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Abstract 

By applying tensile creep to polymeric fibres, a viscoelastically prestressed 

polymeric matrix composite (VPPMC) can be produced by removing the creep load 

before the fibres are moulded into a resin matrix.  The viscoelastically strained fibres 

impart compressive stresses to the surrounding matrix, following curing.  Previous work 

has demonstrated that nylon 6,6 fibre-polyester resin VPPMCs can improve mechanical 

properties by up to ~50%, compared with control (unstressed) counterparts.  This paper 

focuses on the effect of temperature (from -25 °C to 45 °C) on these composites, under 

Charpy impact conditions.  It was found that impact energy absorption by the VPPMC 

samples was greater than their control counterparts over the full temperature range, the 

increases being ~40% at 20 °C and above, reducing to ~20% at lower temperatures.  

The principal mechanism for energy absorption from the VPPMC samples was fibre-

matrix debonding.  At lower temperatures however, resin impact toughness decreased, 

which facilitated energy absorption through matrix cracking.  Here, as VPPMC 

prestress impeded this effect, energy absorption through matrix cracking was more 

prominent within the control samples and this is believed to be a major contribution to 

the observed reduction in VPPMC performance relative to control samples at lower 

temperatures. 
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1. Introduction 

 

Previous investigations into viscoelastically prestressed polymeric matrix composites (VPPMCs) 

have already demonstrated improved mechanical properties relative to control (unstressed) counterparts, 

without the need to increase section size or weight.  In contrast with (more conventional) elastically 

prestressed polymeric matrix composites (EPPMCs), a key benefit of VPPMC processing is that the fibre 

stretching and moulding operations are decoupled; i.e. fibres (with appropriate viscoelastic properties) are 

subjected to tensile creep under a fixed load for a predetermined time and, following load removal, they 

are moulded into a resin matrix.  Following matrix curing, the viscoelastically recovering fibres create 

compressive prestress in the surrounding matrix, which is counterbalanced by residual tension within the 

fibres.  Therefore, relatively simple equipment is required to apply creep loads to fibre tows.  Also, on 

releasing the load, the unconstrained fibres can be cut to any length, and then positioned in any 

orientation within any shape of mould that can be filled with a matrix resin [1]. 

For nylon 6,6 fibre-based VPPMCs, increases of typically 25-50% have been observed from Charpy 

impact and flexural stiffness tests [2-6] and ~15% in tensile strength [7].  Nevertheless, the improved 

performance provided by VPPMCs must also be considered in terms of product longevity.  Localised 

creep at the fibre-matrix interface regions may be expected to occur as in EPPMCs; for VPPMCs 

however, this would be offset by active responses from longer term viscoelastic recovery mechanisms 

within the polymeric fibres [8].  In fact, a recent accelerated ageing study has demonstrated that nylon 

fibre-based VPPMCs show no deterioration in (room temperature) impact performance for at least 25 

years, even after being exposed over that period to a constant ambient temperature of 50 °C [6]. 

Although nylon fibre reinforcement has been at the forefront of this research, VPPMCs have also 

been successfully demonstrated using (mechanically superior) ultra-high molecular weight polyethylene 

(UHMWPE) fibres, where increases of 20–40% in flexural modulus and Charpy impact energy 

absorption have been observed [9,10].  Moreover, other researchers have found that the flexural 

toughness of VPPMCs based on bamboo increased by 28% [11].  These alternatives do not preclude 

opportunities for the commercial exploitation of nylon fibre-based VPPMCs however.  For example, 

nylon 6,6 fibres (for generating prestress) could be commingled with more common reinforcing fibres and 

a study of nylon 6,6-Kevlar fibre hybrid composites has shown that the prestress effect increases impact 

energy absorption by up to 33% and flexural modulus by 40% [12].  Shape-changing (morphing) 

structures using nylon 6,6 fibre-based VPPMCs have also been recently demonstrated [13,14], which may 

lead to the design of functional structures, such as morphing aerofoils. 

The stage has now been reached where the performance of VPPMCs needs to be considered in terms 

of ambient temperature, since even the mechanical characteristics of conventional PMCs can be sensitive 

to thermal effects.  Thus in terms of low velocity impact behaviour, Khalid [15] found that Charpy impact 

energy absorption showed a slight increase with temperature from -40 °C to 40 °C for woven 

aramid/epoxy and glass/epoxy PMCs.  For drop-weight impact, Hirai et al [16] found that energy 

absorption decreased with increasing temperature (-65 °C to 100 °C), whilst the damage area increased 

for glass fabric/vinyl-ester PMCs.  Similarly, Amaro et al [17] observed a larger damage area with 

increasing temperature (~20 °C to 90 °C) but also found that energy absorption increased for glass fibre 

reinforced laminates.  In contrast, Ibekwe et al [18], showed that both damage area and energy absorption 

decreased with increasing temperature (-20 °C to 20 °C) for glass/epoxy PMCs.  A study of glass 

fibre/epoxy composites under cryogenic conditions (-173 °C to 22 °C) by Ma et al [19] demonstrated 

smaller damage size and depth together with less energy absorption as the temperature decreased.  Most 

recently, Sorrentino et al [20] found that the type of fibre reinforcement had a significant influence on the 

effects of temperature on low velocity impact testing.  Clearly, these findings suggest that the influence of 

ambient temperature on PMC mechanical performance could be complex. 

To date, all mechanical investigations for VPPMCs have been limited to normal ambient temperature; 

i.e. 20 °C [2-10,12-14,21-23].  In real applications however, VPPMCs may be subjected to a wide range 

of temperatures.  Therefore, the purpose of this study was to address this aspect, by investigating the 
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mechanical characteristics of nylon 6,6 fibre-based VPPMCs over a range of test temperatures.  Charpy 

impact testing was used since it is a relatively quick and simple procedure. 

 

2. Experimental procedures 

2.1. Production of samples  

 

Batches of composite samples were produced in accordance with previous work [3-6,8,21-23] and 

procedures are summarised here.  Fibre reinforcement was an untwisted continuous nylon 6,6 yarn of 140 

filaments with a filament diameter of 27.5 μm, supplied by Ogden Fibres Ltd, UK.  The yarn was 

annealed in a fan-assisted oven at 150 °C for 0.5 h to remove any previous process-related stress history.  

The yarn was then cut into two identical lengths, one “test”, the other “control”.  A 330 MPa load was 

applied to the test yarn for 24 h using a bespoke stretching rig, while the control yarn was placed in close 

proximity to the stretching rig so that it was exposed to the same ambient conditions (20–21 °C, 30–40% 

RH).  Both yarns were then separately folded, cut into appropriate lengths and brushed into two flat 

ribbons ready for moulding.  Previous studies [5,7,21] have shown no differences in fibre diameter or 

topography between test and control yarns, resulting from the stretching process. 

The matrix material was Reichhold Polylite 32032, a clear (optically transparent) polyester casting 

resin supplied by MB Fibreglass, UK, mixed with 2% MEKP catalyst.  Unidirectional continuous fibre 

composite samples were produced by open-casting with two identical aluminium moulds, one for the test 

samples, the other for the control.  Each mould had a polished channel, 10 mm wide and 3 mm deep, for 

moulding a long strip.  Test (prestressed) and control (no prestress) strips were moulded simultaneously 

with the same resin mix.  Following demoulding, ∼2 h after casting, both test and control strips were cut 

into five equal lengths to produce one batch of five test and five control samples, each 80 × 10 × 3.2 mm 

with a fibre volume fraction of ∼2%.  All samples were held under weighted steel strips for 24 h to 

prevent possible distortion from residual stresses.  Finally, samples were stored at room temperature (19–

21 °C) for ∼336 h (two weeks) prior to impact testing. 

 

2.2. Cooling and heating calibration curves 

 

A TAS ECO MT135 environmental chamber (-40 °C to 100 °C range) was used for composite 

sample heating or cooling.  The principle here was to pre-heat or cool samples, so that they were at a pre-

designated temperature at the time of impact testing, the impact test machine being at normal room 

temperature.  To achieve this, cooling and heating curves (temperature against time) of representative 

samples were measured.  Three samples were used (one test, control and matrix-only) and a 5 mm deep, 

1.6 mm diameter hole was drilled into the edge of each sample to enable insertion of a thermocouple wire; 

see Fig. 1.  Heat sink compound was used to improve thermal conductivity between the wire and sample.  

The environmental chamber was set to -35 °C and 50 °C for heating and cooling curves respectively, for 

each of the three samples.  After the sample reached the set chamber temperature (within 10 min), it was 

removed from the chamber and the sample temperature was measured at 5 or 10 second intervals for 6 

min in an ambient (laboratory) temperature of 20 °C.  Cooling and heating curves were measured twice 

for all three samples to ascertain measurement repeatability.  Curve-fits to the data were achieved through 

CurveExpert 1.4 software. 

 

2.3. Charpy impact test ing and post fracture analysis  

 

Impact tests were performed with a Ceast Resil 25 Charpy machine using a 7.5 J hammer at 3.8 m/s, 

operating in accordance with BS EN ISO 179 [24].  Five batches of samples were tested under six 

different test temperatures (-25 °C, -10 °C, 5 °C, 20 °C, 30 °C and 45 °C), to ascertain the influence of 

temperature on composite impact behaviour.  Each sample was exposed for 10 min, to -35 °C or 50 °C in 

the environmental chamber and subsequently impact tested after the designated delay, based on the 
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heating or cooling curves.  Clearly, samples for testing at 20 °C did not require heating or cooling.  

Nevertheless, to determine whether exposure in the environmental chamber had any effect on impact 

properties at 20 °C, further batches were exposed to 10 min at either -35 °C or 50 °C, then allowed to 

return to room temperature, for one hour, before impact testing at 20 °C.  Subsequently, these results 

could then be compared with findings from unexposed samples tested at 20 °C. 

Previous studies have shown that nylon 6,6 fibres tend to sink to the bottom of a mould before the 

resin cures.  Consequently, all impact tests were performed by positioning samples with the fibre-rich side 

facing away from the pendulum hammer; a diagram of the configuration has been previously published 

[21,22].  All impact tests were conducted at room temperature (20 °C) and a test span of 24 mm was used 

to be consistent with previous work [3-6,8,10,12,21-23].  Hypothesis testing was performed on impact 

data where necessary, to ascertain if differences in results were statistically significant.  All tests were 

two-tailed and performed at 5% significance level. 

Following Charpy impact testing, samples were analysed in terms of (i) debonded area and (ii) 

inspection of fractured regions.  For (i) photographic images of the debonded regions were enhanced by 

ImageJ software to facilitate measurement of these areas.  For (ii) scanning electron microscopy (SEM) 

was used to enable investigation of both matrix and fibre damage.  Here, fractured samples were made 

electrically conductive by sputter-coating using a gold target and an S360 SEM (Electron Microscopy 

Ltd., Cambridge, UK) was employed for subsequent examination. 

 

3. Results and discussion  

3.1. Cooling and heating curves 

 

The cooling and heating curves are shown in Fig. 2.  Good repeatability can be seen in both curves 

with all three sample types and there seems to be little or no difference in temperature-time characteristics.  

Thus, all specimens could be tested at the same fixed time value to obtain a particular specimen 

temperature. 

Newton’s law of cooling [25] was observed to provide a good fit to the cooling curve: 

 

 𝑇𝑐(𝑡) = 𝑇𝑎 + (𝑇0 − 𝑇𝑎)𝑒
−𝑘𝑡  (1) 

 

Here, Tc(t) is the specimen temperature during cooling at time t and Ta is the ambient temperature (an 

average value during measurement of 20.4 °C was used).  T0 represents the initial specimen temperature 

(i.e. 50 °C) and k is a constant related to the specimen heat capacity and its exposed area.  

It was found that the heating curve could not be described by Eq. (1) or any other simple relationship.  

Instead, the best-fit curve was obtained from the following function: 

 

 𝑇ℎ(𝑡) =
𝑎 + 𝑏𝑡

1 + 𝑐𝑡 + 𝑑𝑡2
 

(2) 

 

Where Th(t) is the specimen temperature during heating at time t; a, b, c and d are constants. 
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Table 1 

Time delay values (from Fig. 2) required for pre-determined impact test temperatures. 

 From heating curve  From cooling curve 

Test temperature (°C) -25 -10 5  30 45 

Time (s) 10.5 30.5 79.6  107.5 17.6 

 

From the fitted curves, the time delay between removing samples from the environmental chamber 

and conducting Charpy impact testing could be determined, and the results are shown in Table 1. 

 

3.2. Charpy impact tests  

 

It is well known that the mechanical properties of polymers are highly sensitive to temperature, 

especially when close to the glass transition temperature (Tg), which is typically ∼70 °C for polyester [26].  

Impact test data from three batches (5 samples per batch) of matrix-only samples at each temperature are 

shown in Fig. 3.  It is clear that compared to the results at room temperature (20 °C), the energy absorbed 

at lower temperatures (-25 °C to 5 °C) is reduced by∼30%, this being constant at ∼1.3 kJ/m2 .  This 

consistency in energy absorption at lower temperatures is verified by hypothesis testing.  Above 20 °C, 

impact energy increases with temperature, the energy absorption at 45 °C being ∼30% higher than at 

20 °C.  Although impact toughness increases above 20 °C , all matrix-only samples failed by brittle 

fracture, as would be expected, since test temperatures were below Tg. 

Fig. 3 also shows larger error bars at the two highest temperatures (30 °C and 45 °C).  Random 

variations in impact data (within each batch and between batches) were observed to be greater than those 

at the lower temperatures.  Although there was little evidence of change in the brittle fracture 

characteristics, we suggest there was a greater contribution to impact energy absorption from elastic 

deflection (prior to brittle fracture) during the impact test at the higher temperatures.  Thus minor 

differences in sample deflection during the impact event may have exacerbated frictional (energy 

absorbing) variations occurring between sample surfaces and anvil supports. 

Composite sample impact test data are shown in Fig. 4.  Of major importance here is that the impact 

energy absorbed by all test samples is higher than their control counterparts, thus demonstrating that 

viscoelastically generated prestress can function over a practical range of temperatures.  The impact 

energy from control samples decreases with increasing temperature above -10 °C.  Similarly, the test 

samples show a decrease with rising temperature, though this only becomes apparent above 20 °C.  

Hypothesis testing reveals no significant difference in energy absorption values for test samples, between 

-25 °C to 20 °C.  The relative insensitivity to temperature of both control and (in particular) test samples 

at low temperatures may, to some extent, be attributed to the unvarying impact energy absorption values 

of the matrix-only samples from -25 °C to 5 °C in Fig. 3. 

In terms of the energy absorption increase between test and control samples, Fig. 4 clearly shows a 

difference between lower and higher temperatures, i.e. ∼40% improvement from 20 °C to 45 °C but this 

is reduced to ∼20% between -25 °C and 5 °C.  Hypothesis testing shows no significant change between 

the percentage increases from 20 °C to 45 °C, or for those below 20 °C. 
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Table 2 

Impact test results for composite sample batches at room temperature (20 °C) after being exposed to 

50 °C or -35 °C for 10 min compared with conventional 20 °C data used in Fig. 4; SE represents the 

standard error of the mean. 
 

Testing 

conditions 

Mean impact energy (kJ/m2) 
Increase in 

energy (%) 

Mean increase in 

energy (% ± SE) 
Test ± SE Control ± SE 

50 °C to 20 °C 31.9 ± 1.0 20.9 ± 0.6 52.7 44.3 ± 4.7 

 33.4 ± 1.3 24.5 ± 1.2 36.3  

 34.3 ± 2.7 23.8 ± 0.7 44.0  

-35 °C to 20 °C 32.3 ± 2.2 22.7 ± 0.9 42.6 43.9 ± 1.1 

 32.0 ± 0.9 21.9 ± 0.7 46.0  

 30.4 ± 1.8 21.3 ± 0.8 43.1  

20 °C 34.2 ± 3.1 26.1 ± 0.8 31.3 43.4 ± 4.9 

 35.4 ± 3.2 26.0 ± 0.8 36.5  

 32.7 ± 1.1 23.5 ± 1.4 39.2  

 37.3 ± 4.0 24.1 ± 1.0 55.1  

 32.6 ± 2.4 21.0 ± 0.7 55.2  

 

To determine whether environmental chamber exposure had any effect on the mechanical properties 

of composite samples, additional impact test data at 20 °C are shown in Table 2.  Referring to Section 2.3, 

each batch (3 batches for each condition) of composite samples was subjected to -35 °C or 50 °C for 10 

min (as for the tests in Fig. 4) but were then left for one hour to reach room temperature before impact 

testing.  Comparing the results from these two conditions with the conventional data from 20 °C (i.e. no 

heating or cooling) in Table 2, there are no significant differences in energy absorption, as confirmed by 

hypothesis testing.  Thus it may be concluded that exposure in the environmental chamber had no 

influence on composite impact properties and results in Fig. 4 can be attributed only to the effects of 

sample temperature at the time of impact. 

 

3.3. Fracture mechanism studies  

 

Fracture characteristics from typical samples impact tested at -25 °C, 20 °C and 45 °C are shown in 

Fig. 5.  All samples show a centre fracture caused by the pendulum hammer impact.  There are also two 

vertical cracks either side of the major fracture site for samples tested at -25 °C and 20 °C; these vertical 

cracks are associated with samples being forced through the anvil shoulders of the Charpy machine 

during the impact process.  There is no evidence of these vertical cracks at 45 °C, however.  This may be 

attributed to the tougher matrix (as indicated in Fig. 3) impeding this type of crack formation at the higher 

temperature.  The lighter regions that can be observed in the samples are areas of fibre-matrix debonding.  

All test samples show an increased area of debonding compared with control counterparts, and for both 

test and control samples, larger debonded areas are observed at the lower temperature. 

As discussed in previous papers [3,22], debonding is one of the most significant energy absorption 

mechanisms in the test and control samples.  This characteristic therefore requires further consideration.  

In accordance with Ref. [3], debonded areas are plotted in Fig. 6 over the full temperature range, by 

assuming the degree of debonding was consistent through the sample thickness.  As temperature is 

increased, two observations can be made: (i) debonded areas for both test and control samples 
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progressively decrease and (ii) although there is some fluctuation, the increased area of debonding from 

the test samples (relative to control) remains approximately constant at ∼110%.  This is verified by 

hypothesis testing which shows no significant difference between any two values. 

A number of researchers [27-31], have demonstrated that the bonding or interfacial shear strength 

can deteriorate significantly with increasing temperature for fibre reinforced composites, due to the 

different coefficients of thermal expansion (CTE) between matrix and fibres.  Consequently, when a 

growing crack in the matrix approaches the fibre-matrix interface, thermally induced stresses may enable 

the crack to propagate along the interface more readily than to shear through the fibres during the impact 

process, since less energy would be required.  This implies larger debonded areas at higher temperatures, 

which is in contrast with observations from Fig. 5 and the results in Fig. 6.  For conventional PMCs with 

glass or carbon fibre reinforcement, the CTE values for these fibres can be a factor of 10 lower than the 

polymer matrix materials.  For our composite samples however, the CTE values for nylons (80–95 × 10-6 

K-1) and polyester resins (50–100 × 10-6 K-1) are comparable [26].  Thus thermal mismatch effects may 

have a relatively insignificant effect on debonding in our study.  Moreover, in contrast with thermoplastic 

resins, the fibre-matrix interfaces in our thermoset polyester resin composites are said to be formed 

through chemical bonds, which could further reduce the influence of temperature on interfacial bonding 

or shear strength [31-33]. 

As discussed earlier, in relation to Figs. 3 and 5, the matrix material becomes less brittle at higher 

temperatures.  Moreover, since the fibre material is also a polymer, this can be expected to follow a 

similar trend.  Thus a possible explanation for the reduction in debonded areas with increasing 

temperature in Fig. 6 is that both fibre and matrix materials become less brittle, which could impede 

interfacial debonding behaviour.  This would lead to the observed reduction in impact energy absorption 

(for both test and control samples) with increasing temperature, as shown in Fig. 4.  In addition, the 

relatively consistent increase (∼110%) in Fig. 6 could suggest that temperature has a similar influence on 

the debonded area for both test and control samples from -25 °C to 45 °C. 

To provide a further understanding of the energy absorption mechanisms, Fig. 7 shows SEM 

micrographs representing typical fracture behaviour for both test and control samples at -25 °C, 20 °C and 

45 °C.  These images clearly show evidence of energy absorption through matrix cracking, fibre fracture 

and fibre pull-out with bridging by fibres between crack faces.  For both test and control samples tested at 

45 °C, almost all fibres fracture with just one single central crack in the matrix.  In contrast, at -25 °C, the 

images show multiple cracks at the fracture zone and fewer fibre fractures in both samples.  Therefore, 

there is clear evidence that the fracture characteristics are strongly associated with temperature.  Thus, as 

the temperature is decreased, the fracture regions show (i) more matrix cracks, and (ii) fewer fibre 

fractures. 

As demonstrated by Fig. 3, the matrix impact toughness decreases at lower temperatures.  It is also 

suggested that the matrix, being more brittle at lower temperatures, may facilitate crack propagation [18] 

and this concurs with more matrix cracks observed in Fig. 7 as the temperature decreases.  In terms of 

fibre reinforcement, the tensile strength of most polymer fibres (including nylon) increases with 

decreasing temperature [34,35], which supports the observed reduction in fibre fractures as temperature 

decreases in Fig. 7.  Fewer fibre fractures would enable greater impact load support from the fibres as 

temperature is reduced, through fibre pull-out (bridging).  This in turn could be expected to encourage 

multiple cracking (in addition to matrix brittleness) instead of the single major crack as observed at 45 °C 

in Fig. 7(c). 

For samples at -25 °C and to a lesser extent at 20 °C (Figs. 7(a) and 7(b)), the test samples show 

fewer matrix cracks than their control counterparts.  This may be attributed to compressive stresses within 

the matrix, as these are expected to impede crack formation and propagation [4,36].  At 45 °C however, 

the greater matrix impact toughness and lower fibre strength may be more prominent than the influence of 

prestress, thereby leading to a similar fracture characteristic (single matrix crack) for both test and control 

samples. 
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At lower temperatures, larger debonded areas, more matrix cracks and fibre pull-out (bridging) for 

both test and control samples are observed from Figs. 5 and 7.  Clearly, these are mechanisms which 

concur with the inverse relationship between composite impact energy absorption and temperature in Fig. 

4.  As previously noted, the increase in energy absorption between test and control samples at lower 

temperatures in Fig. 4 is relatively small, at ∼20%.  There is a clear indication here, that energy 

absorption from the control samples is high and, as demonstrated (in particular) by Fig. 7(a), a 

contributing factor may be the increased level of matrix cracking in these samples at the lower 

temperatures. 

Fig. 8 shows approximately linear relationships between composite impact energy absorption and 

debonded area over the range of temperatures studied.  The test sample gradient is ∼50% of the control 

value, indicating that energy absorption in the test samples requires larger areas of debonding than the 

control samples.  It is known that energy absorption from viscoelastically generated prestress depends 

principally on shear stresses actuating prestress-enhanced fibre-matrix debonding during the impact 

process [3,37].  Thus it can be inferred that the debonding mechanism contributes to a greater proportion 

of energy absorbed by the test samples; i.e. the control samples may absorb less energy through 

debonding and more through other mechanisms.  This is exemplified by the increased matrix cracking 

within the control samples at lower temperatures, as discussed above.  The control samples will tend to 

absorb more energy through matrix cracking at lower temperatures, so that the debonding effect becomes 

less significant; this in turn can be expected to contribute to the steeper gradient in Fig. 8. 

 

4. Conclusion 

 

Charpy impact tests on nylon 6,6 fibre/polyester resin VPPMC samples have been performed over a 

range of temperatures, from -25 °C to 45 °C.  The main findings are:  

(i) The impact energy absorbed by VPPMC (test) samples was higher than corresponding 

unstressed (control) samples over the full range of temperatures studied.  In addition, the energy 

absorbed by both test and control samples decreased with increasing temperature.  The increase 

in energy absorption from test samples was ∼40% at higher temperatures (≥ 20 °C), reducing to 

∼20% at lower temperatures.  The principal mechanism for energy absorption from the test 

samples was fibre-matrix debonding. 

(ii) At lower temperatures (< 20 °C) the polymer resin impact toughness was reduced, which 

facilitated matrix cracking within the composite samples.  This was more prominent within the 

control samples, as prestress within the test samples impeded matrix cracking.  Therefore matrix 

cracking contributed towards an increase in energy absorption by the control samples, so that the 

energy absorbed by debonding within the test samples would become less significant.  This is 

believed to be a major contribution to the observed reduction in increased energy absorption 

between test and control samples at lower temperatures. 

Our work has demonstrated that VPPMCs possess a higher impact toughness, compared with 

unstressed counterparts over a wide range of operating temperatures.  Clearly, this is an important aspect 

for practical engineering applications. 
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Fig. 1. A representative sample with thermocouple wire (inserted into hole drilled from upper edge) and 

heat sink compound for determination of the cooling and heating curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Cooling and heating curves for test, control and matrix-only samples with curve-fit parameters; r 

is the correlation coefficient. 
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Fig. 3. Impact test results for polyester matrix-only samples; three batches (i.e. 15 samples) at each 

temperature.  Error bars indicate the standard error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Impact test results for both test and control samples; five batches (i.e. 25 test, 25 control) at each 

temperature.  Error bars indicate the standard error. 
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Fig. 5. Typical fracture and debonding characteristics of test and control samples at -25 °C, 20 °C and 

45 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Debonded area values for both test and control samples and the increase between them from -

25 °C to 45 °C; error bars indicate the standard error. 
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Fig. 7. Side-view SEM images of representative test and control samples after Charpy impact tests at (a) 

-25 °C, (b) 20 °C, (c) 45 °C.  Higher magnification images of selected areas are shown on the 

right. 
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Fig. 8. Impact energies for both test and control samples plotted against sample debonded area from -

25 °C to 45 °C.  Lines and equations are from linear regression; E and A represent energy 

absorbed and debonded area respectively, r is the correlation coefficient. 

 

 


