binding, and bis benzimide (Hoechst no 33342; Sigma-Aldrich) was used as nuclear stain. 

After staining, the insert membranes and monolayers were removed from the insert housing and 

mounted on a microscope slides with Citifluor (VWR, California USA). High resolution images were 

obtained using Nikon Eclipse Ti-E inverted microscope (vide supra ‘3. Intracellular lipid 
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accumulation’). For each monolayer, full thickness z-stacks with 0.5 µm intervals, were randomly 

made to localize the BOEC-FA-transporter expression. To quantify the BOEC FA-transporter 

expression, 10 random single z-plane images per monolayer were made. Laser settings for the 405nm 

laser line were used to focus all nuclei in each plane, while 488 nm laser settings were fixed for each 

transporter type. In each image, total green fluorescence and number of nuclei were measured using 

Volocity imaging software version 6.3.1 (PerkinElmer, The Netherlands). The level of FA-transporter 

expression is presented as the mean amount of green fluorescent pixels counted per nucleus.  

5. BOEC energy metabolism: glucose, lactate and pyruvate concentrations 

Medium sampling was performed pair-wise as repeated measures at Day 9 and Day 10: pre-exposure 

medium (= routine BOEC, DMEM/F12-based culture medium) was added at Day 8 and sampled at 

Day 9 after 24h incubation (4 replicates with 3 observations per treatment). Post-exposure medium, 

containing the different treatments, was subsequently added at Day 9 and sampled 24h later at Day 

10. Both pre- and post-exposure medium were prepared from the same batch to assure all 

composing nutrients were identical. Immediately after collection, all medium samples were 

centrifuged at 1250 x g (5min, room temperature) to avoid cellular contamination and possible 

confounding of the results by ongoing cellular activities in the medium. Subsequently, samples were 

snap frozen at -196°C in liquid nitrogen and stored at -80°C until further analysis. All analyses were 

performed within 3 months after sample collection. Lactate production, and glucose and pyruvate 

consumption (n = 96: 4 replicates, 4 treatments, 3 wells per treatment with both an apical and a 

basolateral compartment) were determined by an ultrafluorometric assay of spent medium as 

described by Gardner & Leese (1990), with modifications by Guerif et al. (2013) using a Tecan 

microplate reader, Infinite® 200 Pro (Tecan Trading AG, Switzerland). Blank medium aliquots (with no 

cellular contact) were collected to calculate consumption/production and data were expressed as 

nmol/well/h. As differences in consumption or production data in the pre-exposure samples can only 

be due to cell number, these values were used to normalize postexposure data. Data were expressed 

as a relative increase over the 24h exposure period. 
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  6. BOEC gene expression analyses 

Gene expression analyses were performed using two BOEC-monolayers per treatment in 4 replicates. 

The extraction of total RNA from cells was carried out using TRIzol® reagent according to 

manufacturer’s instructions. The isolated RNA was suspended in 1 ml of isopropanol for at least 20 

minutes. Subsequently, the isopropanol was vaporized in a vacuum chamber and the RNA pellet was 

washed in 70% ethanol. Subsequently, mRNA was selected using the Dynabeads® mRNA DIRECT™ 

Micro Kit (Ambion®, Thermo Fisher Scientific Inc., Oslo, Norway) according to manufacturer’s 

instructions with minor modifications (Bermejo-Alvarez et al. 2008). To eliminate potential 

contamination with genomic DNA, all samples were incubated with DNAse, at 37°C for 30 min and at 

90°C for 5 min (RQ1 RNase-Free DNase, Promega Corporation, Madison, USA). RNA concentration 

was quantified at a wavelength of 260 nm and purity was assessed by the 260/280 ratio (Eppendorf 

BioPhotometer, Eppendorf Iberica, Madrid, Spain). cDNA synthesis and qPCR analysis were 

performed as described earlier (Maillo et al. 2016) in accordance with MIQE guidelines (Bustin et al. 

2009). Briefly, RT reaction was carried out following the manufacturer’s instructions (Epicentre 

Technologies Corp., Madison, U.S.A.) using poly (T) primers, random primers, and MMLV High 

Performance Reverse Transcriptase enzyme in a total volume of 50µl to prime the RT reaction and to 

produce cDNA. Tubes were heated to 70°C for 5 min to denature the secondary RNA structure and 

then the RT mix was completed with the addition of 50 units of reverse transcriptase. Afterwards 

they were incubated at 25°C for 10 min to favour the annealing of random primers, followed by 37°C 

60 min to allow the RT of RNA, and finally 85°C 5 min to denature the enzyme.  

Primers (table 1) were designed using Primer-BLAST software 

(www.ncbi.nlm.nih.gov/tools/primersblast/) to span exon-exon boundaries when possible. All qPCR 

reactions were carried out in duplicate on the Rotorgene 6000 Real Time Cycler TM (Corbett 

Research, Sydney, Australia) by adding 2µl aliquot of each sample to the PCR mix (GoTaq® qPCR 

Master Mix, Promega Corporation, Madison, USA) containing the specific primers selected to amplify 

the genes listed in Table 1. Cycling conditions were 94°C for 3 min followed by 35 cycles of 94°C for 

http://www.ncbi.nlm.nih.gov/tools/primersblast/
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15 sec, 56°C for 30 sec, 72°C for 10 sec and 10 sec of fluorescence acquisition. Fold-changes in the 

relative gene expression of the target were determined using the equation 2–ΔΔCT (Livak & Schmittgen 

2001) using H2AZ, ACTB and GAPD as endogenous controls. 

Statistical analysis 

Data are expressed as means ± SEM and were analyzed using IBM SPSS Statistics version 23 for 

Windows, (Chicago, IL, USA). Gene expression data were analyzed using Sigma Stat (Jandel Scientific, 

San Rafael, CA) software package. Mean differences in mRNA transcript abundance, spent medium 

carbohydrate metabolites, albumin-flux data, TER data, FA-transfer and FA-transporter expression 

data among the experimental groups were compared with mixed model ANOVA and posthoc 

Bonferroni tests including the fixed effect of treatment, the random effect of the repeat and their 

interaction (excluded when not significant). For normality and equality of variance reasons, pyruvate 

and lactate data were log transformed prior to statistical analyses. Differences with P-values <0.05 

were considered statistically significant. 

Results 

1. BOEC-integrity and monolayer permeability 

The TER-measurements were expressed as ‘relative TER-increase’ by comparing pre- and post-NEFA-

exposure measurements, as none of the treatments reduced TER to the extent that monolayer 

integrity was compromised (i.e. <700.cm2 (Chen et al. 2015)). Elevated NEFAs induced a 

significantly lower TER-increase regardless of the exposure direction (figure 2). 

The maximum FITC-albumin concentration in the non-supplemented compartment of unseeded wells 

was 4.3 µM. This flux was irrespective of assay direction and was correlated to the maximum FITC-

albumin decrease in the opposite albumin supplemented compartment. The maximum flux (i.e 

concentration of FITC-albumin in the non-supplemented compartment) observed in the unseeded 

wells was, therefore maximum 28.67% of the initial FITC-albumin concentration in the supplemented 

compartments at the beginning of the assay (i.e. 15µM). Regardless of the treatment, when basal to 
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apical flux was observed in seeded wells, the maximum FITC-albumin concentration in the non-

supplemented compartment of the control wells was 0.51µM (or 3.4%). When apical to basal flux 

was observed, the maximum flux was 1.8% of the initial FITC-albumin at the beginning the assay; as 

the maximum FITC-albumin concentration in the non-supplemented compartment of the control 

wells was 0.27µM. Only APICAL NEFA significantly increased the proportion of FITC transfer (3.8%) 

across the membrane (P<0.05, figure 3) compared to controls, and only in basal to apical assay 

direction. Overall, albumin flux from the basal to the apical compartment was approximately two-

times higher than that seen in the opposite direction. When the FITC transfer direction was inverted 

(to ‘apical to basal’) no treatment effects could be observed (P>0.05).  

2. BOEC NEFA transfer capacity 

2.1 Total FA-concentration 

In BASAL NEFA a 19% (or 122.5±4.3µM) reduction of total FA-content in the supplemented 

compartment could be detected after 24h exposure. In parallel, there was a 21% (or merely 

12.7±1.4µM) rise in FA content in the apical chamber compared to the initial concentrations. By 

contrast, in APICAL NEFA total FA content fell by 53.4% (334.2±28.2µM) with no FA-transfer detected 

in the basal chamber.  

2.2 FA-profiling per FA-fraction (free or esterified) 

To specify the transfer, the total FA-concentrations were separated in individual FAs and classified as 

free or bound, esterified FAs (triglycerides, cholesterol esters and phospholipids). For both APICAL 

and BASAL NEFA, significant differences in total FA could only be found in the free FA-fraction. In 

BASAL NEFA, the significantly increased FAs in the non-supplemented, apical compartment were 

C16:0 (56.0±20.0%, P=0.042), C18:0 (60.0±27.0%, P=0.098) and C18:1 (33.5±6.0%, P=0.082) in the 

total FA-fraction, while in the free, unbound fraction C14:0 (58.0±27.8%, P=0.035), C16:1-cis-9 

(81.1±19.3%, P=0.002), C18:1-cis-9 (72.2±3.9%, P=0.017) and C18:1-cis-11 (30.8±7.0%, P=0.004) were 

found to be significantly increased. 
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In APICAL NEFA no differences in FA-increase could be detected in the non-supplemented 

compartment, as no FA-transfer was observed (P>0.05). 

3. Intracellular lipid accumulation 

Apical addition of NEFA caused an increased accumulation of neutral lipid droplets compared to 

other treatments (figure 4). Numerous lipid droplets were observed in the cytoplasm, and distributed 

evenly across the BOEC-monolayer. By contrast when NEFA was added to the basal compartment 

there was only limited lipid droplet accumulation in the BOECs. No lipid droplets were observed in 

the control groups.  

4. BOEC fatty acid transporters 

Fatty acid translocase/CD36 protein expression was upregulated in APICAL NEFA with 54.35% and 

50.08% compared to BASAL NEFA and CONTROL conditions, respectively (P<0.001). Both APICAL and 

BASAL NEFA showed similar FABP3 expression, and were upregulated compared to CONTROLs by an 

average of 58.15% (P<0.001). CAV1 expression in APICAL NEFA was increased with 46.69% (P<0.001) 

and 52.90% (P<0.001) compared to BASAL NEFA and CONTROLs, respectively (figure 5).  

5. BOEC energy metabolism: glucose, lactate and pyruvate concentrations  
 
Under untreated conditions, BOECs depleted 49.91±3.61 nmol/well/h of glucose from the apical 

compartment and 55.54±10.82 nmol/well/h from the basal compartment. In addition, 35.69±5.04 

nmol/well/h of pyruvate was depleted from the apical compartment and 38.87±7.16 nmol/well/h 

from the basal compartment. BOECs released 141.21±8.31 nmol/well/h of lactate into the apical 

chamber and 152.58±5.33 nmol/well/h into the basal compartment. 

Twenty four hours after application of NEFA treatments, mean glucose release rose to of 77.36±3.54 

nmol/well/h in the apical compartment and 139.26±35.81 nmol/well/h in the basal chamber. 

Pyuvate depletion from the apical compartment was largely unchanged in response to NEFA addition 

(34.76 nmol/well/h), although depletion from the basal compartment rose to 51.36±8.34 
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nmol/well/h.  Lactate appearance in the apical compartment was 154.92±14.42 nmol/well/h and in 

the basal compartment 190.32±11.99 nmol/well/h (figure 6). 

No differences among the treatments could be detected.  

6. BOEC gene expression analysis 

The effects of BOEC NEFA exposure on the expression profile of genes involved in apoptosis (figure 

7A), oxidative stress and specific BOEC-function (figure 7B) related genes was subsequently 

investigated. Addition of NEFA to the apical compartment led to increased expression of BCL2, 

compared to basal addition and control groups (P<0.01), the consequence of which was to reduce 

the ratio of BAX/BCL2 (P<0.01). Stress adaptor protein, SHC1, was upregulated in response to 

apically-administered NEFA (P<0.05), although this was also apparent in the SOLVENT CONTROL 

(P<0.01). In addition, expression of SOD1 was upregulated in response to apical administration of 

NEFA (P<0.05). Expression of OVGP1 (oviduct specific glycoprotein expression), ESR1 (estrogen 

receptor expression) and FOXJ1 (ciliogenesis) were all unchanged in response to NEFA and regardless 

of the exposure direction. Next, the impact of NEFA exposure on genes related to energy metabolism 

(figure 7C and 7D) was examined. mRNA expression of G6PD was downregulated after addition of 

NEFA to the apical chamber (P<0.05) but upregulated when NEFA was added to the basal 

compartment  (P<0.05). The expression of CPT1B (P<0.05) and ACSL1 (P<0.05) transcripts were 

upregulated while ACACA-expression (P<0.05) was decreased in response to apical addition of NEFA. 

Expression of BOEC FA-transporters resulted in upregulated CAV1 (P<0.001) expression in APICAL 

NEFA compared to other treatments (figure 7E). Overall, fold changes were low except for BCL2 and 

CAV1. 

Discussion 

In this study, we hypothesized that elevated serum NEFA concentrations alter BOEC physiology, and 

more specifically BOEC metabolism and barrier function, potentially affecting the zygote’s micro-

environment. Hereto, PCC-system with hanging inserts was used to approach the BOECs in a most 

physiologically relevant manner (Fotheringham et al. 2011). 
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Overall, data indicate that APICAL NEFA resulted in an increased FITC-albumin-flux from the basal to 

the apical compartment. This increased monolayer permeability was also associated with reduced 

monolayer growth as suggested by slower increasing TER-values from Day 9 to 10. In BASAL NEFA, 

NEFA-concentrations decreased in the basal compartment with a concomitant increase in the apical 

chamber indicating limited FA-transfer. While apical FA-administration resulted in the increased lipid 

droplet formation and no transfer to the basal compartment. Depletion of carbohydrate metabolites 

seemed mostly active in the basal compartment, regardless of the treatments, substantiating the 

distinct effects of cellular polarity on the use of energy substrates in the culture system. 

Furthermore, APICAL NEFA induced anti-apoptotic and anti-oxidative pathways as suggested by 

increased expression of BCL2 and SOD1, and may stimulate BOEC-lipid metabolism through increased 

intracellular FA-uptake (↑CAV1 and ↑FA-transporter protein expression CD36, FABP3 and CAV1), and 

upregulation of CPT1B and ACSL1. To our knowledge, the present study is the first to attempt a 

deeper understanding in the characteristics of BOECs under the influence of elevated NEFAs, hereby 

confirming cell polarity within the culture system and localizing different FA-transporters. 

Characterization of monolayer integrity by means of TER-measurements resulted in ongoing increase 

in TER-values during the NEFA exposure period due to continuous cell growth (Jordaens et al., 2015). 

In rat mammary epithelium, similar effects were observed and were considered to result from 

palmitic and stearic acid exposure (Wicha et al., 1979). Data furthermore, indicated that APICAL 

NEFA resulted in reduced TER-increase during the 24h NEFA-exposure period and therefore 

decreased the tightness of intercellular cell contact (Chen et al. 2015). These data were supported by 

the monolayer permeability assessment using FITC labeled albumin. Here, only APICAL NEFA 

resulted in an increased FITC-albumin flux suggesting increased monolayer permeability and reduced 

monolayer tight junction quality (Anderson & Van Itallie 2009) in this treatment. Earlier, Roche et al. 

(2001) made similar observations in Caco2-cells, and reported that both TER, permeability and 

expression of tight junctions in Caco2-cells decreased due to elevated FAs and the tight junction 

modulating capacity of NEFAs. Considering the apical positioning of tight junctions between adjacent 
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cells, the increased monolayer permeability in APICAL NEFA of our study, may result from a more 

intense NEFA/tight junction contact in this treatment. The effects on permeability here observed, 

however, were limited specifically to the basal to apical albumin flux only. When the assay direction 

was inverted, total flux did not show any treatment effects. Apical to basal albumin flux was, 

however, lower compared to basal to apical flux, suggesting the oviductal lining to be still intact. It 

may also suggest intracellular uptake of the albumin in the apical to basal assay direction considering 

the equal amounts of albumin decrease in the supplemented compartments (see figure 8) in both 

assay directions, which can be explained by the expression of albumin binding cell surface receptors 

on the apical cell side of the oviduct only (Argaves & Morales 2004). 

These findings and unpublished fluorescence microscopic imaging may, therefore, question the 

accuracy of the apical to basal assay direction as permeability parameter, but do provide us with 

interesting considerations when assessing the FA-transfer data. 

FA-transfer across the BOEC-monolayers in BASAL NEFA showed a 19.5% FA-decrease in the 

supplemented, basal compartment and a 21.1%  increase in the opposite, apical compartment. The 

absolute values of the transfer, however, suggest that only a minor proportion of the FAs are 

transferred from the basal to the apical compartment and substantiate the concept of a potential 

gatekeeper function of the oviduct. Intervening with transfer of detrimental metabolites to the 

oviductal lumen may thus be considered as an embryoprotective mechanism. When observing the 

transferred FAs in closer detail, we determined that all transferred FAs were unbound FAs and that it 

was mostly oleic and palmitic acid that could be transferred to the apical compartment. These data 

indicate that FA transfer might be a selective process with a distinct active component for FA-uptake 

(Glatz et al. 2010). Gas chromatographic analysis also revealed non-supplemented FAs to be present 

in the luminal chamber, suggesting some degree of metabolic modification.  For example, the 

presence of C14:0, which was not added basally, may be indicative for de novo synthesis or 

conversion of C16:0 and C18:0 through partial oxidation (Lopaschuk et al. 2010).  The presence 

C16:1-cis-9 may be a consequence of desaturation of PA, and C18:1-cis-11 from elongation 
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(Jakobsson et al. 2006). Therefore, not only transfer but also FA metabolism could be detected in this 

treatment (figure 9 for conceptualization). In contrast to this, when NEFA was added to the apical 

chamber, there was no subsequent appearance in the basal compartment. The FA-concentration in 

the apical supplemented compartment did, however, decrease by more than 50% over a 24h-

timespan. The reduced apical FA-concentration, without signs of FA-transfer, suggests intracellular 

FA-uptake for storage in lipid droplets. Indeed, an increased accumulation of cytoplasmic lipid 

droplets in BOECs was observed in this treatment using Bodipy staining. The differences in lipid 

accumulation between the treatments was so apparent that no further quantification steps were 

undertaken. Cnop et al. (2001) observed lipid droplet formation in rat pancreatic cells and suggested 

cellular triglyceride accumulation as a cytoprotective mechanism against FA-induced lipotoxicity. In 

our current data, FA deposition in neutral lipid droplets was most abundantly observed in APICAL 

NEFA. BASAL NEFA showed lipid droplets to a limited extent, while lipid accumulation was 

completely absent in the CONTROL and SOLVENT CONTROL. On the basal cell side FABPs require non-

albumin bound FAs for intracellular FA-uptake, which requires lipoprotein lipases that are typically 

expressed by endothelium (Glatz et al. 2010). These lipases are not present in our experimental 

design and may elucidate the lack of lipid accumulation in BASAL NEFA as most supplemented NEFAs 

in our experiments are albumin bound. The apical cell side, on the other hand and as mentioned 

above, typically expresses caveolins, megalins, cubilins, and lipoproteins allowing albumin bound FA-

endocytosis (Argaves & Morales 2004; Moestrup and Verroust, 2001), facilitating cellular uptake of 

NEFA/albumin complexes from the luminal chamber in our experimental setting. The presence (and 

abundance) of these transporters was confirmed in the current in vitro model through 

immunolabelling of BOEC FA-transporters and may elucidate the quantitative difference in lipid 

droplets observed between treatments. In this respect, CAV1 mRNA transcript abundance was 

upregulated in APICAL NEFA compared to other treatments, which resulted in increased translation 

of CAV1. FAT/CD36 and FABP3 showed similar FA-transporter expression in APICAL NEFA, however, 

no differences in mRNA transcripts could be detected when comparing different treatments. The 
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latter might be explained by the increased use of the transcripts for translation with limited de novo 

transcriptional activity during the time period investigated (24h) as seen in early embryos (Robert, 

2010). Interestingly, CD36 transporters are typically expressed in tissues that favor high FA-

metabolism, as seen in mammary glands (Spitsberg et al., 1985), but also metabolic conditions have 

shown to alter FA-utilization and FA-transporter expression as observed in adipocytes of diabetic rats 

(Berk et al., 1997) and as simulated in the current experimental setting. 

The fact that yet a few lipid droplets could be detected in BASAL NEFA can be accounted to the 

limited FA-transfer to the apical compartment in this treatment. Furthermore, these observations 

suit our findings made in the permeability assay where intracellular albumin uptake could only be 

observed when the fluorescent albumin was supplemented in the apical compartment. 

Complementary to these findings, BASAL NEFA treatment resulted in little to no differences in mRNA 

transcript abundance in the selected genes regarding lipid metabolism, possibly since the 

administered FAs are not taken up or partly redirected to the apical compartment. Gene expression 

analysis in APICAL NEFA, otherwise, resulted in increased lipid oxidation and reduced lipid synthesis. 

These data are suggestive for increased lipid metabolism of BOECs. However, and due to the 

abundance of the supplemented FAs, the supply may surpass the FA metabolism rate. Hereto, lipid 

storage may be employed as an adaptive tool to fulfill mitochondrial energy supply without hindering 

redox status and by reducing the amount of lipotoxic intermediates (Aon et al. 2014). This 

mechanism not only protects the cells from NEFA’s detrimental effects but may also ‘purify’ the 

oviductal micro-environment. The environmental conditions for optimal embryo growth can thus be 

significantly improved, which is crucial considering the critical changes the embryo undergoes during 

its stay in the oviduct (Latham & Schultz 2001, Inbar-Feigenberg et al. 2013).  

Analysis of spent medium for BOEC-carbohydrate metabolites did not reveal any significant 

differences in consumption of glucose or pyruvate, nor in production of lactate. In this respect, data 

are consistent with BOEC-transcriptome data. Regarding the genes selected for assessment of BOEC-

energy metabolism, only G6PD transcript abundance showed significant differences: G6PD was 
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downregulated in APICAL NEFA and upregulated in BASAL NEFA, however, none of the other glucose-

metabolism-related genes were affected. This suggests that glucose may be increasingly directed 

towards the pentose phosphate pathway in BASAL NEFA but the overall consumption was not 

affected. Regardless of the treatment, glucose uptake was most apparent in the basal, serum 

compartment, shifting glucose metabolites such as lactate in the apical compartment. In vivo BOECs 

are also provided with glucose via the serum (Leese. 1988): our findings therefore support the 

natural conditions. Earlier experiments (Jordaens et al. 2015), however, indicated that during the 24h 

exposure window, BOEC-monolayers showed continuous growth. In the current study, similar effects 

have been observed in increasing TER-values and elevated post-exposure glucose consumption in 

control groups. The latter were therefore normalized using pre-exposure data from the controls to 

minimize false interpretation. BOEC monolayers also showed an altered mitotic capacity, altered 

migration capacity and modified functionality due to elevated NEFAs (Jordaens et al., 2015), which 

may easily mask turnover differences. In other cell types, similar NEFA-effects have been observed. 

Rat hepatocytes showed increased apoptosis due to steatosis after OA and PA exposure (Ricchi et al. 

2009), pancreatic B-cells in rats were hyperplastic with morphological abnormalities under the 

influence of FAs (Milburn et al. 1995), and mouse embryos lacked cell proliferation capacity and 

showed a reduced developmental competence (Nonogaki et al. 1994). Interpretation of the current 

glucose, pyruvate and lactate turnover data should therefore be done with caution as the NEFA-

conditions are known to affect monolayer characteristics. This is further supported by data on gene 

expression since we observed increased expression of genes related to FA-uptake, CAV1 in APICAL 

NEFA. Caveolins are membrane proteins, typically expressed at the apical cell side, involved in 

clathrin independent endocytosis of proteins and lipids (Nabi and Le, 2003). Upregulation of these 

proteins in the presence of FA-abundance may elucidate the increased intracellular lipid uptake. 

Furthermore, upregulation of lipid metabolism β-oxidation (↑CPT1 and ACSL1) in this treatment, with 

downregulation of FA-synthesis related genes (↓ ACACA), appears to confirm our theory on embryo-

protective “purification” of the oviduct micro-environment. The excess of FAs presented to the cells 
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apically may therefore be consumed as a metabolic fuel, while de novo FA-synthesis may be limited 

(Aon et al. 2014). In most tissues de novo FA-synthesis is of minor importance as the cellular 

requirements are predominantly met through FA-supply via the blood. Increased levels of circulating 

FAs inhibit FA-synthesis (Weis et al. 1986) and may result in decreased transcriptional activity of 

ACACA, as seen in the current data. The excessive FA-oxidation may also prompt to increase 

oxidative stress (Aon et al. 204) in BOECs. The upregulation of BCL2 and SOD1 in APICAL NEFA may 

therefore be a direct reaction of BOECs to NEFA-exposure, increasing the cells’ anti-oxidative and 

anti-apoptotic capacity. Harvey et al. (1995) and Tse et al. (2008) made similar observations in 

embryo/BOEC cocultures and may further explain BOEC’s embryo protective capacity.  

Ultimately, our findings may contribute to the concept that elevated NEFAs may modify the 

composition of the oviduct luminal fluid and alter the pre-implantation embryo’s micro-environment. 

However, specific modifications were made to the experimental design. In this respect, NEFA-

exposure was limited to 24h, whereas,  in vivo NEFA concentrations are elevated over longer periods 

(Butler et al. 2003). Prolonged in vitro FA-incubation was, however, in other cell types associated 

with a significant decrease in cell viability (Ricchi et al. 2009). Furthermore, even acute NEFA 

exposure induced negative effects on BOECs and remains the only option to solely observe the direct 

cellular effects of NEFAs. Also, the use of serum for optimal cell attachment compromised the 

definition of the culture conditions. To minimize serum-effects, concentrations were contained to 

5%, and the serum was analyzed for NEFA-content prior to use. Further in vivo studies are required 

to investigate the changes in the oviduct luminal fluid associated with maternal metabolic disorders, 

and how they may affect the micro-environment of the pre-implantation embryo. Nonetheless, our 

in vitro findings provide novel insights into the understanding of oviduct interactions with FAs.  

In conclusion, elevated NEFAs affect BOEC metabolism and barrier function in a polarity dependent 

manner. In this respect, BOECs in BASAL NEFA potentially shield the luminal environment from 

elevated NEFAs by allowing only a limited amount of FAs to be transferred from the basal to the 

apical compartment. While BOECs in APICAL NEFA may clear the micro-environment of the pre-
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implantation embryo from NEFAs through increased monolayer permeability, intracellular lipid 

accumulation and FA metabolism. Overall, the oviduct may modulate its micro-environment in favor 

of the early embryo by alleviating potential lipotoxic effects.  
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Figure legends: 

Figure 1: Experimental design to study the effects of NEFAs in a polarized cell culture system 

according to different exposure directions: C = control medium containing 0µM NEFA, SC = solvent 

control medium containing 0µM NEFA + 0.45% EtOH, NEFA = 720µM NEFA with 230µM PA+ 280µM 

SA+ 210µM OA. At Day 9 (pre-exposure samples) and 10 (post-exposure samples) spent media were 

collected. At Day 10 other  outcome parameters in BOECs were assessed. 

Figure 2: Relative TER-increase was calculated through comparison of pre- and post NEFA-exposure 

TER-measurements. a,b Different superscripts per bar indicate statistical significant differences 

(P<0.05); *: P=0.05. 

Figure 3: The permeability assay showed FITC-albumin flux measured in the non-supplemented 

compartment after a 3h assay in which the FITC-albumin-flux from the basal to the apical 

compartment (A), and the flux from the apical to the basal compartment (B) were observed. a,b 

Different superscripts per bar indicate statistical significant differences (P<0.05). 

Figure 4: Lipid droplet analysis was performed using Bodipy 493/503 (green) to visualize 

intracytoplasmic droplets of neutral lipids and DAPI (blue) for staining nuclei. Monolayers from the 

CONTROL group (C) and SOLVENT CONTROL (D) showed no lipid droplets, while BOEC-monolayers 

from the APICAL NEFA group (A) clearly showed accumulation of lipids in the cells, and BASAL NEFA 

(B) displayed little to no lipid droplets. Images were made at 60x magnification using confocal 

microscopy. 

Figure 5: Immunolabelling of specific fatty acid transporters was performed to visualize and quantify 

specific FA-transporter expression (green) per nucleus (blue). Fatty acid translocase CD36 (A), fatty 

acid binding protein 3 (FABP3) (B) and caveolin 1 (CAV1) (C) are presented with their respective 

negative controls and mean transporter fluorescence per nucleus in different treatments. Scale bars 

indicate 20µm. a,b Different superscripts per bar indicate statistical significant differences (P<0.05). 
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Figure 6: Glucose (A) and pyruvate (C) consumption, and lactate (B) production (%) in spent medium 

were expressed as relative values of pre and post NEFA-exposure samples taken with a 24h interval 

and in different treatment groups. Full bars represent the apical compartment, dotted bars represent 

the basal compartment. 

Figure 7: mRNA transcript abundance (± SEM) after qRT-PCR gene expression analyses. Genes are 

sorted based on function: A. Apoptosis, B. Oxidative stress and BOEC-function, C. BOEC-carbohydrate 

metabolism, D. BOEC-lipid metabolism, and E. FA-uptake.  a,b,c Different superscripts per bar indicate 

statistical significant differences (P<0.05) 

Figure 8: The permeability assay showed a decrease in FITC-albumin concentrations measured in the 

albumin supplemented compartment after a 3h assay in both the basal to apical (A) and apical to 

basal (B) assay direction. a,b Different superscripts per bar indicate statistical significant differences 

(P<0.05). 

Figure 9: Graphic summary of the obtained results and conceptualization of fatty acid transfer across 

BOEC-monolayers as suggested in the experiments above. Red arrows indicate the FA-transfer: via 

paracellular transport the basally supplemented FAs (A) are directed to the apical oviductal lumen 

compartment as non-esterified FAs, where they can be internalized by the cells and directly used as 

an energy substrate or in case of abundance, stored in lipid droplets (B). Gene expression is altered to 

allow the cells metabolic adaptation and upregulated anti-oxidative and anti-apoptotic pathways 

after exposure to elevated NEFAs. Green arrows suggest the increased permeability from the basal to 

the apical compartment in APICAL NEFA, proposing the possibility that the oviductal micro-

environment may be subjected to all kinds of metabolic changes. Nuclei are orange, secretory 

granules are blue, and lipid droplets are depicted in yellow. These data suggest cellular adaptation to 

changing environmental conditions. 



Table 1: List of primers used showing primer sequences, fragment sizes, and gene bank accession numbers. 
GAPDH, H2AFZ and ACTB were used as endogenous controls. 

Gene  Gene name Primer sequence (5'-3') Fragment 
size (bp) 

Gene bank 
accession no. 

ACACA Acetyl-CoA carboxylase alpha 
AAGCAATGGATGAACCTTCTTC 
GATGCCCAAGTCAGAGAGC 

196 FN185963.1 

ACSL1 
Acyl-CoA synthetase long-chain 
family member 1 

TGACTGTTGCTGGAGACTGG 
TGTGCTTCTTCCTGTCGATG 

250 NM_001076085.1 

ACTB Actin, beta  
GAGAAGCTCTGCTACGTCG 
CCAGACAGCACCGTGTTGG 

264 AF191490.1 

BAX BCL2-Associated X Protein 
CTGGAGCAGGTGCCTCAGGA 
ATCTCGAAGGAAGTCCAGCGTC  

300 NM_001166486.1 

BCL2 B-Cell CLL/Lymphoma 2 
GGAGCTGGTGGTTGACTTTC 
CTAGGTGGTCATTCAGGTAAG 

517 BC147863.1 

CAV1 Caveolin 1 
TCAGCCGTGTCTATTCC 
ATTTCTTTCTGCGTGTTG 

103 NM_174004.3 

CD36 
CD36 molecule, fatty acid 
translocase 

GCTCCTTAAGCCATTCTTGGAT  
CACCAGTGTCAACGCACTTT 

151 NM_001278621.1 

CPT1B Carnitine palmitoyltransferase 1B 
CTGCCCGCCTGGGAAATGCTGT 
CAGTCTCTCCTCCCCGGGCTGG 

332 NM_001034349.2 

ESR1 Estrogen receptor 1 
CCCGCCAAGGTTCTGAGAATCC 
CAAGGCGTGCCACGTAGAACTG 

159 NM_001001443.1 

FABP3 Fatty acid binding protein 3 
TTGTGCGGGAGATGGTTGA 
TGCCGAGTCCAGGAGTAGCC 

147 NM_174313.2 

FOXJ1 Forkhead box J1 
AGCAAGGCCACCAAGATCACC 
CCGAGGCACCTTGATGAAGCAC 

145 NM_001192076.1 

GAPDH 
Glyceraldehyde-3-phosphate 
dehydrogenase 

ACCCAGAAGACTGTGGATGG 
ATGCCTGCTTCACCACCTTC 

247 NM_001034034.2 

GPX1 Glutathione Peroxidase 1 
GCAACCAGTTTGGGCATCA 
CTCGCACTTTTCGAAGAGCATA 

116 NM_174076.3 

G6PD 
Glucose-6-phosphate 
dehydrogenase  

CGCTGGGACGGGGTGCCCTTCATC 
CGCCAGGCCTCCCGCAGTTCATCA 

347 NM_001244135.1 

H2AFZ H2A histone family, member Z 
AGGACGACTAGCCATGGACGTGTG 
CCACCACCAGCAATTGTAGCCTTG 

209 NM_174809 

LDHA Lactate dehydrogenase A 
TTCTTAAGGAAGAACATGTC 
TTCACGTTACGCTGGACCAA 

310 NM_174099.2 

LPL Lipoprotein lipase 
ATTGCTCAGCATGGCTCGGAAG 
TCCCAGGGCCATACACTGACTG 

309 NM_001075120.1 

OVGP1 Oviductal glycoprotein 1 
AAGAATGAGGCCCAGCTCAC 
TGCCGAAGATTTGGGGTCTC 

219 NM_001080216.1 

SHC1 
SHC (Src Homology 2 Domain 
Containing) Transforming Protein 1 

GTGAGGTCTGGGGAGAAGC 
GGTTCGGACAAAGGATCACC 

334 NM_001075305   

SCL2A1 
Solute carrier family 2 (facilitated 
glucose transporter) member 1 
(former GLUT1) 

CTGATCCTGGGTCGCTTCAT 
ACGTACATGGGCACAAAACCA 

68 NM_174602.2 

SOD1 Superoxide dismutase 1, soluble 
ATCATTGGCCGCACGATGGTG 
CCACAGGCCAAACGACTTCCAG 

107 NM_174615 

TJP1 Tight Junction Protein 1 
AATCATCCGACTCCTCGTCG 
CCCAAACACAGCGCGTAAAA 

255 XM_010817146.1 

TP53 Tumor Protein P53 
CTCAGTCCTCTGCCATACTA 
GGATCCAGGATAAGGTGAGC 

364 NM_174201.2 
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