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Abstract

Micro-encapsulated	Phase	Change	Material	(MPCM)	slurries,	acting	as	the	heat	transfer	fluids	or	thermal	storage	mediums,	have	gained	applications	in	various	building	thermal	energy	systems,	significantly	enhancing

their	energy	efficiency	and	operational	performance.	This	paper	presents	a	review	of	research	on	MPCM	slurries	and	their	building	applications.	The	research	collects	information	on	the	currently	available	MPCM	particles

and	shells,	studies	of	the	physical,	structural	and	thermal	stability,	and	rheological	properties	of	MPCM	slurries,	and	identification/determination	of	the	critical	parameters	and	dimensionless	numbers	relating	to	the	MPCM

slurries’	 heat	 transfer.	 The	 research	 suggests	 possible	 approaches	 for	 enhancing	 the	 heat	 transfer	 between	 a	MPCM	 slurry	 and	 its	 surroundings,	while	 several	 controversial	 phenomena	 and	 potential	 causes	were	 also

investigated.	Furthermore,	the	research	presents	mathematical	correlations	established	between	different	thermal	and	physical	parameters	relating	to	the	MPCM	slurries,	and	introduces	a	number	of	practical	applications	of

the	MPCM	slurries	in	building	thermal	energy	systems.	Based	on	such	extensive	review	and	analyses,	the	research	will	help	in	identifying	the	current	status,	potential	problems	in	existence,	and	future	directions	in	research,

development	and	practical	application	of	MPCM	slurries.	It	will	also	promote	the	development	and	application	of	cost-effective	and	energy-efficient	PCM	materials	and	thus	contribute	to	achieving	the	UK	and	international

targets	in	energy	saving	and	carbon	emission	reductions	in	the	building	sector	and	beyond.
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1	Introduction
Global	energy	consumption	has	grown	enormously	over	 the	 last	 few	decades	as	a	result	of	 the	economic	growth,	particularly	 in	 the	developing	world.	This	has	caused	severe	 impact	 to	 the	environment,	evidenced	by	 the

growing	particulate	and	gas	(CO2,	SO2,	NOx,	etc.)	emissions	and	measurable	global	temperature	rise	due	to	greenhouse	gases,	mainly	CO2.	Development	of	renewable	energy	and	energy	efficiency	technologies	and	exploitation	of	the

new	energy	sources	are	recognised	as	the	effective	solutions	to	mitigate	the	energy	shortage	and	environment	problems.	These	involve:	(1)	increasing	the	use	of	‘clean’	energy	sources	(e.g.	nuclear	and	renewable	energy	sources);	(2)

developing	viable	technologies	that	can	reduce	the	use	of	the	fossil	fuels	and	mitigate	the	environment	deterioration	(e.g.	CO2	capture	and	sequestration);	(3)	exploring	new	and	clean	energy	sources	(e.g.	fusion);	and	(4)	developing

alternative	(synthetic)	fuels	and	large	scale	energy	storages	et	al.	Of	these	measures,	enhancing	energy	efficiency	of	existing	energy	systems	is	thought	to	be	the	simplest	and	cheapest,	and	introducing	a	MPCM	slurry	into	an	existing

system	 is	 ideally	suited	 for	 this	purpose.	With	relatively	higher	 thermal	capacity	and	 lower	 temperature	variation	during	 the	phase	change(compared	 to	single-phase	 fluid	only),	MPCM	slurries	with	high	performance	are	gaining

growing	applications	 in	building	energy	 systems.	 It	 is	understood	 [1]	 that	use	 of	MPCM	slurries	 as	 a	 replacement	 of	water	 could	 increase	 the	heat	 transport	 capacity	 of	 an	 energy	 system	by	1	 to	3	1–3	 times,	 providing	 that	 the

appropriate	materials	and	MPCM	weight	ratios	are	selected.
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A	MPCM	slurry	is	a	mixture	of	the	micro-encapsulated	PCM	particles,	water	and	one	(or	more)	additive(s).	This	type	of	fluid	has	a	number	of	distinguished	features	[1],	namely,	(1)	having	high	thermal	capacity	during	the	phase

change	process;	(2)	acting	as	either	the	heat	storage	or	heat	transfer	(transport)	material;	(3)	conducting	transfer	of	heat	with	relatively	low	temperature	variation;	(4)	achieving	a	higher	heat	transfer	rate	during	the	phase	change

process;	and	(5)	requiring	a	 lower	pump	power	owing	to	a	 lower	mass	flow	required	at	the	same	heat	transfer	rate.	A	building	energy	system	involves	numerous	heat	transfer/transport	processes,	 i.e.,	heat	absorption	 in	the	heat

generating	devices,	heat	release	in	the	heat	emitting	devices,	heat	transport	through	the	pipelines,	and	heat	store/discharge	within	the	heat	storages.	A	MPCM	slurry	can	fulfil	the	three	functions	simultaneously,	so	this	kind	of	slurry	is

one	of	the	best	solutions	for	enhancing	the	energy	efficiency	of	building	energy	systems.

Compared	 to	water	 the	 conventional	 heat	 transfer	 fluid	 in	 building	 energy	 systems,	 a	MPCM	 slurry	 is	 a	 new,	 high	 performance	 fluid	 that	 can	 achieve	 enhanced	 heat	 transfer.	Numerous	 researches	 into	 the	 fabrication,

characterization	and	application	of	MPCM	slurries	have	been	reported.	However,	to	the	authors’	knowledge,	a	review	study	focusing	on	the	slurries’	characterization	and	building	application	has	not	yet	been	carried	out.	To	fill	this

gap,	this	paper	will	report	a	focused,	review-based	research	into	characterization	and	building	application	of	the	MPCM	slurries.	For	this	consideration,	the	research	will	help	in	identifying	the	current	status,	potential	problems	in

existence;	and	future	directions	in	relation	to	research,	development	and	practical	application	of	the	MPCM	slurries	in	buildings,	and	thus	promote	wide	deployment	of	such	an	energy-efficient	heat	transfer	fluid.	The	results	of	the

research	will	contribute	to	achieving	the	UK	and	international	targets	for	energy	saving	and	carbon	emission	reduction	in	building	sector	and	beyond.

2	Concept	and	characteristics	of	the	MPCM	slurries
2.1	The	MPCM	slurries

A	PCM	is	a	substance	with	latent	heat	of	fusion,	which	will	be	melt	when	absorbing	heat	and	frozen	when	releasing	the	heat,	thus	running	the	two	phases	cycling	repeatedly.	PCMs	have	significant	variations	in	melting	and

freezing	 temperature,	 ranging	 from	 ‐5℃−5	°C	to	1500℃1500	°C	[2].	Compared	 to	 a	 sensible	heat	 storage	phase	material,	 e.g.,	masonry	or	water,	 a	PCM	could	 achieve	5‐145–14	 times	heat	 storage	 capacity	 at	 the	 same	 volumetric

condition	[3].	PCMs	can	be	generally	classified	into	three	major	categories:	inorganic	PCMs,	organic	PCMs,	and	eutectic	PCMs.	The	inorganic	group	of	PCMs	is	composed	of	salt	hydrates	and	metals;	the	organic	group	is	composed	of

paraffin	and	non-paraffin;	while	eutectics	are	the	mixtures	of	inorganics	and/or	organics.	These	are	briefly	illustrated	in	Table	1.

Table	1	CharacterisationCharacterization	of	the	three	types	of	the	PCMs	[4].

alt-text:	Table	1

Classification Advantages Disadvantages

1.	Availability	in	a	large	temperature	range 1.	Low	thermal	conductivity	(around	0.2	W/m	K)

2.	High	heat	of	fusion 2.	Relative	large	volume	change

Organic	PCMs 3.	No	super-cooling 3.	Flammability

4.	Chemically	stable	and	recyclable

5.	Good	compatibility	with	other	materials

1.	High	heat	of	fusion 1.	Super-cooling

Inorganic	PCMs 2.	High	thermal	conductivity	(around	0.5	W/m	K) 2.	Corrosion

3.	Low	volume	change

4.	Availability	in	low	cost

Eutectics 1.	Sharp	melting	temperature Lack	of	currently	available	test	data	of	thermo-physical	properties

2.	High	volumetric	thermal	storage	density

A	PCM	 slurry	 is	 a	multifunctional	 solid/liquid	mixture	 comprising:	 (1)	 the	 liquid	 (e.g.	water)	 that	 is	 a	 continuous	 single	 phase	material	within	 the	 operating	 range,	 dispersed	PCM	particles	 and	 the	 additive	 (s)	 that	 help
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dispersion	of	the	particles.	Such	a	slurry	can	store	or	transfer	significant	amount	of	thermal	energy	by	means	of	latent	heat	of	the	PCM	particles	combined	with	sensible	heats	of	both	the	liquid	and	PCM	particles	[5].

In	recent	years,	a	new	way	of	dealing	with	PCMs	has	been	developed	in	industries,	such	as	BASF	and	EPS	[6,7].	In	this	process,	the	PCM	particles	are	encapsulated	into	the	polymer	shells	with	μm	size	order	of	magnitude.

These	encapsulated	particles	(see	Fig.	1)	are	then	mixed	into	a	carrier	fluid	(e.g.,	water)	with	the	selected	additives	(e.g.,	dimethylbenzene,	anti-freezing	fluid),	thus	forming	a	micro-encapsulated	PCM	(MPCM)	slurry.

The	selected	PCMs	should	have	high	latent	heat,	high	thermal	conductivity	and	also	high	specific	heat;	these	three	parameters	are	the	most	important	indexes.	The	properties	of	the	carrier	fluid	are	also	important	as	it	plays	a

key	role	in	conducting	heat	transfer	and	has	a	very	high	volume	fraction	within	the	slurry.	Water,	owing	to	its	high	conductivity	and	specific	heat,	is	an	excellent	carrier	fluid	for	the	moderate	temperature	operation.	However,	other

fluids,	e.g.,	synthetic	coolant,	may	be	more	appropriate	to	high	temperature	operation,	during	which	the	fluid	may	appear	in	the	form	of	the	gas	state	[8].

2.2	Thermal	and	physical	properties	of	the	commercially	available	MPCM	slurries	including	the	core	and	shell	materials	of	the
MPCMs
2.2.1	Commercially	available	PCM	materials	and	their	thermal	and	physical	properties

Tables	2	and	3	present	a	series	of	commercially	available	PCM	materials,	including	the	cores	and	shells.	Table	2	addresses	the	core	materials	and	their	major	thermal	and	physical	properties,	while	Table	3	addresses	the	commonly	used	shell

materials	and	their	thermal	and	physical	properties.	The	core	materials	can	be	generally	classified	into	two	groups:	(1)	the	materials	for	cooling	processing	that	have	melting	temperature	in	the	range	00–6		to	6℃;	°C;	(2)	the	ones	for	heating	processing	that

have	melting	temperature	in	the	range	50	50–118	to	118℃.°C.

Table	2	Thermal	and	physical	properties	of	the	commercially	available	PCM	core	materials.

alt-text:	Table	2

Material Supplier Type Melting	temperature,	Tm,	°C Latent	heat	of	fusion,	L,	kJ/kg Density,	ρ,	kg/m3 Thermal	conductivity,	k,	W/m	K Specific	heat,	cp,	kJ/kg	K

RT	0 Rubitherm	GmbH	[9] Organic 0 225

PCM-HS01P SAVENRG	[10] Inorganic 0 290 1010

E0 PlusICE	[11] Eutectic 0 332 1000 0.58 4.19

PureTemp	1 PureTemp	[12] Organic 1 300 1000 2.32

A2 PlusICE	[11] Organic 2 200 765 0.21 2.2

Fig.	1		Schematic	of	a	MPCM	particle	and	slurries,Schematic	of	a	MPCM	particle	and	slurries,	(a)	MPCM	particles,	(b)	MPCM	particles	structure	and	its	phase	change,	(c)	SEM	photos,	(d)	stability	observation.

alt-text:	Fig.	1.
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A3 PlusICE	[11] Organic 3 200 765 0.21 2.2

RT	3	HC Rubitherm	GmbH	[9] Organic 3 250

A4 PlusICE	[11] Organic 4 200 766 0.21 2.18

RT	5	HC Rubitherm	GmbH	[9] Organic 5 240

PCM-0M06P SAVENRG	[10] Organic 5.5 260 735

RT	6 Rubitherm	GmbH	[9] Organic 6 175

A50 PlusICE	[11] Organic 50 218 810 0.18 2.15

PureTemp	48 PureTemp	[12] Organic 52 245 820 2.1

PureTemp	53 PureTemp	[12] Organic 53 225 990 2.36

RT	55 Rubitherm	GmbH	[9] Organic 55 172

Climsel	C58 Climator	[13] Inorganic 58 288.5 1460 0.6 1.89

A60H PlusICE	[11] Organic 60 212 800 0.18 2.15

PureTemp	60 PureTemp	[12] Organic 61 230 870 2.04

PureTemp	63 PureTemp	[12] Organic 63 199 840 1.99

PCM-OM65P SAVENRG	[10] Organic 65 210 840

PureTemp	68 PureTemp	[12] Organic 68 198 870 1.85

Climsel	C70 Climator	[13] Inorganic 70 282.9 1400 0.6 3.6

RT	80	HC Rubitherm	GmbH	[9] Organic 79 240

RT	82 Rubitherm	GmbH	[9] Organic 82 176

PCM-HS89P SAVENRG	[10] Inorganic 89 180 1540

RT	90	HC Rubitherm	GmbH	[9] Organic 90 200

A95 PlusICE	[11] Organic 95 205 900 0.22 2.2

A118 PlusICE	[11] Organic 118 340 1450 2.7

Table	3	Thermal	and	physical	properties	of	the	major	shell	materials.

alt-text:	Table	3

Literatures materials Density	Kg/m3 Specific	heat	J	kg‐1−1	°C‐1−1 Thermal	conductivity	W	m‐1−1	s‐1−1 Decomposition	temperature	°C Melting	Point	°C

[14–17] Melamine	formaldehyde 1490 1670 0.42 – –

[18] Polyvinyl	acetate	(PVAc) 1190 101.86 0.159 150 –

[18,19] Polystyrene	(PS) 1050 1220 0.111 347 240

[18] Polyethyl	methacrylate(PEMA) 1160 – – – –

[20] Polyurethane	(PU,	PUR) 1030 1700 0.14 – 200
©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



[21–23] Urea-formaldehyde(UF) 1490 1675 0.433 – –

[18,24,25] Polymethyl	methacrylate(PMMA) 1190 1470 0.21 – 210

3	Physical,	structural	and	thermal	stability	of	the	MPCM	slurries
The	stability	of	the	MPCM	slurries	can	be	indicated	from	three	sides:	physical,	structural	and	thermal	aspects.	The	physical	stability,	referred	as	to	‘mechanical	stability’	(or	briefly	as	‘stability’),	concerns	the	stratification

(creaming	or	sedimentation),	flocculation,	coalescence,	Ostwald	ripening,	or	phase	inversion,	while	the	structural/thermal	stabilities	are	associated	with	the	potential	rupture	of	the	microcapsules.

3.1	Physical	stability
The	physical	stability	of	a	MPCM	slurry	is	very	important	to	heat	transfer	and	thermal	energy	store.	A	poor	physical	stability	of	a	MPCM	slurry,	e.g.,	creaming	or	sedimentation,	may	reduce	the	heat	transfer	rate	of	a	heat

exchanger	or	lower	the	heat	storing	capacity	of	a	heat	storage	tank.	A	MPCM	slurry	with	a	poor	physical	stability	may	require	stirring	during	its	operation	in	order	to	keep	its	performance	steady	throughout	the	process	[26–37].

The	physical	stability	of	a	MPCM	slurry	is	a	major	concern	during	its	development,	production,	and	mixing-up	processes.	There	are	five	major	issues	that	need	to	be	addressed	[38]:

• 	Creaming	or	sedimentation:	This	is	usually	caused	by	the	density	difference	between	the	dispersed	and	continuous-phase	materials.	In	an	oil/water	mixture,	creaming	may	be	formed	by	the	upward	movement	of	the	oil	droplets	which,	owing	to	a	lower	density

compared	to	water,	will	form	a	dense	oil	layer	at	the	upper	part	of	the	emulsion.	On	the	other	hand,	sedimentation	is	an	opposite	process	that	has	a	higher	density	solution	deposited	at	the	lower	part	of	the	emulsion.

• 	Flocculation:	This	is	a	process	to	agglomerate	the	specimen	droplets	within	an	emulsion,	owing	to	the	affinity	characteristics	of	the	droplets.

• 	Coalescence:	This	is	a	process	to	merge	two	or	more	dispersed	droplets	into	a	larger	droplet.

• 	Ostwald	ripening:	This	occurs	in	solid	or	liquid	phases	where	the	change	of	an	inhomogeneous	structure	takes	place	over	time.	It	includes	small	crystals	or	solution	particles	dissolving,	followed	by	redeposition	into	larger	crystals	or	solid	particles.

• 	Phase	inversion:	This	is	a	process	in	which	the	material	in	continuous	phase	converts	itself	into	the	dispersed	phase	and	the	material	with	dispersed	phase	converts	itself	into	the	continuous	phase.

For	the	MPCM	slurries,	the	major	stability	problem	lies	in	creaming	or	sedimentation,	while	others	(e.g.,	flocculation,	coalescence,	Ostwald	ripening	and	phase	inversion)	could	possibly	be	prevented	by	the	shells	of	the	PCM

particles.	Tadrosti	et	al.	[38]	indicated	that	there	are	numerous	factors	that	have	impacts	on	the	slurries’	stability,	including	the	particle	size	and	its	distribution,	concentration,	PH	value,	temperature,	emulsifier,	surfactants,	and	other

additives	et	al.	However,	creaming	or	sedimentation	is	more	likely	to	occur	owing	to	the	density	difference	between	dispersed	and	continuous	phase	materials.	A	microcapsule	has	a	polymer	shell,	which	may	be	able	to	prevent	the

occurrence	of	the	physical	instability,	apart	from	creaming	or	sedimentation.

Liu	et	al.	[39]	developed	a	MPCM	slurry	by	adjusting	the	density	of	the	carrier	fluid	to	a	similar	level	to	that	of	the	microcapsules.	By	using	n-hexacosane	as	the	core	material	and	melamine	resin	as	the	shell	material,	the

microcapsule	with	density	of	0.9	g/ml	was	developed.	Meanwhile,	the	solutions	of	the	propanol/water	mixture	with	densities	of	0.8,	0.85,	0.9,	0.95	g/ml	were	also	fabricated	and	used	as	the	carrier	fluid.	Both	the	micro-capsules	and

carrier	fluid	were	then	mixed	together	at	weight	ratio	of	40%.	The	experiments	indicated	that	sedimentation	occurred	at	the	microcapsule’s	density	of	0.9	g/ml,	while	creaming	occurred	at	the	microcapsule’s	density	of	0.9	g/ml.	This

demonstrated	that	the	microcapsules’	density	should	be	controlled	in	the	range	between	0.9	g/ml	and	0.95	g/ml.	It	was	also	found	that	the	slurry	with	the	overall	density	of	0.94	g/ml	presented	the	most	stable	physical	behaviour	and

this	physical	stability	state	can	last	for	48	h	at	the	static	state	condition	(Fig.	2).
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Delgado	et	al.	[40]	studied	the	physical	stability	of	four	slurries	with	concentrations	of	14%,	20%,	30%	and	42%	respectively,	 indicating	that	the	slurries	can	maintain	stability	for	as	long	as	10,080	 	minutes.	min.	The	major

factors	impacting	on	the	physical	stability	of	slurries	are	the	density	difference	between	the	carrier	fluid	and	solid	particles,	as	well	as	the	viscosity	of	the	carrier	fluid.	Inclusion	of	an	additive,	e.g.,	surfactants,	dispersing	agents,	or

viscosity	modifiers,	could	help	improve	the	physical	stability	of	slurries	but	meanwhile	increase	the	viscosity	of	the	carrier	fluid,	leading	to	increased	flow	resistance,	greater	pressure	drop	within	the	pipe	line,	and	reduced	turbulence

that	may	reduce	convective	heat	transfer	of	slurries.	Reducing	the	density	difference	between	the	carrier	fluid	and	solid	particles	could	not	only	improve	the	physical	stability	of	the	slurry	but	also	maintain	a	low	fluid	viscosity,	and	is

thus	regarded	as	a	better	method	to	enhance	the	stability	of	the	slurry.	The	density	of	the	micro-encapsulated	particles	depends	on	the	materials	of	the	shells	and	cores	used,	while	the	density	of	the	carrier	fluid	could	be	adjusted	by

including	a	second	fluid	and	regulating	the	mixture	ratio	between	the	primary	and	secondary	fluids	[39].

In	summary,	the	creaming	and	(or)	sedimentation	are	the	major	problems	that	reflect	the	physical	 instability	of	a	MPCM	slurry.	The	factors	impacting	on	its	physical	stability	 include	the	size	and	distribution	of	the	MPCM

particles,	the	MPCM’s	weight	ratio,	temperature	of	the	slurry,	and	emulsifier,	surfactants,	and	other	additives	contained	in	the	slurry.	The	most	effective	measure	to	prevent	the	creaming	or	sedimentation	is	to	keep	the	MPCM	particles

and	carrier	fluid	at	the	roughly	equivalent	densities,	which	can	be	achieved	by	selecting	or	adjusting	the	compositions	of	the	two	parts.	Further,	the	reduced	density	difference	between	the	MPCM	particles	and	carrier	fluid	could	also

decrease	the	viscosity	of	the	slurry,	thus	reducing	the	flow	resistance	of	the	slurry	during	the	fluid	movement.	A	MPCM	slurry	with	a	poor	physical	stability	may	require	stirring	during	its	operation	in	order	to	maintain	performance.

3.2	Structural	and	thermal	stability
Another	problem	remaining	with	MPCM	slurries	is	the	potential	rupture	of	the	microcapsules,	which	is	can	be	caused	by	mechanical	shear	force	or	thermal	cycle	(i.e.,	alternative	solidification	and	fusing).	Yamagishi	et	al.

studied	[41]	 two	types	of	MPCMs	that	use	n-Tetradecane	and	n-Dodecane	(with	melting	points	of	5.5	°C	and	−13.5	°C	respectively)	as	 the	encapsulate	cores,	which	have	equivalent	diameter	 in	 the	 range	5	µm	to	1000	 µm.	Those

microcapsules	of	5	µm	were	found	to	be	more	structurally	stable,	having	no	rupture	observed	under	at	least	5000	thermal	cycles	(solidification	and	fusing)	and	under	the	high	shear	action	of	a	centrifugal	pump.

Gschwander	et	alal.	[42]	developed	a	structurally-stable	MPCM	slurry	that	can	withstand	the	harsh	mechanical	impetus	by	a	piping	system.	The	slurry	was	exposed	to	a	high	shear	stress	condition	generated	by	the	pipes	and

pumps.	After	several-weeks	continuous	operation,	the	capsules	within	the	slurry	were	visually	inspected	using	the	scanning	electron	microscopy	(SEM).	It	was	found	that	the	stability	of	the	micro-capsules	is	negatively	affected	by	the

pumps’	shear	rate.	Among	a	few	pumps	tested,	the	centrifugal	pump	was	found	to	be	able	to	circulate	the	MPCM	slurry	for	a	relatively	longer	period,	during	which	the	destruction	or	crack	of	the	microcapsule	shells	were	not	observed.

It	was	also	found	that	a	smaller	capsule	diameter	and	a	larger	shell	thickness	benefited	to	the	slurries’	structural	stability.

Alvarado	et	alal.	[26]	investigated	the	structural	durability	of	several	sets	of	MPCM	particles,	with	the	size	in	the	range	2	2–150	µm.	The	experiment	indicated	that	small	microcapsules	(2–10	µm)	had	the	least	degree	of	damage;

those	small	microcapsules	were	detected	with	no	physical	damage	after	experiencing	1200	cycles	through	the	circulation	pump.

Fig.	2	Instability	problems	of	slurries	and	emulsions	[38].

alt-text:	Fig.	2.
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Kim	and	Cho	[44]	studied	the	rupture	phenomena	of	the	microcapsules	that	were	possibly	caused	by	material	expansion	during	the	phase	change.	Volatile	cyclohexane	was	mixed	with	the	phase	change	material;	these	were

then	encapsulated	into	the	polymer	cells.	During	the	heating	process,	the	cyclohexane	was	evaporated,	thereby	leaving	some	room	for	the	phase	change	material	to	expand	and	the	shells	to	keep	intact.

In	order	to	evaluate	the	thermal	stability	of	the	PCM	capsules	during	the	phase	transition,	the	morphological	evolution	was	investigated	using	a	polarized	optical	microscope	at	a	temperature	scanning	rate	of	5	℃/min5	°C/min

within	25–60	℃25–60	°C	[23].	It	was	observed,	the	capsules	were	completely	coalesced	when	the	shell	content	was	relatively	low,	e.g.,	2.1	wt%,2.1	wt%,	which	was	mainly	caused	by	the	leakage	of	the	melt	paraffin	core	from	the	cracked

shell.	When	the	shell	content	was	increased	to	16.7	wt%,16.7	wt%,	the	capsules	were	partially	coalesced	with	the	identifiable	spherical	contour	appeared.	When	the	shell	content	was	increased	to	28.0	wt%,28.0	wt%,	the	capsules	were

intact	while	the	solid	powder	form	was	retained	after	many	melting/crystallization	cycles.

Zhang	et	alal.	[16]	investigated	the	effect	of	the	stirring	rate	and	styrene-malefic	anhydride	copolymer	content	on	the	thermal	stability	of	a	MPCM	slurry.	It	was	found	that	the	thermal	stability	of	the	microcapsules	increased

largely	with	the	increase	of	the	stirring	rates.	When	increasing	the	stirring	rate,	more	evenly	distributed	emulsion	droplets	were	developed,	leading	to	a	narrow	diameter	range	in	both	the	emulsion	and	microcapsules	that	had	more

even	shell	thickness.	At	the	slurry	concentration	of	5	wt%5	wt%	and	stirring	rate	of	9,000	rpm,9000	rpm,	the	temperature	of	the	microcapsules	reached	the	highest	level,	i.e.,	approximately	197℃.197	°C.	It	was	also	found	that	the	thermal

stability	of	the	microcapsules	increased	slightly	with	the	increase	of	emulsifier	content.	When	increasing	the	emulsifier	content,	more	evenly	distributed	emulsion	droplets	were	formulated,	leading	to	a	narrow	diameter	range	in	both

the	emulsions	and	microcapsules	that	had	a	more	even	shell	thickness.	The	nano-capsules	with	2.3	wt.%2.3	wt%	was	found	to	have	the	highest	thermal	stability	temperature,	which	is	approximately	195	℃.195	°C.

Fan	et	alal.	[43]	indicated	that	the	cyclohexane	content	in	the	oil	phase	(carrier	fluid)	had	a	high	effect	onto	the	morphology,	thermal	stability	and	permeability	of	the	post-treated	microcapsules.	The	microcapsules	were	initially

heated	at	100	℃100	°C	until	a	 fixed	weight	 ratio	was	achieved,	and	 then	 further	heated	at	160	℃160	°C	for	 the	duration	of	30	min.30	min.	This	 led	 to	 the	 formation	 of	 a	 reserved	 expanding	 space	 that	 allowed	 the	 cyclohexane	 to

completely	escape	from	the	microcapsules,	thus	effectively	enhancing	the	thermal	stability	of	the	microcapsules.

In	summary,	the	rupture	of	the	microcapsules	within	a	MPCM	slurry	was	mainly	affected	by	the	type	and	rotation	speed	of	the	pump,	diameter	of	the	microcapsules,	and	the	volume	and	weight	ratio	between	the	PCM	core	and

its	shell.	The	phenomena	of	the	microcapsules	rupture	can	be	mitigated	by	using	a	low-speed	centrifugal	pump,	selecting	the	small	sized	PCM	cores	and	large	thickness	shells,	as	well	as	slightly	smaller	core-to-shell	weight	ratio.

Further,	the	shell	diameter	should	be	made	slightly	larger	to	allow	the	PCM	core	material	to	expand	during	the	heating	operation,	thus	presenting	the	potential	rupture	of	the	shell	owing	to	the	core	material	volume	growth.

4	Rheological	properties
4.1	Overview	of	the	previous	studies

Yang	et	alal.	[18]	studied	the	rheological	properties	of	microencapsulated	tetradecane	in	a	few	MPCM	slurries.	There	are	three	types	of	shell	materials	available,	namely,	poly	vinyl	acetate	(PVAc),	polystyrene	(PS),	polymethyl

methacrylate	(PMMA)	and	polyethyl	methacrylate	(PEMA).	The	viscosities	of	slurries	with	the	these	shell	materials	were	measured	using	the	NDJ-1	rotating	viscosity	meter	at	5℃5	°C	and	25℃,25	°C,	giving	the	results	shown	in	Fig.	3.	It

was	found	that	the	viscosities	of	the	slurries	were	not	affected	by	the	shell	materials	but	largely	dependent	upon	the	operational	temperature;	a	higher	temperature	led	to	a	lower	viscosity.	Fig.	4	shows	that	the	viscosity	of	the	slurry

increased	gradually	with	the	increase	of	tetradecane	concentration	in	a	PMMA-encapsulated	tetradecane	slurry,	while	a	sharp	rise	occurred	at	the	MPCM	weight	ratio	of	40%.	In	terms	of	deionized	water,	its	viscosity	was	in	the	range

0.93	mPa		mPa.s	s	and	1.01	mPa		mPa.s,	s,	while	the	temperature	varied	from	5	to	25℃25	°C	and	the	weight	ratio	of	the	tetradecane	within	the	slurry	was	as	high	as	35%.	However,	when	its	weight	ratio	reached	40%,	the	viscosity	of	the

slurry	became	significantly	higher,	being	about	20	times	that	of	water.	As	increased	slurry	viscosity	will	require	increased	pump	power,	the	magnitude	of	the	viscosity	should	be	appropriately	controlled	although	a	high	viscosity	may

lead	to	increased	heat	transfer	between	the	slurry	and	surroundings.
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Yamagishi	et	al.	 [41]	measured	 the	 viscosities	 of	 the	n-tetradecane	 and	n-dodecane	 based	MPCM	 slurries	 using	 a	 cylindrical	Couette	 viscometer.	 It	was	 found	 that	 the	 apparent	 viscosity	was	 largely	 dependent	 upon	 the

temperature	of	the	slurry,	size	of	the	microcapsules	and	the	weight	ratio	of	the	MPCM.	When	some	additives,	e.g.,	surfactant	agents,	were	added,	the	slurry	changed	from	a	non-Newtonian	to	a	Newtonian	fluid.

Wang	et	alal.	[28]	studied	the	rheological	behaviour	of	a	MPCM	slurry,	which	contained	such	particles	with	C16H33Br	as	the	cores	and	amino	plastics	as	the	shells.	The	core–to-shell	ratio	was	controlled	to	a	level	of	7:1	in	weight,

while	the	thickness	of	the	shell	wall	was	approximately	0.3µm.0.3	µm.	The	diameters	of	the	micro-encapsulated	particles	were	measured	using	a	particle	characterization	system,	namely,	Malvern	Masterzer	2000	made	by	Malvern

Instrument	Ltd,	giving	an	average	volumetric	diameter	of	10.112µm.10.112	µm.	It	was	found	that	a	slurry	with	the	MPCM	weight	ratio	of	27.6%	or	below	behaved	as	a	Newtonian	fluid,	in	which	the	shear	stress	increased	linearly	with

the	shear	rate	of	the	slurry	under	the	two	operational	temperatures,	i.e.,	10℃10	°C	and	20℃.20	°C.	The	reason	for	this	lay	in	the	use	of	the	plastic	shells	which	had	a	frictional	interaction	with	the	carrier	fluid.	However,	it	was	also	found

that	the	rheological	behaviour	of	the	slurry	was	not	affected	by	the	phase	transition	of	the	MPCM	particles.

By	using	a	Kinexus	Ultra	Rheometer,	Zhang	et	alal.	[45]	studied	the	rheological	behaviour	of	the	MPCM	slurries	that	had	the	MPCM	weight	ratio	in	the	range	10%	to	35%.	10–35%.	It	was	found	that	slurry	with	the	MPCM	weight

ratio	of	25%	or	below	behaved	as	a	Newtonian	fluid,	while	slurry	with	the	MPCM	weight	ratio	 in	the	range	25%	to	35%	25–35%	behaved	as	a	non-Newtonian	fluid	which	had	a	shear	rate	greater	than	200s200	s‐1−1.	The	rheological

behaviour	was	not	affected	by	the	PCM	phase	changing	as	the	shells	of	the	microcapsules,	in	contact	with	the	fluid,	were	the	determining	factor	on	the	rheological	behaviour.	Furthermore,	the	viscosity	of	the	slurries	increased	with	the

size	of	the	PCM	microcapsules.

Rao	et	al.	[46]	studied	the	flow	characteristics	of	n-octadecane	based	slurries	with	the	MPCM	weight	ratio	in	the	range	5–20%,	when	these	were	flowing	through	horizontally-laid	mini-channels.	Under	laminar	flow	condition,

Fig.	3	Effect	of	shell	material	on	viscosities	slurries	Data	source:	Table	6	of	literature	[18]

alt-text:	Fig.	3.

Fig.	4	Effect	of	concentration	on	of	MPCM	viscosities	of	MPCM(PMMA).	Table	7	[18]

alt-text:	Fig.	4.

Data	source:	Table	7	of	literature	[18].
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the	friction	factor	of	the	slurries	was	found	to	increase	with	the	MPCM	weight	ratio.	Compared	to	the	friction	fraction	of	water,	a	slight	increase	was	observed	in	a	low-weight-ratio	(5%)	slurry.	Nevertheless,	when	the	weight	ratio	was

10%	or	higher,	the	increment	in	friction	factor	was	more	notable.	The	increment	in	MPCM	weight	ratio	of	the	slurries	tended	to	suppress	the	generation	of	turbulence	within	the	flow.	When	the	weight	ratio	was	less	than	15%,	no

obvious	transition	from	laminar	to	turbulent	flow	was	observed,	as	the	critical	transition	only	occurred	when	the	Reynolds	number	(Re)	was	greater	than	2000.	At	a	certain	MPCM	weight	ratio,	the	pressure	drop	of	the	MPCM	slurry

across	the	mini-channels	increased	with	the	increase	of	the	flow	speed	of	the	MPCM	slurry.

Alvarado	et	alal.	[26]	investigated	the	flow	characteristics	of	tetradecane-based	slurry	with	MPCM	weight	ratio	in	the	range	5%	to	17.7%.	5–17.7%.	Relative	viscosity	was	found	to	be	irrelevant	to	the	temperature	of	the	slurry	at

all	weight	ratio	conditions,	which	was	somehow	against	the	classical	viscosity	theory.	The	slurry	behaved	as	a	Newtonian	fluid	when	the	mass	fraction	was	below	17.7%,	while	the	pressure	drop	of	the	slurry	increased	slightly	with	the

increase	of	MPCM	weight	ratio.	In	some	cases,	the	pressure	drop	of	the	slurry	was	even	lower	than	that	of	water,	which	was	possibly	due	to	the	rupture	of	the	microcapsules	and	leakage	of	the	core	material	off	the	shells.

Chen	et	alal.	[47]	indicated	that	the	pump	power	of	the	slurry	system	was	lower	than	that	of	the	water	based	system	of	the	same	heat	output.	The	reduction	is	caused	by	the	reduced	flow	speed	(by	around	two	thirds).	In	this

case,	the	water	flow	was	at	the	turbulent	condition	while	the	slurry	flow	was	at	the	laminar	condition,	owing	to	its	lower	speed	and	higher	viscosity.

Chen	et	al.	developed	[48]	a	slurry	containing	the	5	µm	sized	n-eicosane	particles	and	water.	This	slurry,	with	a	melting	temperature	of	36.4	°C,	was	made	with	tow	weight	ratios,	i.e.,	10%	and	20%.	The	dedicated	viscosity

measurement	indicated	that	the	slurry	behaved	as	a	Newtonian	fluid.

Yamagishi	et	alal.	[27]	investigated	a	slurry	made	of	the	octaddecane	based	MPCM	particles	and	water.	The	cores	of	the	particles	were	the	laboratory-made	octaddecane	with	the	sizes	in	the	range	2μm2	µm	to	10μm,10	µm,	and

average	diameter	of	6.3		μm,	µm,	while	the	shells	of	the	particles	were	a	polymer	with	thickness	of	around	0.1		μm.	µm.	Fig.	5	showed	the	relationship	between	the	temperature	and	apparent	viscosity	of	the	MPCM	slurry	at	the	MPCM

volume	ratio	(φ)	of	0.15,	whereas	the	shear	rate	of	the	slurry	was	measured	at	100	s‐1−1.

The	relative	viscosity,	which	is	defined	as	the	ratio	of	the	apparent	viscosity	of	the	slurry	to	the	viscosity	of	pure	water,	remained	approximately	constant.	The	correlation	between	the	apparent	viscosity	and	temperature	of	the

slurry	was	highly	dependent	upon	the	viscosity	of	pure	water.	At	the	melting	temperature	of	octadecane	(MPCM	core	material),	a	nominal	change	of	around	3%	in	relative	viscosity	was	detected	owing	to	the	volume	change	of	the

MPCM	particles.	However,	this	change	was	not	clearly	reflected	in	the	pressure	drop	measurement	and	thus,	no	significant	change	in	the	pressure	drop	of	the	melting	MPCM	slurry	was	detected.	In	Fig.	6,	it	is	interestingly	to	see	that

the	pressure	drops	of	the	slurry	at	the	MPCM	volume	ratio	of	0.3	were	lower	than	that	of	pure	water;	both	were	at	the	same	flow	velocity	in	the	range	22–2.5		to	2.5m/s.	m/s.	The	reason	for	this	was	viscosity:	the	higher	viscosity	led	to

laminar	flow.	A	similar	phenomenon	on	the	impact	of	the	slurry	viscosity	to	the	flow	state	was	also	reported	in	previous	researches	[49,50].

Fig.	5	Effect	of	temperature	on	apparent	and	relative	viscosity	for	MPCM	slurry.	Results	of	Couette	viscometer	measurement	for	the	shear	of	100	sy1	and	the	gap	size	of	1.27	mm.	[27].

alt-text:	Fig.	5.
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4.2	The	mathematic	and	dimensional	analysis
There	are	numerous	factors	impacting	on	the	rheology	of	the	MPCM	slurries,	namely,	the	properties	of	the	MPCM	particles	and	carrying	fluid,	shear	stress,	timing	and	so	on.	In	order	to	carry	out	the	dimensional	analysis,	the

following	assumptions	are	made:

(a) The	MPCM	particles	were	rigid	and	spherical;

(b) All	the	particles	had	the	same	diameter	throughout	the	slurry,	ignoring	the	slight	variation	in	their	sizes;

(c) The	surfactant	additives	had	no	effect	on	the	rheology	of	the	carrying	fluid;

(d) The	phase	change	transition	had	no	effect	on	the	rheology	of	the	slurry.

On	this	basis,	Krieger	et	alal.	[51,52]	and	Jomha	et	alal.	[53]	carried	out	a	series	of	dimensional	analyses,	which	are	detailed	below:

The	correlation	between	the	slurry’s	viscosity	and	relevant	parameters	was	of	the	form:

Using	a	dimensionless	treatment,	Eq.	(1)	can	be	simplified	to:

where

Fig.	6	Pressure	drop	vs.	Mean	flow	velocity	for	pure	water	and	MPCM	capsules	at	298	K.	[27].

alt-text:	Fig.	6.
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For	the	neutrally	buoyant	systems	at	the	steady	state	operational	condition,	ρr	and	tr	can	be	ignored	and	thus,	Eq.	(2)	can	be	further	simplified:

If	the	MPCM	particles	have	a	size	(radius:	Rp)	of	around	1		μm,	µm,	the	Reynolds	number	(Reɣ)	will	approach	zero.	In	this	case,	the	Eq.	(9)	can	be	further	simplified:

In	terms	of	a	non-Brownian	system	which	has	a	very	large	Peclet	number	( →∞),	as	shown	in	Fig.	5,	the	slurry	will	behave	as	the	shear	thickening	or	Newtonian	flow.	In	this	case,	the	impact	of	 and	 to	μr	will	become

minimal	[54–56],	thus,

It	is	seen	from	Eq.	(11)	that	at	a	certain	MPCM	weight	ratio	(with	φ	a	constant),	the	viscosity	of	the	slurry	is	a	constant,	indicating	that	the	slurry	is	a	Newtonian	fluid.

When	Reɣ	is	less	than	10‐3−3	and	Peɣ	is	greater	than	103,	both	Reɣ	and	Peɣ	can	be	removed	from	the	Eqs.	(10	and	11).	This	situation	will	only	take	place	in	a	very	narrow	range	of	shear	stress;	in	which	the	slurry	may	behave	as	a

Newtonian	fluid,	as	shown	in	Fig.	7.

4.3	Models	for	the	slurry	viscosity	prediction
Numerous	models	have	been	developed	for	calculating	the	viscosity	of	slurries.	Eq.	(12)	is	such	an	empirical	model,	termed	the	‘Vand	model’	[57],	and	has	been	widely	adopted	by	researchers	[35,58,59].	This	model	is	well	suited

to	slurries	with	MPCM	volume	ratio	of	less	than	37%.

The	constant	A,	being	a	 factor	 reflecting	 the	size,	 shape	and	 type	of	 the	MPCM	particles,	can	be	determined	by	experiment.	Vand	et	alal.	[57]	 yielded	a	value	 for	A	of	1.16	 referring	 to	glass	 sphere	of	0.013cm0.013	cm	 in

diameter;	Mulligan	et	alal.	[59]	indicated	that	the	A-value	was	3.4	when	the	MPCM	particles	within	the	slurry	were	in	the	range	1010–30		‐	30μm	µm	in	diameter;	while	Yamagishi	et	alal.	[27]	gave	a	A-value	of	3.7	for	the	octadecane	based

slurry	with	an	average	diameter	of	6.3μm.6.3	µm.	Wang	et	alal.	investigated	[28]	the	viscosities	of	bromohexadecane(C16H33Br)-based	slurry,	which	had	an	average	diameter	of	10.112μm10.112	µm	and	weight	ratio	in	the	range	55–27.6		to

27.6	wt.%,	wt%,	yielding	a	value	for	A	of	4.45.

4.4	Summary
The	velocity	profile	of	a	laminar	non-Newtonian	flow	is	significantly	different	from	that	of	a	Newtonian	flow	[60].	As	the	flow	state	of	the	slurry	is	directly	associated	with	the	heat	transfer	between	the	slurry	and	surrounding,

the	characteristics	of	the	Newtonian	or	non-Newtonian	flows	need	to	be	carefully	investigated	and	identified.	Based	on	the	above	review-based	research,	the	following	conclusions	can	be	drawn:

(8)

(9)

(10)

		 	 		 	 		 	

(11)

Fig.	7	Zones	of	slurries	rheology	in	principle.

alt-text:	Fig.	7.

(12)
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(1) There	are	numerous	factors	impacting	on	the	rheology	of	a	MPCM	slurry,	including	the	thermal-physical	properties	of	the	micro-encapsulated	particles	and	carrying	fluid,	the	shear	stress	and	operational	time	et	al.	The	empirical	model(Vand	model),	represented	by

Eq.	(12),	can	calculate	the	viscosity	of	the	slurries.	This	model,	adopted	by	many	researchers,	is	well	suited	to	slurries	with	the	MPCM	volume	ratio	of	less	than	37%;

(2) In	order	to	create	a	Newtonian	flow	condition,	the	slurries	with	high	shear	rate	are	more	suitable,	especially	when	the	MPCM’s	volume	ratio	exceeds	37%;

(3) Phase	change	transition	at	the	phase	change	temperature	had	insignificant	impact	to	the	relative	viscosity	of	the	MPCM	slurry;

(4) The	pressure	drop	of	a	slurry	was	lower	than	that	of	a	pure	water	at	a	wide	range	of	flow	speeds	and	concentrations.	This	is	because	the	increased	slurry	viscosity	can	create	a	laminar	flow	condition,	but	this	condition	can	reduce	the	heat	transfer	rate	between	the

slurry	and	surronding.

It	is	also	suggested	that	further	researches	should	focus	on	the	following	issues:

(1) As	the	constant	factor	‘A’‘A′	shown	in	Eq.	(12)	is	highly	relevant	to	the	size,	shape	and	type	of	the	MPCM	particles,	the	inter-relationship	among	these	parameters	should	be	further	investigated;

(2) The	impact	of	the	surfactant	additives	on	the	rheologic	properties	of	the	slurry	should	be	studied	further.

(3) How	to	keep	a	relatively	lower	pressure	drop	within	the	slurry	flow	is	a	critical	issue	for	further	study.

5	Forced	heat	transfer
5.1	Main	parameters	in	relation	to	phase	change

The	previous	 studies	 indicated	 that	 the	main	 parameters	 impacting	 on	 a	MPCM	slurry’s	 heat	 transfer	 are	numerous.	 These	 include	Stephan	number(Ste),	MPCM	weight	 (volume)	 ratio,	 the	 slurry’s	 heat	 capacity(Cp),	 the

microcapsules’	size	(dp),	Peclet	number	(Pe),	Reynolds	number	(Re),	as	well	as	Prandtl	number	(Pr).	Definitions	of	these	parameters	are	presented	below:

5.1.1	Stefan	number
The	Stefan	The	Stefan	number	[1],	Ste,	is	defined	as	the	ratio	of	the	of	the	sensible	heat	to	latent	heat	to	latent	heat,	which	is	expressed	as	follow:

This	dimensionless	parameter	was	named	after	Josef	Stefan	[62]	who	developed	a	method	for	calculating	the	phase	change	rate	of	water.	On	this	basis,	Charunyakorn	et	alal.	[58]	defined	a	generalized	Stefan	number	applicable	to	MPCM	slurry

heat	transfer	in	a	circular	tube,	as	below:

Further	research	carried	out	by	Chen	et	alal.	[48]	indicated	that	the	term	 cannot	reflect	the	sensible	heat	occurred	in	the	heat	transfer	process.	To	resolve	this	deficiency,	a	modified	Stefan	number,	Steb,	was	proposed	by	Chen	et	alal.

[48],	as	below:

This	equation	can	reflect	the	effect	of	the	phase	change	on	the	convectional	heat	transfer.

5.1.2	Peclet	number
The	Peclet	number	of	the	MPCM	slurries	is	defined	as	[63]:

5.1.3	Heat	capacity

(13)

(14)

		 	

(15)

(16)
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The	effective	heat	capacity	reflecting	the	phase	change	of	a	slurry	can	be	expressed	as	[64,65]:

5.1.4	Thermal	conductivity
Thermal	conductivity	of	the	static	dilute	slurry,	Kb,	can	be	derived	from	Maxwell’s	equation	[66],	as	below:

Owing	to	the	interaction	between	the	MPCM	particles	and	carrier	fluid,	the	effective	conductivity	of	a	slurry	flow	is	actually	higher	than	that	predicted	by	Eq.	(18).	Leal	et	alal.	[67]	studied	the	enhancement	of	the	thermal	conductivity	of	the	diluted

slurry	that	has	a	very	low	Peclet	number.	As	a	result,	the	following	correlation	between	the	conductivity	of	the	slurry	and	water	was	developed,	as	below:

Avinoam	and	Acrivos	[68]	applied	a	similar	model	to	the	diluted	slurry	flow	at	a	very	high	particle	Peclet	number,	thus	yielding	the	following	correlation:

where	A	is	a	constant	that	can	be	determined	by	experiment.	Sohn	and	Chen	[69]	conducted	experiments	at	the	moderate	Peclet	numbers	and	proposed	a	new	correlation,	as	below:

Based	on	the	results	discussed	above,	a	general	correlation	was	proposed	by	Charunyaorn	[58],	as	below:

where	B	 and	m	are	 two	 constants	 depending	upon	Peclet	 number	 of	 the	MPCM	particles.	For	 a	 lower	Peclet	 number,	 the	 values	 of	B	 and	m	are	given	 as	3.0	 and	1.5	 respectively.	For	 a	high	Peclet	 number,	m	 can	be	 calculated	 from	Eq.	 (23),	 thus

giving	a	value	of	1/11.	For	a	moderate	Peclet	number,	the	experimental	results	derived	from	ref.	[58]	are	used	to	evaluate	B	and	m,	giving	the	values	of	1.8	and	0.18	respectively.	In	view	of	the	Peclet	number	curve,	the	value	of	the	Peclet	number	from	low

to	moderate	region	transition	was	approximately	0.67.	At	the	point	from	moderate	to	high	region	transition,	it	is	around	250	[69],	while	the	B	value	is	determined	as	3.0.	The	full	correlations	governing	the	entire	flow	regions	are	shown	in	Fig.	2.	As	a	result,

the	effective	thermal	conductivity	of	the	MPCM	slurries,	Ke,	can	be	outlined	as	follow:

5.2	Analysis	of	the	parameters	associated	with	the	MPCM	slurry	heat	transfer
5.2.1	Analytical	tables

Table	4	provides	a	collocation	of	the	parameters	and	the	dimensionless	numbers	that	have	impact	on	the	MPCM’s	slurry’s	heat	transfer	under	the	laminar	flow	condition.	The	analysis	of	these	parameters	indicated	that	the	heat	transfer	between

the	slurry	and	surrounding	can	be	enhanced	by	increasing	the	MPCM	weight	ratio,	heat	capacity,	latent	heat,	size	of	the	MPCM	particles,	velocity,	Reynolds	number,	Prandtl	number,	and	Peclet	number,	or	by	decreasing	the	inlet	sub-cooling	temperature,

range	of	the	phase	change	temperature,	as	well	as	Stefan	number.

Table	4	The	collocation	of	the	parameters	impacting	on	the	heat	transfer	of	a	MPCM	slurry	at	the	laminar	flow	condition.
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alt-text:	Table	4

Slurries	constants/	parameters/	dimensionless
numbers

Increase(↑)	Increase	(↑)	or
decrease(↓)decrease	(↓)

Heat	transfer
enhancement

Reason	for	enhancing	heat	transfer References

Heat	capacity	function ↑ Yes Carrying	more	heat	energy [29,30,33,75,76]

Concentration ↑ Yes Increasing	the	bulk	latent	heat [28–30,32,34,35,39,47,72,75,77–80]

Particles	size ↑ Yes Increasing	particle	diffusion [29,30,33–35,75,79]
(in	the	range	of1–1000	µm)

Flow	rate	or	Velocity ↑ Yes Enhancing	turbulence [32]

Reynolds	number ↑ Yes Enhancing	turbulence [28,31,34,49,72,75,77–79,81–83]

Prandtl	number ↑ Yes Combined	effort	of	ingredient	parameters [78]

Stephan	number ↓ Yes Combined	effort	of	ingredient	parameters [29,30,34,35,69,74,75,78,79,81–83]

Peclet	number ↑ Yes Combined	effort	of	ingredient	parameters [29]

Phase	change	temperature	range,	 ↓ Yes Phase	change	enthalpy [30,34,39,74,79]

Inlet	subcooling	 ↓ Yes [30,34,39,75]

Heat	flux ↓ Yes [28,39,70,72]

↑ Yes Not	an	independent	factor,	related	to	Prandtl
number

[76]

Physical	stability no	observable	effect [35]

Table	5	provides	a	collocation	of	the	parameters	and	the	dimensionless	number	that	have	impact	on	a	MPCM	slurry’s	heat	transfer	at	the	turbulent	flow	condition.	Similar	to	the	laminar	flow,	the	heat	transfer	between	the	slurry	and	surrounding	at

the	turbulent	flow	condition	can	be	enhanced	by	increasing	MPCM	particles’	weight	ratio,	heat	capacity,	latent	heat,	velocity,	Reynolds	number,	Prandtl	number,	and	Peclet	number,	or	by	decreasing	the	inlet	sub-cooling	temperature,	range	of	the	phase

change	temperature,	as	well	as	Stefan	number.

Table	5	The	collocation	of	the	parameters	impacting	on	heat	transfer	of	a	MPCM	slurry	at	the	turbulent	flow	condition.

alt-text:	Table	5

Slurries	constants/	parameters/	dimensionless	numbers Increase(↑)	Increase	(↑)	or	decrease(↓)decrease	(↓) Heat	transfer	enhancement Reason	for	enhancing	heat	transfer References

Heat	capacity	function ↑ Yes Carrying	more	heat	energy [85]

Concentration ↑ Yes Increasing	the	bulk	latent	heat [26–28,71,78,84]

Flow	rate	or	Velocity ↑ Yes Enhancing	turbulence [71,81]

Reynolds	number ↑ Yes Enhancing	turbulence [27,28,78,84,85]

Prandtl	number ↑ Yes Combined	effort	of	ingredient	parameters [78]

Stephan	number ↓ Yes Combined	effort	of	ingredient	parameters [73,78,85]

Phase	change	temperature	range,	
↓ Yes Phase	change	enthalpy [85]
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Phase	change	temperature	range,	

Inlet	subcooling	 ↓ Yes [85]

Heat	flux ↓ Yes [27,28,71,84]

5.2.2	The	dominant	parameters	indicating	the	impact	of	the	phase	change	on	heat	transfer
Charunyakorn	et	alal.	[29]	numerically	investigated	the	heat	transfer	characteristics	of	the	MPCM	slurry	flow	in	a	circular	duct.	The	energy	equation	was	developed	by	taking	into	account	the	heat	absorption	(or	release)	due	to	the	phase	change

and	the	conductivity	enhancement	induced	by	the	movement	of	the	particles.	The	heat	source	or	heat	generation	function	in	the	energy	equation	was	derived	from	analysing	the	freezing	or	melting	process	occurred	in	a	sphere.	The	correlation	for	the

effective	 conductivity	 of	 the	 slurry	was	 obtained	 based	 on	 available	 analytical	 and	 experimental	 results.	 The	 governing	 parameters	 include	 the	MPCM	particle	weight	 (volume)	 ratio,	 Stefan	 number	 of	 the	 fluid	 bulk,	 duct/particles	 radius	 ratio,	 the

particle/fluid	thermal	conductivity	ratio,	and	Peclet	number.	For	low	temperature	applications,	it	was	found	that	the	dominant	parameters	are	the	Stefan	number	of	the	fluid	bulk	and	MPCM	weight	(volume)	ratio.	The	numerical	solutions	show	that	heat	flux

of	the	slurry	was	around	2‐42–4	times	higher	than	that	of	the	single	phase	flow.

Goel	et	al.	[35]	conducted	an	experimental	study	using	a	suspension	of	n-eicosane	microcapsules	within	water	in	order	to	evaluate	the	heat	transfer	characteristics	of	the	phase	change	material	based	suspension.	Experiments	were	carried	out	for

the	laminar,	hydro-dynamically	fully	developed	flows	in	a	circular	duct	with	a	constant	wall	heat	flux.	The	primary	parameters	in	the	study	were	the	Stefan	number	and	the	MPCM	volume	ratio.	In	addition,	a	few	more	experiments	were	carried	out	to

evaluate	the	effect	of	the	particle	diameter	and	degree	of	homogeneity	of	the	suspension.	The	most	dominant	parameter	impacting	on	the	heat	transfer	was	found	to	be	the	Stefan	number.	The	effect	of	the	MPCM	volume	ratio	was	found	to	be	insignificant

by	itself,	though	its	impact	was	imposed	indirectly	through	the	Stefan	number.	Increase	in	the	particle	diameter	by	a	factor	of	2.5	was	found	to	further	reduce	the	wall	temperature	rise	by	15%.	The	degree	of	homogeneity	of	the	suspension	was	observed	to

have	no	effect	to	the	wall	temperatures.

Roy	et	alal.	[73]	studied	the	turbulent	heat	transfer	numerically.	In	their	model	the	phase	change	effect	was	directly	incorporated	into	the	thermal	equation.	The	numerical	solutions	fitted	well	with	the	published	experimental	results.	The	most

influential	parameter	in	the	heat	transfer	was	Stefan	number.	The	heat	transfer	coefficient	increased	with	the	decrease	of	Stefan	number	and	thus,	the	MPCM	slurry	achieved	a	much	lower	wall	temperature	than	water	did.

Zeng	et	alal.	[79]	experimentally	and	numerically	investigated	the	convective	heat	transfer	characteristics	of	a	MPCM	slurry	flowing	across	a	circular	tube.	The	enhanced	convective	heat	transfer	mechanism	of	the	MPCM	slurry,	especially	in	the

fully	developed	flow	range,	was	analyzed	by	using	the	enthalpy	model.	Three	kinds	of	fluid,	i.e.,	pure	water,	micro-particle	slurry	and	MPCM	slurry,	were	numerically	investigated.	It	was	found	that	in	the	phase	change	heat	transfer	region,	Stefan	and	Mr

numbers	are	the	most	significant	parameters	impacting	on	the	variation	of	Nusselt	number	and	the	dimensionless	wall	temperature.	The	parameters,	Reb,	dp	and	c,	also	had	impact	on	the	Nusselt	number	and	the	dimensionless	wall	temperature,	though

these	are	independent	of	the	phase	change	process.

Based	on	the	above	review-based	researches,	it	is	clear	that	the	most	dominant	parameter	that	reflects	the	impact	of	phase	change	on	heat	transfer	is	the	Stefan	number,	while	Re	and	Pr	are	also	the	important	parameters	in	characterising	the

heat	transfer	process,	though	these	are	irrelevant	to	the	phase	change.	The	impacts	of	other	parameters,	i.e.,	the	particles	weight	(volume)	ratio,	particle	size,	heat	capacity,	latent	heat,	velocity,	inlet	sub-cooling	temperature,	and	phase	change	temperature

range,	can	be	represented	by	a	number	of	parameters	including	Re,	Pr,	Ste,	and	Pe.

5.3	Heat	transfer	enhancement	mechanism
5.3.1	Thermal	conductivity	enhancement	by	the	particles’	micro-convection

Ahuja	[86]	studied	the	approaches	of	enhancing	heat	transfer	within	the	polystyrene	suspension	under	the	laminar	flow	condition,	while	Eckstein	et	alal.	[84]	investigated	the	self-diffusion	coefficients	of	MPCM	particles.	To	assess	the	impact	of	the

shear-enhanced	thermal	conductivity	on	the	heat	transfer,	Sohn	and	Chen	[88]	carried	out	theoretical	investigation	into	the	heat	transfer	coefficient	of	laminar	pipe	Newtonian	flow	with	a	shear-dependent	thermal	conductivity,	indicating	that	the	significant

enhancement	in	the	heat	transfer	coefficient	could	be	achieved	under	this	flow	condition.	Table	6	presents	the	enhancement	ratios	of	the	thermal	conductivity	and	heat	transfer	coefficient	derived	from	the	above	theoretical	analyses	[88].	However,	no

experimental	data	are	yet	available	to	validate	these	theoretical	predictions.

Table	6	Theoretical	Enhancement	Ratios	for	Thermal	Conductivity	and	Heat	transfer	Coefficients	in	Slurry	Flow	in	Pipes	without	Phase	Change.

alt-text:	Table	6.

Velocity,	m/s Particle	Diameter,mm Thermal	conductivity	enhancement	ratiosa Laminar	thermal	enhancementb Laminar	fully	developedb

Tube	D=3	mm Tube	D=10	mm Tube	D=3	mm Tube	D=10	mm Tube	D=3	mm Tube	D=10	mm
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0.1 0.1 – – – – – –

0.3 <2 – <1.6 – <2 –

1 5.5 3.0 3.1 2.1 5.5 3.0

1 0.1 <2 – <1.6 – <2 –

0.3 5.2 2.8 3.0 2.0 5.2 2.8

1 17 9.5 6.7 4.5 17 9.5

10 0.1 5.5 3.0 3.1 2.1 5.5 3.0

0.3 16 9 6.5 4.3 16 9

1 55 30 14 10 55 30

cBased	on	the	assumption	that	the	particle	diameters	are	small	relative	to	the	laminar	sublayer	and	that	the	slurry	behaves	as	a	single-phase	fluid	of	similar	bulk	properties.	See	Eq.	(3)
a Based	on	the	theory	of	Ref.	[89]	and	the	extrapolation	of	the	data	of	literature	[69].
b Based	on	sources	cited	in	footnote	a	and	the	theory	of	Ref.	[88].

Section	5.1.4	provides	an	equation	(i.e.,	Eq.	(23))	for	calculating	an	effective	thermal	conductivity,	which	was	developed	by	Charunyaorn	[29].	Apart	from	the	above	possible	enhancement	mechanisms,	a	few	more	factors,	e.g.,	particle-to-particle

collisions,	particle	behaviour	in	a	turbulent	flow,	and	the	particle	depletion	layer	near	a	wall,	can	also	have	an	impact	on	the	slurry’s	thermal	conductivity	and	heat	transfer.

Ahuja	[86,90]	carried	out	an	experimental	study	on	how	to	enhance	the	heat	transfer	coefficient	of	a	MPCM	slurry.	The	measurement	data	were	used	to	compute	the	effective	thermal	conductivity	by	applying	the	theoretical	correlation	between	the

thermal	conductivity	and	heat	transfer	coefficient	for	the	‘Graetz’	problem.	Although	the	data	indicated	that	enhancement	in	heat	transfer	was	achievable,	Sohn	and	Chen	[88]	pointed	out	that	Ahuja’s	results	[86]	only	related	to	the	shear-rate	dependent

thermal	conduction,	which	was	hence	radius-dependent,	while	the	theoretical	results	only	related	to	the	situation	of	uniform	flow.	In	this	case,	the	two	sets	of	results	were	inconsistent	and	incomparable.

It	was	noted	that	most	theoretical	and	experimental	studies	have	put	the	focus	on	laminar	flows	with	simple	flow	channel	geometries,	while	the	established	theories	can	approve	the	enhancement	in	heat	transfer.	However,	these	results	were	only

applied	to	diluted	suspensions	and	cannot	be	extended	to	slurries	with	a	high	MPCM	weight	(volume)	ratio.	In	this	case,	in-depth	and	extensive	studies	are	needed	to	cover	a	wider	range	conditions	to,	including	the	flow	state,	MPCM	ratio	in	a	slurry,	phase

change	temperature,	as	well	as	piping	set-up.

5.3.2	Heat	transfer	at	the	turbulent	flow	condition
Heat	transfer	performance	of	a	MPCM	slurry	in	the	turbulent	flow	condition	is	more	complex	and	difficult	to	predict	than	in	laminar	flow	condition.	For	turbulent	flow,	migration	of	the	MPCM	particles	within	the	boundary	layer	or	shear	zone

adhering	to	the	piping	wall	surface	(see	Fig.	8)	would	help	to	disrup	the	laminar	sub-layer,	thus	significantly	enhancing	the	heat	transfer	between	the	slurry	and	surrounding.	Fig.	8	is	a	schematic	indicating	how	a	single	phase	turbulent	flow	can	enhance

heat	transfer	of	the	MPCM	slurry.

For	single-phase	turbulent	flows,	dependence	of	the	heat	transfer	coefficient	on	the	physical	properties	of	the	slurry	can	be	presented	using	the	well-known	Sieder-Tate	equations,	as	below:

Fig.	8	Simplified	Model	of	Turbulent	Slurry	Flow	over	a	Surface	[91].

alt-text:	Fig.	8

(25)
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In	other	words,	the	heat	transfer	coefficient	(h)	is	proportional	to	the2/3	power	of	the	thermal	conductivity	(K),	and	1/3	power	of	the	specific	heat	(Cp).	Concentrated	suspensions,	which	have	the	MPCM	particle	as	small	as	the	turbulent	eddy	and

the	laminar	sub-layer	thickness,	could	possibly	behave	as	a	single-phase	fluid.	In	this	case,	the	heat	transfer	coefficient	would	increase	with	the	increase	of	the	effective	slurry	thermal	conductivity	(keff).	This	conductivity	(keff),	as	the	replacement	of	‘k′

shown	in	Eq.	(26),	could	reflect	the	impact	of	the	local	shear	rate	(in	particular,	the	shear	rate	in	the	laminar	sub-layer)	on	the	heat	transfer.	However,	this	model	is	not	applicable	to	the	suspensions	with	the	larger	sized	MPCM	particles,	e.g.,	those	with	the

diameters	larger	than	the	laminar	sub-layer	thickness.

For	slurry	with	both	 larger	or	smaller	 sized	MPCM	particles,	measurement	data	are	needed	 to	verify	 the	 theoretical	predictions,	or	develop	empirical	or	 semi-empirical	correlations	 in	cases	where	 theoretical	predictions	are	not	available	or

unrealistic.	At	present,	the	measurement	data	for	the	turbulent	slurry	flow	are	unfortunately	unavailable.

5.3.3	Enhancement	of	the	phase	change	related	heat	transfer
Chen	[92]	reports	on	a	preliminary	study	of	the	heat	transfer	enhancement	mechanism	for	phase-change-occurring	laminar	slurries.	It	was	argued	that	since	the	heat	transfer	coefficient	increases	as	the	1/3	power	of	the	specific	heat	for	either

laminar	flow	or	turbulent	flow	(see	Eq.	(26)),	and	the	latent	heat	of	the	phase-change	medium	can	be	viewed	as	a	form	of	specific	heat	with	a	Delta-function	behaviour,	the	use	of	a	fusible	suspension	with	melting	point	within	the	range	of	the	imposed

thermal-system	temperature	difference	would	increase	the	heat	transfer	coefficient.	It	was	further	shown	that	for	laminar	boundary	layers	with	thermal	equilibrium	between	the	two	phases	of	a	MPCM	slurry,	the	enhancement	ratio	of	the	heat	transfer

coefficient	is	given	by:

This	equation	indicates	that	slurries	containing	a	phase	change	material	have	the	potential	to	significantly	enhance	the	heat	transfer	rate,	whether	or	not	it	is	under	laminar	or	turbulent	flow	condition.	To	verify	this	prediction,	an	experimental

study	into	the	suspension	composing	of	the	paraffin	particles	and	water	and	with	the	temperature	difference	in	the	range	10℃10	°C	to	20℃was20	°C	was	carried	out,	indicating	that	a	3-fold	enhancement	in	heat	transfer	coefficient	could	be	achieved.

5.3.4	Contradicting	phenomena	and	relevant	causes	analyses
Among	the	numerous	researches	made	on	the	MPCM	slurries	heat	transfer	enhancement,	a	few	contradictory	observations	were	reported.	Alvarado	et	alal.	[26]	indicated	that	the	heat	transfer	coefficient	of	the	slurry	increased	during	the	phase

change	process,	while	the	heat	transfer	coefficient	increased	with	flow	velocity.	However,	the	heat	transfer	coefficient	of	the	water	was	higher	than	that	of	MPCM	slurry	and	the	possible	reason	for	this	lay	in	the	suppression	of	the	flow	turbulence	by	the

higher	viscosity	of	the	slurry.

Yamagish	et	alal.	[27]	fabricated	the	slurry	and	experimentally	investigated	its	turbulent	convective	heat	transfer	behaviour.	It	was	found	the	local	heat	transfer	coefficient	across	the	circular	tube	decreased	with	the	increase	of	microcapsules

concentration	in	the	slurry	at	a	certain	velocity,	which	is	conflict	with	the	conclusion	presented	in	Table	5.

Wang	et	al.	[78]	also	obtained	a	lower	heat	transfer	coefficient	at	a	higher	MPCM	weight	ratio	in	the	turbulent	convective	heat	transfer	study,	which	contradicts	to	the	common	understanding	of	the	MPCM	slurries.	Hasan	et	al.	[80]	investigated	the

hydrodynamic	and	thermal	characteristics	of	a	MPCM	slurry	flowing	across	the	micro	channels	of	CFMCHE.	The	MPCM	made	use	of	n-octadecane	as	the	microcapsules	and	polymethylmethacrylate(PMMA)	as	the	shell	material;	both	were	bound	together

to	form	the	microcapsules	and	suspended	in	water	at	a	weight	ratio	of	0–20%.	The	simulation	results	indicated	that	use	of	the	MPCM	suspensions	as	a	cooling	fluid	led	to	enhanced	cooling	effectiveness	as	well	as	an	increased	pressure	drop.	From	heat

transfer	point	of	view,	the	cooling	effectiveness	enhancement	was	superior	to	the	pressure	loss	increase.	However,	an	energy	analysis	of	two	opposing	effects	is	needed.

A	possible	reason	 that	caused	 the	controversial	observations	 lied	 in	 the	complexity	of	 the	heat	 transfer	process	occurring	 in	 the	MPCM	slurries.	This	process,	as	 indicated	 in	Table	5,	was	affected	by	many	 factors,	 including	density,	 thermal

conductivity,	heat	capacity,	 latent	heat,	concentration,	viscosity,	micro-capsules	size,	velocity,	Reynolds	number,	Prandtl	number,	Stephan	number,	Peclet	number	et	al.	Different	combinations	 in	 the	operational	parameters	were	high	 likely	 to	 turn	out

controversial	heat	transfer	phenomena.	Another	reason	could	possibly	be	the	unclear	understanding	of	the	coupled	effect	of	the	MPCM	particles	phase	changing	and	convective	heat	transfer.

5.3.5	Summary	of	Heatheat	transfer	Enhancementenhancement
In	summary,	enhancement	of	the	heat	transfer	capacity	of	MPCM	slurries	could	be	effectively	achieved,	whether	or	not	the	slurries	involve	the	phase	change.	This	enhancement	could	become	significant	when	a	phase	change	take	place.

The	mechanisms	responsible	for	the	enhancement	were	numerous;	these	include	particle	rotation	in	a	shear	flow,	particle	migration	in	the	laminar	and	turbulent	flow,	and	good	use	of	the	MPCM’s	latent	heat	for	increasing	the	heat	transfer.	The

existing	data,	however,	were	found	to	be	quite	incomplete	for	laminar	flows	and	almost	non-existent	for	turbulent	flows,	the	latter	are	the	most	commonly	seen	in	engineering	practice.	For	any	of	the	above	cases,	no	proven	correlations	are	available	for	the

(26)

(27)
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use	in	the	design	of	a	slurry	based	energy	system.

Considering	the	great	potential	of	increasing	heat	transfer	in	thermal	systems	and	the	lack	of	understanding	of	the	heat	transfer	mechanisms	of	the	MPCM	slurries,	in-depth	and	systematic	studies	of	MPCM	slurry	heat	transfer	enhancement	are

required.

Overall,	the	MPCM	slurry	can	enhance	the	heat	transfer	in	some	operational	conditions,	but	definitely	not	in	any.	The	operational	conditions	of	the	MPCM	slurries	need	to	be	identified	to	ensure	enhanced	heat	transfer	of	the	MPCM	slurries	to	take

place,	thus	creating	a	better	performance	over	a	single	phase	fluid	(e.g.	water).

5.4	Correlations	for	the	forced	convection	heat	transfer
The	dimensionless	correlations	are	required	for	design	purposes	to	predict	the	convection	heat	transfer	of	a	MPCM	slurry	in	a	horizontal	circular	pipe.	Because	of	the	presence	of	microencapsulated	PCM	particles	in	the	water,

correlations	for	a	single-phase	flow	failed	to	predict	the	heat	transfer	behaviours	of	the	MPCM	slurries,	and	hence	new	correlations	are	urgently	required.	Several	empirical	correlations	have	been	reported	to	predict	the	heat	transfer

characteristics	of	a	solid/liquid	complex	flow	in	pipes	without	phase	change.	Salamone	et	alal.	[93]	investigated	the	heat	transfer	of	a	suspension,	fabricated	by	dispersed	solid	particles	of	copper,	carbon,	chalk,	and	silica	with	various

size	ranges	from	1.5	to	56	µm	in	the	water	and	with	the	volume	ratio	ranging	from	2.3%	to	10.7%	in	a	horizontal	tube.	As	a	result,	the	following	correlation	was	derived:

for	

Harada	et	alal.	[94]	 investigated	 the	heat	 transfer	of	 the	water/glass-bead	slurry	 in	horizontal	pipe,	which	had	particle	diameters	ranging	 from	0.06	 to	1.0	mm	and	a	MPCM	volume	ratio	 in	 the	range	0	 to	10%.	0–10%.	The

experimental	data	obtained	were	not	in	agreement	with	the	Salamone	and	Newman	correlation	[93],	mainly	owing	to	the	various	MPCM	particles	applied	in	this	process.	However,	on	the	basis	of	the	Sieder-Tate	equation,	the	following

correlation	could	be	derived:

It	was	claimed	that	the	heat	transfer	and	slurry	flow	were	subject	to	the	following	conditions:

Under	this	condition,	the	accuracy	of	the	correlation	was	measured	as	around	±15%.	On	the	basis	of	the	experimental	data,	Ozbelge	and	Somer	[95]	developed	a	correlation	for	the	dilute	liquid/solid	flow	and	heat	transfer	in	a

horizontal	tube,	given	by:

Under	the	following	operational	conditions,	i.e.,	 the	accuracy	of	the	correlation	was	measured	as	0‐20%.0–20%.

For	a	laminar	flow,	a	linear	model	was	proposed	based	on	the	regression	analysis	of	heat	transfer	coefficient	data	[78].	The	coefficients	of	the	proposed	model	were	determined	by	the	least	square	method,	which	yields	the

following	correlation	equation	that	can	give	the	best	fit	with	the	present	experimental	data.

Under	the	following	claimed	operational	conditions:	i.e.,	6 ,	the	heat	transfer	correlation	can	be	expressed	as:

As	shown	in	Eq.	(31),	the	heat	transfer	correlation	equation	of	the	slurry	in	the	phase	change	region	has	negative	power	to	the	Stefan	number	and	phase	change	region	length,	and	positive	power	to	the	Reynolds	number	and

Prandtl	number.	Comparison	between	the	experimental	data	and	the	simulation	results	derived	from	Eq.	(31)	indicated	that	the	deviation	of	the	correlation	was	±	10%.	±10%.	Shah	and	London	[96]	proposed	a	correlation	for	the	pure

(28)

		

(29)

(30)

		 	

		 	

(31)
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water	based	laminar	flow,	given	by:

where	 .	 Based	 on	 the	 experimental	 data	 obtained	 for	 different	 power	 inputs,	 flow	 conditions	 and	 MPCM	 particle	 weight	 ratios,	 a	 new	 correlation	 was	 eventually	 developed.	 This	 correlation	 was	 in

accordance	with	the	Shan	and	London	model	(in	Eq.	(20)),	applicable	to	the	laminar	single-phase	MPCM	slurry	flows	in	the	developing	region	under	a	constant	heat	flux,	and	can	be	expressed	as[28]:

where	C	is	a	constant	in	relation	to	the	slurry’s	MPCM	weight	ratio,	as	shown	in	the	Table	7.

Table	7	Value	of	C	[28].

alt-text:	Table	7

Weight	ratio	(%) C

5 1.336

10 1.341

15.8 1.418

For	the	turbulent	MPCM	slurry	 flow,	dimensionless	analysis	was	also	conducted	by	Wang	et	al	[78]al.	[78]	 in	 the	derivation	of	heat	 transfer	correlation	 for	2100 ,	 thus	 yielding	 the

following	correlation:

This	equation	involved	the	average	Reynolds	number	(Rem),	average	Prandtl	number	(Prm),	the	phase	change	region	length	[(L1+L2)/D)],	as	well	as	the	dimensionless	group	( )	which	is	a	correction	factor	representing

the	effect	of	wall	temperature	on	the	heat	transfer	coefficient.

Table	8	provides	comparison	of	the	dimensionless	correlations.	It	indicates,	among	the	correlations	Eqs.	(28–30)	proposed	for	suspensions	with	solid	particles(without	PCM	particles),	Eq.	(28)	 involves	the	most	dimensionless

numbers/parameters	providing	the	most	dedicated	operational	conditions,	and	covers	the	widest	Reynolds	number	range.	Also	it	should	be	noted	that	they	are	all	developed	for	turbulent	flow.	Comparatively	Eqs.	 (31	and	33)	were

developed	for	laminar	flow	for	suspensions	with	PCM	particles,	while	Eq.	(34)	is	subject	to	slight	turbulent	flow	and	involves	the	most	dimensionless	numbers/parameters.

Table	8	Comparison	of	dimensionless	correlations.

alt-text:	Table	8

Suspensions Dimensionless	correlations Dimensionless	numbers	or	parameters	involved Operational	conditions

Without	PCM Eq.	(28)

Eq.	(29)

(32)

		 	

(33)

		 	

(34)
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Eq.	(30) ,	

,	

With	PCM Eq.	(31) ,	

Eq.	(33) N.A.

Eq.	(34)

,

6	Current	status	of	the	MPCM	slurries	application	in	building	energy	systems
The	building	sector	is	one	of	the	major	sectors	involving	significant	energy	use.	In	Europe,	the	buildings	are	responsible	for	around	40%	of	the	total	energy	consumption	[97]	and	36%	of	total	carbon	emission	[98].	Considerable

efforts	have	been	made	by	the	researchers	and	scientists	on	finding	solutions	in	reducing	energy	consumption	and	finding	low	carbon	sources	of	energy.	In	2007,	the	European	Union	set	out	the	energy	goals	for	2020	buildings	[99]

which	are	to	(1)	increase	energy	efficiency	to	achieve	a	reduction	of	20%	of	total	energy	use	(below	2005	levels);	(2)	increase	the	use	of	renewable	energy	contributing	to	20%	of	total	energy	use	(11.5%	above	2005	contribution),	and

(3)	reduce	20%	greenhouse	gases	relative	to	1990	emissions	(14%	below	2005	emission).

MPCM	slurries	can	be	used	as	a	heat	transfer	(or	heat/cold	storage)	fluid	in	buildings,	e.g.	in	heating,	ventilation	&	air	conditioning	(HVAC)	systems,	domestic	hot	water	(DHW)	systems,	solar	thermal	systems.	Effective	and

appropriate	applications	of	the	MPCM	slurries	in	buildings	can	help	reduce	the	buildings’	energy	consumption,	and	the	associated	carbon	emission.	Numerous	such	application	cases	were	recently	reported	and	below	are	some	of	the

selected	cases.

Wang	et	alal.	[100]	studied	a	MEPCM	slurry	based	 thermal	energy	storage	 (TES),	which	 is	applied	 to	several	 low	energy	buildings.	Hexadecane	 (C16H34)	 is	chosen	as	a	core	material	 (phase	change	material	encapsulated)

because	of	its	low	super	cooling	and	high	latent	heat.	Some	technical	issues	relating	to	the	phase	change	material	applications	were	addressed	and	associated	problem-solving	approaches	were	proposed.	It	was	suggested	that	MPCM

is	a	better	 solution	 for	building	applications,	which	could	mitigate	 the	difficulties	 remaining	with	 the	 common	PCM	materials,	 e.g.,	 volume	change,	 low	 thermal	 conductivity	 and	 incongruent	melting.	Further,	 routes	 for	material

development	for	dealing	with	the	super	cooling	and	matching	the	required	melting	temperature	were	also	proposed.

Li	et	alal.	[101]	 studied	 a	 hybrid	 cooling	 system	 for	 the	 use	 in	 an	 office.	 This	 system	was	 comprised	 of	 three	 parts:	 chilled	 ceiling	 system,	 evaporative	 cooling	 system	 and	MEPCM	 slurry	 storage	 tank.	 The	 encapsulated

Hexadecane	(C16H34)	particles	were	mixed	with	pure	water	to	produce	the	MEPCM	slurry,	which	stored	the	cooling	energy	produced	by	the	evaporative	cooling	system	in	order	for	the	system	to	be	able	to	operate	at	any	time	when	the

wet	bulb	temperature	reaches	the	set	point	in	one	day	time.	The	feasibility	and	effectiveness	of	such	a	system	for	use	in	five	cities	in	China	were	investigated,	with	each	city	representing	a	typical	climatic	condition	of	China.	It	was

concluded	that	the	proposed	hybrid	system	is	appropriate	to	dry	climate	with	high	diurnal	temperature	swings.

Zhang	at	al	[102]	and	Wang	et	alal.	[103]	made	use	of	a	MPCM	slurry	consisting	of	encapsulated	Hexadecane	(C16H34)	PCM	particles	and	pure	water	in	a	chilled	ceiling(CC)	cooling	system.	The	ceiling	panels	were	installed	in

offices	rooms	to	remove	sensible	heat.	Air	was	supplied	at	minimum	ventilation	rate	at	low	level	by	a	conventional	air	handling	unit	(AHU),	The	chiller	was	operated	at	night	to	generate	the	cold	energy	that	was	stored	in	the	MPCM

slurry.	Three	different	chilled	ceiling	systems,	namely	(1)	CC	with	a	MPCM	slurry	storage;	(2)	CC	with	an	ice	storage	(Case	2);	and	(3)	CC	with	no	thermal	storage	(Case	3),	were	investigated	at	the	Hong	Kong	climate.	It	was	concluded
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that	the	CC	in	combination	with	the	MPCM-slurry-based	storage	is	the	most	energy	efficient	system	among	the	three	options.

Huang	et	alal.	[104]	tested	the	performance	of	a	MPCM	slurry	for	use	in	a	thermal	storage	cylinder	in	a	residential	solar	system.	The	cylinder	was	filled	with	a	MPCM	slurry	with	melting	temperature	of	65℃65	°C	and	three

different	volume	ratios.	A	heat	exchanging	loop	was	included	in	the	system	to	investigate	the	performance	of	the	system	at	different	fluid	inlet	temperatures	and	the	flow	rates.	It	was	found	that	the	MPCM	slurry	with	a	volume	ratio	of

50%	is	inappropriate	to	this	application	due	to	low	rates	of	heat	transfer	resulting	to	suppression	of	natural	convection	and	mixing	in	the	store,	while	the	changes	in	sizes,	position	and	type	of	the	heat	exchanger,	as	well	as	the	MPCM

volume	ratio	in	the	slurry	could	provide	the	significantly	improved	thermal	performance	of	the	system.

A	MPCM	slurry	based	thermal	storage	system	was	integrated	into	an	existing	2500	RT	(about	8792.5kW)8792.5	kW)	electrical	turbo-chiller,	thus	forming	a	hybrid	unit	for	the	use	in	cooling	of	Narita	Airport	space	in	Tokyo,	Japan

[105,106].	This	combination	aims	to	enhance	the	cooling	performance	of	the	system	which	had	the	reduced	cooling	capacity	following	a	change	in	refrigerant	for	environment	benefit.	During	the	process,	n-Paraffin	waxes	were	selected

as	the	PCM,	while	the	slurry	was	a	mixture	of	water	and	microcapsules	with	mean	diameter	of	2		microns,	µm,	melting	temperature	of	8℃8	°C	and	the	latent	heat	of	75.9	kJ/kg.	The	storage	tank,	24.7m24.7	m	in	height	and	7.4m7.4	m	in

diameter,	was	used	 to	store	cold	energy	at	night.	The	MPCM	slurry	at	11.5℃11.5	°C	was	 transported	 into	 the	 storage	 tank	by	using	a	 conventional	 centrifugal	pump,	and	cooled	 in	a	 flat-plate	heat	exchanger	by	a	 refrigerant	at

3.5℃,3.5	°C,	thus	leading	to	the	change	of	the	phase	of	the	slurry	and	4℃4	°C	drop	in	the	slurry’s	temperature.	The	cold	energy	stored	in	the	slurry	was	then	released	during	day	time.	Through	the	heat	exchange,	coolant	at	5.1℃5.1	°C

was	obtained	and	this	was	pumped	to	the	load	side	for	cooling.	The	COPs	of	the	chiller	and	the	whole	system	during	the	cold	storing	process	were	5.4	and	3.2,	respectively,	which	were	lower	than	the	COP	values	(5.9	and	4.4)	of	the

same	units	when	no	cold	storage	was	implemented.	Compared	to	the	traditional	cold	storage	system	that	made	use	of	the	external	melting	ice,	the	MPCM	slurry	based	system	had	around	60%	less	thermal	storage	capacity,	while	its

operational	cost	was	32%	lower.

Griffiths	et	alal.	[107]	investigated	the	performance	of	a	MPCM	slurry	as	a	heat	transfer	fluid	in	a	test	chamber	equipped	with	a	chilled	ceiling	panel.	The	schematic	of	the	testing	rig	is	shown	in	Fig.	9.	The	MPCM,	produced	by

BASF,	had	microcapsules	diameter	of	2–8		μm	µm	and	a	melting	temperature	of	18℃,18	°C,	which	is	close	to	the	working	temperature	of	chilled	ceiling	(i.e.,	1616–18		–18	℃).	°C).	The	performance	of	such	a	MPCM	slurry	system	was

investigated	with	reference	to	the	chilled	water	based	system.	To	maintain	the	test	chamber	at	a	constant	temperature	of	19℃,19	°C,	a	flow	rate	of	0.7l/s0.7	l/s	was	required	when	water	was	utilized	as	the	heat	transfer	fluid,	while	only

0.25L/s0.25	L/s	was	required	for	the	slurry	with	the	MPCM	weight	ratio	of	40%.	Throughout	more	than	four-months	of	continuous	operation,	it	was	proved	that	the	slurry	with	40%	of	MPCM	weight	ratio	was	a	better	performing	heat

transfer	fluid	than	water	for	the	use	in	the	chilled	ceiling	panels.	During	the	trial,	no	deposition	of	microcapsules	in	pipe	or	the	degradation	of	the	slurry	was	detected,	while	the	pump	power	of	the	system	was	reduced	owing	to	the

reduced	flow	rate.	However,	it	was	recommended	that	the	control	algorithm	of	the	system	should	be	updated	when	using	the	slurry	instead	of	water	as	the	heat	transfer	fluid.

Qiu	et	alal.	[108,109]	 carried	 out	 a	 theoretical	 and	 experimental	 investigation	 into	 the	 energy	performance	 of	 a	 novel	MPCM	slurry	 based	PV/T	heat	 and	power	 system.	This	 involved	 (1)	 development	 and	 validation	 of	 a

dedicated	mathematical	model	and	computer	program;	(2)	simulation	of	 the	energy	performance	of	 the	MPCM	slurry	based	PV/T	system;	and	(3)	 investigation	of	 the	 impacts	of	 the	slurry	 flow	state,	MPCM	weight	 (volume)	ratio,

Reynolds	number	and	slurry	serpentine	size	on	the	energy	performance	of	the	PV/T	system.	It	was	found	that	the	established	model,	based	on	the	Hottel-Whillier	assumption,	is	able	to	predict	the	energy	performance	of	the	MPCM

slurry	based	PV/T	system	at	a	very	good	accuracy,	with	the	average	error	level	in	the	range	0.3	to	0.4%.	0.3–0.4%.	Analyses	of	the	simulation	results	indicated	that	laminar	flow	is	not	a	favourite	flow	condition	in	terms	of	the	energy

efficiency	of	the	PV/T	module.	Instead,	turbulent	flow	is	a	desired	flow	condition	that	has	potential	to	enhance	the	energy	performance	of	PV/T	module.	Under	the	turbulent	flow	condition,	increasing	the	MPCM	weight	ratio	led	to	the

Fig.	9	The	schematic	of	the	testing	rig.

alt-text:	Fig.	9
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reduced	PV	cells’	temperature	and	increased	thermal,	electrical	and	overall	efficiency	of	the	PV/T	module,	as	well	as	increased	flow	resistance.	As	a	result,	the	net	efficiency	of	the	PV/T	module	reached	the	peak	level	at	the	MPCM

weight	 ratio	of	5%	at	a	specified	Reynolds	number	of	3,350.3350.	With	all	 other	parameters	 fixed,	 increasing	 the	diameter	of	 the	 serpentine	piping	 led	 to	an	 increased	slurry	mass	 flow	 rate,	decreased	PV	cells’	 temperature	 and

consequently,	increased	thermal,	electrical,	overall	and	net	efficiencies	of	the	PV/T	module.	Overall,	the	MPCM	slurry	based	PV/T	module	is	a	new,	highly	efficient	solar	thermal	and	power	configuration.

7	Challenges	for	applying	an	MPCM	based	thermal	system
The	major	challenges	that	may	arise	when	applying	the	MPCM	based	thermal	system	are	presented	here	as	below.

(1) One	of	the	major	obstacles	for	the	engineering	application	of	an	MPCM	based	system	is	the	high	cost	of	encapsulation.	This	increases	the	overall	cost	of	the	system.

(2) The	correct	choice	of	PCM,	shell	material,	encapsulation	method	and	its	size	varies	with	the	application.

(3) Precise	prediction	of	moving	solid–liquid	boundary	during	the	phase	change	process	is	still	a	major	problem	to	be	resolved.	The	rate	of	movement	of	this	boundary	is	not	known	a	priori.	[110]

(4) For	MPCM	Slurries,	the	conventional	heat	transfer	correlations	cannot	be	used	due	to	phase	change	effect	on	the	slurry.	An	in-depth	knowledge	of	heat	transfer	enhancement	mechanism	and	PCM	phase	change	rate	prediction	are	essential

while	applying	the	MPCM	slurries	based	thermal	system.

(5) Other	considerable	challenges	are	sub-cooling	of	the	MPCM.	The	inorganic	PCMs	are	observed	to	be	more	prone	for	these	challenges.	Although	this	problem	can	be	alleviated	by	addition	of	suitable	materials,	the	impact	due	to	addition	of

these	materials	on	the	latent	heat	storage	capacity	and	phase	change	temperature	of	the	PCM	is	evident.

8	Conclusions
The	physical	stability	of	a	MPCM	slurry	is	critically	important	to	enable	it	to	act	as	a	heat	transport	fluid	or	a	thermal	storage	material.	The	main	reason	for	slurry	instability	is	the	density	difference	between	the	solid	MPCM

particles	and	the	carrier	fluid.	An	effective	measure	to	achieve	physical	stability	of	a	MPCM	slurry	is	to	increase	its	viscosity,	which,	however,	also	causes	the	increased	flow	resistance.	Further,	the	increase	in	viscosity	will	suppress

flow	turbulence	of	the	slurry,	which	will	lead	to	the	reduced	heat	transfer	rate.	It	is	still	a	challenge	to	remain	a	good	physical	stability	and	meanwhile	keep	a	reasonably	low	viscosity,	in	order	to	achieve	the	good	heat	transfer	between

the	slurry	and	its	surroundings.

Rupture	of	 the	micro-capsules	shells	will	 lead	 to	 the	 leakage	of	 the	encapsulated	phase	change	material,	 thus	resulting	 in	 the	coalescence	of	 the	PCM	particles.	 It	 is	 too	expensive	 to	replace	 the	micro-encapsulated	PCM

particles	frequently,	so	avoiding	the	fast	rupture	of	the	shells	is	a	challenge	in	the	MPCM	slurry	application.	Shell	rupture	mainly	results	from	mechanical	shear	stress,	caused	by	the	operation	of	the	pump.	The	type	of	the	pump	and	its

rotation	speed,	diameter	of	the	MPCM	particles,	and	weight	ratio	between	the	shell	and	the	encapsulated	particles	are	three	major	factors	impacting	on	shell	rupture.	By	using	a	low	speed	centrifugal	pump,	keeping	the	microcapsule

diameter	below	10	µm	and	increasing	the	shell-to-microcapsule	weight	ratio	to	above	28%,	the	microcapsules	can	have	a	relatively	long	life	span	without	rupture.

Viscosity	of	 a	MPCM	slurry	 is	 a	key	parameter	used	 in	calculation	of	heat	 transfer	 rate	and	 flow	 resistance.	A	 semi-experimental	 correlationEq.	(12))	 for	 computing	 the	 slurry	 viscosity	 has	 been	developed.	However,	 the

coefficient	factor	A	within	the	correlation	remains	uncertain.	More	elaborate	experiments	are	required	to	establish	the	relationship	between	the	factor	A	and	the	size,	shape	and	type	of	the	microcapsule	particles.

The	heat	transfer	performance	of	a	MPCM	slurry	could	be	enhanced	by	several	measures:	(1)	increasing	the	thermal	conductivity	of	the	slurries	by	enhancing	the	heat	convection	of	the	MPCM	particles;	(2)	breaking	up	the

laminar	sub-layer	within	the	shear	zone;	and	(3)	increasing	the	heat	capacity	of	the	slurry	by	enhancing	the	phase	change	of	the	PCM	material.	It	was	observed	that	compared	to	water,	MPCM	slurry	as	a	heat	transport	fluid	may	lead

to	a	reduced	heat	transfer	rate	under	a	certain	operational	condition.	This	is	an	unusual	phenomenon	which	may	result	from	the	inconsistent	operational	conditions	and	incomplete	understanding	of	the	multi-phase	fluid	in	terms	of

fluid	flow,	heat	transfer	and	phase	change.	To	assess	the	performance	of	the	MPCM	slurry	against	a	single	phase	fluid,	a	criteria	equation	should	be	developed.	The	analysis	of	the	equation	will	be	able	to	sort	out	the	conditions	for	the

favourite	use	of	the	MPCM	slurry.	It	should	be	particularly	addressed	that	only	under	the	specific	operational	conditions,	the	MPCM	slurry	can	behave	as	a	better	performing	heat	transport	fluid	over	waterwater.

It	was	found	by	comparison	between	the	dimensionless	correlations,	Eq.	(28)	was	proposed	for	suspensions	with	solid	particles(without	PCM	particles),	 involving	the	most	dimensionless	numbers/parameters,	providing	the

most	 dedicated	 operational	 conditions,	 and	 covering	 the	widest	Reynolds	 number	 range.	 Eq.	 (34)	was	 developed	 for	 slight	 turbulent	 flow	 of	MPCM	 suspensions,	 and	 subject	 to	 the	most	 dimensionless	 numbers/parameters.	 The

established	dimensionless	correlations	for	the	MPCM	slurry	heat	transfer	were	based	on	the	limited	experiment	data	and	few	MPCM	types,	and	thus	cannot	be	applied	to	wide	range	of	practical	engineering	projects.	Although	the

Stefan	number	is	defined	as	a	term	indicating	the	phase	change	performance	of	a	slurry,	its	definition	is	unclear	and	somehow	inconsistent	in	different	literatures.	This	parameter	is	therefore	unable	to	predict	the	overall	performance

of	the	MPCM	slurries.	In	order	to	disclose	the	effect	of	the	MPCM	particles	phase	change	on	the	convectional	heat	transfer	of	the	slurry,	more	experimentation	and	more	reliable	correlations	are	required.
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Although	there	are	a	few	reported	cases	on	the	MPCM	slurry	application	in	building	energy	systems,	a	wide	range	of	applications	of	the	MPCM	slurries	in	building	sector	have	yet	to	be	developed.	This	is	largely	owing	to	the

immature	nature	of	the	MPCM	slurry	research,	in	terms	of	physical	and	chemical	stability	and	heat	transfer	mechanism,	as	well	as	building	services	adaptability,	and	the	perceived	risk	associated	with	novel	systems.
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