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A series of syn- and anti-[2.n]metacyclophan-1-enes are prepared in good yields by a McMurry 

cyclization of 1,n-bis(5-tert-butyl-3-formyl-2-methoxyphenyl)alkanes. Interestingly, acid catalyzed 

rearrengements of [2.n]metacyclophan-1-enes afforded [n.1]metacyclophanes in good yield. The ratio of 

the products is strongly regulated by the number of methylene bridges present. The percentage of the 

rearrangement product increases with increasing length of the carbon bridge. Characterization and the 

conformational studies of these products are described. Single crystal X-ray analysis revealed the 

adoption of syn- and anti- conformations. DFT calculations were carried out to estimate the energy-

minimized structures of the synthesized MCPs. 

 

Introduction  

Cyclophanes1 have been well-studied in organic chemistry and found 

to adopt unusual chemical conformations due to build-up of strain. 

Although the parent [2.2]metacyclophane (MCP = metacyclophane) 

was first reported as early as 1899 by Pellegrin,2 the synthesis of 

syn-[2.2]MCP was not realized until 85 year later. Mitchell et al.3 

have efficiently prepared syn-[2.2]MCP at low temperature by using 

(arene)chromiumcarbonyl complexation to conduct the 

stereochemistry. Later, Itô et al.4 have also isolated and characterized 

syn-[2.2]MCP; we note that syn-[2.2]MCP isomerizes conveniently 

to its anti-isomer above 0°C. On the other hand, Boekelheide5 and 

Staab6 have successfully designed intra-annularly substituted syn-

[2.2]MCPs. However, reports on the synthesis and reaction 

chemistry of syn-[2.n]MCP have not thus far been published. 

   On the other hand, Merz et al.7 reported the stereospecific 

epoxidation of (E)- and (Z)-stilbene crown ethers with m-

chloroperbenzoic acid to afford the epoxy crown ethers. Oda et al.8 

also published the epoxidation of trans-diethylstilbestrol with m-

chloroperbenzoic acid to afford the racemic trans-diethylstilbestrol 

oxide. Thus, there is considerable interest in synthesizing the 

[2.n]MCP-1-enes and their conversion to 1,2-epoxy-[2.n]MCP, 

which can enforce the syn-conformation, whilst restricting the 

flexibility resulting from ring inversion.  

   Although [n.1]MCPs have been prepared by various workers, these 

previous synthetic routes were too tedious for practical application. 

Vögtle9 reported the first synthesis of both [4.1] and [5.1]MCP by 

the appliance of a new method, namely sulfone pyrolysis. Later, Lin 

et al.10 suceeded in preparing the lower [3.1]homologue by 

implementing a photochemical method. However, it was quite 

difficult to obtain sufficient amounts of the products for any 

subsequent studies by following such a route.   

 
 

 

 

 

 

 

 
 
    

Recently, we have reported the formation of 1,2-dimethyl[2.n]MCP-

1-enes11 by employing the reductive coupling of carbonyl 

compounds by low-valent titanium, i.e. deploying the McMurry 

reaction12-16 as a key step. In this paper, we report the synthesis of 

[2.n]MCP-ene using the McMurry cyclization reaction and 

subsequent conversion to 1,2-epoxy[2.n]MCP. The latter compounds 

were further modified to [n.1]MCPs by an acid catalyzed 

rearrangement. Conformational studies of these MCPs both in 

solution and the solid state are also described.  

Results and Discussions 

The starting compounds 1,6-bis(5-tert-butyl-3-formyl-2-methoxy 

phenyl)hexane 1a and 1,8-bis(5-tert-butyl-3-formyl-2-methoxy 
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phenyl)octane 1b are easily prepared from 1,6-bis(2-methoxy 

phenyl)hexane and  1,8-bis(5-tert-butyl-2-methoxyphenyl)octane, 

respectively according to our previous synthetic route.17–19 In the 

presence of dichloromethyl ether and titanium tetrachloride (TiCl4), 

a regioselective Friedel-Crafts acylation reaction20, 21 at the meta 

positions of 1,6-bis(2-methoxyphenyl)hexane and  1,8-bis(5-tert-

butyl-2-methoxyphenyl)octane was achieved at room temperature to 

afford the required 1a and 1b  in 68 and 74% yield, respectively. To 

a solution of methylmagnesium iodide in Et2O was added a solution 

of compounds 1a and 1b in tetrahydrofuran (THF) dropwise under 

relatively mild conditions (refluxing for 12 h) to afford 1,6-bis(5-

tert-butyl-3-(1-hydroxyethyl)-2-methoxyphenyl)hexane 2a and  1,8-

bis(5-tert-butyl-3-(1-hydroxyethyl)-2-methoxyphenyl)octane 2b in 

74 and 77% yield, respectively.  

 

Scheme 1. Synthesis of  1,n-bis(3-acetyl-5-tert-butyl-2-

methoxyphenyl)alkane 3. 

 
   After that, chromic acid oxidation22 of 2a and 2b was carried out in 

acetone by adding them dropwise to a solution of pyridinium 

chlorochromate (PCC) in acetone and stirring at room temperature 

for 24 h to produce 1,6-bis(3-acetyl-5-tert-butyl-2-

methoxyphenyl)hexane 3a and 1,8-bis(3-acetyl-5-tert-butyl-2-

methoxyphenyl)octane 3b in 69 and 62% yields, respectively as 

shown in Scheme 1.23–29 Elemental analysis and spectral data were 

used to resolve the structures of compounds 2 and 3. We have 

assigned the 1H NMR signals of 2 and 3 in a similar manner. The 

compounds 3a and 3b were subjected to reductive coupling by the 

McMurry reaction following the upgraded Grützmacher's 

procedu

re30 

(Schem

e 2). 

 
 

 

 

 

 

 

 

Scheme 2. Synthesis of 5,n-di-tert-butyl-8,n-dimethoxy-1,2-dimethyl[2.n] 

MCP-1-ene 4.  

 

   Thus, the reductive coupling reaction of 3 was carried out by using 

TiCl4-Zn in the presence of pyridine in refluxing THF under high 

dilution conditions to afford the required compounds anti- and syn-

5,17-di-tert-butyl-8,20-dimethoxy-1,2-dimethyl[2.6]MCP-1-ene 4a 

in 23 and 13% yields, respectively and anti- and syn-5,19-di-tert-

butyl-8,22-dimethoxy-1,2-dimethyl[2.8]MCP-1-ene 4b in 21 and 

64% yields, respectively. This result was different from that of the 

related McMurry cyclization of 1,3-bis(5-acetyl-2-methoxy-

phenyl)propane, which afforded the corresponding [3.1]MCP by 

TiCl4 or acid induced pinacol rearrangement.31 

   The structures of 4a and 4b were elucidated based on their 

elemental analyses and spectral data. In particular, the mass spectral 

data for 4a and 4b (M+ = 462 for 4a and 490 for 4b) fully support 

the cyclic structure. The conformations of 4a and 4b were readily 

apparent from their 1H NMR spectrum. The 1H NMR spectrum of 

anti-4a in CDCl3 exhibits a singlet at  3.34 ppm for the methoxy 

protons, a singlet at  1.31 ppm for the tert-butyl protons and a pair 

of doublets at  6.89 and 7.04 (J = 2.7 Hz) ppm for the aromatic 

protons, which are in the deshielded region of the bridged double 

bond. Thus, the methoxy protons appear upfield because of the ring 

current of the opposite aromatic ring. The structure of the syn-

conformer is also easily evaluated from the chemical shift of the 

methoxy protons at  3.67 ppm. Here, the tert-butyl proton of syn-4a 

is observed at higher field, viz  1.11 ppm, due to the shielding effect 

of the aromatic ring. The aromatic protons of syn-4a are reported at 

much higher field ( 6.64 and 6.77 ppm) than those of compound 

anti-4a. These data confirm the assigned anti and syn structures for 

both of the two 4a conformers. 

 

 
Figure 2. ORTEP drawing of anti-5,17-di-tert-butyl-8,20-dimethoxy-1,2-

dimethyl[2.6]MCP-1-ene 4a and anti-5,19-di-tert-butyl-8,22-dimethoxy-1,2-

dimethyl[2.8]MCP-1-ene 4b. Thermal ellipsoids are drawn at the 50% 

probability level. All hydrogen atoms are omitted for clarity. 

 

 
 

 

      
           Top view                                                    Side view 
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   The X-ray structure of anti-4a (Figure 2) clearly reveals that it is 

the anti-conformer in the solid state and that the two methoxy groups 

lie on the correlative side of the inner ring, which consists of a long 

bridging C16–C21 chain pointing outwards to minimize the steric 

repulsion with the bridge chain. The bond lengths of C21–C20 and 

C22–C21 in the hexamethylene chains and C2–C24 and C1–C5 in 

the ethylenic chains have standard values at 1.53, 1.50, 1.50 and 1.49 

Å, respectively. The length of the double bond in C1–C2 is 1.34 Å, 

which is similar to that of ethylene. The bond angles defined by C1–

C2–C24 and C2–C1–C5 are 123.3(2)° and 122.7(2)°, showing that 

compound anti-4a displays a non-distorted conformation. The two 

benzene rings of 4a slightly deviate from planarity. The 

intramolecular distances of C5–C24, C6–C23, C9–C29, C10–C25, 

C7–C22, C8–C27 are 2.97, 3.45, 8.08, 5.18, 4.69 and 6.11 Å. 

   The 1H NMR spectrum of anti-4b in CDCl3 possesses a singlet at  

3.52 ppm for the methoxy protons, and a singlet at  1.28 ppm for 

the tert-butyl protons. For the aromatic protons, a pair of doublets 

was observed at  6.86 and 7.01 (J = 2.7 Hz) ppm which are in the 

deshielding region of the bridged double bond. Thus, the methoxy 

protons experience an upfield shift due to the ring current of the 

opposite aromatic ring. From the chemical shift of the methoxy 

protons at  3.69 ppm, the structure of the syn conformer is 

confirmed. Also, the tert-butyl proton of syn-4b occurs to higher 

field, i.e.  1.12 ppm, due to the shielding effect of the benzene ring. 

The aromatic protons of syn-4b are observed at much higher field ( 

6.74 and 6.82 ppm) than those of anti-4b. These data allow for the 

assignment of the anti and syn structures of the two conformers of 

4b. 
The X-ray structure of anti-4b (Figure 2) clearly demonstrates 

that the anti-conformer is adopted in the solid state and that the two 

methoxy groups lie on the correlative side of the inner ring, which 

contains the long bridging C16–C23 chain pointing outwards to keep 

the steric repulsion with the bridge chain to a minimum. The bond 

lengths of C23–C22 and C24–C23 in the octamethylene chains and 

C2–C26 and C1–C5 in the ethylenic chains have standard values at 

1.44, 1.43, 1.45 and 1.45 Å, respectively. The length of the double 

bond in C1–C2 is 1.34 Å, which is similar to that of ethylene. The 

bond angles defined by C1–C2–C26 and C2–C1–C5 are 121.4(2)° 

and 121.3(2)°, showing that compound 4b displays a non-distorted 

conformation. The two benzene rings of 4b moderately deviate from 

planarity. The intramolecular distances of C5–C26, C6–C25, C9–

C31, C10–C27, C7–C24, C8–C29 are 2.86, 3.70, 6.29, 5.80, 4.89 

and 4.85 Å. 

   The epoxidation32 of 4 with m-chloroperbenzoic acid in the 

presence of dichloromethane at room temperature for 40 h afforded 

the desired 1,2-epoxy[2.n]MCP 5 as colourless prisms in 

quantitative yield (Scheme 3). The 1H NMR spectrum (300 MHz) of 

anti-5a exhibited a doublet for the benzene proton at  7.38 ppm (J = 

2.4 Hz) in addition to resonances at  6.95 and 7.29 ppm for the 

other two protons of the aromatic rings. These observations strongly 

suggest that the structure corresponds exclusively to the anti-con-

formation. These findings strongly suggest that the exo-epoxide 

structure of 5a and the syn-epoxidation resulting from exo-attack at 

the double bond of syn-5a formed during the ring inversion of anti-

5a might be sterically favourable. 

   The protons of the hexamethylene bridge gave rise to a complicat-

ed signal pattern as expected for a rigid syn-[2.6]MCP. The protons 

of the benzylic CH2 group were observed as two multiplets centered 

at  2.28 and 2.49 ppm which were further split by coupling with the 

protons of the other CH2 groups. The peak pattern ascribed to twelve 

chemically distinct protons of the alkane bridge proved the absence 

of a anti-anti interconversion which would exchange HA and HB of 

each CH2 group.  

 

 
 

Scheme 3. Synthesis of 5,n-di-tert-butyl-1,2-epoxy-1,2-dimethyl-8,n-

dimethoxy[2.n]MCP 5.  

 

     The 1H NMR spectrum of syn-5b revealed a doublet for the 

aromatic proton at  7.11 (J = 2.4 Hz) ppm in addition to the 

resonances at  6.84 ppm for the other two protons of the aromatic 

rings. These observations suggest that the structure consists 

exclusively of the syn-conformation. These estimations strongly 

suggest the exo-epoxide structure of syn-5b and syn-epoxidation 

from exo-attack at the double bond of syn-4 formed at the time of the 

ring inversion of syn-4b might be sterically favourable.  

 

a Isolated yields are shown in parentheses. 

 
   The protons of the octamethylene bridge gave rise to a complex 

signal pattern as expected for a rigid syn-[2.8]MCP. The protons of 

the benzylic CH2 group were observed as two multiplets centered at 

 2.21 and 2.91 ppm which were further split by coupling with the 

protons of the CH2 groups. The peak pattern ascribed to sixteen 

chemically distinct protons of the alkane bridge proved the absence 

of syn-syn interconversion which would exchange HA and HB of each 

CH2 group. These findings suggest a rigid structure for syn-4b at this 

temperature. This result suggests that the introduction of an oxirane 

ring into the ethano bridge can strongly reduce the flexibility arising 

from ring inversion. 

Compound anti-5a crystallized in the centrosymmetric space 

group P21/a. There are independent molecules (Z = 4) at general 

positions in the asymmetric unit of the crystal structure. It is clear 

Table 1. Conformational analysis of [n.2]MCP-enes 5. 

Compound 

Number of 

methylene units 

[n] 

Products yield [%]a 

anti-5 syn-5 

anti-4a 6 55 0 

anti-4b 8 0 67 
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that anti-5a adopt the anti-conformation in which two benzene rings 

are in a non-planar chain form. The measured torsional angles 

between the planes C6–C8–C10–C7, C4–C5–C6 and C8–C3–C7 

planes, and those of C22–C27–C25–C24 with C27–C28–C29 and 

C24–C25–C26 are 116.9°, 121.1°, 117.1° and 120.9°, respectively, 

showing that this molecule has an asymmetrical strain between the 

‘top’ and ‘bottom’ rings, and that the amount of strain is much 

greater at the internal carbons than at the external carbons. The C6–

C5–C1–C3 and C4–C2–C26–C25 planes are twisted out of 

coplanarity and have a dihedral angle of 5.2°, and thus the two 

carbonyl groups, C6–O2 and C25–O3 do not lie in the same plane 

where the adjacent two carbon atoms are included.  

 
Figure 3. ORTEP drawing of anti-5,17-di-tert-butyl-1,2-epoxy-1,2-dimethyl-

8,20-dimethoxy[2.6]metacyclophane 5a and syn-5,19-di-tert-buthyl-1,2-

epoxy-1,2-dimethyl-8,22-dimethoxy[2.8]MCP 5b. Thermal ellipsoids are 

drawn at the 50% probability level. All hydrogen atoms are omitted for 

clarity. 

 
   The crystal structure shows that the conformation adopted by 

compound syn-5b is the syn-conformation, in which two aromatic 

rings are part of a non-planar chain (Figure 3). Here, the bond 

lengths of C16–C17 and C16–C7 in the octamethylene chains and 

C5–C1 and C26–C2 in the ethylenic chains have typical values at 

1.54, 1.51, 1.50 and 1.51 Å, respectively. The bond angles defined 

by C25–C26–C2 and C1–C5–C6 are 121.6 and 122.8 Å, showing 

that 5b displays a slightly distorted conformation. The two benzene 

rings of 5b slightly deviate from planarity. The intramolecular 

distances of C5–C26, C1–C6, C7–C24, C9–C28 are 3.08, 4.41, 5.88 

and 4.95 Å. Both methoxy groups on the benzene rings of 5b point 

outwards, away from the decamethylene bridge chain. This 

contributes to the lack of steric crowding with the hydrogens and 

carbons of the bridge chains. Thus, it is a meso compound.  

   In the case of the treatment of compounds 5a and 5b with 

BF3.Et2O as catalyst in CH2Cl2, the desired acid catalyzed 

rearrangement33 products [6.1]MCP 6a and [8.1]MCP 6b were 

obtained as the main products in 51 and 41% yield, respectively. No 

formation of dehydration product or ring-cleavage product was 

observed. The yields of the rearrangement products 6 decrease with 

the number of the methylene bridges. This result might be attributed 

to the decrease of carbon ring strain in the [n.1]MCPs. 

 

 

Scheme 4. Synthesis of 13-acetyl-9,16-di-tert-butyl-12,19-dimethoxy-13-

methyl[6.1]MCP 6a and 15-acetyl-11,18-di-tert-butyl-14,21-dimethoxy-15-

methyl[8.1]MCP 6b. 

 
   Similarly, the conformation of the [n.1]MCPs 6a and 6b was 

readily apparent from their 1H NMR spectra. For example, in the 1H 

NMR spectrum of [6.1]MCP 6a in CDCl3 upfield shifts and different 

chemical shifts for the internal aromatic protons at  7.25 and 7.28 

ppm due to the ring current of the opposite aromatic ring were 

observed. This data strongly suggests that the structure of 6a is the 

anti-conformer. 

   Furthermore, the two methoxy groups exhibit different chemical 

shifts at 3.29 and 3.41 ppm, each as a singlet. The four external 

aromatic protons were also observed as different chemical shifts at  

7.12 and 7.05 ppm; the latter proton is in a strongly deshielding 

region of the oxygen atom of the acetyl group on the methylene 

bridge. The compound 6a exhibits a split pattern for the benzyl 

protons as two multiplets centred at  2.25 and 2.41 ppm. The central 

CH2 groups were also observed as two multiplets centred at  0.88 

and 1.32 ppm. These findings suggest a rigid structure of [6.1]MCP 

6a at this temperature. 

 

 a Isolated yields are shown in parentheses. 

 
    

   In the 1H NMR spectrum of [8.1]MCP 6b in CDCl3 upfield shifts 

and different chemical shifts for the aromatic protons at  6.86 and 

6.87 ppm strongly suggest that the structure of 6b is the syn- 

conformer. Furthermore, the two methoxy groups appear as a singlet 

with chemical shift 3.71 ppm. A splitting pattern for the benzyl 

protons as two multiplets centred at  2.30 and 2.89 ppm was 

exhibited for this compound. The CH2 groups were also observed as 

two multiplets centred at  0.78 and 1.59 ppm. These findings 

suggest a rigid structure of [8.1]MCP 6b at this temperature. 

 

                   

             Top view                                                  Side view 

     
            Top view                                             Side view 

 

Table 2. Conformational analysis of [n.1]MCP-enes 6. 

Compound 

Number of 

methylene units 

[n] 

Products yield [%]a 

anti-6 syn-6 

anti-5a 6 51 0 

syn-5b 8 0 41 
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Figure 4. (a) Chromatogram of anti-6a (HPLC on chiral column). Daicel 

chiralpak ADeH. Eluent: hexanes. (b) CD spectra of P- and M-enantiomers of 

inherently chiral MCP anti-6a. 

 
The chiral properties of the compound anti-6a in solution were 

investigated by chromatographic resolution using a chiral column. 

Interestingly, anti-6a exhibits two well resolved peaks in the ratio of 

50:50 for the P- and M-enantiomers. This finding strongly suggests 

that the resolution of racemic anti-6a could be accomplished by 

chromatographic separation using a chiral column. In fact, we have 

succeeded in resolving each P- and M-enantiomers. The circular 

dichroism (CD) spectra of the separated enantiomer with precise 

mirror images are shown in Figure 4. Indeed, we have succeeded in 

generating inherent chirality in the metacyclophane system 

containing two aromatic rings by the regio-selective rearrangement 

of [6.1]metacyclophane 6a. 

     Density functional theory (DFT) computational studies were 

carried out to demonstrate the geometry-optimized energies of 

compounds 5–6 (Figure 5). The starting structures were generated 

with the initial geometries based upon their own X-ray crystal 

structures.  The DFT level of theory using the prominent B3LYP 

(Becke, three-parameter, Lee-Yang-Parr)34 exchange-correlation 

functional with the 6-31G(d) basis set. By using Gaussian-09, the 

individual geometry-optimized structures of these molecules were 

first conducted in the gas phase and after that in solvent (chloroform) 

with the B3LYP/6-31G(d) basis set.35 The DFT-geometry optimized 

B3LYP/6-31G(d) energies for compounds 5–6 reveal that the order 

(in both the gas-phase or with the solvent correction term) of 

increasing stability is 6a> 6b>5a>5b. 

     The trend for the stabilities of 6 and 5 could tentatively be 

rationalized on the basis of the anti-conformations of 6a and 5a vs 

the syn-conformations of 6b and 5b. However, the geometry-

optimized energy of the syn-structure is sufficiently higher than that 

of the anti-structure.  

 Both the single crystal and DFT-optimized structures of 5a 

indicate that it adopts an anti-conformation and that the methoxy 

groups are positioned opposite to the benzene rings (Figures 3 and 5). 

 

Figure 5. DFT geometry-optimized structures of anti-5a (top left), syn-5b 

(top right), anti-6a (bottom left) and syn-6b (bottom right). Colour code: 

carbon = dark and light grey, and oxygen = red. Hydrogen atoms omitted for 

clarity. 

 
Table 3. DFT geometry-optimized computed energies for the compounds 5-6 

generated from the solid-state X-ray coordinates. 

 Compound 
Energy (kJ mol-1) 

Gas-phase HOMO LUMO ∆E 

anti-5a -3866698.72 -553.98 5.25 548.73 

syn-5b -3866688.48 -545.05 7.04 538.01 

anti-6a -4073149.44 -15.75 2.63 13.12 

syn-6b -4073145.22 -13.13 2.63 10.50 

a Based on DFT using the B3LYP/6-31G(d) basis set-up. 

 

The greater activity may be attributed to the higher solubility of 

the compounds. We have calculated the energies of the HOMO and 

LUMO orbitals. The difference between the energies of the HOMO 

and LUMO (the HOMO–LUMO gap) shows the stability or 

reactivity of the molecules, pointing out the possible structures, such 

as electron rich or electron deficient regions.  

 

Conclusions 

In conclusion, a new synthesis of [2.n]MCP-1-enes by a McMurry 

cyclization has been developed. Acid catalysed rearrangements of 4a 

and 4b can be applied to the synthesis of [n.1]MCPs. Further studies 

on the ring contraction of [2.n]cyclophanes with glycol units at the 

ethylene bridge to afford [n.1]cyclophanes are now in progress. 
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Experimental 

General  

All melting points were uncorrected. Proton nuclear magnetic resonance (1H 

NMR) spectra were recorded on a Nippon Denshi JEOL FT-300 spectrometer 

and Varian-400MR-vnmrs400 spectrometer. Chemical shifts are reported as  

values (ppm) relative to internal Me4Si. The IR spectra were obtained as KBr 

pellets on a Nippon Denshi JIR-AQ2OM spectrometer. Mass spectra were 

 

 

    

     

(a) 

(b) 
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obtained on a Nippon Denshi JMS-HX110A Ultrahigh Performance Mass 

Spectrometer at 75 eV using a direct-inlet system. Elemental analyses were 

performed with a Yanaco MT-5 analyser. Elemental analyses were performed 

by Yanaco MT-5. Gas–liquid chromatograph (GLC) analyses were performed 

by Shimadzu gas chromatograph, GC-14A; silicone OV-1, 2 m; programmed 

temperature rise, 12 °C min-1; carrier gas nitrogen, 25 mL min-1. 

Materials   

1,6-Bis(5-tert-butyl-3-formyl-2-methoxyphenyl)hexane 1a and 1,8-bis(5-tert-

butyl-3-formyl-2-methoxyphenyl)octane 1b were prepared by following 

previous reports.17 

Preparation of 1,6-bis(5-tert-butyl-3-(1-hydroxyethyl)-2-

methoxylphenyl) hexane  

To a solution of methylmagnesium iodide [prepared from methyl iodide (14.4 

g, 101 mmol) and magnesium (2.05 g, 84.3 mmol)] in Et2O (45 mL) was 

added a solution of 1a (8.85 g, 20.9 mmol) in tetrahydrofuran (100 mL) 

dropwise under the conditions of gentle reflux. After the reaction mixture was 

refluxed for an additional 5 h, it was quenched with 10% ammonium chloride 

(100 mL) and extracted with Et2O (3 × 100 mL). The extract was washed with 

water (2 × 100 mL), dried over MgSO4, and concentrated in vacuo. The 

residue was recrystallized from hexane to afford 1,6-bis(5-tert-butyl-3-(1-

hydroxyethyl)-2-methoxyphenyl)hexane 2a (7.71 g, 74%) as colourless prisms, 

M.p. 125–126 °C. IR (KBr): υmax = 3308, 2963, 2856, 2827, 1480, 1463, 1429, 

1363, 1282, 1231, 1202, 1172, 1119, 1074, 1011 and 879 cm-1. 1H NMR (300 

MHz, CDCl3): = 1.30 (18H, s), 1.51–1.70 (6H, m), 1.52 (6H, d, J = 6.6 Hz), 

2.26–2.36 (4H, m), 2.58–2.68 (4H, m), 3.77 (6H, s), 5.16–5.25 (2H, bs), 7.11 

(2H, d, J = 2.4 Hz) and 7.27 (2H, d, J = 2.4 Hz) ppm. 13C NMR (100 MHz, 

CDCl3): = 23.94, 29.77, 30.07, 31.11, 34.31, 61.76, 65.76, 120.74, 126.29, 

134.58, 137.50, 146.81 and 153.25 ppm. MS (EI): m/z found 499 [M]+. Anal. 

calcd. For C32H50O4 (498.74): C, 77.06; H, 10.10%, found: C, 77.23; H, 

10.41%. 

Preparation of 1,8-bis(5-tert-butyl-3-(1-hydroxyethyl)-2-methoxyphenyl) 

octane 

Compound 2b was synthesized in the same manner as described above for 2a 

and obtained (8.48 g, 77%) as colourless prisms, M.p. 107–108 °C. IR (KBr): 

υmax = 3313, 2915, 1469, 1295, 1174, 1115, 1000 and 879 cm–1. 1H NMR (300 

MHz, CDCl3):  = 1.30 (18H, s), 1.36–1.45 (4H, m), 1.52 (6H, d, J = 6.6 Hz), 

1.58–1.69 (6H, m), 2.33 (4H, s), 2.59–2.63 (4H, m), 3.77 (6H, s), 5.20 (2H, 

bs), 7.12 (2H, d, J = 2.4 Hz) and 7.27 (2H, d, J = 2.4 Hz) ppm. 13C NMR (100 

MHz, CDCl3): = 23.51, 28.87, 29.65, 30.49, 31.03, 34.16, 61.22, 65.12, 

120.03, 125.91, 134.58, 136.84, 146.55 and 152.69 ppm. MS (EI): m/z found 

527 [M]+. Anal. calcd. For C34H54O4 (526.79): C, 77.52; H, 10.33%, found: C, 

76.17; H, 10.29%. 

Preparation of 1,6-bis(3-acetyl-5-tert-butyl-2-methoxyphenyl)hexane 

To a solution of pyridinium chlorochromate, C5H5NH+CrO3Cl- (31.0 g, 144 

mmol) in acetone (300 mL) was added a solution of 1,6-bis(5-tert-butyl-3-(1'-

hydroxyethyl)-2-methylphenyl)hexane 2a (10.62 g, 21.3 mmol) in acetone 

(100 mL) dropwise at 0 °C. The reaction mixture was stirred at room 

temperature for 24 h. The reaction mixture was filtered and the filtrate was 

concentrated. The residue was subjected to silica-gel (Wako, C-300; 500 g) 

column chromatography using as eluent CHCl3 to afford 1,6-bis(3-acetyl-5-

tert-butyl-2-methoxyphenyl)hexane 3a (7.27 g, 69%) as  colourless prisms 

(Hexane), M.p. 127–128 °C. IR (KBr): υmax = 2848, 1676, 1472, 1362, 1222, 

1126 and 1004 cm–1. 1H NMR (300 MHz, CDCl3):  = 1.30 (18H, s), 1.42–

1.50 (4H, m), 1.45 (4H, s), 1.61–1.72 (4H, m), 2.63 (6H, s), 3.73 (6H, s), 7.33 

(2H, d, J = 2.4 Hz) and 7.41 (2H, d, J = 2.4Hz) ppm. 13C NMR (100 MHz, 

CDCl3): = 29.65, 30.08, 30.50, 30.98, 31.43, 34.51, 62.81, 124.30, 131.13, 

133.06, 136.04, 146.84, 155.27 and 201.92 ppm. MS (EI): m/z found 495 [M]+. 

Anal. calcd. For C32H46O4 (494.71): C, 77.69; H, 9.37%, found: C, 77.91; H, 

9.36%. 

Preparation of 1,8-bis(3-acetyl-5-tert-butyl-2-methoxyphenyl)octane  

Compound 3b was synthesized in the same manner as described above for 3a 

and obtained (6.91 g, 62%) as colourless prisms (MeOH), M.p. 58–59 °C. IR 

(KBr): υmax = 2944, 2848, 1682 (C=O), 1476, 1369, 1266, 1222 and 1008 

cm–1. 1H NMR (300 MHz, CDCl3):  = 1.30 (18H, s) ,1.37–1.46 (12H, m), 

1.55–1.68 (4H, m), 2.63 (6H, s), 3.73 (6H, s), 7.34 (2H, d, J = 2.4 Hz) and 

7.41(2H, d, J = 2.4 Hz) ppm. 13C NMR (100 MHz, CDCl3): = 29.49, 29.75, 

29.96, 30.43, 30.91, 31.35, 34.44, 62.72, 124.17, 131.04, 132.97, 136.04, 

146.74, 155.18 and 201.88 ppm. MS (EI): m/z found 522 [M]+. Anal. calcd. 

For C34H50O4 (522.76): C, 78.12; H, 6.94%, found: C, 77.88; H, 9.60%.. 

McMurry coupling reaction of 3  

The McMurry reagent was prepared from TiCl4 (13.75 mL, 125 mmol) and Zn 

powder (18 g, 275 mmol) in dry THF (500 mL), under nitrogen. A solution of 

1,6-bis(3-acetyl-5-tert-butyl-2-methoxylphenyl)hexane 3a (3.4 g, 6.8 mmol) 

and pyridine (22.8 mL, 0.2 mol) in dry THF (250 mL) was added within 60 h 

to the black mixture of the McMurry reagent by using a high-dilution 

technique with continuous refluxing and stirring. The reaction mixture was 

refluxed for additional 8 h, cooled to room temperature, and hydrized with 

aqueous 10% K2CO3 (200 mL) at 0 °C. The reaction mixture was extracted 

with CH2Cl2 (3 × 200 mL). The combined extracts were washed with water, 

dried with MgSO4 and concentrated in vacuo. The residue was 

chromatographed over silica gel (Wako C-300, 300 g) with hexane–toluene 

(1:1) and toluene as eluents to give anti-4a and syn-4a as a colourless solid. 

Each eluents were recrystallized from hexane to afford anti-4a (724 mg, 23%) 

and syn-4a (410 mg, 13%), respectively. 

anti-5,17-di-tert-butyl-8,20-dimethoxy-1,2-dimethyl[2.6]metacyclophan-1-ene 

(anti-4a) was obtained as colourless prisms (MeOH), M.p. 183–184 °C. IR 

(KBr): υmax = 2944, 2856, 1469, 1358, 1233, 1107, 1023, 875, 805 and 654 

cm–1. 1H NMR (300 MHz, CDCl3):  = 0.50 (2H, m), 0.83 (2H, m), 1.26 (4H, 

m), 1.31 (18H, s), 2.10, (2H, m), 2.22 (6H, s), 2.52 (2H, m), 3.34 (6H, s) 6.89 

(2H, d, J = 2.7 Hz) and 7.04 (2H, d, J = 2.7 Hz) ppm. 13C NMR (100 MHz, 

CDCl3):  = 22.13, 26.56, 27.94, 29.13, 31.30, 33.90, 59.37, 124.29, 124..36, 

129.44, 133.39, 135.98, 144.19 and 152.03 ppm. MS (EI): m/z found 462.4 

[M]+. Anal. calcd. For C32H46O2 (462.7): C, 83.06; H, 10.02%, found: C, 

82.87; H, 9.99%. 

syn-5,17-di-tert-butyl-8,20-dimethoxy-1,2-dimethyl[2.6]metacyclophan-1-ene 

(syn-4a) was obtained as colourless prisms (MeOH), M.p. 90–91 °C. IR 

(KBr): υmax = 2961, 2923, 1476, 1235 and 1026 cm–1. 1H NMR (300 MHz, 

CDCl3):  = 0.59 (2H, m), 0.85 (2H, m), 1.11 (s, 18H), 1.30 (4H, m), 2.18 (6H, 

s), 2.28, (2H, m), 2.80 (2H, m), 3.67 (6H, s) 6.64 (2H, d, J = 2.7 Hz) and 6.77 

(2H, d, J = 2.7 Hz) ppm. 13C NMR (100 MHz, CDCl3): = 30.7, 31.2, 32.8, 

33.9, 34.3, 64.5, 70.7, 122.1, 126.9, 127.2, 127.4, 128.0, 128.6, 128.9, 129.3, 

129.5, 137.3, 143.6, 146.8, 146.9, 156.2 and 156.6 ppm. MS (EI): m/z found 

462 [M]+. Anal. calcd. For C32H46O2 (462.7): C, 83.06; H, 10.02%, found: C, 

82.59; H, 10.01%. 

Preparation of 5,19-di-tert-butyl-8,22-dimethoxy-1,2-dimethyl[2.8] 

metacyclophan-1-ene 

Compound anti-4b was synthesized in the same manner as described above for 

anti-4a and obtained (701 mg, 21%) as colourless prisms (MeOH), M.p. 178–

179 °C. IR (KBr): υmax = 2959, 2856, 1472, 1458, 1262, 1233 and 1104 cm–1. 
1H NMR (300 MHz, CDCl3):  = 0.79–1.95 (6H, m), 1.12–1.33 (6H, m), 1.28 

(18H, s), 2.01–2.11 (2H, m), 2.15 (6H, s), 2.59–2.70 (2H, m), 3.52 (6H, s), 

6.86 (2H, d, J = 2.4 Hz) and 7.01 (2H, d, J = 2.4 Hz) ppm. 13C NMR (100 

MHz, CDCl3): = 22.25, 24.41, 25.89, 27.45, 28.96, 31.44, 34.02, 59.76, 

124.93, 125.59, 129.90, 132.92, 136.42, 143.74 and 152.44 ppm. MS (EI): m/z 

found 490.4 [M]+. Anal. calcd. For C34H50O2 (490.8): C, 83.21; H, 10.27%, 

found: C, 83.52; H, 10.18%. 
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Compound syn-4b was synthesized in the same manner as described above for 

syn-4a and obtained (2.14 g, 64%) as colourless prisms (MeOH), M.p. 104–

105 °C. IR (KBr): υmax = 2944, 2856, 1472, 1454, 1362, 1214, 1015, 875 and 

801 cm–1. 1H NMR (300 MHz, CDCl3):  = 0.94–1.12 (6H, m), 1.12 (18H, s), 

1.27–1.36 (6H, m), 2.13–2.23 (2H, m), 2.20 (6H, s), 2.73–2.85(2H, m), 3.69 

(6H, s), 6.74 (2H, d, J = 2.4 Hz) and 6.82 (2H, d, J = 2.4 Hz) ppm. 13C NMR 

(100 MHz, CDCl3): = 20.62, 26.92, 27.62, 29.24, 30.40, 31.57, 33.93, 60.02, 

125.58, 126.14, 131.40, 134.06, 136.16, 144.25 and 153.48 ppm. MS (EI): m/z 

found 490 [M]+. Anal. calcd. For C34H50O2 (490.8): C, 83.21; H, 10.27%, 

found: C, 83.82; H, 10.18%. 

General procedure for epoxydation of 4 with m-CPBA. 

To a suspension of anti-4a (20 mg, 0.044 mmol) and NaHCO3 (6 mg, 0.082 

mmol) in toluene (2 mL) was added m-CPBA (20.5 mg, 0.082 mmol) and the 

mixture was stirred for 40 h. The reaction mixture was diluted with water (20 

mL), and extracted with CH2Cl2 (2 × 10 mL). The combined extracts were 

washed with water (2 × 10 mL), dried with MgSO4 and concentrated. The 

residue was recrystallized from methanol to gave (11 mg, 55%) anti-5,17-di-

tert-butyl-1,2-epoxy-1,2-dimethyl-8,20-dimethoxy[2.6]metacyclophane 

(anti-5a) as colourless prisms (MeOH), M.p. 192–193 °C. IR (KBr): υmax =  

2944, 2856, 1472, 1450, 1352, 1229, 1085, 1019, 875 and 750 cm–1. 1H NMR 

(300 MHz, CDCl3):  = 0.25–0.35 (4H, m), 0.70–0.81 (4H, m), 1.30 (9H, s), 

1.31 (9H, s), 1.73 (3H, s), 1.95 (3H, s), 2.21–2.35 (2H, m), 2.44–2.53 (2H, m), 

3.39 (3H, s), 3.49 (3H, s), 6.94 (1H, d, J = 2.4 Hz), 6.95 (1H, d, J = 2.4 Hz), 

7.29 (1H, d, J = 2.4 Hz) and 7.38 (1H, d, J = 2.4 Hz) ppm. 13C NMR (100 

MHz, CDCl3): = 23.13, 27.67, 29.70, 31.79, 33.87, 60.21, 61.91, 66.77, 

125.91, 126.43, 132.48, 134.94, 145.30 and 153.58 ppm. MS (EI): m/z found 

478.4 [M]+. Anal. calcd. For C32H46O3 (478.72): C, 80.29; H, 9.69%, found: 

C, 79.90; H, 9.62%. 

However, several attempted epoxidations of syn-5a failed. Only an 

intractable mixture of products resulted. 

Preparation of syn-5,19-di-tert-butyl-1,2-epoxy-1,2-dimethyl-8,22-

dimethoxy[2.8]metacyclophane. 

Compound syn-5b was synthesized in the same manner as described above for 

anti-5a and obtained (15 mg, 67%) as colourless prisms (MeOH), M.p. 152–

153 °C. IR (KBr): υmax = 2959, 2922, 2856, 1480, 1362, 1258, 1203 1111, 

1011 and 801 cm–1. 1H NMR (300 MHz, CDCl3):  = 0.71–0.97 (4H, m), 1.16 

(18H, s), 1.31–1.42 (4H, m), 1.48–1.59 (4H, m), 1.88 (6H, s), 2.16–2.26 (2H, 

m), 2.87–2.94 (2H, m) 3.80 (6H, s), 6.84 (2H, d, J = 2.4 Hz) and 7.11 (2H, d, J 

= 2.4 Hz) ppm. 13C NMR (100 MHz, CDCl3): = 21.88, 26.03, 27.35, 28.18, 

30.55, 31.44, 34.06, 60.63, 67.84, 122.93, 127.20, 131.92, 133.05, 144.36 and 

153.87ppm. MS (EI): m/z found 506.4 [M]+. Anal. calcd. For C34H50O3 

(506.76): C, 80.58; H, 9.94%, found: C, 80.58; H, 9.86%. 

General procedure for the acid catalyzed rearrangement of 

epoxymetacyclophane. 

To a suspension of anti-5a (30 mg, 0.062 mmol) in CH2Cl2 (3 mL) was added 

BF3Et2O (8.4 mg, 0.059 mmol) and the mixture was heated to reflux for 1 h. 

The cooled solution was quenched by water (5 mL), and extracted with 

CH2Cl2 (2 × 10 mL). The combined extracts were washed with 5% aqueous 

NaHCO3 (10 mL), water (2 × 10 mL), dried with MgSO4 and concentrated to 

give syn-13-acetyl-9,16-di-tert-butyl-12,19-dimethoxy-13-

methyl[6.1]metacyclophane (anti-6a) (15 mg, 51%) as colourless prisms 

(MeOH), M.p. 111–112 °C. IR (KBr): υmax = 2966, 2915, 2863, 1690 (C=O), 

1476, 1454, 1358, 1222, 1107, 1004, 879 and 643 cm–1. 1H NMR (300 MHz, 

CDCl3):  = 0.53–0.70 (2H, m), 0.80–0.95 (2H, m), 1.30 (9H, s), 1.32 (9H, s), 

1.26–1.37 (4H, m), 1.71 (3H, s), 1.76 (3H, s), 2.20–2.30 (2H, m), 2.34–2.47 

(2H, m), 3.29 (3H, s), 3.41 (3H, s), 7.05 (1H, d, J = 2.4 Hz), 7.12 (1H, d, J = 

2.4 Hz), 7.25 (1H, d, J = 2.4 Hz) and 7.28 (1H, d, J = 2.4 Hz) ppm. 13C NMR 

(100 MHz, CDCl3): = 26.12, 26.29, 27.16, 28.72, 28.85, 29.17, 31.39, 31.55, 

34.28, 61.08, 61.89, 123.67, 125.36, 125.40, 128.52,133.27, 144.55, 144.85 

and 210.26 ppm. MS (EI): m/z found 478.3 [M]+. Anal. calcd. For 

C32H46O3(478.71): C, 80.29; H, 9.69%, found: C, 80.33; H, 9.67%. 

Preparation of syn-15-acetyl-11,18-di-tert-butyl-14,21-dimethoxy-15-

methyl[8.1]metacyclophane. 

Compound syn-6b was synthesized in the same manner as described above 

for anti-6a and obtained (13 mg, 41%) as colourless prisms (MeOH), M.p. 

118–119 °C. IR (KBr): υmax = 2937, 2856, 1690 (C=O), 1568, 1476, 1476, 

1362, 1211, 1008, 894, 750 and 717 cm–1. 1H NMR (300 MHz, CDCl3):  = 

0.70–0.86 (4H, m), 1.16 (18H, s), 1.24–1.34 (4H, s), 1.54–1.64 (4H, m), 

2.25–2.35 (2H, m), 2.37 (3H, s), 2.42 (3H, s), 2.82–2.95 (2H, m), 3.71 (6H, s) 

and 6.87 (4H, dd, J = 2.4 Hz) ppm. 13C NMR (100 MHz, CDCl3): = 22.45, 

25.21, 27.67, 28.72, 29.02, 29.39, 30.06, 31.44, 31.77, 34.23, 61.91, 63.61, 

110.31, 125.90, 126.31, 126.58, 135.60, 144.92, 156.34 and 210.70 ppm. MS 

(EI): m/z found 506.3 [M]+. Anal. calcd. For C34H50O3 (506.77): C, 80.58; H, 

9.94%, found: C, 80.66; H, 9.88%. 
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