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Abstract 

The central problem of describing most environmental and industrial flows is predicting when 

material is entrained into, or deposited from, suspension. The threshold between erosional and 

depositional flow has previously been modeled in terms of the volumetric amount of material 

transported in suspension. Here a new model of the threshold is proposed, that incorporates: i) 

volumetric and particle size limits on a flow’s ability to transport material in suspension; ii) 

particle-size distribution effects; and iii) a new particle entrainment function, where erosion is 

defined in terms of the power used to lift mass from the bed. Whilst current suspended-load 

transport models commonly use a single characteristic particle-size the model developed herein 

demonstrates that particle-size distribution is a critical control on the threshold between erosional 

and depositional flow. The new model offers an order of magnitude, or better, improvement in 

predicting the erosional-depositional threshold and significantly outperforms existing particle-

laden flow models.  

1 Introduction 

When particle-laden flows erode or deposit material the fundamental properties of the flow 

(hydrodynamics), and through time, the surfaces over which a flow travels (morphodynamics) are 

changed. Therefore, whether a flow is net erosional or depositional is of key importance in 

environmental and industrial fluid dynamics, e.g. on: landscape erosion and evolution [Houssais 

et al., 2015; Bufe et al., 2016]; the efficiency of hydraulic engineering structures such as dams 

[Yang, 2006; Wang et al., 2015]; the effectiveness of flood protection measures [Nittrouer et al., 

2012]; and pipe flow obstruction or erosion-corrosion [Parsi et al., 2014]. Equivalent terminology 

may use sub-saturated flow and supersaturated flow to define if a flow is net erosional or 

depositional [van Maren et al., 2009]. The threshold between erosion and deposition, i.e. the 



 

condition of equilibrium in particle-laden flow, is arguably the most important prediction a 

sediment transport model is required to make. Hence, here we use the prediction of the threshold 

between net erosional and net depositional flow, as the key criterion for testing sediment transport 

models. 

In natural flows sediments are predominately transported by turbulent fluid motion as 

suspended load, and material interacting with the bed (bedload) is negligible in terms of bulk 

sediment flux [Syvitski et al., 2003]; consequently we concentrate on modeling the transport of 

suspended load. In keeping with most existing predictions of suspended load transport we assume 

low concentration, non-cohesive flow, and model the limiting threshold where sediment erosion 

balances deposition [Yang, 2006]. Therefore, in dilute flow, sediment concentration below or 

above an equilibrium value respectively defines if a flow is net erosional or depositional [van 

Maren et al., 2009]. The test of the suspended load transport models is thus the comparison of 

observed versus predicted hydrodynamic and suspended load conditions at the net erosion-

deposition threshold. 

Common suspended load transport models are based on flow velocity, depth, concentration 

and a single characteristic particle size (i.e., monodisperse models [Velikanov, 1954; Bagnold, 

1966; Celik and Rodi, 1991; Kubo et al., 2005; Yang, 2006; Garcia, 2008; Bizzi and Lerner, 

2015]), often the median particle diameter. Although suspended load transport models can show 

good agreement with individual sets of laboratory or field based observations, they invariably 

show poorer agreement when compared with other empirical datasets [Yang, 2006; Walling, 2009]. 

However, the particle-size distribution of sediment in natural [Bayat et al., 2015] and industrial 

flows [Parsi et al., 2014; Sajeesh and Sen, 2014] is often wide and fine-tail skewed (motivating 

the standard use of a log-normal particle-size scale [Soulsby, 1997; Garcia, 2008]). As has been 



 

previously recognized particle distribution may affect sediment transport processes [Smith and 

Hopkins, 1973], thus some numerical sediment transport models use finite discretization of 

particle-size distributions, i.e. polydisperse models, to simulate the transport dynamics of particles 

of mixed sizes [Wilcock and Southard, 1988; Armanini and Di Silvio, 1988; Garcia and Parker, 

1991; McLean 1991, 1992; Blom and Parker, 2004; Strauss and Glinsky, 2012; Dorrell et al., 

2013; Basani et al., 2014; Halsey et al., 2017]. However, the effect of mixed size distributions, i.e. 

polydispersity, on the threshold between erosion and deposition from suspended load particle 

transport, and thus the effectiveness of common monodisperse models of sediment transport at the 

deposition-erosion threshold, has not been robustly investigated.  

A further key shortcoming of most sediment transport models is that capacity and 

competence are not jointly considered. Capacity describes the maximum amount of material that 

a turbulent flow can support: i.e., capacity can be defined as the sum volumetric concentration, c 

(sediment volume per unit volume, v/v), of all material in suspension at the net erosional-

depositional threshold [Dorrell et al., 2013 and references therein]. Competence describes the 

maximum particle size that can be transported by a flow. Although these two limits on particle 

transport are fundamentally related [Dorrell et al., 2013], most approaches to threshold calculation 

only incorporate one of these controls [e.g., Shields, 1936; Kubo et al., 2005], which reduces their 

effectiveness for general use.  

 

2 Methods 

Here we examine the ability of existing models to describe the erosion-deposition threshold of 

suspended load sediment transport by comparing them to a collated empirical data set of 

equilibrium flow [Vanoni, 1946; Brooks, 1954; Einstein and Chien, 1955; Vanoni and Nomicos, 



 

1960; Nordin and Dempster, 1963; Guy et al., 1966; Ashida and Okabe, 1982; Coleman, 1986; 

Lyn, 1988; Cellino and Graf, 1999; Graf and Cellino, 2002]. We then introduce a new sediment 

transport model that incorporates polydispersity, and allows for both competence and capacity 

driven sedimentation, and demonstrate that this outperforms existing models. 

 

2.1 Empirical Data 

The collated empirical data set include flows with both narrow and wide particle-size distributions 

and experimental and field observations (see Supporting Data Table 1). Collected data were 

restricted to flat beds to avoid enhanced sediment suspension effects arising from flow over an 

uneven bed [Soulsby, 1997].  

As reported in original data sources, empirical measurements collated include: depth 

average flow velocity, u, and shear velocity, u*; flow depth, h; depth average concentration of the 

suspended load, c; and the particle-size distribution at threshold conditions (see section 2.2). 

Original data sources use different models to determine shear velocity, i.e.: i) depth-based, 𝑢∗ =

√𝑔ℎ𝑆, where g is gravity and S is bed slope [Nordin and Dempster, 1963; Guy et al., 1966]; ii) 

hydraulic-radius based 𝑢∗ = √𝑔𝑅ℎ𝑆, where Rh is the hydraulic radius [Vanoni, 1946; Einstein and 

Chien, 1955; Vanoni and Nomicos, 1960; Coleman, 1986;  Lyn, 1988]; iii) Reynolds-stress based, 

either derived from fitting a Rouse number to the flows’ equilibrium concentration profile [Ashida 

and Okabe, 1982], or fitting the shear velocity to the shear stress profile [Cellino and Graf, 1999; 

Graf and Cellino, 2002]; and iv) bed-friction 𝑢∗ = 𝑢√𝑓𝑏 8⁄ , where fb is a specified bed friction 

coefficient [Brooks, 1954]. Depth average variables were calculated by integrating empirical 

profiles over the height of the flow and dividing by the flow depth.  

 



 

2.2 Particle-Size Distribution Fitting 

To close both mono- and polydisperse models of the threshold between net erosional and 

depositional flow both a characteristic suspended-load particle size and the particle-size 

distribution are determined from the collated empirical data (Figures 1 and 2). Monodisperse 

models are closed using the median particle size, d50, although other authors have used different 

percentile particle sizes to characterise suspended and bed load sediment transport [van Rijn, 

1984a]. 

The collated set of empirical data of flow at the threshold between net erosion and deposition 

can be separated into three types based on particle size data recorded (see Figure 1 and Supporting 

Data Table 1): 

A. Both the initial (before use in laboratory experiments) and the suspended load size 

distribution are recorded [Experiments 1-7, from: Guy et al., 1966]. 

B. Only the size distribution of the suspended load (fluvial data) is recorded [Experiments 8-

30, from:  Nordin and Dempster, 1963]. 

C. Only the initial size distribution of material before use in laboratory experiments is 

recorded [Experiments 31-70, from: Vanoni, 1946; Brooks, 1954; Einstein and Chien, 

1955; Vanoni and Nomicos, 1960; Ashida and Okabe, 1982; Coleman, 1986; Lyn, 1988; 

Cellino and Graf, 1999; Graf and Cellino, 2002]. 

The type A and B empirical data may be directly used to determine an appropriate particle-size 

distribution. Here a skewed log-normal distribution, with a cumulative distribution function, 

CDF(), 
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is fitted to empirical measurements of the CDF for three 𝜙-scale particle sizes (fine, medium and 

coarse). The distribution is discretised, using a 𝜙-scale bin size of 0.01. The location, , scale, , 

and shape, , parameters are calculated by solving the resultant set of linked numerical equations 

using Matlab’s non-linear system solver, fsolve, based on Powell’s method [Powell, 1964]. The 

derived particle distribution is constrained to the central 99% region of a fitted probability function 

to avoid infinitely small and infinitely large particle classes. 

For the type C data, a direct fit to particle size data cannot be used, as fractionation will result 

in change in the particle-size distribution [Whitehouse, 1995]. It is found from the type A data that 

the median particle size of suspended load, �̃�50 (as denoted by tilde notation), is consistently 

equivalent to the 8th percentile of the initial distribution, 08. This agrees with previous studies that 

report the median suspended load particle size as in the range of 2nd to 15th percentile of material 

comprising the bed [Whitehouse, 1995]. Although this fractionation rule may not hold for 

predominately fine-grained systems [see, e.g., Nittrouer et al., 2011], the median size of the type 

A data ranges from 2.97 ≥ 𝜙50 ≥ 2.33 and the median (unweighted) size of the type C data is 

also coarse, predominantly in the range 3 ≥ 𝜙50 ≥ 2 (see Supporting Data Table 1). Thus, for the 

type C data only the assumed suspended load distribution is weighted, following the empirical rule 

determined above, to account for particle fractionation. However, scale and shape parameters are 

assumed unchanged in the weighted distribution. A two-stage process is thus used to determine a 

characteristic particle-size distribution: 

i. A fit of a skewed log-normal distribution to initial particle data to determine: the 8th 

percentile particle size and the scale, , and shape, , parameters. 

ii. A shift in the fitted skewed log-normal distribution such that �̃�50 is equivalent to 08. 



 

The particle distribution shift in stage ii is made using Matlab’s fsolve to find a new weighted 

location parameter, 𝜉, such that for the initial particle size distribution, the cumulative distribution 

function evaluated at, 08, is equal to 50%, i.e. CDF(𝜙08, 𝜉, 𝜔, 𝜓) = 50%. 

 

3 Results 

3.1 Particle-Laden Flow Hydrodynamics at Equilibrium 

Here the hydrodynamics of particle-laden flow at equilibrium are quantified by the 

dimensionless ratio of the flow force acting on stationary particles to their submerged weight: here 

defined as Γ = τ*/g∆ρd50, where τ*, ∆ρ = ρs–ρ, and d50 respectively denote shear stress 

(characterised by a shear velocity: u*
2=τ*/ρ), particle-fluid density difference and median particle 

diameter. The dimensional critical shear velocity for incipient particle motion of a particulate bed 

is denoted u*c. Such an approach is chosen as it allows direct comparison to the common 

dimensionless models of incipient motion [Shields, 1936] and the Rouse condition for suspended 

load transport [Rouse, 1937]. Examination of the collated laboratory and field data set of flows at 

the net erosional-depositional threshold shows that the hydrodynamics of the particle-laden flow 

at equilibrium are intrinsically related to the particle-size distribution. The dimensionless shear 

stress required to maintain threshold conditions increases as the particle-size distribution widens 

(Figure 1). This effect even occurs when the median particle size remains constant and thus cannot 

be captured by monodisperse models.   



 

 

Figure 1 Dimensionless shear stress, Γ, at the net erosion-deposition threshold, as a function of 

log normal standard deviation of the particle-size (see section 2.2). Residuals plot deviation from 

line of best fit. Colors denote -scale median particle size, where =−log2(d/d0) and d0 = 1 mm. 

Concentration is depicted by symbol size. Empirical data types (A-C), and original sources, are 

defined in the methods section and in Supporting Data Table 1. 

 



 

 

Figure 2 Comparison of empirical and modeled net erosion-deposition thresholds. Plots show the 

observed, Γo, versus the predicted, Γp, dimensionless shear stress for: monodisperse models Types 

I (A), II (B) and III (C) and IV (E); and the polydisperse models III (D) and IV (F). Symbols are 

as in Figure 1, the dashed red line describes exact fit. The colors refer to the log normal standard 

deviation of particle-size, . 

 



 

3.2 Net Erosion and Deposition Threshold Models 

Existing models of the net erosional-depositional threshold are tested and compared against 

empirical observations. The goodness of fit between observed, Γo, and predicted, Γp,  

dimensionless shear stress (Figure 2), is given by the Root Mean Square Logarithmic Error 

(RMSLE) for which smaller numbers represent lower error. A new model is then proposed based 

on these comparisons. 

 

3.2.1 Rouse Models 

 In competence based (Type I “Rouse”) models, deposition rate is an assumed function of 

flow stratification. As stratification scales with the settling to shear velocity ratio [Soulsby, 1997], 

some equilibrium flow models [Komar, 1985; Kneller, 2003; Kubo et al., 2005; Lynds et al., 2014] 

have assumed a net erosional-depositional threshold given by 

(2) ws = βu∗, 

where ws is the (particle size dependent) characteristic particle settling velocity (see Supporting 

Information) and β is an empirical Rouse parameter [Rouse, 1937]. Settling velocity is estimated 

based on the median particle diameter. Although alternative models have used different percentile 

particle sizes to characterize the settling velocity of sediment in suspension they may all be 

criticized as failing to describe the dynamics of the finer or coarser particle classes respectively 

[see Komar, 1985 and references therein]. An iterative best fit of the theoretical model to data 

yields β=0.300 and RMLSE=0.746 (Figure 2a). The Rouse parameter describes a threshold 

between erosion and deposition independent of concentration or particle-size distribution. 

Regardless of whether the particle-size distribution can be ignored, the Rouse criterion must be 

fundamentally flawed as the threshold condition is known to be dependent on the concentration of 



 

material in suspension [Garcia, 2008]. A corollary is that the commonly used transition criterion 

between bedload (transport dominated by particle-bed interaction) and suspended load (transport 

dominated by turbulent fluid motion), u*=ws [Soulsby, 1997] should also take concentration into 

account (see Supporting Information).  

 

3.2.2 Flow Power Models 

 Capacity based (Type II “Flow Power”) models assume that when deposition and erosion 

are in balance the rate of work done keeping material in suspension, g∆ρcws, is directly 

proportional to available flow power [Velikanov, 1954; Bagnold, 1966; Celik and Rodi, 1991; 

Garcia, 2008], that is proportional to ρu*
3/h [see Supporting Information; Pope, 2000; Wright and 

Parker, 2004]. The net erosional-depositional threshold is thus implicitly defined by 

(3) g∆ρcwsh = αρu∗
3. 

In equation (3) h is flow depth and α is an empirical constant specifying the energy efficiency of 

the flow [Li et al., 2014; Bizzi and Lerner, 2015]. An iterative best fit of the theoretical model to 

data yields α=0.290 and RMSLE=0.531 (Figure 2b). Although derivable from first principles (see 

Supporting Information), mechanistic flow power models do not offer a means to account for 

particle-size distribution or competence effects on threshold conditions.  

 

3.2.3 Flux Balance Models 

Alternatively, competence-capacity based (Type III “Flux Balance”) models equate the net 

rate of sediment entrainment from the bed to the net rate of deposition from suspended load [Smith 

and Hopkins, 1973; Garcia and Parker, 1991, 1993; Garcia, 2008], a formulation that can be 

traced back to the original morphodynamic models of Exner [Exner, 1920, 1925]. For a 



 

polydisperse suspension of N distinct particle classes, individual, ci, and sum, c=i=1
Nci, particle 

class concentrations determine the criteria for threshold flow [Dorrell et al., 2013], as given by the 

𝑁 + 1 conditions 

(4) 
ci

−

cm
Ei  = ci

+wsi ∀i and ∑ ci
− = cm

N
i=1 . 

Here the sediment entrainment rate is defined by Ei; the packing concentration, cm=0.6, is assumed 

constant [Dorrell and Hogg, 2010]; particle class concentration near the bed, at height z+=0.01h 

[Soulsby, 1997], is defined by ci
+; particle class concentration in the active layer of the bed, which 

freely exchanges material with material transported as suspended load [Dorrell et al., 2013], is 

defined by ci
-. Here particle distribution-dependent hiding effects in the active layer are assumed 

negligible [Wilcock and Southard, 1988] and the active layer is assumed to contain only particle 

classes also in suspension [Dorrell et al., 2013]. Given the near bed concentration and sediment 

entrainment rate, the threshold condition is given by the minimum shear velocity that satisfies 

equation (4) where 0≤ci
-≤cm. Near bed concentration is proportional to individual capacity ci

+=ci/λi; 

assuming the flow is dilute and turbulence dampening is negligible [see, e.g., Smith and McLean, 

1977; van Rijn, 1984a; Gelfenbaum and Smith 1986], the shear and particle settling velocity 

dependent stratification shape function, λi, is given by the depth averaged Rouse profile [see 

Supporting Information; Rouse, 1937].   

 Previous studies suggest that entrainment rate is a competence-limited function of forces 

applied to the bed, i.e. the available flow power above that required for incipient particle motion 

given by Δu*i
3/h=max(u*2-u*ci

2,0)3/2/h [van Rijn, 1984b] and the properties of the material being 

entrained [van Rijn, 1984b; Garcia and Parker, 1991 and 1993], i.e. particle-size, di. Here u*ci is 

the critical shear velocity for incipient motion of a particle of given size. To close equation (4) a 



 

common sediment entrainment function, based on erosional flow experiments [van Rijn, 1984b; 

Dorrell et al., 2013; Basani et al., 2014], is used that takes the form  

(5) 𝐸𝑖 = 𝛾𝜌(𝑔𝛥𝜌𝑑𝑖)
−1𝛥𝑢∗𝑖

3  

(γ being an empirical parameter describing entrainment efficiency). This particle-size dependent 

entrainment function is employed in current (Type III) models, equations (4)-(5). An iterative best 

fit of the monodisperse form of this model to data yields γ=3.79×10-3 and a RMSLE=0.670 (Figure 

2c). Using a polydisperse model to explicitly model size distribution improves the fit giving 

γ=1.51×10-2 and a RMSLE=0.501 (Figure 2d).  

 

3.2.4 Flow-Power Flux-Balance Model 

In the limit of a monodisperse unstratified suspension, where deposition scales with cws 

[Dorrell et al., 2013], the flow power model (3) implies that erosion of sediment scales with 

ρu∗
3 g∆ρh⁄ . However, the flux balance model, equations (4)-(5), does not recover this mechanistic 

description of the flow. In the regime of an unstratified suspension, ws<<u*, a series expansion of 

the flux-balance model (4)-(5) implies that equilibrium erosion (in balance with deposition) scales 

inversely with particle diameter, cwsρu*
3/(gΔρd), to leading order. 

This result motivates the development of a new flow-power, flux-balance (Type IV) model 

that: recovers the mechanistic flow power model cwsρu*
3/(gΔρh) of threshold flow, for ws<<u*; 

describes flow competence; and may be extended to describe polydisperse suspensions. This is 

achieved using a new sediment entrainment function for flow at the threshold between net erosion 

and net deposition. Here the power required to lift sediment into suspended load, gΔρEi, is assumed 

proportional to the depth averaged available flow power, ρΔu*i
3/h. Whilst entrainment is limited 

by particle size dependent competence, the new entrainment function has the form  



 

(6) 𝐸𝑖 = 𝜀𝜌(𝑔𝛥𝜌ℎ)−1𝛥𝑢∗𝑖
3 , 

which scales with flow depth, and is a key departure from existing entrainment models that are 

scaled using particle diameter (ε being an empirical parameter describing entrainment efficiency). 

This flow depth - dependent entrainment function is used to close the flow-power flux-balance 

(Type IV) model, equations (4) and (6). An iterative best fit of the monodisperse form of this 

model to empirical data yields ε=4.90 and a RMSLE=0.461 (Figure 2c); the polydisperse form of 

this model improves the fit, where ε=13.2 and a RMSLE=0.385 (Figure 2d). The improvement in 

threshold flow predictions by using a flow depth rather than particle diameter [van Rijn, 1984b; 

Garcia and Parker, 1993] scaled entrainment rate is also demonstrated by the decrease in RMSLE 

from 0.501 to 0.385 between the Type III and IV models (Figures 2d and f). 

 

3.3 Reference Concentration 

A reference concentration condition is often used to close modeled sediment in suspension 

[Soulsby, 1997]. As stressed by Dorrell and Hogg (2011), such a boundary condition can only be 

applied at the threshold between net erosion and deposition, as its use in temporally or spatially 

evolving flows may result in erroneous gravitationally unstable profiles of suspended sediment 

concentration. The reference concentration may easily be determined from the flux balance models 

(Type III and IV) as the sum near-bed concentration, ∑ ci
+N

i=1 , see Figure 3. For example, assuming 

the capacity to transport particles in suspension is indeed related to flow power [Velikanov, 1954; 

Bagnold, 1966], the near bed reference concentration is shown from equations (4) and (6) to be a 

function of the composition of the active layer of the bed and particle size (settling velocity) 

distribution 

(7)  ∑ ci
+𝑁

𝑖=1 = ∑ ε
ρ

(gΔρh)

ci
−

cm

Δu∗𝑖
3

wsi

𝑁
𝑖=1   where ∑ ci

− = cm
N
i=1 . 



 

Therefore, the near bed suspended load reference concentration must be particle size (settling 

velocity) dependent, given the balance between the work done keeping sediment in suspension 

and the available power of the flow. This contrasts with research that hypothesizes that near-bed 

concentration is particle size independent (for particles <200μm in diameter) [e.g., Eggenhuisen et 

al., 2017]. More generally, the reference concentration is also dependent on the composition of the 

active layer, ci
-. Thus, there is no unique solution for the suspended load capacity of a polydisperse 

suspension of particulate material at a given shear velocity [Dorrell et al., 2013]. However, if the 

concentration, size distribution and the shear velocity dependence of the vertical distribution of 

material in suspension is known a unique solution for the shear velocity at the threshold between 

net deposition and erosion may be found using the flux balance models, Type III and IV (Figures 

2 and 3). 

 



 

 

Figure 3 Dependence of the dimensionless shear stress, Γ, on particle size standard deviation. (A) 

Log normal suspended load particle-size distributions, truncated to the central 99% range. (B) 

Threshold dimensionless shear stress, Γ, derived using the flux balance model (Type IV), at 

average empirical flow conditions (c = 0.1% and h = 0.25m – see Supporting Data Table 1). 

Particle size distribution is specified a priori by a log-normal distribution, (A). The dotted white 

curves describe the near-bed reference concentration, Σi=1
Nci

+. The solid gray curve denotes the 

Shields condition for incipient motion, whilst the dashed gray curve denotes the Rouse condition 

for suspended load transport. 



 

 

4 Discussion 

Comparing all the models discussed, monodisperse models in general provide a poorer 

collapse between the observed, Γo, and predicted, Γp, dimensionless shear (Figures 2a-c). The 

discretization of particle-size distribution improves model predictions; the polydisperse form of 

the new Type IV model, which uses the flow power based sediment entrainment formula, provides 

the best collapse (Figure 2f). Notably, where suspended particle-size distribution was explicitly 

recorded (i.e. the 30 experiments comprising the type A and B data), the Type IV model provides 

the best prediction of threshold between net-erosion deposition (compare Figures 2b and 2f). Fit 

of the type C data is also improved using the Type IV model, but this depends on the interpolated 

distribution of material in suspension (section 2.2). Moreover, discretization of the particle-size 

distribution significantly improves prediction of flow conditions recorded in laboratory and fluvial 

observations (compare Figures 2e and 2f). This is due to increasingly wider particle-size 

distributions enhancing vertical flow stratification and thus depositional flux. Consequently, the 

shear stress must increase for the flow to maintain the net erosional-depositional threshold. The 

effect of stratification is magnified by the non-linear dependence of settling velocity on particle 

size [Soulsby, 1997].   

As shown in Figure 3, the net erosion – deposition threshold for particulate laden flows at 

equilibrium occurs in the suspended load regime. In contrast to previous studies, where sediment 

transport was predicted using characteristic particle size [see, e.g., Velikanov, 1954; Bagnold, 

1966; Celik and Rodi, 1991; Soulsby, 1997; Kubo et al., 2005; Yang, 2006; Bizzi and Lerner, 2015], 

the net erosion – deposition threshold is shown to also depend strongly on particle-size distribution 

(Figures 1 and 3). For example, the dimensionless shear stress required to maintain threshold 



 

conditions for coarse silt (=5) increases by ~3,000% when varying from monodisperse, =0, to 

poorly sorted [Folk, 1966], ≈2, sediment (Figure 3b). In contrast changes in characteristic particle 

size have a comparatively small effect, with a maximum ~250% increase in dimensionless shear 

stress for 8≥≥-2 and =1 (Figure 3b). Thus, particle-size distribution is a dominant control on the 

dimensionless shear stress at the threshold between net erosional and depositional flow; although, 

it is noted, from Figure 1, that characteristic particle size, and suspended load concentration, also 

affect this threshold. Moreover, this threshold also influences other critical sediment transport 

parameters including flow concentration (i.e., capacity) and in turn the maximum sediment 

transport flux per unit area (i.e., the product of flow concentration and velocity, which is 

proportional to shear stress).  The order of magnitude variations in dimensionless shear stress with 

particle size distribution (Figure 3) may thus explain the large errors inherent in existing 

monodisperse sediment transport models [Yang, 2006]. 

As posed, sediment concentration, determined by stratification (2), flow power (3) or 

entrainment (5)-(6), increases with the amount of turbulent mixing characterized by shear velocity. 

However, with increasing volume concentration there is a non-linear relationship between the 

energy needed to keep material in suspension and flow power, since turbulence is progressively 

dampened with suspension of particulate material [Yang, 2006]. Thus, the threshold formulation, 

Equations (2)-(6), only holds for dilute flow, not for the sub- super saturated threshold of hyper-

concentrated flows [van Maren et al., 2009]. Transition to hyper-concentrated flow occurs across 

a wide range of concentrations, 0.1<c<0.4 [see van Maren et al., (2009) and references therein]. 

Moreover, whilst we have proposed empirical closures scaling the dependence on shear velocity, 

further work is required to elucidate the physical processes controlling these scaling parameters. 



 

Here we have shown that the effect of particle-size distribution on controlling the threshold 

between net erosion and net deposition from suspended load transport is far more important than 

has previously been recognized. Previous work may have overstated the predictive ability of 

monodisperse models as they have predominantly compared them to comparatively narrow 

particle-size distributions. Comparison to wider particle size distributions typical of many natural 

environments and industrial settings, demonstrates the limitations of these monodisperse models 

and the importance of particle sized distribution (Figure 3). 

5 Conclusions 

Here it is shown that particle-size distribution is a dominant control on the threshold between net 

erosion and net deposition of suspended particles in environmental and industrial flows. Thus, 

polydisperse, rather than monodisperse, particle-size modeling approaches are required to predict 

the threshold between the entrainment and deposition of particulate material into suspended load. 

Broader particle-size distributions enhance suspended sediment stratification and thus the near-

bed sediment concentration and depositional flux. Consequently, threshold conditions occur at 

higher shear stresses in flows carrying broader particle distributions compared with those carrying 

narrower distributions. Therefore, the threshold does not have unique values for specific 

combinations of flow concentration and characteristic particle size – implicit in existing theories 

– but has a range of possible values depending on particle-size distribution. To predict the 

threshold, a new sediment entrainment function is proposed based on the flow-power model of 

suspended load particle transport capacity. By doing so, suspended load polydispersity is 

incorporated, providing a better than order-of-magnitude improvement compared to existing 

models. The results also explain the wide variations observed in current models when the net 

erosional-depositional threshold is based on a characteristic particle size. This model establishes a 



 

basis for accurate predictions of particle-laden flow hydro- and morpho-dynamics, applicable 

across a wide range of environmental, engineering and industrial settings. 
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