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Abstract 

A novel class of nematic liquid crystalline organic semiconducting oligomers incorporating 

N-heterocyclic carbazole moieties has been synthesised using simple and highly efficient reaction 

pathways. The electroluminescent colour of these novel oligomers can be varied in a controlled 

manner by molecular design. The values of the ionization potential and the electron affinity of 

these electroluminescent oligomers can also be matched by structural design to the HOMO energy 

level of the electron-blocking layer and the LUMO energy level of electron-transporting layer in 

the OLEDs to create low charge-injection barriers for electrons and holes, respectively leading to 

electroluminescence with an efficacy up to 4.1 cd A-1.    
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1 Introduction  

Organic light emitting diodes (OLEDs) with high information content, active matrix addressing 

and full colour are a type of novel flat-panel display, which does not require backlighting and 

other - mostly light-absorbing - components, such as the diffusers, colour filters and polarisers, 

used in LCDs [1-5]. Consequently, OLEDs are more efficient in terms of light emission due to the 

absence of so many light-absorbing or scattering layers and because no backlight is required. 

Particularly, multi-stack OLEDs with additional carrier transporting or blocking layers are 



introduced between the hole-/electron-transporting layer and the anode of tri-layer OLEDs, for 

example, to produce a lower barrier for hole injection into the other layers of the device. Many 

variants of multi-stack OLEDs have been developed with improved overall performance, e.g., in 

terms of brightness, power conversion efficiency, threshold voltage and operating voltage, etc. 

[6-9]  

 

OLEDs require organic charge-transporting and electroluminescent materials. One of the 

advantages of using organic materials for electroluminescence is that they can be designed 

specifically with the desired functions, such as high hole or electron mobility and efficient 

electroluminescence. Furthermore, the electron affinity (EA, LUMO energy level) and ionisation 

potentials (IP, HOMO energy level) of charge-transport materials can be tuned to better match the 

work functions of electrodes [10-12]. These requirements for the material properties can be 

achieved by the design and synthesis of a variety of organic molecules. Specifically, compounds 

with a high concentration of highly conjugated aromatic rings, such as 1,4-disubstituted phenylene 

or 2,5-disubstituted thiophene rings, in the molecular core, can form conjugated electron clouds 

with a high degree of delocalization, which renders aromatic organic compounds semiconducting 

under certain conditions [13-15]. Currently, the materials for OLEDs can be usually classified as 

low-molecular-mass materials (LMMMs) [16-20], polymers [21-29] and oligomers [30-36].  

 

Liquid crystalline organic semiconductors [37-43] have found use in plastic electronic devices due 

to the tendency of such organic semiconductors in the fluid, self-assembling nematic phase - with 

an intrinsically low viscosity - to form uniform, thin layers or films, with a low concentration of 

charge traps, on device substrate surfaces. Deposition from solution from common organic 

solvents can be achieved using, for example, doctor blade, drop casting or spin coating techniques. 

The presence of a glassy nematic state above room temperature for oligomers means that there is 

no need to photochemically crosslink oligomeric liquid crystalline organic semiconductors in 

order to stabilize the fluid film on the device substrate.  

 

The presence of the hetero-atoms in aromatic heterocyclic moieties in some highly conjugated 

organic semiconductors contributes to the improved optoelectronic properties of such materials. 



For example, the carbazole moiety has long been recognized as an excellent construction of 

photoconductive organic semiconductors due to strong fluorescence, good hole-transporting 

ability, low redox potential and chemical/environmental stability [44-51]. Compared with the 

corresponding 2,7-disubstituted fluorene moiety, the electron-donating nature of the nitrogen 

hetero-atoms present in the carbazole moieties can increase the electron density of the delocalized 

π-electronic cloud and thereby affect the magnitude of the physical properties of interest for 

OLEDs. 

 

2 Experimental  

 

2.1 Materials and Methods 

All commercially available starting materials and reaction intermediates, reagents and solvents 

were obtained from Aldrich, Strem Chem. Inc., Acros or Lancaster Synthesis and were used as 

supplied, unless otherwise stated. Tetrahydrofuran (THF) was pre-dried using 3A molecular sieves, 

which had been dried at 250°C to ensure optimum activity. All reactions were carried out using a 

dry atmosphere of nitrogen unless water was present as solvent or reagent, and the temperatures 

were measured internally. Mass spectra were recorded for each structure. Compounds with a 

molecular mass less than 800 g/mol are analysed using a gas chromatography/mass spectrometer 

(GC/MS)-Quadrupole MS/ Perkin Elmer autosystem XL GC with Electron Impact (EI) at a source 

temperature of 200°C. Structures with a higher molecular mass are determined using a Maldi-MS 

Bruker autoflex speed using a 384 spot anchorchip 800 as a target. Samples are dissolved in DCM 

with HABA (2-(4-hydroxyphenylazo)benzoic acid) matrix (1:10 respectively). M+ is identified as 

the mass ion of the material. Infrared (IR) spectra were recorded using a PerkinElmer Paragon 

1000 Fourier Transform-Infrared (FT-IR) spectrometer and H and C NMR spectra were recorded 

using a JEOL Lambda 400 spectrometer with an internal standard of tetramethylsilane (TMS). 

Thin layer chromatography (TLC) using aluminium-backed TLC plates coated with silica gel (60 

F254 Merck) was used to measure every reaction progress. The purification of reaction 

inter-mediates and final products was carried out by gravity column chromatography, using silica 

gel (40–63 microns,60 A) obtained from Fluorochem. The purity and chemical composition of the 

final products was determined by elemental analysis (C, H, N and S) using a Fisons EA 1108 



CHN. The melting point and transition temperatures for each final compound were measured 

using polarising optical microscopy (POM), with a Mettler FP-5 hot-stage and an Olympus BH2 

polarising microscope. Differential Scanning Calorimetry (DSC) was also used consisting of a 

Mettler Toledo DSC1, to determine the enthalpy of transitions and transition temperatures at a 

heating rate of 10°C per minute. Good correlation between POM and DSC transition temperatures 

was noted, within 1°C. UV-Visible absorbance spectra were measured using a Thermo Scientific 

Evolution 220 UV-Visible Spectrometer. The compounds were dissolved in chloroform, placed in 

a quartz cuvette and a spectrum recorded from 750 nm to 190 nm using a bandwidth of  2 nm. 

The ionisation potential (IP) of the compounds were measured electrochemically by cyclic 

voltammetry using a computer-controlled scanning potentiostat (Solartron 1285), which functions 

as wave generator, potentiostat and current-to-voltage converter. The Corrware and Corrview 

software packages were used to control and record the cyclic voltammetry experiments, 

respectively. 1 mM of the compound was dissolved in 5 cm3 of an electrolytic solution of 0.3 M 

tetrabutylammonium hexafluorophosphate (TBAHFP 6) in DCM. The solution was placed in a 

standard three-electrode electrochemical cell. A glassy carbon electrode was used as the working 

electrode. Silver/silver chloride (3 M NaCl and saturated Ag/Cl) and a platinum wire were used as 

the reference and counter electrodes, respectively. The electrolyte was recrystallised twice before 

use. Oxygen contamination was avoided by purging the solution with dry argon before each 

measurement. The measured potentials were corrected to an internal ferrocene reference added at 

the end of each measurement. A typical scan rate of 20 mV s-1 was used, and two scans were 

performed to check the repeatability. The onset potential for oxidation, Eox, is clearly defined by a 

step change in current and is obtained from the intersection of the two tangents at the current 

discontinuity based on the empirical relationship proposed by Bredas, IP 1⁄4 [Eox þ 4.4] eV. We 

were unable to measure a value for the reduction potential because of the limited working range of 

the electrolyte. However, the electron affinity (EA) was estimated by subtraction of the optical 

band edge (Eg), taken as the energy of the onset of absorption of the compound from the IP. 

Although this approximation does not include a correction for the exciton binding energy, the 

values obtained agree within ± 0.05 eV with those measured electrochemically in our laboratory 

for other classes of reactive mesogen.  

2.2 OLED Fabrication  



A general schematic representation of the configuration of the OLEDs fabricated is shown in 

Figure 1. A layer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS 

Sigma-Aldrich), used as the hole-injection layer due to its high conductivity (ca 3.0 x 10-3 S/cm) 

[52-53], was deposited as an hole-injection layer (30 nm) from aqueous solution on a glass 

substrate (Osilla) with a 100 nm pre-coated transparent indium tin oxide (ITO) anode by spin 

coating (2000 rpm for 30s) using Laurell WS-400-6NPP-Lite Spin Processer. The film thickness 

was measured using Dektak. 

N4,N4’-bis(4-{6-[(3-Ethyloxetan-3-yl)methoxy]hexyl}phenyl)-N4,N4’-diphenylbiphenyl-4,4’-dia

mine (OTPD) (Luminescence Technology Corp), used as a hole-transporting layer after 

photochemical crosslinking [54], was deposited from a 0.5 wt% in toluene solution by 

spin-coating (2000 rpm for 30s) to form a hole-transporting layer (15 nm) on top of the 

PEDOT/PSS hole-injection layer. 0.5 wt% (4-octyloxyphenyl) phenyliodonium 

hexafluoroantimonate (OPPI) was added as a photoinitiator and the OTPD was photochemically 

crosslinked using UV irradiation with a fluend of 100 mJ cm-2. The sample was annealed at 110 

oC for 5 min. A thin layer (20 nm) of one of the compounds 1-5 was deposited as the emissive 

layer by spincoating at 2000 rpm for 30 s from solution (1 wt% in toluene). A layer (20 nm) of 

2,7-bis(diphenylphosphoryl)-9,9’-spirobifluorene (SPPO13) used as electron-transporting layer 

was deposited by thermal evaporation at a pressure of 8 x 10-6 mbar. A layer (1 nm) of lithium 

fluoride, used as the electron-injection layer was then evaporated [55], followed by an aluminium 

(100 nm) cathode.  

 

2.3 Material Synthesis 

The compounds 1-5 were synthesized as shown in reaction Scheme 1.  

 

1-Iodo-4-(octyloxy)benzene (11) 

A mixture of 4-iodophenol (20.00 g, 91.0 mmol), 1-bromooctane (16.00 g, 82.8 mmol), K2CO3 

(34.40 g, 248.4 mmol) and DMF (200 cm3) was heated overnight at 120 oC. The cooled reaction 

mixture was added to aqueous NaOH (91.0 mmol, 1 mol/L), stirred for 1 h and then extracted with 

DCM (3 × 100 cm3). The combined organic layers were washed with water (2 × 100 cm3), dried 

(MgSO4), filtered and then concentrated down under reduced pressure. Purification was carried 



out using column chromatography [silica, DCM/hexane 1:10] to afford the desired product as a 

colourless liquid (26.20 g, 95 %). 

1H NMR (CDCl3) δH: 7.56 (2H, d, J = 6.8 Hz), 6.68 (2H, d, J = 6.8 Hz), 3.91 (2H, t, J = 6.4 Hz), 

1.79 (2H, m), 1.27-1.50 (10H, m), 0.90 (3H, t, J = 6.8 Hz). 

MS m/z (EI): 333, 332 (M+). 

 

4-Bromo-4’-octyloxy-2-nitrobiphenyl (13) 

Copper powder (10.20 g, 160.2 mmol) was added over 1 h to a stirred, molten mixture of 

2,5-dibromonitrobenzene (15.00 g, 53.4 mmol) and 1-iodo-4-(octyloxy)benzene (21.3 g, 64.08 

mmol) maintained at 175 oC. The resultant reaction mixture was then heated at 175 oC overnight. 

The cooled reaction mixture was extracted into hot toluene (3 × 150 cm3) and the combined 

organic layers filtered through silica gel. The filtrate was washed with water (2 × 200 cm3), dried 

(MgSO4), filtered and then evaporated under reduced pressure. Purification of the crude product 

was carried out using column chromatography [silica, DCM/hexane 3:10] to afford the desired 

product as a yellow liquid (15.10 g, 70 %).  

1H NMR (CDCl3) δH: 7.94 (1H, d, J = 2.0 Hz), 7.69 (1H, dd, J = 8.0 & 1.2 Hz), 7.31 (1H, d, J = 

8.4 Hz), 7.19 (2H, d, J = 8.4 Hz), 6.94 (2H, d, J = 8.0 Hz), 3.99 (2H, t, J = 6.8 Hz), 1.83 (2H, 

quint, J = 6.8 Hz), 1.20-1.52 (10H, m), 0.90 (3H, t, J = 6.8 Hz). 

MS m/z (EI): 407, 405 (M+), 375, 296. 

 

2-Bromo-7-octyloxycarbazole (14) 

A mixture of 4-bromo-4’-octyloxy-2-nitrobiphenyl (10.00 g, 24.61 mmol) and triethyl phophite 

(20.45 g, 123.06 mmol) was stirred and heated at reflux overnight. The volatiles were removed 

under reduced pressure. The residue was then poured onto methanol (300 cm3) and stirred for 3 h. 

The mixture was then filtered off and the precipitate was collected to afford the desired product as 

a white solid (7.2 g, 78 %). 

Melting Point/ oC: 265-266. 

1H NMR (CDCl3) δH: 7.94 (1H, s), 7.89 (1H, d, J = 8.8 Hz), 7.81 (1H, d, J = 8.4 Hz), 7.52 (1H, d, 

J = 1.6 Hz), 7.31 (1H, dd, J = 8.4 & 1.6 Hz), 6.89 (1H, d, J = 2.2 Hz), 6.87 (1H, dd, J = 8.8 & 2.4 

Hz), 4.05 (2H, t, J = 6.8 Hz), 1.85 (2H, quint, J = 6.8 Hz), 1.29-1.52 (10H, m), 0.90 (3H, t, J = 



6.8 Hz).  

MS m/z (EI): 375, 373 (M+). 

 

2-Bromo-N-octyl-7-(octyloxy)-carbazole (15) 

Sodium hydride (NaH) (60% in mineral oil) (2.14 g, 53.43 mmol) was added in a small portion 

into a solution of 2-bromo-7-octyloxycarbazole (10.00 g, 26.72 mmol) in DMF (100 mL). The 

resultant mixture was stirred for 1 h at room temperature, then heated and maintained at 50 oC for 

another 1 h. 1-Bromooctane (5.68 g, 29.39 mmol) was added and the resultant mixture stirred at 

50 oC for 3 h and then at room temperature overnight. The reaction mixture was washed with 

water (100 cm3), and extracted with DCM (3 × 100 cm3). The combined organic layers were 

washed with water (2 × 100 cm3), dried over magnesium sulfate (MgSO4), filtered and then 

concentrated down under reduced pressure. The crude product was purified using column 

chromatography [DCM/Hexane 1:10] to afford the desired product as a white solid (20.74 g, 

99 %). 

Melting Point/ oC: 53-54. 

1H NMR (CDCl3) δH: 7.90 (1H, d, J = 8.8 Hz), 7.82 (1H, d, J = 8.4 Hz), 7.47 (1H, d, J = 1.0 Hz), 

7.28 (1H, dd, J = 8.4 & 1.0 Hz), 6.85 (2H, d, J = 7.6 Hz), 4.18 (2H, t, J = 7.6 Hz), 4.08 (2H, t, J = 

6.4 Hz), 1.86 (4H, quint, J = 7.2 Hz), 1.25-1.54 (20H, m), 0.89 (3H, t, J = 4.4 Hz), 0.87 (3H, t, J 

= 5.6 Hz).  

MS m/z (EI): 487, 486, 485 (M+). 

 

[N-octyl-7-(octyloxy)-carbazol-2-yl]boronic acid (16) 

A solution of 2.5 mol/L n-BuLi in hexanes (12.34 cm3)x mmol was added drop-wise to a dry THF 

(150 cm3) solution of 2-bromo-N-octyl-7-(octyloxy)-carbazole (10.00 g, 20.56 mmol) at -78 oC, 

and the resultant mixture was stirred for 1 h at -78 oC. Then 2-triisopropyl borate (9.5 cm3, 41.12 

mmol, 0.815 g cm-3) was added drop-wise to the reaction mixture, which was then stirred for 1 h 

at -78 oC, allowed to warm to room temperature and then stirred overnight. Hydrochloric acid 

(34.26 cm3, 12 mol/L)x mmol was added to the reaction mixture. The resultant mixture stirred for 

1 h and then diluted with water (50 cm3) and extracted with diethyl ether (3 × 100 cm3). The 

combined organic extracts were washed with water (2 × 100 cm3), dried (MgSO4), filtered and 



concentrated down under reduced pressure. The crude product was purified via washing with 

hexane (2 × 100 cm3) and then dried under reduced pressure to give the desired product as a white 

solid (8.58 g, 92 %). 

Melting Point/ oC: 127-128. 

1H NMR (CDCl3) δH: 8.33 (1H, s), 8.18 (1H, t, J = 7.8 Hz), 7.96-8.06 (2H, m), 7.79 (1H, s), 7.50 

(1H, d, J = 7.2 Hz), 6.91 (2H, d, J = 8.0 Hz), 4.32 (2H, t, J = 7.2 Hz), 4.08 (2H, t, J = 6.8 Hz), 

1.80 (4H, quint, J = 7.2 Hz), 1.24-1.50 (20H, m), 0.86 (3H, t, J = 6.8 Hz), 0.83 (3H, t, J = 6.4 

Hz).  

MS m/z (EI): 452, 451(M+), 450.  

 

2,7- bis(Thien-2-yl)-9,9-dipropyl-fluorene (18) 

A mixture of Pd(PPh3)4 (0.30 g, 0.26 mmol), 2,7-dibromo-9,9-dipropyl-fluorene (5.00 g, 12.20 

mmol) and 2-(tributylstannyl)thiophene (11.38 g, 30.50mmol) in DMF (100 cm3) was stirred and 

heated to 90 oC overnight. Then, the cooled reaction mixture was washed with water (100 cm3) 

and then extracted with DCM (3 × 100 cm3). The combined organic layers were washed with 

water (2 × 100 cm3), dried over magnesium sulfate (MgSO4), filtered and then concentrated under 

reduced pressure. The crude product was purified using column chromatography [K2CO3/silica 1:9, 

DCM/Hexane 5:10] to remove the tin side products and then re-crystallised from EtOH/DCM to 

afford the desired product as a light yellow solid (3.98 g, 79 %).  

Melting Point/ oC: 168-170. 

1H NMR (CDCl3) δH: 7.66 (2H, d, J = 8.0 Hz), 7.59 (2H, dd, J = 8.0 & 1.6 Hz), 7.55 (2H, d, J = 

2.0 Hz), 7.37 (2H, d, J = 3.8 Hz), 7.28 (2H, d, J = 5.2 Hz), 7.10 (2H, dd, J = 7.8 & 1.2 Hz), 2.00 

(4H, m), 0.66-0.70 (10H, m). 

MS m/z (EI): 416, 415, 414 (M+, M100). 

 

2,7-bis-(5-Bromothiophen-2-yl)-9,9-dipropyl-fluorene (19) 

N-bromosuccinimide (NBS) (0.95 g, 5.32 mmol) was added in a small portion into a solution of 

2,7- bis(thien-2-yl)-9,9-dipropyl-fluorene (1.00 g, 2.42 mmol) in acetic acid (10 cm3) and 

chloroform (10 cm3) in the dark. The resultant mixture was stirred overnight at room temperature. 

The reaction mixture was poured into water (100 cm3) and then extracted with DCM (3 × 100 



cm3). The combined organic layers were washed with water (2 × 100 cm3), dried over magnesium 

sulfate (MgSO4), filtered and then concentrated under reduced pressure. The crude product was 

purified using column chromatography [Hexane] to afford the desired product as a yellow solid 

(0.95 g, 77 %).  

Melting Point/ oC: 165-166. 

1H NMR (CDCl3) δH: 7.65 (2H, d, J = 8.0 Hz), 7.48 (2H, dd, J = 8.0 & 1.6 Hz), 7.44 (2H, d, J = 

1.6 Hz), 7.10 (2H, d, J = 4.0 Hz), 7.04 (2H, d, J = 3.6 Hz), 1.97 (4H, m), 0.66-0.69 (10H, m). 

MS m/z (EI): 574, 572 (M+), 570. 

 

5,5’-bis-[9-Octyl-7-(octyloxy)-carbazol-2-yl]-2,2’-bithiophene (1) 

A mixture of Pd(PPh3)4 (0.01g, 0.008 mmol), 5,5’-dibromo-2,2’-bithiophene (0.20 g, 0.618 mmol), 

[N-octyl-7-(octyloxy)-carbazol-2-yl]boronic acid (0.84 g, 1.85 mmol), K2CO3 (0.52 g, 3.71 mmol) 

and H2O (2 cm3) in DMF (30 cm3) was heated at 80 oC overnight. The cooled reaction mixture 

was washed with water (100 cm3) and extracted with DCM (3 × 100 cm3). The combined organic 

layers were washed with water (2 × 100 cm3), dried (MgSO4), filtered and then concentrated down 

under reduced pressure. The residue was purified using column chromatography [silica, 

DCM/hexane 5:10] to afford the desired product as an yellow solid (0.49 g, 82 %). 

Melting Point/ oC: Cr 136 N 151 I. 

1H NMR (CDCl3) δH: 7.96 (2H, d, J = 8.0 Hz), 7.93 (2H, d, J = 8.4 Hz), 7.53 (2H, s), 7.48 (2H, d, 

J = 8.0 Hz), 7.32 (2H, d, J = 4.0 Hz), 7.23 (2H, d, J = 4.0 Hz), 6.85 (4H, dd, J = 7.2 & 2.0 Hz), 

4.27 (4H, t, J = 6.8 Hz), 4.10 (4H, t, J = 6.4 Hz), 1.90 (8H, m), 1.26-1.53 (40H, m), 0.91 (6H, t, J 

= 7.6 Hz), 0.87 (6H, t, J = 7.2 Hz). 

13C NMR(CDCl3): 159, 144, 142, 141, 136, 130, 124, 123, 121, 119, 117, 108, 105, 94, 68, 43, 32, 

30, 29, 26, 23, 14. 

IR νmax/cm-1: 2922, 2850, 1599, 1499, 1455, 1439, 1390, 1347, 1248, 1218, 1208, 1167, 1145, 

1126, 1056, 935, 880, 839, 801, 786, 768. 

MS m/z (MALDI): 979, 978, 977 (M+, M100). 

Combustion analysis:  

Expected: C, 78.64%; H, 8.66%; N, 2.87%; S, 6.56%. 

Obtained: C, 78.62%; H, 8.70%; N, 2.83%; S, 6.66% 



 

7,7’-(9,9-Dioctyl-fluorene-2,7-diyl)-bis-[9-octyl-7-(octyloxy)-carbazole] (2) 

A mixture of Pd(PPh3)4 (0.01g, 0.008 mmol), 2,7-dibromo-9,9-dioctyl-fluorene (0.20 g, 0.365 

mmol), [N-octyl-7-(octyloxy)-carbazol-2-yl]boronic acid (0.50 g, 1.10 mmol), K2CO3 (0.31 g, 

2.20 mmol) and H2O (2 cm3) in DMF (30 cm3) was heated at 80 oC overnight. The cooled reaction 

mixture was washed with water (100 cm3) and then extracted with DCM (3 × 100 cm3). The 

combined organic layers were washed with water (2 × 100 cm3), dried over magnesium sulfate 

(MgSO4), filtered and then concentrated down under reduced pressure. The residue was purified 

using column chromatography [silica, DCM/Hexane 3:10] to afford the desired product as a 

pale-yellow solid (0.32 g, 73 %). 

Melting Point/ oC: 66. 

1H NMR (CDCl3) δH: 8.06 (2H, d, J = 8.0 Hz), 7.98 (2H, d, J = 8.4 Hz), 7.83 (2H, d, J = 8.0 Hz), 

7.71 (2H, d, J = 8.0 Hz), 7.68 (2H, s), 7.59 (2H, s), 7.53 (2H, d, J = 8.0 Hz), 6.88 (4H, dd, J = 8.0 

& 2.0 Hz), 4.32 (4H, t, J = 6.8 Hz), 4.12 (4H, t, J = 6.4 Hz), 3.92 (4H, m), 1.94 (8H, m), 

1.10-1.48 (60H, m), 0.90 (12H, t, J = 7.2 Hz), 0.75-0.84 (10H, m). 

13C NMR(CDCl3): 158, 151, 142, 141, 139, 138, 126, 122, 121, 119, 118, 116, 108, 107, 94, 68, 

55, 43, 40, 32, 29, 23, 14.  

IR νmax/cm-1: 2920, 2850, 1601, 1499, 1460, 1389, 1352, 1245, 1169, 1126, 1060, 1022, 989, 872, 

768. 

MS m/z (MALDI): 1204, 1203, 1202 (M+, M100). 

Combustion analysis:  

Expected: C, 84.94%; H, 10.06%; N, 2.33% 

Obtained: C, 84.96%; H, 10.02%; N, 2.36% 

 

3,7-bis-[9-Octyl-7-(octyloxy)-carbazol-2-yl]dibenzo[b,d]thiophene (3) 

A mixture of Pd(PPh3)4 (0.01g, 0.008 mmol), 3,7-dibromodibenzo[b,d]thiophene (0.20 g, 0.60 

mmol), [N-octyl-7-(octyloxy)-carbazol-2-yl]boronic acid (0.80 g, 1.76 mmol), K2CO3 (0.50 g, 

3.60 mmol) and H2O (2 cm3) in DMF (30 cm3) was heated at 80 oC overnight. The cooled reaction 

mixture was washed with water (100 cm3), and extracted with DCM (3 × 100 cm3). The combined 

organic layers were washed with water (2 × 100 cm3), dried over magnesium sulfate, filtered and 



concentrated under reduced pressure. The residue was purified using column chromatography 

[silica, DCM/Hexane 4:10] to afford the desired product as a pale-yellow solid (0.49 g, 86 %).  

Melting Point/ oC: Cr 141 N 202 I. 

1H NMR (CDCl3) δH: 8.26 (2H, d, J = 8.4 Hz), 8.19 (2H, d, J = 1.0 Hz), 8.07 (2H, d, J = 8.0 Hz), 

7.98 (2H, d, J = 8.4 Hz), 7.84 (2H, dd, J = 8.0 & 1.0 Hz), 7.62 (2H, s), 7.55 (2H, dd, J = 6.8 & 

1.0 Hz), 6.88 (4H, d, J = 8.4 Hz), 4.32 (4H, t, J = 7.2 Hz), 4.11 (4H, t, J = 6.4 Hz), 1.93 (8H, m), 

1.24-1.52 (40H, m), 0.90 (12H, t, J = 6.8 Hz). 

13C NMR(CDCl3): 158, 142, 141, 140, 137, 135, 124, 122, 121, 120, 119, 118, 108, 107, 94, 68, 

43, 32, 29, 23, 14 

IR νmax/cm-1: 2919, 2850, 1601, 1499, 1453, 1436, 1392, 1354, 1247, 1190, 1177, 1127, 1045, 992, 

872, 797, 768. 

MS m/z (MALDI): 996, 995 (M+, M100). 

Combustion analysis:  

Expected: C, 82.04%; H, 8.71%; N, 2.81%; S, 3.22% 

Obtained: C, 82.12%; H, 8.73%; N, 2.72%; S, 3.24% 

 

4,7-bis-[9-Octyl-7-(octyloxy)-carbazol-2-yl]benzo[c][1,2,5]thiadiazole (4) 

A mixture of Pd(PPh3)4 (0.01g, 0.008 mmol), 4,7-dibromo-2,1,3-benzothiadiazole (0.20 g, 0.681 

mmol), [N-octyl-7-(octyloxy)-carbazol-2-yl]boronic acid (0.93 g, 2.04 mmol), K2CO3 (0.57 g, 

4.08 mmol) and H2O (2 cm3) in DMF (30 cm3) was heated at 80 oC overnight. The cooled reaction 

mixture was washed with water (100 cm3), and extracted with DCM (3 × 100 cm3). The combined 

organic layers were washed with water (2 × 100 cm3), dried over magnesium sulfate (MgSO4), 

filtered and then concentrated down under reduced pressure. The residue was purified using 

column chromatography [silica, DCM/Hexane 5:10] to afford the desired product as a red solid 

(0.60 g, 93 %). 

Melting Point/ oC: Tg 85; Cr 105 I (Heating); I 94 N (Cooling). 

1H NMR (CDCl3) δH: 8.14 (2H, d, J = 8.0 Hz), 8.04 (2H, s), 8.01 (2H, d, J = 8.4 Hz), 7.93 (2H, s), 

7.80 (2H, dd, J = 8.0 & 1.0 Hz), 6.89 (4H, d, J = 8.4 Hz), 4.34 (4H, t, J = 7.2 Hz), 4.12 (4H, t, J = 

6.8 Hz), 1.96 (8H, m), 1.22-1.52 (40H, m), 0.90 (6H, t, J = 6.8 Hz), 0.84 (6H, t, J = 7.2 Hz).  

13C NMR(CDCl3): 159, 154, 143, 141, 140, 134, 133, 128, 123, 121, 120, 119, 116, 109, 108, 94, 



68, 43, 32, 29, 26, 14. 

IR νmax/cm-1: 2917, 2849, 1600, 1499, 1455, 1439, 1362, 1257, 1211, 1177, 1130, 1056, 982, 895, 

819, 801, 766. 

MS m/z (MALDI): 948, 947 (M+, M100). 

Combustion analysis:  

Expected: C, 78.60%; H, 8.72%; N, 5.91%;S, 3.38% 

Obtained: C, 78.62%; H, 8.73%; N, 5.91%; S, 3.30% 

 

2,7-[bis-(Thien-2-yl)-9,9-dipropyl-fluorene-5,5-diyl]-bis-[9-octyl-7-(octyloxy)-carbazole] (5) 

A mixture of Pd(PPh3)4 (0.01g, 0.008 mmol), 

2,7-bis-(5-bromothiophen-2-yl)-9,9-dipropyl-fluorene (0.20 g, 0.35 mmol), 

[N-octyl-7-(octyloxy)-carbazol-2-yl]boronic acid (0.48 g, 1.05 mmol), K2CO3 (0.30 g, 2.10 mmol) 

and H2O (2 cm3) in DMF (30 cm3) was heated at 80 oC overnight. The cooled reaction mixture 

was washed with water (100 cm3), and extracted with DCM (3 × 100 cm3). The combined organic 

layers were washed with water (2 × 100 cm3), dried over magnesium sulfate (MgSO4), filtered and 

then concentrated down under reduced pressure. The residue was purified using column 

chromatography [silica, DCM/Hexane 4:10] to afford the desired product as a yellow solid (0.36 g, 

75 %).  

Melting Point/ oC: Tg 32 Cr - N 161 I. 

1H NMR (CDCl3) δH: 7.99 (2H, d, J = 8.0 Hz), 7.94 (2H, d, J = 8.4 Hz), 7.72 (2H, d, J = 7.6 Hz), 

7.68 (2H, d, J = 7.6 Hz), 7.63 (2H, d, J = 1.0 Hz), 7.59 (2H, d, J = 1.0 Hz), 7.54 (2H, dd, J = 8.0 

& 1.0 Hz), 7.41 (4H, dd, J = 6.0 & 2.4 Hz), 6.86 (4H, dd, J = 7.6 & 2.0 Hz), 4.28 (4H, t, J = 7.2 

Hz), 4.11 (4H, t, J = 6.8 Hz), 2.07 (4H, m), 1.91 (8H, m), 1.26-1.52 (40H, m), 0.90 (12H, t, J = 

7.2 Hz), 0.72-0.83 (10H, m). 

13C NMR(CDCl3): 158, 151, 145, 143, 142, 140, 133, 131, 124, 123, 121, 120, 117, 108, 106, 94, 

68, 56, 43, 32, 29, 27, 26, 23, 14. 

IR νmax/cm-1: 2921, 2851, 1601, 1501, 1458, 1390, 1347, 1247, 1189, 1170, 1125, 1053, 1021, 993, 

872, 769. 

MS m/z (MALDI): 1228, 1227, 1226 (M+). 

Combustion analysis:  



Expected: C, 81.32%; H, 8.55%; N, 2.29%; S, 5.23%. 

Obtained: C, 81.32%; H, 8.58%; N, 2.40%; S, 5.14% 

 

3 Results and Discussion 

 

3.1 Synthetic Discussion of Reaction Scheme 1 

The synthesis and application of carbazole-functional derivatives have been of great interest in 

materials chemistry, especially in organic electronics, due to their intrinsic photo-physical and 

redox properties, e.g. relatively intense luminescence and reversible oxidation processes, 

π-stacking capability and ease of further derivation [44-51]. Therefore, a series of 

carbazole-functionalised derivatives containing different cores were synthesised and are discussed 

below.   

 

1-(Octyloxy)-4-iodobenzene (11) was synthesised in excellent yield (95%) by reacting 

4-iodophenol (10) with 1-bromooctane, using K2CO3, with DMF as the solvent at 120 oC. An 

Ullmann cross-coupling reaction was carried out between 2,5-dibromonitrobenzene (12) and 

compound 11 using copper powder as catalyst at 175 oC to give 

4-bromo-4’-octyloxy-2-nitrobiphenyl (13) in good yield (69%). The 2-bromo-7-octyloxycarbazole 

(14) was obtained from the ring closure reaction of compound 13 with triethyl phosphite in good 

yield (78%). Given that solid triphenyl phosphine is safer and less harmful than liquid triethyl 

phosphite, we tried triphenyl phosphine instead of triethyl phosphite, giving an approximate equal 

yield of 76%. However, purification of the product was less efficient using triphenyl phosphine as 

column chromatography had to be carried out with more solvent consumption, due to the excess 

quantity of triphenyl phosphine (up to 100% excess), with similar yields obtained. In such cases, 

we tried to use 25% and 50% excess of triphenyl phosphine for the ring closing reaction of 

compound 13  to decrease by-products and facilitate purification, but this resulted in a very poor 

yield. Therefore, liquid triethyl phosphite was chosen and the result showed easier purification and 

good yield. Since triethyl phosphite is more harmful than triphenyl phosphine, all reaction 

procedures and purification were performed in a fume cupboard. Compound 14 was alkylated 

using commercially available 1-bromooctane, using NaH, with DMF as the solvent to give 



2-bromo-9-octyl-7-octyloxy-carbazole (15) in excellent yield (99%). Commercially available 

2-triisopropyl borate was used to treat the lithiated compound 36 with n-butylithium at -78 °C. 

Hydrolysis of the reaction mixture with aqueous hydrochloric acid gave 

[N-octyl-7-(octyloxy)-carbazol-2-yl]boronic acid (16) in excellent yield (92%). A Stille aryl-aryl, 

cross-coupling reaction was carried out using 2,7-dibromo-9,9-dipropyl-fluorene (17), 

2-(tributylstannyl)thiophene, tetrakis(triphenylphosphine)palladium(0) as catalyst, and DMF as 

solvent to afford symmetrical bis-thiophene intermediate 18 in good yield (79%). The position 5 

of two thiophene rings of compound 18 was then brominated using NBS as brominating agent in 

acetic acid and chloroform as solvent in the dark to give 

2,7-bis-(5-bromothiophen-2-yl)-9,9-dipropyl-fluorene (19) in good yield (77%). Dibrominated 

aromatic cores 5,5’-dibromo-2.2’-bithiophene (20), 2,7-dibromo-9,9-dioctyl-fluorene (21), 

3,7-dibromodibenzo[b,d]thiophene (22), and 4,7-Dibromo-2,1,3-benzothiadiazole (23), 

2,7-bis-(5-bromothiophen-2-yl)-9,9-dipropyl-fluorene (19) were reacted with the same boronic 

acid 16 in a Suzuki aryl-aryl cross-coupling reaction using Pd(PPh3)4 as catalyst, K2CO3 aqueous 

as base and DMF as solvent to give  

5,5’-bis-[9-octyl-7-(octyloxy)-carbazol-2-yl]-2,2’-bithiophene (1) (82%), 

7,7’-(9,9-dioctyl-fluorene-2,7-diyl)-bis-[9-octyl-7-(octyloxy)-carbazole] (2) (73%), 

3,7-bis-[9-Octyl-7-(octyloxy)-carbazol-2-yl]dibenzo[b,d]thiophene (3) (86%), 

4,7-bis-[9-Octyl-7-(octyloxy)-carbazol-2-yl]benzo[c][1,2,5]thiadiazole (4) (93%), 

2,7-[bis(thien-2-yl)-9,9-dipropyl-fluorene-5,5-diyl]-bis-[9-octyl-7-(octyloxy)-carbazole] (5) (75%), 

respectively.   

 

3.2 Liquid Crystalline Oligomer Properties and Their Opto-electronic Application 

The chemical structures, transition temperatures, energy levels and band gaps of the oligomers 1-5 

are collated in Table 1 to facilitate a comparison of the mesomorphic and physical characteristics 

of these compounds differing only in the nature of the central core of their molecular structure. 

The data listed in Table 1 should also serve as background information in evaluating a potential 

correlation between the mesomorphic behavior and liquid crystalline transition temperature of 

these compounds and their relative performance as emissive materials in test OLEDs. The data 

collated in Table 1 reveals a direct correlation between the length-to-breadth ratio of the 



molecular core and the value for the nematic clearing point. For example a high clearing point 

(202 oC) and a very broad nematic phase are observed for compound 3 incorporating the rigid, 

planar 3,7-disubstituted dibenzo[b,d]thiophene moiety in the molecular core, whereas the 

analogous 9,9-dioctyl-2,7-disubstituted-fluorene (compound 2) does not exhibit any observable 

mesomorphic behaviour. This behavior may well be due to the greater intermolecular distance 

between adjacent molecules generated by the two long aliphatic chains and a much lower effective 

length-to-breadth ratio for the molecular core. Compound 1 exhibits a narrow nematic phase (15 

oC), with a lower clearing point (N-I) than that of either compound 3 or compound 5. The 

potential for inter-annular twisting between the bithiophene core and the carbazole moieties may 

increase the intermolecular distance between adjacent molecules. Evidence of this effect may be 

seen in the lower melting point of compound 1 compared to that of compound 3. Compound 1 also 

has a lower length-to-breadth ratio than that of either compound 3 or 5, which is probably a major 

factor in generating a relatively low clearing point for this material. Compound 4 is the only final 

product that possesses a monotropic nematic phase observed on cooling below the melting point 

(C-I).  of 105 oC, which is probably caused by the steric hindrance of the 

2,1,3-benzodithiadiazole core, which will, in turn, prevent close intermolecular packing between 

adjacent molecules leading to weaker intermolecular forces of attraction.  

 

Figure 2 shows the Schlieren texture, with point singularities with four and two point brushes, 

characteristic of the nematic phase, for compound 5, observed on cooling the OPM sample from 

the isotropic state into glassy state. DSC analysis was used to confirm this mesomorphic 

behaviour. A similar Schlieren texture was observed for compounds 1, 3 and 4. A combination of 

OPM and DSC, see Figure 3, reveals that compound 5 possesses no observable melting point 

(Cr-N). Instead it softens gradually on increasing the temperature above glass transition 

temperature until it forms an isotropic state above the clearing point. These kinds of gradual phase 

change are often found with polymers, and are generally observed as a broad peak in DSC 

measurements [56-57]. Broad peaks were observed in the DSC measurements of 5, which is a 

high-molecular-weight oligomer.  

 

OLED devices with the same layer structure, see Figure 1, but five different emissive layers were 



measured and compared in terms of current density, luminance and efficacy. Figure 4a shows the 

efficacy of the 5 devices between zero and 8 V.  Each of the OLEDs exhibits a low switch-on 

voltage between 2.4 V and 3.0 V. As Figure 4b shows, the luminance of each of the devices at 8.0 

V differs considerably, i.e., from ca 750 cd m-2 to ca 6,000 cd m-2.  

 

It was found that the test OLED incorporating compound 5 as the emissive layer exhibits a 

significantly higher efficacy and luminance than the other test devices using compounds 1, 2, 3 

and 4. For example at 4V, it shows a luminance of 200 cd m-2 and an efficacy of 4.1 cd A-1. These 

reasonably high values may be attributed to the liquid crystalline nature of compound 5 and its 

advantageous liquid crystalline transition temperatures, i.e., compound 5 possesses a glass 

transition above room temperature (Tg = 32 oC), and a nematic phase with a high clearing point 

(N-I = 161 oC), see Table 1. The orientational order of a nematic mesophase without a layer 

structure is assumed to facilitate high charge-carrier mobility by hopping [2]. The combination of 

a glassy nematic phase above room temperature (Tg = 32 oC) and a very high clearing point (N-I = 

161 oC), see Table 1, for compound 5 may well result in a highly viscous nematic phase, which 

maintains a uniform structure during the OLED operation.  

 

There is a good match between the values of the ionization potential (-5.53 eV), see Table 1, of 

compound 5 and the HOMO energy level of the hole-transport layer OTPD (IP = -5.48 eV [54]). 

Similarly, the electron affinity (EA = -2.89 eV) of compound 5 is similar to the LUMO energy 

level of electron-transporting layer of SPPO13 (EA = -2.91 eV) [55]. Figure 5 shows the energy 

band diagram of the materials in the OLED taking compound 5 as the emissive material. This 

advantageous combination of energy levels results in low charge-injection barriers for electrons 

and holes, respectively, relatively balanced charge injection and a corresponding high density of 

excitons in the emissive layer where efficient recombination can occur with the emission of light. 

Note that the OTPD and SPPO13 act as electron and hole blocking layers respectively, confining 

carriers in the emission layer and so limiting current. Further efficiency gains are likely by 

optimizing the thickness of the various layers in the device. 

 

The OLED incorporating compound 2 performs poorly in terms of both efficacy and brightness 



and exhibits a severe efficiency roll-off with voltage. One possible reason for this poor 

performance may be the absence of liquid crystalline mesophases for compound 2. This OLED 

exhibits a higher current density than the OLED with compound 5 despite their similar IPs and 

compound 2 having a higher LUMO energy level (EA = -2.50 eV), which is unfavourable for 

electron transport. The higher current may result from leakage at crystal grain boundaries.  

 

The OLEDs incorporating the nematic liquid crystalline compounds 1, 3 and 4 exhibit similar 

performance in terms of overall device efficacy. However, the devices incorporating compounds 1 

and 4 have higher values of luminance and current density than those of the test OLED 

incorporating compound 3. The dibenzothiophene central core of compound 3 has fewer 

hetero-atoms than the bithiophene core of compound 1 and the benzothiadiazole core of 

compound 4. This leads to a bigger energy gap (3.10 eV compared to 2.60 eV and 2.42 eV, 

respectively) and a higher-lying LUMO energy level (-2.47 eV compared to -2.77 eV and -2.88 

eV, respectively), see Table 1. The higher energy gap and higher-lying LUMO energy level are 

unfavourable for efficient electron injection, thus causing an adverse effect on luminance and 

current density.   

 

The electroluminescence (EL) spectra of the five OLEDs with each compound 1 to 5 as an 

emissive material are shown in Figure 6. It is evident that the EL spectra from these test devices 

cover most of the visible spectrum, i.e., differences in the core of the molecular structure of these 

five test compounds gives rise to significant differences in the band gap (Eg) and the 

corresponding emission spectrum. The OLEDs incorporating compounds 2 and 3 exhibit blue 

light, while those incorporating compounds 1 and 5 emit green light and blue-green light 

respectively. The test device incorporating compound 4 exhibits orange light, see Figure 7 for 

images of working devices. However, the emission bands are broad and overlap to a significant 

extent, e.g., the emission of compound 5 covers the blue and green wavelengths from 450 nm to 

550 nm. 

 

In addition to electrochemical analysis, time-dependent density functional theory (TD-DFT) 

calculations were performed to evaluate the frontier molecular orbitals and optimized 



geometrically molecular configuration of the compounds at the B3PW91/ 6-31 G (d) level. DFT 

calculations were computationally processed in theoretical gaseous conditions so that the 

interaction of these molecules and the solvent can be eliminated [58-59]. Figure 8 gives the 

electron density distributions of HOMO and LUMO for compound 5 as an example. The electron 

density of HOMO and LUMO is mainly localised on the sequentially aromatic fluorene and 

carbazole units, which show aromatic electronic π – π* transitions in the compound as predicted. 

 

Conclusions 

Novel nematic liquid crystalline oligomers incorporating N-heterocyclic carbazole moieties were 

synthesised in this work for use as electroluminescent materials in multi-stack OLEDs. 

Particularly, the nematic oligomer 5 proves excellent device performance due to the combined 

advantages of nematic mesophase with a desired glass transition temperature above room 

temperature (32 oC) and high clearing point (161 oC), high degree of conjugation, the presence of 

various aromatic heterocyclic moieties, and low charge-injection barriers from the appropriate 

HOMO and LUMO energy levels in test OLED devices. The design of different aromatic cores 

also results in compounds with different electroluminescent colours.  
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