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Common variation at 12q24.13 (OAS3) influences chronic
lymphocytic leukemia risk
Leukemia (2015) 29, 748–751; doi:10.1038/leu.2014.311

Chronic lymphocytic leukemia (CLL) is the most common form of
lymphoid malignancy in Western countries1. Recent multi-stage
genome-wide association studies (GWAS) have shown that part
of the eight-fold increased risk of CLL seen in first-degree relatives
of patients can be ascribed to the co-inheritance of multiple
low-risk variants.2–6

Current projections for the number of independent regions
harbouring common variants that are associated with CLL suggest
that additional risk loci conferring modest effects should be
identified by the expansion of discovery GWAS data sets.2

In this study, we have made use of a meta-analysis of
GWAS data, followed by validation in multiple independent
case–control series, to identify a novel susceptibility locus for CLL
at 12q24.13.

The discovery phase comprised two previously described GWAS
conducted in the United Kingdom2,5 (see Supplementary
Methods). UK-GWAS-1; 517 CLL cases (155 enriched for genetic
susceptibility by virtue of family history) genotyped using Illumina
HumanCNV370-Duo BeadChips5 and 2698 controls from the
Wellcome Trust Case Control Consortium 2 (WTCCC2) 1958 Birth
cohort, typed using Hap1.2M-Duo Custom array.7 UK-GWAS-2;
1271 CLL cases genotyped using the Illumina Omni Express
BeadChip and 2501 UK Blood Service Donor controls typed using
Hap1.2M-Duo Custom arrays.2 To harmonise GWAS data sets we
recovered untyped genotypes by imputation using IMPUTEv2 with
1000genomes as a reference (phase 1 integrated variant set
(b37) from March 2012) (Supplementary Methods). Genomic
control lambda values for UK-GWAS1 and UK-GWAS2 were 1.04
and 1.05, respectively, thereby excluding significant differential
genotyping or cryptic population substructure.2

Post quality control the two GWAS provided data on 1739 cases
and 5199 controls. In a meta-analysis we identified 156 common

Figure 1. Forest plot of the ORs for the association between CLL and rs10735079. Studies were weighted according to the inverse of the
variance of the log of the OR calculated by unconditional logistic regression. Horizontal lines: 95% CI. Box: OR point estimate; box area is
proportional to the weight of the study. Diamond (and broken line): overall summary estimate, with CI given by its width. Unbroken vertical
line: null value (OR= 1.0). FE, fixed effects; MAF, minor allele frequency.
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SNPs (minor allele frequency40.01), typed in either UK GWAS-1 or
2, that showed good evidence of an association (ie Po1.5 × 10− 4)
and did not map to any of the 30 loci that have previously been
associated with CLL risk.2

Seven SNPs chosen on the basis of strength of association
and/or biological plausibility of the annotated gene (that is, a role
in B-cell or cancer biology) were genotyped in the UK replication
series (Supplementary Table 1), which comprised 1195 CLL cases
ascertained from an ongoing national study being conducted
by the Institute of Cancer Research and 2568 controls ascertained
through the National Study of Colorectal Cancer8 (Supplementary
Methods).
Two SNPs, rs10735079 and rs17512800, provided further

evidence for an association with CLL risk (ie Po0.05) and
these two SNPs were taken forward for genotyping in a further
replication series from Sweden, which comprised 347 CLL cases

and 342 controls (Supplementary Table 1). This case control
analysis provided additional evidence for an association between
rs10735079 and CLL risk. Subsequently we genotyped rs10735079
in three further case–control series, Poland-1 (105 cases, 101
controls), Poland-2 (176 cases, 209 controls) and Italy (186 cases,
155 controls) (Supplementary Methods). In the combined analysis
of all series the association between rs10735079 and CLL attained
genome-wide significance (combined OR per allele = 1.18, 95%
CI:1.12–1.26, P= 2.34 × 10− 8) (Figure 1). The association was
not restricted to IGHV mutation and showed no relationship with
either sex or age (Supplementary Table 2).
rs10735079 maps to intron 2 of the 2′-5′-oligoadenylate

synthetase 3 (OAS3) gene, one of three OAS genes clustering
at 12q24.13 (Figure 2), and is in LD (r2 = 0.87) with the splice
acceptor variant of OAS1, rs10774671, which mediates alternative
splicing of OAS1 transcription and affects enzymatic activity.9
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rs6489879
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Figure 2. Regional plot of association results, recombination rates and chromatin state segmentation track for 12q24.13 susceptibility locus.
Association results of both genotyped (triangles) and imputed (circles) SNPs in the GWAS samples and recombination rates. − log10 P-values (y
axis) of the SNPs are shown according to their chromosomal positions (x axis). rs10735079 is shown as a large diamond and is labelled by its
rsID. Colour intensity of each symbol reflects the extent of LD with the top genotyped SNP; white (r2= 0) through to dark red (r2= 1.0) Genetic
recombination rates, estimated using HapMap Utah residents of Western and Northern European ancestry (CEU) samples, are shown with a
light blue line. Physical positions are based on NCBI Build 37 of the human genome. Also shown are the relative positions of genes and
transcripts mapping to the region of association. Genes have been redrawn to show the relative positions; therefore, maps are not to physical
scale. The lower panel shows the chromatin state segmentation track (ChromHMM) for LCL data derived from the ENCODE project and the
positions of SNPs of interest (produced using visPIG-Visual Plotting Interface for Genetics).
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Although attractive as the basis of the 12q24.13 association the
association with CLL is stronger for rs10735079 than rs10774671
(P= 1.16 × 10− 5 and 1.74 × 10− 4, respectively; Supplementary
Table 3).
The significant dose relationship between rs10735079 genotype

and OAS3 expression in blood, with the risk allele being associated
with reduced levels of mRNA (P= 5.4 × 10− 29; Supplementary
Table 4), supports a role for rs10735079 genotype mediating its
effect on CLL through differential OAS3 expression rather than
impacting on OAS1.
Although rs10735079 is not predicted to lie in an active promoter

or strong enhancer element, the correlated SNP rs6489879 (r2 = 0.99)
that maps to intron 1 of OAS3 resides in a region predicted to be a
strong enhancer in lymphoblastoid GM12878 cells and to be
involved in binding of a number of transcription factors including
IRF4 (interferon regulatory factor-4), a lymphocyte-specific transcrip-
tion factor (Figure 2; Supplementary Table 3).
OAS is induced by interferon in response to viral infection

activating 2-5A-dependent RNase L degradation of viral RNA10 and
variation in OAS genes has been reported to be a determinant of
viral susceptibility.9,11–13 Given the possible role of viral response
in the pathogenesis of CLL, although speculative, it is therefore
possible that genetic variation in OAS3 influences risk of
developing CLL through differing response to antigenic challenge.
Moreover, OAS3 is a B-cell receptor (BCR) signature gene.14

Intriguingly as variation in the BCR genes IRF4 (ref. 5), BCL2 (ref. 3)
and HLA-DQA1 (ref. 15) has previously been implicated by GWAS
as determinants of CLL risk this suggests a common aetiological
pathway through differential BCR-activation.
Although further functional studies are required to fully

elucidate the biological basis of the 12q24.13 association, our
finding brings the total number of risk loci identified for CLL thus
far to 31 and provides additional support for the role of inherited
genetic factors in the aetiology of CLL.
URLS
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Classifying ultra-high risk smoldering myeloma
Leukemia (2015) 29, 751–753; doi:10.1038/leu.2014.313

Multiple myeloma (MM) always evolves from a precursor state,
either monoclonal gammopathy of undetermined significance or
smoldering MM (SMM).1,2 These precursor states are defined by
the absence of MM-related organ damage (‘CRAB’ features:
hypercalcemia, renal failure, anemia and bone disease).3 SMM
has a highly variable clinical behavior, where some patients have
an imminent risk of developing CRAB features and others have a
substantially lower risk.4,5 A recent study has demonstrated that
the treatment of high-risk SMM patients with lenalidomide and
dexamethasone resulted in fewer CRAB events and improved the
overall survival.6 This provocative study suggests that treatment of
high-risk SMM may be beneficial. However, identifying patients at
ultra-high risk of progression (480% at 2 years) has proven
difficult.7 Both the Mayo Clinic and PETHEMA models fail to define
such a high-risk group.4,5,8 Furthermore, the PETHEMA model
employs a flow cytometry technique, which is not widely available
or validated. Genomic approaches have also failed to identify
ultra-high risk groups.9–11 Notably, a recent small study high-
lighted a fair degree of discordance among these models in
SMM.12 Bone marrow plasma cell (BMPC) infiltration of ⩾ 60% in
SMM patients is associated with a 95% risk of developing MM
within 2 years.13 A major limitation remains that these models
have not been validated in other populations.
Thus, we sought to identify novel biomarkers and validate

existing models. We performed a retrospective study of patients
with SMM seen at the University of Pennsylvania from 2008–2012.
Eligibility was based on ICD-9 codes for MM (203.00–203.02),
monoclonal gammopathy (273.1, 357.89) and plasma cell neo-
plasm (238.6). SMM was diagnosed based on the International
Myeloma Working Group (IMWG) criteria3. Progression to active
MM was based on clinician judgment that MM-related organ or

tissue impairment had occurred or the initiation of MM therapy.
The Institutional Review Board of the University of Pennsylvania
approved this study.
Time to progression (TTP) to MM was defined as the time from

SMM diagnosis to first documentation of progression to MM.
Patients who had not progressed to MM at the time of statistical
analysis were censored. The median TTP rate and 2-year
progression rate were estimated by the Kaplan–Meier method.
Association between TTP and each clinical factor was assessed by
Cox regression analysis. Classification and regression tree (CART)
analysis was employed to identify optimal cut points to
dichotomize continuous variables that were candidates for the
models. Multivariable Cox modeling was then performed using a
backward elimination selection strategy. All analyses were
performed in either SPSS version 21.0 (SPSS Inc., Chicago, IL,
USA) or STATA 13 (StataCorp, College Station, TX, USA). P-values
o0.05 were considered statistically significant.
We screened 2777 patients and identified 135 with SMM. Nine

patients with light-chain only SMM were excluded from the
primary analysis. The median age was 62 years; 55% male; 78%
Caucasian, 19% African American and 3% other races. Median
follow-up was 4 years. Two patients died from non-myeloma
related causes of death and were censored. The median TTP was
6.8 years with a two-year rate of progression of 28%.
We constructed a risk stratification model. CART analysis

identified optimal cut points for three risk factors: (BMPC) ⩾ 40%
(hazard ratio (HR) 2.72, 95% condifence interval (CI) = 1.28–5.77,
Po0.009), serum-free light-chain ratio (sFLCR) ⩾ 50 (HR 4.57, 95%
CI = 1.99–10.50, Po0.001) and albumin ⩽ 3.5 (HR 3.38, 95%
CI = 1.57–7.27, Po0.001). M-protein concentration was excluded
from the model owing to strong colinearity with sFLCR (Po0.001).
Patients with zero risk factors were classified as low risk, patients
with one risk factor were classified as intermediate risk and
patients with two or three risk factors were classified as high risk.
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