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Genome-wide association analysis implicates
dysregulation of immunity genes in chronic
lymphocytic leukaemia
Phillip J. Law et al.#

Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however,

much of the heritable risk remains unidentified. Here we perform a meta-analysis of six

genome-wide association studies, imputed using a merged reference panel of 1,000

Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We

identify nine risk loci at 1p36.11 (rs34676223, P¼ 5.04� 10� 13), 1q42.13 (rs41271473,

P¼ 1.06� 10� 10), 4q24 (rs71597109, P¼ 1.37� 10� 10), 4q35.1 (rs57214277, P¼ 3.69

� 10�8), 6p21.31 (rs3800461, P¼ 1.97� 10� 8), 11q23.2 (rs61904987, P¼ 2.64� 10� 11),

18q21.1 (rs1036935, P¼ 3.27� 10� 8), 19p13.3 (rs7254272, P¼4.67� 10� 8) and 22q13.33

(rs140522, P¼ 2.70� 10�9). These new and established risk loci map to areas of active

chromatin and show an over-representation of transcription factor binding for the key

determinants of B-cell development and immune response.
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C
hronic lymphocytic leukaemia (CLL) is an indolent B-cell
malignancy that has a strong genetic component, as
evidenced by the eightfold increased risk seen in relatives

of CLL patients1. Our understanding of CLL genetics has been
transformed by genome-wide association studies (GWAS) that
have identified risk alleles for CLL2–9. So far, common genetic
variation at 33 loci has been shown to influence CLL risk.
Although projections indicate that additional risk variants for
CLL can be discovered by GWAS, the statistical power of the
individual existing studies is limited.

To gain a more comprehensive insight into CLL predisposition,
we analysed genome-wide association data from populations of
European ancestry from Europe, North America and Australia,
identifying nine new risk loci. Our findings provide additional
insights into the genetic and biological basis of CLL risk.

Results
Association analysis. After quality control, the six GWAS
provided single-nucleotide polymorphism (SNP) genotypes on
4,478 cases and 13,213 controls (Supplementary Tables 1 and 2).
To increase genomic resolution, we imputed 410 million SNPs
using the 1000 Genomes Project10 combined with UK10K11 as
reference. Quantile–Quantile (Q–Q) plots for SNPs with minor
allele frequency (MAF) 40.5% post imputation did not show
evidence of substantive overdispersion (l between 1.00 and 1.10
across the studies; Supplementary Fig. 1). Meta-analysing the
association test results from the six series, we derived joint odds
ratios per-allele and 95% confidence intervals under a fixed-
effects model for each SNP and associated P values. In this
analysis, associations for the established risk loci were consistent
in direction and magnitude of effect with previously reported
studies (Fig. 1 and Supplementary Table 3).

We identified 16 loci where at least one SNP showed evidence
of association with CLL (defined as Po1.0� 10� 7 in fixed-
effects meta-analysis of the six series) and which were not
previously implicated with CLL risk at genome-wide significance
(that is, Po5.0� 10� 8; Table 1 and Supplementary Tables 4
and 5). Where the signal was provided by an imputed SNP, we
confirmed the fidelity of imputation by genotyping
(Supplementary Table 6). We substantiated the 16 SNPs using

de novo genotyping in two studies and in silico replication in two
additional studies, totalling 1,722 cases and 4,385 controls. Meta-
analysis of the discovery and replication studies revealed genome-
wide significant associations for eight novel loci (Table 1) at
1p36.11 (rs34676223, P¼ 5.04� 10� 13), 1q42.13 (rs41271473,
P¼ 1.06� 10� 10), 4q35.1 (rs57214277, P¼ 3.69� 10� 8),
6p21.31 (rs3800461, P¼ 1.97� 10� 8), 11q23.2 (rs61904987,
P¼ 2.64� 10� 11), 18q21.1 (rs1036935, P¼ 3.27� 10� 8),
19p13.3 (rs7254272, P¼ 4.67� 10� 8) and 22q13.33 (rs140522,
P¼ 2.70� 10� 9). We also confirmed 4q24 (rs71597109, P¼ 1.37
� 10� 10), which has previously been identified as a suggestive
risk locus9. Conditional analysis of GWAS data showed no
evidence for additional independent signals at these nine loci. In
the remaining seven loci that did not replicate with genome-wide
significance, the 9q22.33 locus (rs7026022, P¼ 7.00� 10� 8)
remains suggestive (Supplementary Table 5). In analyses limited
to the exomes of 141 CLL cases from 66 families, we found no
evidence to suggest that any of the association signals might be a
consequence of linkage disequilibrium (LD) with a rare disruptive
coding variant.

Several of the newly identified risk SNPs map in or near to
genes with established roles in B-cell biology, hence representing
credible candidates for susceptibility to CLL. The 4q24 association
marked by rs71597109 (Fig. 2) maps to intron 1 of the gene
encoding BANK1 (B-cell scaffold protein with ankyrin repeats 1),
a B-cell-specific scaffold protein. SNPs at this locus have
been associated with systemic lupus erythematosus risk12.
BANK1 expression is only seen in functional B-cell antigen
receptor (BCR)-expressing B cells, mediating effects through
LYN-mediated tyrosine phosphorylation of inositol triphosphate
receptors. BANK1-deficient mice display higher levels of mature B
cells and spontaneous germinal centre B cells13, while studies in
humans found lower BANK1 transcript levels in CLL versus
normal B cells14. The 19p13.3 association marked by rs7254272
(Fig. 2) maps 2.5 kb 50 to ZBTB7A (zinc finger and BTB domain-
containing protein 7a, alias LRF, leukaemia/lymphoma-related
factor, pokemon). ZBTB7A is a master regulator of B versus T
lymphoid fate. Loss of ZBTB7A results in aberrant activation of
the NOTCH pathway in lymphoid progenitors. NOTCH is
constitutively activated in CLL and is a determinant of resistance
to apoptosis in CLL cells. rs34676223 at 1p36.11 maps B10 kb
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Figure 1 | Manhattan plot of association P values. Shown are the genome-wide P values (two-sided) of 410 million successfully imputed autosomal SNPs

in 4,478 cases and 13,213 controls from the discovery phase. Text labelled in red are previously identified risk loci, and text labelled in blue are newly
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upstream of MDS2 (Fig. 2), which is the fusion partner of ETV6
in t(1;12)(p36;p13) myelodysplasia. Based on RNA sequencing
(RNA-seq) data from patients, MDS2 is overexpressed in CLL
versus normal cells and also differentially expressed between
two experimentally determined CLL subgroups14. The SNP
rs57214277 maps to 4q35.1 and resides B140 kb centromeric
to IRF2 (interferon regulatory factor 2, Fig. 2). Interferon (IFN)-
ab, a family of antiviral immune genes, induces IRF2 that inhibits
the reactivation of murine gamma herpesvirus15. Furthermore,
SNPs in strong LD with rs57214277 are associated with increased
expression of IRF2 as well as trans-regulation of a network of
genes in lipopolysaccharide and IFNg-treated monocytes16.
rs140522 maps to 22q13.33 (Fig. 2), which has previously
been associated with multiple sclerosis risk17. This region of LD
contains four genes, of which only NCAPH2 (non-SMC
condensin II complex subunit H2) shows differential expression
between CLL and normal B cells14 (B2.5-fold lower levels in

CLL), and plays an essential role in mitotic chromosome
assembly and segregation. rs41271473, rs3800461, rs61904987
and rs1036935 mark genes that have roles in WNT signalling
(RHOU), autophagy (C6orf106), transcriptional activation
(CXXC1), kinetochore association (SKA1, ZW10) and protein
degradation (USP28, TMPRSS5; Fig. 3).

New CLL risk SNPs and clinical phenotype. We tested for
differences in the associations by sex or age at diagnosis for
each of the nine risk SNPs using case-only analysis, and
observed no relationships (Supplementary Data 1). In addition,
case-only analysis in a subset of studies provided no evidence
for associations between risk SNP genotypes and IGVH
(immunoglobulin variable region heavy chain) mutation
subtype (Supplementary Data 1) or overall patient survival
(Supplementary Table 7). Collectively, these data suggest that

Table 1 | Summary results for SNPs associated with CLL risk.

SNP Locus Position (bp, hg19) Risk allele Data set RAF (case; control) OR 95% CI P value

rs34676223 1p36.11 23943735 C Discovery (0.74; 0.71) 1.16 (1.09; 1.22) 2.69� 10� 7

Replication (0.74; 0.69) 1.29 (1.18; 1.42) 4.69� 10� 8

Combined 1.19 (1.14; 1.25) 5.04� 10� 13

I2¼ 24% Phet¼0.23

rs41271473 1q42.13 228880296 G Discovery (0.81; 0.79) 1.19 (1.12; 1.26) 4.69� 10� 8

Replication (0.82; 0.79) 1.20 (1.08; 1.34) 5.59� 10�4

Combined 1.19 (1.13; 1.26) 1.06� 10� 10

I2¼0% Phet¼0.95

rs71597109 4q24 102741002 C Discovery (0.72; 0.69) 1.17 (1.11; 1.24) 1.02� 10�8

Replication (0.73; 0.71) 1.15 (1.05; 1.26) 3.46� 10� 3

Combined 1.17 (1.11; 1.22) 1.37� 10� 10

I2¼0% Phet¼0.78

rs57214277 4q35.1 185254772 T Discovery (0.44; 0.41) 1.14 (1.08; 1.19) 9.56� 10� 7

Replication (0.43; 0.39) 1.12 (1.03; 1.21) 0.011
Combined 1.13 (1.08; 1.18) 3.69� 10� 8

I2¼0% Phet¼0.53

rs3800461 6p21.31 34616322 C Discovery (0.13; 0.11) 1.21 (1.12; 1.31) 4.20� 10� 7

Replication (0.12; 0.11) 1.17 (1.03; 1.34) 0.014
Combined 1.20 (1.13; 1.28) 1.97� 10�8

I2¼0% Phet¼0.69

rs61904987 11q23.2 113517203 T Discovery (0.14; 0.12) 1.23 (1.14; 1.32) 4.44� 10� 8

Replication (0.13; 0.12) 1.26 (1.12; 1.42) 1.20� 10�4

Combined 1.24 (1.16; 1.32) 2.46� 10� 11

I2¼0% Phet¼0.83

rs1036935 18q21.1 47843534 A Discovery (0.25; 0.22) 1.17 (1.10; 1.24) 2.81� 10� 7

Replication (0.24; 0.22) 1.11 (1.01; 1.23) 0.028
Combined 1.15 (1.10; 1.21) 3.27� 10� 8

I2¼0% Phet¼0.65

rs7254272 19p13.3 4069119 A Discovery (0.20; 0.18) 1.18 (1.11; 1.26) 4.61� 10� 7

Replication (0.19; 0.18) 1.13 (1.01; 1.26) 0.026
Combined 1.17 (1.10; 1.23) 4.67� 10�8

I2¼0% Phet¼0.55

rs140522 22q13.33 50971266 T Discovery (0.35; 0.32) 1.16 (1.10; 1.22) 2.20� 10� 8

Replication (0.35; 0.33) 1.10 (1.01; 1.2) 0.025
Combined 1.15 (1.10; 1.20) 2.70� 10� 9

I2¼0% Phet¼0.94

bp, base pair position; CLL, chronic lymphocytic leukaemia; I2, proportion of the total variation due to heterogeneity; OR, odds ratio; Phet, P-value for heterogeneity; RAF, risk allele frequency;
SNP, single-nucleotide polymorphism; 95% CI, 95% confidence interval.
RAF is risk allele frequency across all of the discovery and replication data sets, respectively. ORs are derived with respect to the risk allele. Text in bold highlight the P-value in the combined data.
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these nine risk variants have generic effects on CLL develop-
ment rather than tumour progression per se.

Functional annotation of new risk loci. To gain insight into the
biological basis underlying the novel association signals, we first
evaluated profiles for three histone marks (H3K4me1, H3K27ac
marking active chromatin and the repressive mark H3K27me3) at
each locus, in GM12878 lymphoblastoid cell line (LCL; ref. 18) as
well as primary CLL samples19 (Supplementary Fig. 2). We also

examined ATAC-seq profiles from CLL samples and primary B
cells as a marker of chromatin accessibility19,20. Since the
strongest associated GWAS SNP may not represent the causal
variant, we examined signals across an interval spanning all
variants in LD r240.2 with the sentinel SNP (based on the 1000
Genomes EUR reference panel). These data revealed regions of
active chromatin state at all nine risk loci, in at least one of the
cell types. Furthermore, based on the analyses of Hnisz et al.21,
five of the loci fall within regions designated as ‘super enhancers’
in either LCLs or CD19 B cells (Supplementary Fig. 2). Overall,
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Figure 2 | Regional plots of association results and recombination rates for new risk loci for chronic lymphocytic leukaemia. Results shown for 1p36.11,

4q24, 4q35.1, 19p13.3, 22q13.33 (a–e). Plots (drawn using visPig62) show association results of both genotyped (triangles) and imputed (circles) SNPs in

the GWAS samples and recombination rates. � log10 P values (y axes) of the SNPs are shown according to their chromosomal positions (x axes). The

sentinel SNP in each combined analysis is shown as a large circle or triangle and is labelled by its rsID. The colour intensity of each symbol reflects the

extent of LD with the top genotyped SNP, white (r2¼0) through to dark red (r2¼ 1.0). Genetic recombination rates, estimated using the 1000 Genomes

Project samples, are shown with a light blue line. Physical positions are based on NCBI build 37 of the human genome. Also shown are the chromatin-state

segmentation track (ChromHMM) for lymphoblastoid cells using data from the HapMap ENCODE Project, and the positions of genes and transcripts

mapping to the region of association.
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these findings suggest that the risk loci annotate regulatory
regions and may, therefore, have an impact on CLL risk through
modulation of enhancer or promoter activity.

Given the possibility that SNPs might influence enhancer or
promoter activity by causing changes in transcription factor (TF)
binding, we next evaluated the SNPs at each GWAS locus based
on their overlap with TF-binding sites. In the absence of
comprehensive TF chromatin immunoprecipitation sequencing
(ChIP-Seq) data from CLL samples, we used regions of chromatin
accessibility defined by ATAC-seq data19 as a surrogate marker
for TF binding, identifying 47 SNPs in LD r240.2 with the
sentinel SNPs that also overlapped ATAC-seq peaks. Using
motifbreakR22 to predict whether these SNPs might disrupt TF-
binding motifs, we found 478 potentially disrupted motifs,
corresponding to 349 TF-binding sites (Supplementary
Table 7). Moreover, at 10 of the SNPs, the altered motif
matched the TFs bound in ChIP-seq data from the ENCODE
project (Supplementary Table 8 and Supplementary Fig. 3). In
particular, we noted that rs13149699 at 4q35 (r2¼ 0.83 with lead
SNP rs57214277) was predicted to disrupt SPI1 binding. In

addition, rs13149699 showed evidence of evolutionary constraint,
and in LCL ChIP-seq data, the SNP was bound by SPI1 as well as
other TFs with roles in B-cell function including IRF4, PAX5,
POU2F2 (alias OCT2) and RELA (Supplementary Table 8).

We explored whether there was any association between the
genotypes of the nine new risk SNPs and the transcript levels of
genes within 1 Mb of each respective variant by performing
expression quantitative trait loci (eQTL) analysis using gene
expression profiles of 468 CLL cases. In addition, we inter-
rogated publicly accessible expression data on whole blood
and LCLs (Supplementary Data 2). There were significant
(false discovery rate (FDR)o0.05) and consistent eQTLs between
rs3800461 and C6orf106, rs1036935 and SKA1, rs140522 and
ODF3B, and rs140522 and TYMP.

Biological inference of all CLL risk loci. Given our observation
that the nine novel risk loci annotate putative regulatory regions,
we sought to examine the epigenetic landscape of CLL risk loci on
a broader scale, evaluating the enrichment of both histone
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modifications (N¼ 11) and TF binding (N¼ 82) in GM12878
LCLs, across the new and previously published CLL GWAS risk
SNPs. Using the variant set enrichment method of Cowper-Sal lari
et al.23, we identified regions of strong LD (defined as r240.8
and D040.8) and determined the overlap between these variants
and ENCODE ChIP-seq data. Imposing a P value threshold of
5.37� 10� 4 (that is, 0.05/93, based on permutation), we identified
a significant enrichment of histone marks associated with active
enhancer and promoter elements (HK4Me1, H3K27ac and
H3K9ac) as well as actively transcribed regions (H3K36me3). We
also identified an over-representation of TF binding for POLR2A,
IRF4, RUNX3, NFATC1, STAT5A, PML and WRNIP1 (Fig. 4). In
addition, although not statistically significant, POU2F2 showed
evidence for enriched binding (P¼ 7.78� 10� 4). Several of these
TFs have established roles in B-cell function. OCT2, IRF4 and
RUNX3 have been shown to be targeted for hypomethylation in B
cells24. MYC is a direct target of IRF4 in activated B cells,
with IRF4 being itself a direct target of MYC transactivation.
It is noteworthy that variations at IRF4 and 8q24-MYC are
recognized risk factors for CLL2,3. Collectively, these findings
are consistent with CLL GWAS SNPs mapping within regions of
active chromatin state that exert effects on B-cell cis-regulatory
networks.

We investigated the genetic pathways between the gene
products in proximity to the GWAS SNPs using the LENS
pathway tool25. These gene products were primarily involved
in immune response, BCR-mediated signalling, apoptosis
and maintenance of chromosome integrity, as well as inter-
connectivity between the gene products (Fig. 5). Pathways that
were enriched included those related to interferon signalling and
apoptosis (Supplementary Data 3).

Impact of risk SNPs on heritability of CLL. By fitting all SNPs
from GWAS simultaneously using Genome-wide Complex Trait
Analysis, the estimated heritability of CLL attributable to all
common variation is 34% (±5%), thus having potential to explain
57% of the overall familial risk. This estimate represents the
additive variance and, therefore, does not include the potential
impact of interactions or dominance effects or gene–environment
interactions, having an impact on CLL risk. The currently
identified risk SNPs (newly discovered and previously identified)
only account for 25% of the additive heritable risk.

Discussion
Besides providing additional evidence for genetic susceptibility to
CLL, the new and established risk loci identified further insights
into the biological basis of CLL development. These loci
annotate genes that participate in interconnecting cellular path-
ways, which are central to B-cell development. In particular, we
note the involvement of BCR-mediated signalling with immune
responses and apoptosis. Importantly, gene discovery initiatives
can have an impact on the successful development of new
therapeutic agents26. In this respect it is notable that Ibrutinib27

(a BTK inhibitor) and Idelalisib28 (a PI3KCD inhibitor) mediate
their effects through interference of BCR signalling, and Veneto-
clax29 targets the anti-apoptotic behaviour of BCL-2. The power
of our GWAS to identify common alleles conferring relative risks
of 1.2 or greater (such as the rs35923643 variant) is high (B80%).
Hence, there are unlikely to be many additional SNPs with similar
effects for alleles with frequencies greater than 0.2 in populations
of European ancestry. In contrast, our analysis had limited power
to detect alleles with smaller effects and/or MAFo0.1. Hence,
further GWAS studies in concert with functional analyses should
lead to additional insights into CLL biology and afford the
prospect of development of novel therapies.

Methods
Ethics. Collection of patient samples and associated clinicopathological informa-
tion was undertaken with written informed consent and relevant ethical review
board approval at respective study centres in accordance with the tenets of the
Declaration of Helsinki. Specifically, these centres are UK-CLL1 and UK-CLL2: UK
Multi-Research Ethics Committee (MREC 99/1/082); GEC: Mayo Clinic Institu-
tional Review Board, Duke University Institutional Review Board, University of
Utah, University of Texas MD Anderson Cancer Center Institutional Review
Board, National Cancer Institute, ATBC: NCI Special Studies Institutional Review
Board, BCCA: UBC BC Cancer Agency Research Ethics Board, CPS-II: American
Cancer Society, ENGELA: IRB00003888—Comite d’ Evaluation Ethique de
l’Inserm IRB #1, EPIC: Imperial College London, EpiLymph: International Agency
for Research on Cancer, HPFS: Harvard School of Public Health (HSPH) Insti-
tutional Review Board, Iowa-Mayo SPORE: University of Iowa Institutional Review
Board, Italian GxE: Comitato Etico Azienda Ospedaliero Universitaria di Cagliari,
Mayo Clinic Case–Control: Mayo Clinic Institutional Review Board, MCCS:
Cancer Council Victoria’s Human Research Ethics Committee, MSKCC:
Memorial Sloan-Kettering Cancer Center Institutional Review Board, NCI-SEER
(NCI Special Studies Institutional Review Board), NHS: Partners Human Research
Committee, Brigham and Women’s Hospital, NSW: NSW Cancer Council Ethics
Committee, NYU-WHS: New York University School of Medicine Institutional
Review Board, PLCO: (NCI Special Studies Institutional Review Board), SCALE:
Scientific Ethics Committee for the Capital Region of Denmark, SCALE: Regional
Ethical Review Board in Stockholm (Section 4) IRB#5, Utah: University of Utah
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Institutional Review Board, UCSF and UCSF2: University of California San
Francisco Committee on Human Research, Women’s Health Initiative (WHI):
Fred Hutchinson Cancer Research Center and Yale: Human Investigation
Committee, Yale University School of Medicine. Informed consent was obtained
from all participants. The diagnosis of CLL (ICD-10-CM C91.10, ICD-O M9823/3
and 9670/3) was established in accordance with the International Workshop on
Chronic Lymphocytic Leukemia guidelines30.

Genome-wide association studies. The meta-analysis was based on six
GWAS2,6,7,9 (Supplementary Tables 1 and 2). Briefly, the six GWAS comprised—
UK-CLL1: 517 CLL cases and 2,698 controls; UK-CLL2: 1,403 CLL cases, 2,501
controls; Genetic Epidemiology of CLL (GEC) Consortium: 396 CLL cases and 296
controls; NHL GWAS Consortium: 1,851 CLL cases and 6,649 controls; UCSF: 214
CLL cases, 751 controls; Utah: 331 CLL cases, 420 controls.

Quality control of GWAS. Standard quality-control measures were applied to the
GWAS31. Specifically, individuals with low call rate (o95%) as well as all
individuals evaluated to be of non-European ancestry (using the HapMap version 2
CEU, JPT/CHB and YRI populations as a reference) were excluded. For apparent
first-degree relative pairs, we removed the control from a case–control pair;
otherwise, we excluded the individual with the lower call rate. SNPs with a call rate
o95% were excluded as were those with a MAF o0.01 or displaying significant
deviation from Hardy–Weinberg equilibrium (that is, Po10� 6). GWAS data were
imputed to 410 million SNPs with the IMPUTE2 v2.3 software32 using a merged
reference panel consisting of data from 1000 Genomes Project (phase 1 integrated
release 3 March 2012)10 and UK10K (ref. 11). Genotypes were aligned to the
positive strand in both imputation and genotyping. Imputation was conducted
separately for each study, and in each the data were pruned to a common set of
SNPs between cases and controls before imputation. We set thresholds for
imputation quality to retain potential risk variants with MAF40.005 for
validation. Poorly imputed SNPs defined by an information measure o0.80 were
excluded. Tests of association between imputed SNPs and CLL was performed
using logistic regression under an additive genetic model in SNPTESTv2.5 (ref. 33).
The adequacy of the case–control matching and possibility of differential
genotyping of cases and controls were formally evaluated using Q–Q plots of test
statistics (Supplementary Fig. 1). The inflation factor l was based on the 90% least-
significant SNPs34. Where appropriate, principal components, generated using
common SNPs, were included in the analysis to limit the effects of cryptic
population stratification that otherwise might cause inflation of test statistics.

Eigenvectors for the GWAS data sets were inferred using smartpca (part of
EIGENSOFT35) by merging cases and controls with Phase II HapMap samples.

Replication studies and technical validation. The 16 SNPs in the most pro-
mising loci were taken forward for de novo replication (Supplementary Table 2).
The UK replication series comprised 645 cases collected through the NCLLC
and Leicester Haematology Tissue Bank and 2,341 controls comprised 2,780
healthy individuals ascertained through the National Study of Colorectal Cancer
(1999–2006; ref. 36). These controls were the spouses or unrelated friends of
individuals with malignancies. None had a personal history of malignancy at the
time of ascertainment. Both cases and controls were British residents and had self-
reported European ancestry. The Mayo replication series comprised 407 newly
diagnosed cases and 1,207 clinic-based controls from the Mayo Clinic CLL
case–control study37. The eligibility criteria of the cases were age 20 years and
older, consented within 9 months of their initial diagnosis at presentation to Mayo
Clinic and no history of HIV. The eligibility criteria for the controls were age 20
years and older, a resident of Minnesota, Iowa or Wisconsin at the time of
appointment at Mayo Clinic, no history of lymphoma or leukaemia and no
history of HIV infection. Controls were frequency matched to the regional case
distribution on 5-year age group, sex and geographic area. In silico replication was
performed in 444 cases and 609 controls from International Cancer Genome
Consortium (ICGC), and 226 cases and 228 controls from the WHI study38,39.

The fidelity of imputation as assessed by the concordance between imputed and
directly genotyped SNPs was examined in a subset of samples (Supplementary
Table 5). Replication genotyping of UK samples was performed using competitive
allele-specific PCR KASPar chemistry (LGC, Hertfordshire, UK); replication
genotyping of Mayo samples was performed using Sequenom MassARRAY
(Sequenom Inc., San Diego, CA, USA). Primers are listed in Supplementary
Table 9. Call rates for SNP genotypes were 495% in each of the replication series.
To ensure the quality of genotyping in all assays, at least two negative controls and
duplicate samples (showing a concordance of 499%) were genotyped at each
centre. To exclude technical artefacts in genotyping, we performed cross-platform
validation of 96 samples and sequenced a set of 96 randomly selected samples from
each case and control series to confirm genotyping accuracy. Assays were found to
be performing robustly; concordance was 499%.

Meta-analysis. Meta-analyses were performed using the fixed-effects inverse-
variance method based on the b estimates and s.e.’s from each study using META
v1.6 (ref. 40). Cochran’s Q-statistic to test for heterogeneity and the I2 statistic
to quantify the proportion of the total variation due to heterogeneity were
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calculated41. Using the meta-analysis summary statistics and LD correlations from
a reference panel of the 1000 Genomes Project combined with UK10K we used
Genome-wide Complex Trait Analysis to perform conditional association
analysis42. Association statistics were calculated for all SNPs conditioning on the
top SNP in each loci showing genome-wide significance. This is carried out in a
step-wise manner.

Analysis of exome-sequencing data. Previously published exome-sequencing
data from 141 cases from 66 CLL families43 were interrogated to search for
deleterious (missense, nonsense, frameshift or splice site) variants within a genomic
interval spanning all SNPs with LD r240.2 with each index SNP. Positions
resulting in protein-altering changes were identified using the Ensembl Variant
Effect Predictor (version 78).

Mutational status. IGVH mutation status was determined according to the
BIOMED-2 protocols as described previously44. Sequence analysis was conducted
using the Chromas software version 2.23 (Applied Biosystems) and the
international immunogenetics information system database. In accordance with
published criteria, we classified sequences with a germline identity of Z98% as
unmutated and those with an identity of o98% as mutated.

Association between genotype and patient outcome. To examine the rela-
tionship between SNP genotype and patient outcome, we analysed two patient
series: (1) 356 patients from the UK Leukaemia Research Fund (LRF) CLL-4 trial45,
which compared the efficacy of fludarabine, chlorambucil and the combination of
fludarabine plus cyclophosphamide; (2) 377 newly diagnosed patients from Mayo
Clinic who were prospectively followed. Cox-regression analysis was used to
estimate genotype-specific hazard ratios and 95% CIs with overall survival.
Statistical analyses were undertaken using R version 2.5.0.

eQTL analysis. eQTL analyses were performed by examining the gene expression
profiles of 452 CLL cases (Affymetrix Human Genome U219 Array)46. Additional
data were obtained by querying publicly available eQTL mRNA expression data
using MuTHER47, the Blood eQTL browser48 and data from the GTEx
consortium49. MuTHER contains expression data on LCLs, skin and adipose tissue
from 856 healthy twins. The Blood eQTL browser contains expression data
from 5,311 non-transformed peripheral blood samples. We used the whole-blood
RNA-seq data from GTEx, which consisted of data from 338 individuals.

Functional annotation. Novel risk SNPs and their proxies (that is, r240.2 in the
1000 Genomes EUR reference panel) were annotated for putative functional effect
based upon histone mark ChIP-seq/ChIPmentation data for H3K27ac, H3K4Me1
and H3K27Me3 from GM12878 (LCL)18 and primary CLL cells19. We searched
for overlap with ‘super-enhancer’ regions as defined by Hnisz et al.21, restricting
the analysis to the GM12878 cell line and CD19þ B cells. We also interrogated
ATAC-seq data from CLL cells19 and primary B cells20. The novel risk SNPs
and their proxies (r240.2 as above) were intersected with regions of accessible
chromatin in CLL cells, as defined by Rendeiro et al.19, which were used as a
surrogate for likely sites of TF binding. SNPs falling within accessible sites (n¼ 47)
were taken forward to TF-binding motif analysis and were also annotated for
genomic evolutionary rate profiling score50 as well as bound TFs based on
ENCODE project18 ChIP-seq data.

TF-binding disruption analysis. To determine whether the risk variants or
their proxies were disrupting motif-binding sites, we used the motifbreakR
package22. This tool predicts the effects of variants on TF-binding motifs, using
position probability matrices to determine the likelihood of observing a particular
nucleotide at a specific position within a TF-binding site. We tested the SNPs
by estimating their effects on over 2,800 binding motifs as characterized by
ENCODE51, FactorBook52, HOCOMOCO53 and HOMER54. Scores were
calculated using the relative entropy algorithm.

TF and histone mark enrichment analysis. To examine enrichment in specific TF
binding across risk loci, we adapted the variant set enrichment method of Cowper-
Sal lari et al.23. Briefly, for each risk locus, a region of strong LD (defined as r240.8
and D040.8) was determined, and these SNPs were termed the associated variant
set (AVS). TF ChIP-seq uniform peak data were obtained from ENCODE for the
GM12878 cell line, which included data for 82 TF and 11 histone marks. For each
of these marks, the overlap of the SNPs in the AVS and the binding sites was
determined to produce a mapping tally. A null distribution was produced by
randomly selecting SNPs with the same characteristics as the risk-associated SNPs,
and the null mapping tally calculated. This process was repeated 10,000 times, and
approximate P-values were calculated as the proportion of permutations where null
mapping tally was greater or equal to the AVS mapping tally. An enrichment score
was calculated by normalizing the tallies to the median of the null distribution.
Thus, the enrichment score is the number of s.d.’s of the AVS mapping tally from
the mean of the null distribution tallies.

Heritability analysis. We used genome-wide complex trait analysis42 to estimate
the polygenic variance (that is, heritability) ascribable to all genotyped and imputed
GWAS SNPs. SNPs were excluded based on low MAF (MAFo0.01), poor
imputation (info score o0.4) and evidence of departure from Hardy Weinberg
Equilibrium (HWE) (Po0.05). Individuals were excluded for poor imputation and
where two individuals were closely related. A genetic relationship matrix of pairs of
samples was used as input for the restricted maximum likelihood analysis to
estimate the heritability explained by the selected set of SNPs. To transform the
estimated heritability to the liability scale, we used the lifetime risk55,56 for CLL,
which is estimated to be 0.006 by SEER (http://seer.cancer.gov/statfacts/html/
clyl.html). The variance of the risk distribution due to the identified risk loci was
calculated as described by Pharoah et al.57, assuming that the relative risk when a
first-degree relative has CLL is 8.5 (ref. 1).

Pathway analysis. To investigate the interaction between the gene products of the
GWAS hits, we performed a pathway analysis. We selected the closest coding genes
for the lead-associated SNPs and then performed pathway analysis using the LENS
tool25, which identifies gene product and protein–protein interactions from
HPRD58 and BioGRID59. Enrichment of pathways was assessed using Fisher’s
exact test, comparing the overlap of the genes in the network with the genes in the
pathway. Pathway data were obtained from REACTOME60. Cytoscape was used to
perform network analyses61, and the Hive Plot was drawn using HiveR
(academic.depauw.edu/Bhanson/HiveR/HiveR.html).

Data availability. Genotype data that support the findings of this study have been
deposited in the database of Genotypes and Phenotypes (dbGAP) under accession
code phs000802.v2.p1 and in the European Genome-phenome Archive (EGA)
under accession codesEGAS00001000090, EGAD00001000195, EGAS00001000108,
EGAD00000000022 and EGAD00000000024.

Transcriptional profiling data from the MuTHER consortium that support the
findings of this work have been deposited in the European Bioinformatics Institute
(Part of the European Molecular Biology Laboratory, EMBL-EBI) under accession
code E-TABM-1140. Data from Blood eQTL have been deposited in the EBI-EMBL
under accession codes E-TABM-1036, E-MTAB-945 and E-MTAB-1708. GTEx
data are deposited in dbGaP under accession code phs000424.v6.p1. The remaining
data are contained within the paper and its Supplementary files or are available
from the authors upon reasonable request.
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