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Abstract. Mal′cev described the congruences of the monoid Tn of all full transformations on
a finite set Xn = {1, . . . , n}. Since then, congruences have been characterized in various other
monoids of (partial) transformations on Xn, such as the symmetric inverse monoid In of all
injective partial transformations, or the monoid PT n of all partial transformations.

The first aim of this paper is to describe the congruences of the direct products Qm × Pn,
where Q and P belong to {T ,PT , I}.

Mal′cev also provided a similar description of the congruences on the multiplicative monoid
Fn of all n× n matrices with entries in a field F ; our second aim is to provide a description of
the principal congruences of Fm × Fn.

The paper finishes with some comments on the congruences of products of more than two
transformation semigroups, and on a number of related open problems.

1. Introduction

Let PT n denote the monoid of all partial transformations on the set Xn = {1, . . . , n}. Let
Sn denote the symmetric group on Xn. Let Tn be full transformation monoid, that is, the
semigroup of all transformations in PT n with domain Xn; and let In be the symmetric inverse
monoid, that is, the semigroup of all 1-1 maps contained in PT n. The congruences of these
semigroups were described in the past: Mal′cev [33] for Tn, Šutov [38] for PT n and Liber [32]
for In.

In this paper we provide a description of the principal congruences of Qn × Qm (Theorem
3.11), where Q ∈ {PT , T , I}, and then use this result to provide the full description of all
congruences of these semigroups (Theorem 4.11).

Similarly, for a field F , denote by Fn the monoid of all n × n matrices with entries in F .
The congruences of Fn have been described by Mal′cev [34] (see also [27]). Here we provide a
description of the principal congruences of Fn × Fm (Theorems 7.8, 7.10, 7.12, and 7.13).

It is worth pointing out that the descriptions of the congruences of the semigroups

S :=
∏
i∈M

Qi and T :=
∏
i∈M

Fi,

where F is a field, M is a finite multiset of natural numbers, and Q ∈ {PT , T , I}, are in fact
yielded by the results of this paper, modulo the use of heavy notation and very long, but not
very informative, statements of theorems. (For more details we refer the reader to Section 5.)

It is well known that the description of the congruence classes of a semigroup, contrary to
what happens in a group or in a ring, poses special problems and usually requires very delicate
considerations (see [26, Section 5.3]). Therefore it is no wonder that the study of congruences
is among the topics attracting more attention when researching semigroups, something well
illustrated by the fact that the few years of this century already witnessed the publication of
more than 250 research papers on the topic.

Given the ubiquitous nature of the direct product construction, it comes quite as a surprise
to realize that almost nothing is known about congruences on direct products of semigroups,
even when the congruences on each factor of the product are known. Here we start that study
trusting that this will be the first contribution in a long sequence of papers describing the
congruences of direct products of transformation semigroups. Before closing this introduction
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it is also worth to add that we have been led to this problem, not just by the inner appeal
of a natural idea (describing the congruences of direct products of very important classes of
semigroups whose congruences were already known), but by considerations on the centralizer
in Tn of idempotent transformations. More about this will be said on the problems section at
the end of the paper.

In order to outline the structure of the paper, we now introduce some notation. Let S be a
finite monoid. We say that a, b ∈ S are H-related if aS = bS and Sa = Sb.

The elements a, b ∈ S are said to be D-related if SaS = SbS.
In Section 2, we recall the description of the congruences on Qi, which we use in Section

3 to fully describe the principal congruences on Qm × Qn, for Q ∈ {PT , T , I}. In Section 4,
we show that a congruence θ on Qm × Qn is determined by those unions of its classes that
are also unions of D-classes, which we will call θ-dlocks. After presenting the possible types of
θ-dlocks, whose properties are related to their H-classes, we shall describe θ within each such
block, making use of the results obtained in Section 3. In Section 5 we give an idea of how the
congruences look like on a semigroup of the form Qm × Qn × Qr. Section 6 is devoted to the
description of the congruences on Fn following [27], and we dedicate Section 7 to characterizing
the principal congruences on Fm × Fn. We do so following the pattern of Section 3, doing the
necessary adaptations. Describing the general congruences of Fm × Fn is notationally heavy
but we trust the reader will be convinced that to do so nothing but straightforward adaptions
of Section 4 are needed. The paper finishes with a set of problems.

2. Preliminaries

For clarity, we start by recalling some well known facts on the Green relations as well as the
description of the congruences on an arbitrary Qm. The lattice of congruences of a semigroup
S will be denoted by Con(S). For further details see [24].

Given f ∈ Qn we denote its domain by dom(f), its image by im(f), its kernel by ker(f) and
its rank (the size of the image of f) by |f |.

Lemma 2.1. Let f, g ∈ Qn. Then

(1) fDg iff |f |= |g|;
(2) fLg iff f and g have the same image;
(3) fRg iff f and g have the same domain and kernel;
(4) fHg iff f and g have the same domain, kernel, and image.

Let S be a monoid. A set I ⊆ S is said to be an ideal of S if SIS ⊆ I and an ideal I is said to
be principal if there exists an element a ∈ S such that I = SaS. It is well known that all ideals
in Qn are principal; in fact, given any ideal I ≤ Qn, then I = QnaQn, for all transformation
a ∈ I of maximum rank. In addition we have QnaQn = {b ∈ Qn | |b|≤ |a|}.

The Green relation J is defined on a monoid S as follows: for a, b ∈ S,

aJ b iff SaS = SbS.

Thus two elements are J -related if and only if they generate the same principal ideal. In a
finite semigroup we have J = D (and this explains the definition of D used in Section 1). It is
easy to see that if |f |< |g|, then SfS ⊆ SgS and in particular f ∈ SgS. That f ∈ SgS implies
|f |≤ |g| is also obvious. Therefore fJ g iff |f |= |g|.

If fHg then f and g have the same image, so we may speak about the set image imH of an
H-class H. Given an H-class H of Qn, we can fix an arbitrary linear order on imH, say that
im f = {a1 < · · · < a|f |} for all f ∈ H. We define a right action · of the group Si with i = |f | on
all elements in Qn of rank i: let ω ∈ Si and x ∈ dom(f), then (x)f ·ω = ajω where xf = aj with
regard to the fixed ordering associated with the H-class of f . Note that the action · preserves
H-classes. Hence for each ω ∈ Si and H-class H with |imH|= i, we may define ω̄H ∈ SimH ,
where SimH is the symmetric group over imH, such that (x)f · ω = ((x)f)ω̄H , for all f ∈ H,
x ∈ imH.

The description of the congruences of Qn can be found in [24, sec. 6.3.15], and goes as follows.
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Theorem 2.2. A non-universal congruence of Qn is associated with a pair (k,N), where 1 ≤
k ≤ n, and N is a normal subgroup of Sk; and it is of the form θ(k,N) defined as follows: for
all f, g ∈ Qn,

fθ(k,N)g iff

 f = g and |f |> k, or
|f |, |g|< k, or
|f |= |g|= k, fHg and f = g · ω, where ω ∈ N .

We write θ = θ(k,N) or just θ if there is no ambiguity. It follows from the normality of
N that the definition of θ(k,N) is independent of the ordering associated with each of the
H-classes of Qn. A similar independence result will hold for a corresponding construction in
our main result.

The following will be applied later without further reference. Let g, g′ ∈ Qn. It follows
from Theorem 2.2, that if (g, g′) ∈ H, then the principal congruence θ generated by (g, g′)
is θ(|g|, N), where N is the normal subgroup of S|g| generated by σ ∈ S|g| with g′ = g · σ,
with respect to a fixed ordering of the image of g. If (g, g′) /∈ H then θ is θ(k + 1, {idSk+1

}),
where k = max{|g|, |g′|}, or the universal congruence if k = n. In either case, this is the Rees
congruence defined by the ideal Ik of all transformations of rank less or equal to k, i.e. θIk .

From this description we see that if θ = θ(k,N) ∈ Con(Qn) and there exist f, g ∈ Qn, with
|f |< |g| and (f, g) ∈ θ, then |g|< k and the ideal generated by g is contained in a single θ-class.

For each n > 1 the congruences on each semigroup Qn form a chain [24, sec. 6.5.1]. Let ιS
and ωS be, respectively, the trivial and the universal congruences on S. For k ∈ {1, . . . , n},
denote by ≡εk , ≡Ak

and ≡Sk
, the congruence associated to k and to the trivial, the alternating

and the symmetric subgroup of Sk, respectively. Finally, for k = 4, let ≡V4 be the congruence
associated with the Klein 4-group. We have

ιS =≡S1⊂≡ε2⊂≡S2⊂≡ε3⊂≡A3⊂≡S3

⊂≡ε4⊂≡V4⊂≡A4⊂≡S4⊂ . . . ⊂≡εn⊂≡An⊂≡Sn⊂ ωS .

Let 0∗ stand for 1 if Q = T and for 0 in the other cases. For 0∗ ≤ i ≤ m, let I
(m)
i stand for

the ideal of Qm consisting of all functions f with |f |≤ i. We will usually just write Ii if m is
deducible from the context. Let θIi stand for the Rees congruence on Qm defined by Ii.

3. Principal congruences on Qm ×Qn
The aim of this section is to describe the principal congruences of Qm × Qn, when Q ∈

{I, T ,PT }. We will start by transferring our notations to the setting of this product semigroup.
For functions f ∈ Qm ∪ Qn, let |f | once again stand for the size of the image of f , and for

(f, g) ∈ Qm×Qn let |(f, g)|= (|f |, |g|), where we order these pairs according to the partial order
≤ × ≤. Throughout, π1 and π2 denote the projections to the first and second factor.

We will start with some general lemmas about congruences on Qm ×Qn. In case there is no
danger of ambiguity, we will use the shorthand P for Qm ×Qn, to simplify the writing.

Lemma 3.1. Let θ be a congruence of Qm ×Qn and fix f ∈ Qm; let

θf := {(g, g′) ∈ Qn ×Qn | (f, g)θ(f, g′)}.

Then

(1) θf is a congruence on Qn;
(2) if f ′ ∈ Qm and |f ′|≤ |f |, then θf ⊆ θf ′;
(3) if |f |= |f ′| in Qm, then θf = θf ′.

Proof. (1) That θf is an equivalence on Qn is clear. The compatibility follows from the fact
that Qm has an identity; indeed

(g, g′) ∈ θf ⇒ (f, g)θ(f, g′)⇒ (f, g)(1, h)θ(f, g′)(1, h)⇒ (f, gh)θ(f, g′h)⇒ ghθfg
′h.

Similarly we prove the left compatibility.
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(2) If |f ′|≤ |f | then f ′ ∈ QmfQm and hence we have f ′ = hfh′, for some h, h′ ∈ Qm; in
addition (f, g)θ(f, g′) implies

(f ′, g) = (h, 1)(f, g)(h′, 1)θ(h, 1)(f, g′)(h′, 1) = (f ′, g′)

so that θf ⊆ θf ′ . Condition (3) follows from (2) and its symmetric. �

In a similar way, given a congruence θ on Qm×Qn and fixed g ∈ Qn, we define θg := {(f, f ′) ∈
Qm ×Qm | (f, g)θ(f ′, g)}.

The next result describes the ideals of Qn ×Qm.

Lemma 3.2. Let Q ∈ {I, T ,PT }. The ideals of P := Qm ×Qn are exactly the unions of sets

of the form I
(m)
i × I(n)

j , where I
(m)
i and I

(n)
j are ideals of Qm and Qn, respectively.

Proof. That any union of sets of the form I
(m)
i × I(n)

j is an ideal of P is obvious.

Conversely, let I be an ideal of P , and (f, g) ∈ I. It is self-evident that (f, g) ∈ I|f | × I|g|.
Then, by the definition of an ideal of P , we have P (f, g)P ⊆ I, for every (f, g) ∈ I. Let
(f ′, g′) ∈ I|f | × I|g|. Then f ′ ∈ QmfQm and g′ ∈ QngQn so that (f ′, g′) ∈ P (f, g)P ⊆ I.
It follows that ∪(f,g)∈II|f | × I|g| ⊆ I. Regarding the reverse inclusion, let (f, g) ∈ I; then
∪(f,g)∈II|f | × I|g| ⊇ I. The result follows. �

Lemma 3.3. Let θ be a congruence of P := Qm ×Qn.

(1) If Q ∈ {PT , I}, then θ contains a class Iθ which is an ideal;
(2) If Q = T and both π1(θ) and π2(θ) are non-trivial, then θ contains a class Iθ which is

an ideal;
(3) θ contains at most one ideal class.

Proof. (1) If Q is PT or I, then P has a zero, whose congruence class is easily seen to be a
unique ideal of P .

(2) If Q is T , let ca denote the constant map whose image is {a}, for some a ∈ {1, . . . ,m}.
Since π2(θ) is non-trivial, it follows that there exist f, f ′ ∈ Qm and distinct g, g′ ∈ Qn such that
(f, g)θ(f ′, g′). Thus (f, g)(ca, 1)θ(f ′, g′)(ca, 1), that is, (ca, g)θ(ca, g

′), so that θca is non-trivial.

By Theorem 2.2, the ideal I
(n)
1 is contained in a class of θca . Similarly, we pick b ∈ {1, . . . , n}

concluding that I
(m)
1 × {cb} lies in a θ-class.

We claim that I
(m)
1 ×I(n)

1 is contained in one θ-class. In fact, let (ca, cb), (cd, ce) ∈ I
(m)
1 ×I(n)

1 .

Then (ca, cd) ∈ θce , since I
(m)
1 × {ce} lies in a θ-class, and similarly (cb, ce) ∈ θca . Thus

(ca, ce)θ(ca, cb) and (cd, ce)θ(ca, ce). Therefore by transitivity we get (ca, cb)θ(cd, ce). We have

proved that I
(m)
1 × I(n)

1 is contained in the θ-class of (ca, cb).
Conversely, given any (f, g) in the θ-class of (ca, cb) and any (f ′, g′) ∈ P , we have

(ff ′, gg′)θ(caf
′, cbg

′) and (caf
′, cbg

′) ∈ I(m)
1 × I(n)

1 ⊆ [(ca, cb)]θ,

so (ff ′, gg′) ∈ [(ca, cb)]θ; similarly we prove that (f ′f, g′g) ∈ [(ca, cb)]θ. Thus [(ca, cb)]θ is an
ideal.

(3) The last assertion holds in all semigroups, as any ideal class is a (necessarily unique) zero
element of the quotient semigroup P/θ. �

For the remainder of this section we fix the following notations. Let Q ∈ {T ,PT , I}, f, f ′ ∈
Qm and g, g′ ∈ Qn. Let θ be a principal congruence on Qm ×Qn generated by ((f, g), (f ′, g′)).
Let θ1 be the principal congruence generated by (f, f ′) in Qm and θ2 be the principal congruence
generated by (g, g′) in Qn.

Lemma 3.4. If f = f ′ and g 6= g′, we have (a, b)θ(c, d) if and only if (a, b) = (c, d) or a = c,
|a|≤ |f | and b θ2 d.

Proof. Let θ′ be the binary relation defined by the statement of the lemma. If |a|≤ |f |, then
a = ufv, for some u, v ∈ Qm and hence ((a, g), (a, g′)) = ((ufv, 1g1), (uf ′v, 1g′1)) ∈ θ. It follows
that (g, g′) ∈ θa whence θ2 ⊆ θa. Now if (b, d) ∈ θ2, then (b, d) ∈ θa, and therefore (a, b)θ(a, d).
Hence θ′ ⊆ θ.
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Conversely, it is straightforward to check that θ′ is a congruence containing ((f, g), (f, g′)),
thus θ ⊆ θ′. The result follows. �

The following corollary gives a more direct description of the congruences covered by Lemma
3.4 by incorporating the structure of the congruence θ2 on Qn. By applying Theorem 2.2, we
obtain

Corollary 3.5. If (g, g′) /∈ H, let k = max{|g|, |g′|}. Then θ2 is the Rees congruence θIk and
(a, b)θ(c, d) if and only if one of the following holds:

(1) (a, b) = (c, d), |a|= |c|> |f | or |b|= |d|> k;
(2) a = c and |a|= |c|≤ |f |, |b|, |d|≤ k.

If (g, g′) ∈ H and g 6= g′ then θ2 = θ(k,N), for k = |g| and N is the normal subgroup of Sk
generated by σ, where g′ = g ·σ. Moreover, (a, b)θ(c, d) if and only if one of the following holds:

(1) (a, b) = (c, d), |a|= |c|> |f | or |b|= |d|> k;
(2) a = c, |b|= |d|= k, bHd and d = b · ω for some ω ∈ N ;
(3) a = c, |a|= |c|≤ |f |, |b|, |d|< |g|.

Lemma 3.6. Let j = max{|f |, |f ′|}. If g 6= g′ and (f, f ′) 6∈ H, then θg or θg′ contains the Rees
congruence θIj of Qm.

Proof. We will show that for j = |f ′|, θIj ⊆ θg′ . An analogous result for j = |f | follows
symmetrically. So let us assume that |f |≤ |f ′|= j. As (f, f ′) 6∈ H, f and f ′ must differ in either
image or kernel. We consider two cases.

First case: im f 6= im f ′.
As |f ′|= j ≥ |f |, im f ′ 6⊆ im f . As Qm is regular, there exists an idempotent h ∈ Qm such

that hLf . Hence imh = im f , and as h is idempotent, fh = f .
We have that (f ′h, g′) = (f ′, g′)(h, 1)θ(f, g)(h, 1) = (fh, g) = (f, g)θ(f ′, g′) and therefore

(f ′h, f ′) ∈ θg′ . As im f ′ 6⊆ im f , and imh = im f , the maps f ′h and f ′ have different images.
It follows that (f ′h, f ′) /∈ H. Now, the congruence θ′ generated by (f ′h, f ′) is contained in θg′
and by Theorem 2.2, we have θ′ = θIj . We get θIj ⊆ θg′ .

Second case: ker f 6= ker f ′.
Now |f ′|= j ≥ |f |, implies that ker f 6⊆ ker f ′. As above, the regularity of Qm implies that

there exists an idempotent h that is R-related to f ; thus h and f have the same kernel. Hence

(hf ′, g′) = (h, 1)(f ′, g′)θ(h, 1)(f, g) = (hf, g) = (f, g)θ(f ′, g′)

and so (hf ′, f ′) ∈ θg′ . Now ker f = kerh ⊆ ker(hf ′). As ker f 6⊆ ker f ′, (hf ′, f ′) 6∈ H. As above,
by Theorem 2.2, we get θI|f ′| = θIj ⊆ θg′ . �

Theorem 3.7. Let θ be the congruence on Qm ×Qn generated by ((f, g), (f ′, g′)), and assume
that (f, f ′) 6∈ H, (g, g′) 6∈ H, |f |= i, |f ′|= j, |g|= k, |g′|= l. Then θ is the Rees congruence on
Qm ×Qn defined by the ideal I = Ii × Ik ∪ Ij × Il.

Proof. If Q = T , then pick two arbitrary constants z = ca and z′ = cb in Qm and Qn, respec-
tively. If Q ∈ {PT , I}, let z, z′ be the empty maps in Qm and Qn.

As f 6= f ′ and g 6= g′, by Lemma 3.3, the congruence θ contains an ideal class K. As (z, z′)
lies in the smallest ideal I0∗ × I0∗ of P , (z, z′) ∈ K. We claim that (f, g) ∈ K.

To show this, note that by Lemma 3.6, either θg or θg′ contains the Rees congruence θImax{i,j} .
The dual of Lemma 3.6 guarantees that either θImax{k,l} ⊆ θf or θImax{k,l} ⊆ θf ′ . Up to symmetry,
there are two cases.

First case: θImax{k,l} ⊆ θf , θImax{i,j} ⊆ θg
We have that g, z′ ∈ Imax{k,l}, so (g, z′) ∈ θImax{k,l} ⊆ θf , that is, (f, g)θ(f, z′).

As f, z ∈ Imax{i,j}, an analogous argument shows that (f, z) ∈ θg. By Lemma 3.1, we have
θg ⊆ θz′ , and so (f, z) ∈ θz′ . Thus (f, z′)θ(z, z′) and hence (f, g)θ(f, z′)θ(z, z′) ∈ K.

Second case: θImax{k,l} ⊆ θf , θImax{i,j} ⊆ θg′
We have g, z′ ∈ Imax{k,l} so (g, z′) ∈ θf and similarly (f ′, z) ∈ θg′ . Thus

(f, z′)θ(f, g)θ(f ′, g′)θ(z, g′).
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Let h ∈ Sm be such that fhf = f (such h clearly exists). We then have

(f, g)θ(f, z′) = (fhf, z′) = (f, z′)(h, z′)(f, z′) θ (f, z′)(h, z′)(z, g′) = (z, z′) ∈ I0∗ × I0∗ ⊆ K.

Hence in both cases (f, g) ∈ K. As K is a class of θ, then (f ′, g′) ∈ K as well. Now I ⊆ K,
as I is the smallest ideal containing {(f, g), (f ′, g′)}. It follows that θI ⊆ θK ⊆ θ. Conversely
θ ⊆ θI as θ is generated by ((f, g), (f ′, g′)) and θI is a congruence that contains ((f, g), (f ′, g′)).
Hence θ = θI . �

Corollary 3.8. Under the conditions of Theorem 3.7, if i ≤ j and k ≤ l then θ = θIj×Il.

Theorem 3.9. Let θ be the congruence on Qm × Qn generated by ((f, g), (f ′, g′)), and let θ2

be the congruence on Qn generated by (g, g′). If g 6= g′, (g, g′) ∈ H and (f, f ′) 6∈ H; let
j = max{|f |, |f ′|} and k = |g|= |g′|. Then (a, b)θ(c, d) if and only if (a, b) = (c, d) or |a|, |c|≤ j,
|b|, |d|≤ k, bθ2d.

Proof. We start with some considerations having in mind the initial conditions. By the dual
of Lemma 3.1, we have θg = θg′ ⊆ θh for all h ∈ Qn with |h|≤ k. By Lemma 3.6, we get
θIj ⊆ θg = θg′ , hence that θIj ⊆ θh for each such h. Assume w.l.o.g. that |f ′|= j. Now f, f ′ ∈ Ij
and θIj ⊆ θg, so fθgf

′. Thus (f ′, g′)θ(f, g)θ(f ′, g). Then (g, g′) ∈ θf ′ and therefore θ2 ⊆ θf ′ , as
θ2 is the congruence generated by (g, g′). By Lemma 3.1, θf ′ ⊆ θu, for all u ∈ Qm such that
|u|≤ |f ′|= j. Thus θ2 ⊆ θu for all u ∈ Qm with |u|≤ j.

Let θ′ be the relation on Qm × Qn defined by (a, b)θ′(c, d) if and only if (a, b) = (c, d) or
|a|, |c|≤ j, |b|, |d|≤ k, bθ2d. We want to show that θ = θ′.

Assume that |a|, |c|≤ j, |b|, |d|≤ k and bθ2d. Taking u = a we obtain θ2 ⊆ θa. As bθ2d, we
get (a, b)θ(a, d). Now |d|≤ k which, as mentioned at the beginning of the proof, implies that
θIj ⊆ θd. It follows that (a, c) ∈ θd, that is (a, d)θ(c, d). Therefore (a, b)θ(a, d)θ(c, d), and so
θ′ ⊆ θ.

For the reverse inclusion, it suffices to check that θ′ is a congruence containing ((f, g), (f ′, g′)).
We leave this straightforward verification to the reader. �

Notice that we can once again give a more explicit description of θ by incorporating the
classification of θ2 given by Theorem 2.2.

Corollary 3.10. Let (f, g), (f ′, g′) ∈ Qm × Qn, such that g 6= g′, (g, g′) ∈ H and (f, f ′) 6∈ H.
Let j = max{|f |, |f ′|} and k = |g|= |g′|. Let g′ = g · σ for σ ∈ Sk with regard to some ordering
associated with the H-class of g, and let N be the normal subgroup of Sk generated by σ. If θ
is the congruence on Qm ×Qn generated by ((f, g), (f ′, g′)), then (a, b)θ(c, d) if and only if one
of the following holds:

(1) (a, b) = (c, d) for |a|> j or |b|> k;
(2) |a|, |c|≤ j, |b|= k, bHd and d = b · ω for some ω ∈ N , and with regard to some ordering

associated with the H-class of d;
(3) |a|, |c|≤ j and |b|, |d|< k.

We remark that there are obvious dual versions of Lemma 3.4 and Theorem 3.9 obtained
by switching the roles of the coordinates. Apart from the trivial case that (f, g) = (f ′, g′), it
remains to determine the principal congruence θ when f 6= f ′, g 6= g′, fHf ′, gHg′.

We will first extend the actions · of Si on Qm and of Sj on Qn to a partial action of Si × Sj
on Qm ×Qn. We define the action · of Si × Sj on the set

Di,j = {(f, g) ∈ Qm ×Qn such that |f |= i, |g|= j}

by setting (f, g) · (ω1, ω2) = (f · ω1, g · ω2), for all (f, g) ∈ Di,j and (ω1, ω2) ∈ Si × Sj , where in
the first component · is applied with respect to the ordering of the H-class of f within Qm, and
correspondingly in the second component.

As H-classes of Qm × Qn are products of H-classes of Qm and of Qn, it follows that the
action · preserves H-classes. In addition, the action · is transitive on each H-class. If Hf and

Hg stand for the H-classes of f in Qm and of g in Qn, we have (f, g) · (ω1, ω2) = (fω̄
Hf

1 , f ω̄
Hg

2 ),
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where ω̄
Hf

1 ∈ Sim f and ω̄
Hg

2 ∈ Sim g are as defined before Theorem 2.2. In this context, we will
always consider Sim f × Sim g to be a subgroup of Sm × Sn in the natural way.

Theorem 3.11. Let θ be the principal congruence on Qm × Qn generated by ((f, g), (f ′, g′)).
If f 6= f ′, g 6= g′, fHf ′, gHg′, |f |= i = |f ′|, |g|= k = |g′|, let σ1 ∈ Si and σ2 ∈ Sk be such
that f · σ1 = f ′ and g · σ2 = g′. Let N be the normal subgroup of Si × Sk generated by the pair
(σ1, σ2).

Then (a, b)θ(c, d) if and only (a, b) = (c, d) or one of the following hold:

(1) |a|, |c|≤ i− 1, |b|, |d|≤ k − 1;
(2) |a|= |c|= i, |b|, |d|≤ k − 1, and aθ1c;
(3) |a|, |c|≤ i− 1, |b|, |d|= k, and bθ2d;
(4) |a|= |c|= i, |b|= |d|= k, aHc, bHd and there exists (τ1, τ2) ∈ N such that a · τ1 = c,

b · τ2 = d.

Proof. First note that if (a, b)θ(c, d), (a, b) 6= (c, d), and θ is generated by ((f, g), (f ′, g′)), we
must have |a|≤ |f |= i, |b|≤ |g|= k, |c|≤ |f ′|= i, |d|≤ |g′|= k.

As fHf ′, we have that f and f ′ have the same kernel and image. Together with f 6= f ′, this
implies |f |= i ≥ 2. Similarly k ≥ 2. Let ker f = ker f ′ = {K1,K2, . . . ,Ki}.

First assume that Q ∈ {T ,PT }.
Suppose that i ≥ 3. As f 6= f ′, there exists x ∈ im f = im f ′ such that the associated kernel

classes are different, i.e. f−1(x) 6= f ′−1(x). W.l.o.g. assume K1 = f−1(x) and K2 = f ′−1(x).
Let {y} = K3f so that f−1(y) = K3.

Let h ∈ Tn be such that yh = x and it is identical otherwise. Then (fh, g) θ (f ′h, g′), where
|fh|= |f ′h|= i − 1 and fh and f ′h have different kernel, since the preimages of x are K1∪̇K3

and K2∪̇Kj , for some j, respectively.
Let β be the congruence generated by the pair ((fh, g), (f ′h, g′)). As (fh, f ′h) /∈ H, g 6=

g′, gHg′, Theorem 3.9 is applicable to β. Thus (a, b)β(c, d) for (a, b) 6= (c, d) if and only if
|a|, |c|≤ i − 1, |b|, |d|≤ k, and bθ2,βd, where θ2,β is the Qn-congruence generated by (g, g′) and
hence is equal to θ2. By Theorem 2.2, the relation θ2 restricted to Ik−1 is the universal relation.
Therefore the pairs ((a, b), (c, d)) that satisfy condition (1) or (3) are in β, but β’s generating
pair is in θ, and so they are in θ, as well.

Suppose now that i = 2. Let (K1)f = x1 and (K2)f = x2. Then (K1)f ′ = x2, and
(K2)f ′ = x1. Let h be a total map with image contained in K1. Then (hf, g)θ(hf ′, g′) where
|hf |= |hf ′|= 1, but imhf 6= imhf ′. Thus (hf, hf ′) /∈ H, and by Theorem 3.9, as before, we
conclude that θ must contain all pairs satisfying conditions (1) or (3).

Next suppose that Q = I. We have i ≥ 2. In this case, there exists x ∈ im f = im f ′

such that f−1(x) 6= f ′−1(x) (notice that these sets are now singletons). Let h ∈ Im be the
identity map with domain {1, . . . ,m} \ {x}. Then (fh, g)θ(f ′h, g′) where |fh|= |f ′h|= i − 1
and dom fh 6= dom fh′. Once again applying Theorem 3.9, we conclude that θ must contain all
pairs satisfying conditions (1) or (3).

By symmetrically applying the above considerations to the second argument, we also show
that θ contains the pairs that satisfy condition (2).

The next step is to prove that, for any Q ∈ {T ,PT , I} the pairs that satisfy condition (4)
are also in θ.

Note that the group of units of Qm ×Qn is Sm × Sn. We can choose (u, v) ∈ Sm × Sn such
that both uf and vg are idempotent transformations. Now (uf, vg) = (u, v)(f, g)θ(u, v)(f ′, g′) =
(uf ′, vg′), and clearly (uf) · σ1 = uf ′ and (vg) · σ2 = vg′. Hence we may assume w.l.o.g. that
f , g are idempotents.

Let H be the H-class of (f, g). Then (f ′, g′) ∈ H. As H contains an idempotent, H is a
group. Moreover, it is easy to see that φ given by (ω1, ω2)φ = (f · ω1, g · ω2) is an isomorphism
from Si × Sk to H.

Let θ′ be the restriction of θ to H, then θ′ is a congruence on a group. Let K ′ be the normal
subgroup of H corresponding to θ′, and K ′ = K̄φ−1. As an idempotent, (f, g) is the identity
of H, so (f, g) ∈ K ′ and hence (f ′, g′) ∈ K ′, as (f, g)θ′(f ′, g′). Applying φ−1, we get that
(σ1, σ2) ∈ K. As K is a normal subgroup of Si × Sk, we obtain N ⊆ K.
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Now let us take a pair ((a, b), (c, d)) that satisfies (4), that is, |a|= |c|= i, |b|= |d|= k, aHc,
bHd such that a · τ1 = c, b · τ2 = d for some (τ1, τ2) ∈ N . It remains to show that (a, b)θ(c, d).

As |a|= |f | and |b|= |g|, we have aJ f , and bJ g, so there exists h1, h2 ∈ Qm and h3, h4 ∈ Qn
such that a = h1fh2, b = h3gh4. Once again as |a|= |f | and |b|= |g|, h2|im f is an injection and
so is h4|im f . Hence w.l.o.g. we may assume that h2 ∈ Sm, h4 ∈ Sn.

Note that as (τ1, τ2) ∈ N , we have (τ1, τ2) ∈ K, since N ⊆ K. Recall that τ̄
π1(H)
1 ∈ Simπ1(H)

denotes the function such that hτ̄
π1(H)
1 = h · τs for all h ∈ π1(H). We will write τ̄1 for the

extension of τ̄
π1(H)
s to Sm that is the identity on {1, . . . ,m} \ imH, and use corresponding

notation if τ1 is replaced by other elements of Si or Sk.
Consider y = (fh2τ̄1h

−1
2 , gh4τ̄2h

−1
4 ). It is straightforward to check that y ∈ H, whence

y = (f ·ω1, g ·ω2) for some (ω1, ω2) ∈ Si×Sk. In fact, ω̄1 = h2τ̄1h
−1
2 , as these elements agree on

im f and are the identity otherwise. Hence ω̄1 and τ̄1 are conjugate in Sm and so have the same
cycle structure. The cycle structure of ω̄1 is obtained from ω1 by the addition of m − i trivial
cycles. The same holds for τ̄1 and τ1. It follows that τ1 and ω1 are conjugates in Si. Analogously,
ω̄2 = h4τ̄2h

−1
4 , and τ2 and ω2 are conjugates in Sk. Therefore, (ω1, ω2) is a conjugate of (τ1, τ2)

in Si × Sk, and hence (ω1, ω2) ∈ K.
We obtain that (f ·ω1, f ·ω2) ∈ K ′, and hence (f, g)θ′(f ·ω1, f ·ω2), and so (f, g)θ(f ·ω1, f ·ω2).

Now f · ω1 = fω̄1, g · ω2 = gω̄2 and so

(a, b) = (h1fh2, h3gh4) θ (h1fω̄1h2, h3gω̄2h4) = (h1f(h2τ̄1h
−1
2 )h2, h3g(h4τ̄2h

−1
4 )h4)

= (h1fh2τ̄1, h3gh4τ̄2)
= (aτ̄1, bτ̄2) = (a · τ1, b · τ2) = (c, d),

as required.
It follows that all pairs that satisfy one of the conditions (1) to (4) are in θ.
Conversely, let ρ be defined on Qm ×Qn by, for all (a, b), (c, d) ∈ Qm ×Qn,

(a, b)ρ(c, d) iff

{
(a, b) = (c, d), or
(a, b) 6= (c, d), and one of (1) to (4) holds.

We can routinely verify that ρ is a congruence. As ((f, g), (f ′, g′)) ∈ ρ, θ ⊆ ρ. We have shown
that ρ ⊆ θ, therefore θ = ρ, as required. �

We can get a more direct description of the congruence classes by using the following folklore
result. Its proof is an easy exercise.

Theorem 3.12. All normal subgroups of Si × Sk are either products of normal subgroups of
Si and Sk or the group of all pairs (σ1, σ2), where σ1 and σ2 are permutations with the same
signature.

Corollary 3.13. Under the conditions of Theorem 3.11, if one of σ1 or σ2 is an even permu-
tation, then θ agrees on (Ii × Ij)2 with the product congruence θ1 × θ2, and is trivial elsewhere.
Concretely, in this case, let N1, N2 be the normal subgroups of Si and Sk generated by σ1, σ2,
respectively. Then for (a, b) 6= (c, d), we have (a, b)θ(c, d) if and only if one of the following
holds:

(1) |a|, |c|≤ i− 1, |b|, |d|≤ k − 1;
(2) |a|, |c|≤ i− 1, |b|= |d|= k, bHd, d = b · τ2 for some τ2 ∈ N2;
(3) |a|= |c|= i, |b|, |d|≤ k − 1, aHc, a = c · τ1 for some τ1 ∈ N1;
(4) |a|= |c|= i, |b|= |d|= k, aHc, bHd, a = c · τ1 for some τ1 ∈ N1, and d = b · τ2 for some

τ2 ∈ N2.

Under the conditions of Theorem 3.11, if both σ1, σ2 are odd permutations, then for (a, b) 6=
(c, d), we have (a, b)θ(c, d) if and only if one of the following holds:

(1) |a|, |c|≤ i− 1, |b|, |d|≤ k − 1;
(2) |a|, |c|≤ i− 1, |b|= |d|= k, bHd;
(3) |a|= |c|= i, |b|, |d|≤ k − 1, aHc;
(4) |a|= |c|= i, |b|= |d|= k, aHc, bHd and there exist τ1 ∈ Si, τ2 ∈ Sk of the same signature

such that a · τ1 = c, b · τ2 = d.
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4. The structure of all congruences on Qm ×Qn
We now look at our main aim: to determine the structure of all congruences on Qm × Qn.

When studying a congruence θ on Qm × Qn, as in the case of Qn (Theorem 2.2), we realize
that the θ-classes are intrinsically related to the D-classes of Qm × Qn. We shall show that θ
is determined by some minimal blocks of θ-classes, called here θ-dlocks, which are also unions
of D-classes. The strategy will be to determine the possible types of θ-dlocks and to describe θ
within such blocks.

Throughout this section, θ denotes a congruence on Qm × Qn. To avoid some minor tech-
nicalities, we assume that Qm and Qn are non-trivial, i.e. we exclude the factors T0, T1, PT 0,
I0.

Definition 4.1. A θ-dlock X is a non-empty subset of Qm ×Qn such that

(1) X is a union of θ-classes as well as a union of D-classes;
(2) No proper non-empty subset of X satisfies (1).

In other words, the θ-dlocks are the classes of the equivalence relation generated by D ∪ θ.
We will just write dlock if θ is understood by context, and will describe dlocks by listing their
D-classes. Concretely, let Di,j be the D-class of all pairs (f, g) such that |f |= i, |g|= j. Recall
that 0∗ refers to 0 for Q ∈ {I,PT } and to 1 for Q = T . For P ⊆ {0∗, . . . ,m}× {0∗, . . . , n}, we
set DP = ∪(i,j)∈PDi,j .

First we describe the various configurations of dlocks with respect to the H-classes they
contain. To this end, we will divide the dlocks into 9 different types.

Definition 4.2. Let X be a θ-dlock. We say that X has first component type

ε: if for all (a, b), (c, d) ∈ X with (a, b) θ (c, d) we have a = c;
H: if there exist (a, b), (c, d) ∈ X such that a 6= c and (a, b) θ (c, d), and for all (a′, b′),

(c′, d′) ∈ X such that (a′, b′) θ (c′, d′) we have a′Hc′;
F : if there exist (a, b), (c, d) ∈ X such that (a, c) /∈ H and (a, b) θ (c, d).

We define the second component type of X dually. Finally we say that X has type VW for
V,W ∈ {ε,H, F} if it has first component type V and second component type W .

Clearly, we obtain all possible types of dlocks. Next, we will describe the congruence θ by
means of its restriction to each of its dlocks.

Lemma 4.3. Let X = DP = ∪(i,j)∈PDi,j be a θ-dlock of type FF . Then P is a downward-
closed subset of ({0∗, . . . ,m} × {0∗, . . . , n},≤ × ≤), and X is a single θ-class that is an ideal
of Qm ×Qn. Conversely, let θ have an ideal class I, and let P ⊆ {0∗, . . . ,m} × {0∗, . . . , n} be
the set of pairs (i, j) for which Di,j ∩ I 6= ∅. Then I is a dlock of Type FF unless Q ∈ {I,PT }
and one of the following holds:

(1) P = {0} × {0, . . . , j} for some j ∈ {0, . . . , n};
(2) P = {0, . . . , i} × {0} for some i ∈ {0, . . . ,m}.

Proof. Let X be a θ-dlock of type FF and assume that its first component type F is witnessed
by ((f, g), (f ′, g′)), i.e. ((f, g), (f ′, g′)) ∈ θ ∩X2 and (f, f ′) 6∈ H.

Let θ′ be the congruence generated by ((f, g), (f ′, g′)). Let i = max{|f |, |f ′|} and k =
max{|g|, |g′|}. Consider the ideals Ii ⊆ Qm, Ik ⊆ Qn. By either Theorem 3.9 (if gHg′, g 6= g),
Theorem 3.7 (if (g, g′) /∈ H) or Lemma 3.4 (if g = g′), all sets of the form Ii × {b}, where
|b|≤ k, are contained in congruence classes of θ′. By a dual argument {a} × Ik is contained
in a θ′ class for |a|≤ i. By choosing |a|= 0∗ = |b|, we see that these sets intersect. It follows
that θ′ and hence θ have a class that contains D0∗,0∗. It is straightforward to check that such a
θ-congruence class Y is an ideal of Qm ×Qn. By Lemma 3.2, all ideals are unions of D-classes.
Therefore Y is a dlock that contains X. As dlocks are disjoint X = Y , and so X is a single
θ-class that is an ideal.

Conversely, suppose that I is an ideal class of θ, and that P indexes the D-classes intersecting
I. By Lemma 3.2, the ideal I is a union of D-classes, so that DP = I, and I is a dlock. It is a
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dlock of type FF unless either π1(I) or π2(I) consists of a single H-class. The listed exceptions
are the only way this can happen, as we assumed that Qn, Qm are non-trivial. �

In particular, by Lemma 3.3, the congruence θ has at most one dlock of type FF . If it exists,
the unique dlock of type FF is the θ-class that contains D0∗,0∗. By Lemma 3.2, we can visualize
this dlock as a “landscape” (see Figure 1).
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Figure 1. A possible configuration for a dlock of type FF

Lemma 4.4. Let X be a θ-dlock. Then X is of type εF or HF if and only if there exist
0∗ ≤ i ≤ m, 1 ≤ j ≤ n, and N � Si, such that X = DP with P = {i} × {0∗, . . . , j}, and for
every (f, g) ∈ X,

(1) [(f, g)]θ = {(f ′, g′) ∈ X|fHf ′ and f ′ = f · σ for some σ ∈ N}.

If X satisfies these requirements, then X is of type HF exactly when N 6= εi.

Proof. Let X = DP be a θ-dlock. Suppose X is of type εF or HF . Then for every θ-class
C contained in X, we have π1(C) contained in an H-class of Qm by the definitions of first
component types ε and H. Hence π1(C) is contained in a D-class of Qm for all such C. Since
the elements of π1(X) that are θ-related are pairwise either equal or H-related, π1(X) must be
a single D-class of Qm, say Di, by the definition of θ-dlock. Therefore P = {i} ×K for some
non-empty K ⊆ {0∗, . . . , n}. Let j be the largest element in K. We claim that there exists
((f, g), (f ′, g′)) ∈ θ with (g, g′) 6∈ H and (f, g) ∈ Di,j . For otherwise [(f̄ , ḡ)]θ would be contained
in an H-class for every (f̄ , ḡ) ∈ Di,j , and then {(i, j)} would index a dlock contained in X, and
X being minimal would imply Di,j = X. However, X is a dlock of type εF or HF , and we have
a contradiction.

So there exists ((f, g), (f ′, g′)) ∈ θ, such that (g, g′) /∈ H and (f, g) ∈ Di,j . Now, there exists
σ ∈ Si such that f ′ = f · σ. Let Nσ be the normal subgroup of Si generated by σ. Let N be
maximal among all such Nσ. Assume that ((f, g), (f ′, g′)) witnesses N .

Let θ′ be the principal congruence generated by ((f, g), (f ′, g′)). Either Corollary 3.5 or the
dual of Theorem 3.9 is applicable to θ′ - the first one if f = f ′, and hence N = εi, and the
second one otherwise.

Assume first that N 6= εi, then by the dual of Theorem 3.9, we get that for all (f̂ , ĝ) ∈
D{i}×{0∗,...,j},

(2) [(f̂ , ĝ)]θ′ = {(f̄ , ḡ) | |ḡ|≤ j, f̄ = f̂ · σ̄ for some σ̄ ∈ N}.

If N = εi then by Corollary 3.5, we get that for all (f̂ , ĝ) ∈ D{i}×{0∗,...,j},

(3) [(f̂ , ĝ)]θ′ = {(f̂ , ḡ) | |ḡ|≤ j} = {(f̄ , ḡ) | |ḡ|≤ j, f̄ = f̂ · σ̄ for some σ̄ ∈ N}.

As the rightmost expressions in (2) and (3) are identical, we may treat both cases simultaneously.
We claim that the sets from (2) or (3) are also congruence classes of θ. As θ′ ⊆ θ the sets in

(2), (3) are contained in classes of θ. We have already established that P ⊆ {i}×{0∗, . . . , j}, it
now follows that P = {i} × {0∗, . . . , j}, since the sets in (2), (3) intersect all D-classes indexed
by {i} × {0∗, . . . , j}.

Now let E be a congruence class of θ that is contained in X. Then E must be a union of sets
from (2) or (3), and in particular, must intersect Di,j , say (f̂ , ĝ) ∈ E ∩Di,j . Let (f̄ , ḡ)θ(f̂ , ĝ).

Then |ḡ|≤ j, since E ⊆ X = DP . Moreover (f̂ , f̄) ∈ H as X is a dlock of type εF or HF . Now,
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if β is given by f̄ = f̂ · β, then β ∈ N , by the maximality of N . It follows that E is one of the
sets from (2), (3), and thus contained in [(f̂ , ĝ)]θ′ . Therefore [(f̂ , ĝ)]θ = [(f̂ , ĝ)]θ′ , for (f̂ , ĝ) ∈ X.

Notice that j cannot be 0. In fact, if j = 0, then π2(X) only contains one element, which
contradicts the definition of type εF or HF . We have concluded the proof of the “if” direction
of the first statement of the lemma.

The “only if” direction now follows directly from the description (1), provided that there
exists (g, g′) 6∈ H, (g, g′) ∈ π2(X). This holds as Qn is non-trivial and j ≥ 1.

Finally, the last statement follows directly from (1) and the definitions of type εF or HF . �

If X is a dlock of type HF or εF , we call the group N � Si from Lemma 4.4 the normal
subgroup associated with X. Clearly, a dual version of Lemma 4.4 holds for dlocks X of type
Fε or FH.

Lemma 4.5. Let X = DP be a dlock of type HF with P = {i} × {0∗, . . . , j} and associated
normal subgroup N �Si. Then i ≥ 2, and {0∗, . . . , i− 1}×{0∗, . . . , j} is contained in the index
set of a θ-dlock of type FF .

Moreover, every congruence θ has at most one dlock of type HF .

Proof. By Lemma 4.4, we have εi 6= N�Si, which implies that i ≥ 2. By the description (1), we
may find ((f, g), (f ′, g′)) ∈ θ ∩X2, such that (f, g) ∈ Di,j , f 6= f ′, (f, f ′) ∈ H, and (g, g′) 6∈ H.
As X = DP , |g′|≤ j, |f |= i.

Let θ′ be the principal congruence generated by ((f, g), (f ′, g′)). Then θ′ is described in the
dual of Corollary 3.10. By this corollary, if C := {0∗, . . . , i − 1} × {0∗, . . . , j} then DC is one
equivalence class of θ′, and hence contained in an equivalence class of θ. As j ≥ 1, i − 1 ≥ 1,
and we excluded the case that Qn is trivial, π1(DC) and π2(DC) both contain more then one
H-class. Hence C is contained in the index set of a θ-dlock X̄ of type FF .

Now assume that θ has a potentially different dlock X ′ = DP ′ of type HF , where P ′ =
{i′} × {0∗, . . . , j′}. By applying our previous results to X ′, we get that Di′−1,0∗ must also lie
in a θ-dlock X̄ of type FF . As noted after Lemma 4.3, dlocks of type FF are unique, and so
Di′−1,0∗ ⊆ X̄. So both Di−1,0∗ ⊆ X̄ and Di′−1,0∗ ⊆ X̄, but Di,0∗ 6⊆ X̄ and Di′,0∗ 6⊆ X̄, as these
D-classes lie in the HF -dlocks X and X ′. By Lemma 4.3, the index set of X̄ is downwards
closed, hence there is a unique ī such that Dī,0∗ ⊆ X̄, Dī+1,0∗ 6⊆ X̄. It follows that i = ī+1 = i′.
Thus both X and X ′ contain Di,0∗ and therefore X = X ′. �

We may visualize the statement of Lemma 4.5 by saying that a θ-dlock of type HF must lie
on the “most eastern slope” of the dlock of type FF . Once again, a dual result holds for dlocks
of type FH. Figure 2 shows the possible positions for dlocks of type HF and FH in relation
to a dlock of type FF .
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Figure 2. A possible configuration for three dlocks of type FF , HF and FH

Lemma 4.6. Let X = DP be a θ-dlock of type εF with P = {i} × {0∗, . . . , j}. Then for each
k = 0∗, . . . , i− 1, the set {k}×{0∗, . . . , j} is contained in the index set of a θ-dlock of type FF ,
HF , or εF .

Proof. If i = 0∗, the statement quantifies over the empty set, so assume this is not the case.
It suffices to show the statement for the case that k = i − 1, the remaining values follow by
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induction applying: the same result if the resulting θ-dlock X̄ is of type εF ; Lemma 4.3 if X̄ is
of type FF ; or Lemma 4.5 if X̄ is of type HF .

By Lemma 4.4 we may find ((f, g), (f, g′)) ∈ θ∩X2, such that (f, g) ∈ Di,j , (g, g′) 6∈ H. Note
that this implies that |g′|≤ j.

Let θ′ be the principal congruence generated by ((f, g), (f, g′)). Then θ′ is described in the
dual of Corollary 3.10. By this corollary, if |f̄ |= i− 1, then

[(f̄ , g)]θ′ = {(f̄ , ĝ)| |ĝ|≤ j}.

It follows that {i − 1} × {0∗, . . . , j} is the index set of a θ′-dlock and hence contained in the
index set of a θ-dlock X ′. As ((f̄ , g), (f̄ , g′)) ∈ θ′ ⊆ θ, and (g, g′) 6∈ H, it follows that X ′ is of
type FF , HF , or εF , as these three options cover all cases where π2(DP ′) 6⊆ H. The result
follows. �

Lemma 4.7. For a given congruence θ, let J be the set of values (i, ji) such that {i}×{0∗, . . . , ji}
is the index set of a θ-dlock of type εF . Then π1(J) is a set of consecutive integers (possibly
empty), and the values ji are non-increasing in i.

Proof. Assume that i1 < i2 < i3 with i1, i3 ∈ π1(J). We want to show that i2 ∈ π1(J), as well.
As i1, i3 ∈ π1(J), X1 = D{i1}×{0∗,...,ji1} and X3 = D{i3}×{0∗,...,ji3} are θ-dlocks of type εF , for

some ji1 , ji3 . Applying Lemma 4.6 to X3, we get that D{i2}×{0∗,...,ji3} is contained in θ-dlock

X ′ of type FF , HF , or εF .
If X ′ were of type HF or FF , then by Lemma 4.5 or Lemma 4.3, respectively, D{i1}×{0∗,...,ji3}

would be contained in a dlock of type FF , which in the latter case would be the dlock X ′ itself.
In particular, Di1,0∗ would be contained in a dlock of type FF . However, as i1 ∈ J , Di1,0∗ is
contained in the dlock X1 of type εF , a contradiction. Hence X ′ is of type εF , and i2 ∈ π1(J).
It follows that π1(J), if not empty, is a set of consecutive integers.

Now let (i, ji), (i − 1, ji−1) ∈ J . As above, we have that D{i−1}×{0∗,...,ji} is contained in a
θ-dlock X ′ of type FF , HF , or εF . As (i − 1, ji−1) ∈ J , this must necessarily be in the dlock
D{i−1}×{0∗,...,ji−1} of type εF . Hence ji ≤ ji−1, and so the values ji are non-increasing in i. �

Lemma 4.6 and Lemma 4.7 show that, if there are any θ-dlocks of type εF , they are layered
on the top of each other without “overhanging”, with the lowest one either starting at i = 0∗,
or lying on the top of the eastern most slope of the dlock of type FF , or lying on the top of
the dlock of type HF , in the last two cases without overhanging the dlocks below them. An
example is depicted in Figure 3. Once again, the dual versions of Lemmas 4.6 and 4.7 hold as
well.
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Figure 3. A possible configuration for dlocks of type FF , HF , FH, εF , and Fε
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Lemma 4.8. Let X be a dlock. Then X is of type HH, εH, Hε, or εε if and only if X = Di,j

for some i, j and there exists N � Si × Sj such that for every (f, g) ∈ X,

[(f, g)]θ = {(f ′, g′) ∈ Di,j | fHf ′, gHg′,
and (f ′, g′) = (f · σ, g · τ) for some (σ, τ) ∈ N}.(4)

Moreover, in this situation,

(a) X is of type HH ⇐⇒ π1(N) 6= εi and π2(N) 6= εj;
(b) X is of type εH ⇐⇒ N = εi ×N ′ for some N ′ 6= εj;
(c) X is of type Hε ⇐⇒ N = N ′ × εj for some N ′ 6= εi;
(d) X is of type εε ⇐⇒ N = εi × εj.

Proof. Let X be of type HH, εH, Hε, or εε. Then π1(θ ∩ X2) ⊆ H and π2(θ ∩ X2) ⊆ H. It
follows that each H-class in X is a union of θ-classes. Therefore every D-class in X is a union
of θ-classes as well, and by the minimality property of a dlock, there is only one D-class in X.
It follows that X = Di,j for some (i, j).

Now as θ ∩X2 ⊆ H ×H, having ((f, g), (f ′, g′)) ∈ θ ∩X2 implies that f ′ = f · σ, g′ = g · τ
for some σ ∈ Si and τ ∈ Sj . Let N ⊆ Si × Sj be the set of all (σ, τ) that correspond to some
((f, g), (f ′, g′)) ∈ θ ∩X2.

If N = {(idSi , idSj )} then θ is the identity on X, and θ ∩X2 is given by (4) with the choice
N = εi × εj .

Otherwise, let (idSi , idSj ) 6= (σ, τ) ∈ N , as witnessed by ((f, g), (f ·σ, g ·τ)) ∈ θ∩X2. Let θ′ be

the principal congruence generated by ((f, g), (f ·σ, g ·τ)), and let (f̄ , ḡ) ∈ X. By either Theorem
3.11 (if σ 6= idSi and τ 6= idSj ) or Lemma 3.4 and its dual (otherwise), ((f̄ , ḡ), (f̄ ·σ, ḡ·g)) ∈ θ′ ⊆ θ.
By repeated use of this argument, we get that the equivalence relation given by (4) is contained
in θ. As the reverse inclusion follows from the definition of N , the expression (4) describes
θ ∩X2.

It remains to show that N is a normal subgroup of Si × Sj . Let (σ, τ), (σ′, τ ′) ∈ N , and
(f, g) ∈ X arbitrary, then

(f · σ, g · τ) ∈ θ ⇒ (((f · σ) · σ′), ((g · τ) · τ ′))) ∈ θ ⇒ ((f · (σσ′)), (g · (ττ ′)) ∈ θ,

where the first implication follows as (4) describes θ on X, and the second implication as · is
a group action. Thus N is a subgroup of Si × Sj . Now if (σ, τ) ∈ N , then by either Theorem
3.11, Lemma 3.4, or the dual of Lemma 3.4 (applied to any ((f, g), (f · σ, g · τ)) ∈ θ ∩X2), N
contains the normal subgroup generated by (σ, τ). Therefore N is a subgroup generated by a
union of normal subgroups, and hence it is itself normal.

The converse statement is immediate, and the characterization of the various types follows
directly from the definition of the types and from (4). �

If X = Di,j is a dlock of type HH, εH, Hε, or εε, we will call N � Si × Sj from Lemma 4.8
the normal subgroup associated with X.

Lemma 4.9. Let X = Di,j be a θ-dlock of type HH with normal subgroup N � Si × Sj. Then
i, j ≥ 2, and Di,j−1 is contained in either a θ-dlock of type FF , or in a θ-dlock of type HF with
normal subgroup N ′ � Si, where π1(N) ⊆ N ′.

Symmetrically, Di−1,j is contained in either a θ-dlock of type FF , or in a θ-dlock of type FH
with normal subgroup N ′ � Sj, where π2(N) ⊆ N ′.

Proof. By Lemma 4.8, we have π1(N) 6= εi, π2(N) 6= εj , and so i, j ≥ 2. Also by Lemma 4.8,
there are ((f, g), (f ′, g′)) ∈ θ ∩X2 with f 6= f ′, g 6= g′. Let us fix such a pair, and let θ′ be the
principal congruence generated by it. Then θ′ ⊆ θ and θ′ is described in Theorem 3.11.

Let ḡ, ḡ′ ∈ Qm be transformations of rank j−1 that are in different H-classes. Such elements
clearly exist. By Theorem 3.11(2), we get ((f, ḡ), (f ′, ḡ′)) ∈ θ′ ⊆ θ. As f 6= f ′, (ḡ, ḡ′) 6∈ H, the
θ-dlock X ′ containing Di,j−1 is either of type FF or HF , depending on the existence or not of

a pair ((f̂ , ĝ), (f̂ ′, ĝ′)) ∈ θ ∩Di,j with (f̂ , f̂ ′) 6∈ H.
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In the first case, we are done, so assume that X ′ is of type HF . Then the restriction of θ to
X ′2 is given in Lemma 4.4. Let N ′ � Si be the normal subgroup of X ′. We now wish to prove
that π1(N) ⊆ N ′.

Let σ ∈ π1(N), so (σ, τ) ∈ N for some τ . Then ((f, g), (f · σ, g · τ)) ∈ θ by Lemma 4.8, and
so ((f, gḡ), (f · σ, (g · τ)ḡ)) ∈ θ. As (f, gḡ) and (f · σ, (g · τ)ḡ) lie in the HF -dlock X ′, we get
that π1(σ, τ) = σ ∈ N ′ by Lemma 4.4.

The last statement follows dually. �

The result means that the dlocks of type HH can only occupy the “valleys” in the landscape
formed by the dlocks of FF , HF , and FH (see Figure 4).
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Figure 4. A possible configuration for dlocks of type FF , HF , FH, εF , Fε, and HH

Lemma 4.10. Let X = Di,j be a θ-dlock of type εH with normal subgroup N = εi×N ′�Si×Sj.
Then j ≥ 2, and Di,j−1 is contained in a dlock of type FF , HF , or εF .

Moreover, if i > 0∗, then Di−1,j is contained in one of the following:

(1) a dlock of type FF ;
(2) a dlock of type HF ;
(3) a dlock of type εF ;
(4) a dlock of type FH with normal subgroup N̄ � Sj such that N ′ ⊆ N̄ ;
(5) a dlock of type HH with normal subgroup N̄ � Si−1 × Sj such that εi−1 ×N ′ ⊆ N̄ ;
(6) a dlock of type εH with normal subgroup N̄ � Si−1 × Sj such that εi−1 ×N ′ ⊆ N̄ .

Proof. As N ′ is non-trivial, j ≥ 2. Let σ generate N ′ as a normal subgroup in Sj . Let (f, g) ∈ X
and set g′ = g · σ. Then ((f, g), (f, g′)) ∈ θ. Let θ′ be the principal congruence generated by
this pair. Then θ′ ⊆ θ and θ′ is described in Lemma 3.4.

Let ḡ, ḡ′ ∈ Qm both be transformations of rank j − 1 that are in different H-classes. Such
elements clearly exist. By Lemma 3.4, ((f, ḡ), (f, ḡ′)) ∈ θ′ ⊆ θ. As (ḡ, ḡ′) 6∈ H, the θ-dlock X ′

containing Di,j−1 is either of type FF , HF , or εF , depending on if there exists ((f̂ , ĝ), (f̂ ′, ĝ′)) ∈
θ ∩X2 with (f̂ , f̂ ′) 6∈ H or f̂ 6= f̂ ′.

Now assume that i > 0∗, and let f̂ ∈ Qn be a transformation of rank i − 1. Once again by
Lemma 3.4, it follows that θ′, and therefore θ, contains ((f̂ , g), (f̂ , g′)). Let X ′ be the dlock

containing Di−1,j , then ((f̂ , g), (f̂ , g′)) ∈ θ∩X ′2. It follows that X ′ must be of a type for which

π2(θ ∩X ′2) is not the identity. The six listed types in the statement of the theorem are exactly
those for which this condition is satisfied.

Now ((f̂ , g), (f̂ , g′)) = ((f̂ , g), (f̂ · idSi−1 , g ·σ)) ∈ θ. In the fourth case, i.e. when X ′ is a dlock

of type FH with normal subgroup N̄ , we have that σ ∈ N̄ . Similarly in the fifth and sixth
cases, we get that (idSi−1 , σ) ∈ N̄ . As σ generates N ′ as a normal subgroup, the statements in
the last three cases follow. �

We conclude that the dlocks of type εH can be placed onto the “west-facing” slopes of the
landscape made up of the dlocks of type FF , HF , or εF . For any such slope the dlocks of
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type εH, must be “staked on the top of each other”, with the initial εH-dlock being placed on
either a “step” of the FF -HF -εF -landscape or on a dlock of type HH or FH (see Figure 5).
Symmetric statements hold for dlocks of type Hε.
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Figure 5. A possible configuration for dlocks of all types other than εε.

We will not derive any additional conditions for dlocks of type εε, so we may use them to fill
out the remaining “spaces” in our landscape without violating any conclusion achieved so far.

The results of this section give us tight constraint about the structure of any congruence θ
on Qm ×Qn. In our next theorem we will state that all the conditions we have derived so far
are in fact sufficient to define a congruence.

Theorem 4.11. Let Q ∈ {T ,PT , I} and assume that Qm, Qn are non-trivial. Suppose that we
are given a partition P of Qm ×Qn that preserves D-classes and that to each part B of P, we
associate a type from {F,H, ε}2 and, if the type of B differs from FF , a group NB. Suppose
further that the following conditions are met:

(1) The partition P has at most one part B of type FF , and if this is the case, then
B = DP , where P is a downward-closed subset of {0∗, . . . ,m} × {0∗, . . . , n} such that,
if Q ∈ {I,PT } (in which case 0∗ = 0),
(a) P 6= {0} × {0, . . . , j} for all j ∈ {0, . . . , n};
(b) P 6= {0, . . . , i} × {0} for all i ∈ {0, . . . ,m}.

(2) If B is a part of type HF or εF , then B = DP where P is of the form {i}× {0∗, . . . , j}
for some 0∗ ≤ i ≤ m, 1 ≤ j ≤ n, and NB � Si. Moreover
(a) If B has type HF , then i ≥ 2, and NB 6= εi;
(b) If B has type εF , then NB = εi.

(3) The dual of condition (2) holds for B of type FH and Fε.
(4) P has at most one part of type HF . If DP , with P = {i}×{0∗, . . . , j}, is such a part, then
P has a part B′ of type FF , such that DP ′ ⊆ B′, where P ′ = {0∗, . . . , i−1}×{0∗, . . . , j}.

(5) The dual of condition (4) holds for B of type FH.
(6) Let J be the set of values (i, ji) such that the sets {i} × {0∗, . . . , ji} are exactly the

index sets of the parts of P having type εF . Then π1(J) is a set of consecutive integers
(possibly empty), and the values ji are non-increasing in i.

Moreover, if π(J) is non-empty and the smallest value i′ of π1(J) is larger then 0∗,
then P has a part B′ of type HF or FF , such that DP ′ ⊆ B′, where P ′ = {i′ − 1} ×
{0∗, . . . , ji′}.

(7) The dual of condition (6) holds for the set of P-parts of type Fε.
(8) If B is a part of type HH, εH, Hε, or εε then B = Di,j for some 0∗ ≤ i ≤ m, 0∗ ≤ j ≤ n,

and NB � Si × Sj. Moreover,
(a) if B is of type HH, then i ≥ 2, j ≥ 2, and π1(NB) 6= εi, π2(NB) 6= εj;
(b) if B is of type εH, then j ≥ 2, and NB = εi ×N ′ for some N ′ 6= εj;
(c) if B is of type Hε, then i ≥ 2, and NB = N ′ × εj for some N ′ 6= εi;
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(d) if B is of type εε, then NB = εi × εj.
(9) If B = Di,j is a part of type HH, let B′ be the part containing Di,j−1. Then B′ is either

of type FF or of type HF and π1(NB) ⊆ NB′. The dual condition holds for the part B′′

containing Di−1,j.
(10) Let B = Di,j be a part of type εH with NB = εi × N ′. Let B′ be the part containing

Di,j−1. Then B′ is of type FF , HF , or εF .
Moreover, if i > 0∗, the part B′′ containing Di−1,j satisfies one of the following

conditions:
(a) B′′ is of type FF ;
(b) B′′ is of type HF ;
(c) B′′ is of type εF ;
(d) B′′ is of type FH and N ′ ⊆ NB′′;
(e) B′′ is of type HH and εi−1 ×N ′ ⊆ NB′′;
(f) B′′ is of type εH and εi−1 ×N ′ ⊆ NB′′.

(11) The dual of condition (10) holds for the P-parts of type Hε.

Suppose that on each P-part B we define a binary relation θB as follows:

(i) If B has type FF let θB = B2;
(ii) If B has type HF or εF , let (f, g)θB(f ′, g′) if and only if fHf ′ and f ′ = f · σ for some

σ ∈ NB;
(iii) If B has type FH or Fε, let (f, g)θB(f ′, g′) if and only if gHg′ and g′ = g · σ for some

σ ∈ NB;
(iv) If B has type HH, εH, Hε, or εε, let (f, g)θB(f ′, g′) if and only if fHf ′, gHg′ and

(f ′, g′) = (f · σ, g · τ) for some (σ, τ) ∈ NB.

Let θ = ∪B∈P θB. Then θ is a congruence on Qm ×Qn.
Conversely, every congruence on Qm ×Qn can be obtained in this way.

Proof. The “converse” part of this last theorem follows from Lemmas 4.3 to 4.10 and, where
applicable, their dual versions. To show that θ is a congruence involves checking for each
((f, g), (f ′, g′)) ∈ θ, that the principal congruence generated by ((f, g), (f ′, g′)) is contained in
θ, using our results on principal congruences from Section 3. The proof is straightforward, but
it requires the verification of many different cases. We have opted not to write it here to limit
the length of the article. �

Observation 4.12. We remark that Theorem 4.11 also holds for the more general case of
semigroups of the form Qm × Pn, where Q,P ∈ {PT , T , I}, provided that the expression 0∗
is interpreted in the context of the relevant factor and the exceptional cases (1)(a) and (1)(b)
are are conditional on individual factor types. In fact, nearly all our results and proofs carry
over to the case of Qm × Pn without any other adjustments. The exceptions are Lemma 3.3,
Theorem 3.7, and Theorem 3.11, which require simple and straightforward modifications.

5. Products of three transformation semigroups

As said above, the results of this paper essentially solve the problem of describing the congru-
ences of Qn1 ×Qn2 ×Qn3 . . .×Qnk

, the product of finitely many transformation semigroups of
the types considered, although the resulting description of the congruences would require heavy
statements and notation, but not much added value. To illustrate our point, we have included
a series of figures that give an idea of how the dlock-structure of a triple product looks like.

In the following figures, each D-class is represented by a cube, and D-classes belonging to
the same dlock are combined into a colour-coded polytope. The figure is orientated so that the
cube representing the D-class of D0∗,0∗,0∗ is furthest away from the observer and obstructed
from view.

To reduce the number of required colors, types that are obtained by a permutation of the
coordinates have the same colour. Each figure adds the dlocks from one such colour group to
the previous figure. For example, Figure 6 contains one grey dlock of type FFF , while Figure
7 adds three red dlocks of types FFH, FHF and HFF .
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The following pairs of figures, from the dual and triple product case, can be considered to
be in correspondence with each other: (Figure 1, Figure 6), (Figure 3, Figure 11), (Figure 4,
Figure 12), and (Figure 5, Figure 14). In the remaining cases, no such direct correspondence
exist due to the extra dlock-types present in the three product case.

To obtain a final configuration from Figure 14, one needs to fill out all remaining spaces with
cubes that represent dlock-type εεε. Put together, the figures demonstrate a large number, but
not all, of the possible configuration of dlock-types.

Figure 6. F, F, F Figure 7. F, F,H Figure 8. F,H,H

Figure 9. F, F, ε Figure 10. F,H, ε Figure 11. F, ε, ε

Figure 12. H,H,H Figure 13. H,H, ε Figure 14. H, ε, ε

6. Matrix Monoids

Let F be a field with multiplicative unit group F ∗. Consider the multiplicative monoid Fn
of all n × n-matrices over F . We will, throughout, identify matrices with their induced (left)
linear transformation on the vector space Fn. The rank, kernel, and image of a matrix are now
defined with regard to their usual meanings from linear algebra. Note that in particular the
definition of kernel is now different from the notation of kernel used in the section on transfor-
mation semigroups. In addition, matrix multiplication corresponds to a composition of linear
transformations that is left-to right, and hence inverse from the situation for transformation
monoids.

In this section, we will determine the principal congruences on the monoid Fm × Fn. As it
turns out, this case closely mirrors the situation of the semigroup PT m×PT n. In many cases,
transferring the proofs of the previous sections to our new setting requires only an adaptation
of notation. In those cases, we will leave it to the reader to make the relevant changes.

Other than notional changes, the main difference from the situation on PT m × PT n cor-
responds to the description of the congruence generated by a pair of the form ((f, g), (f, g′)).
For matrix monoids, this congruence properly relates to the congruence generated by some
((A,B), (λA,B′)), where λ ∈ F ∗. Hence our description needs to be adapted to take care of the
extra parameter λ.
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We will start by recalling several facts about the monoids Fn. Recall that two matrices are
R-related if they have the same image, L-related if they have the same kernel, H-related if they
have the same image and kernel, and D-related if they have the same rank.

We let ei,j , for 1 ≤ i, j ≤ n, be the elements of the standard linear basis of Fn and set
Ei = e1,1 + e2,2 + · · ·+ ei,i. We identify the linear group GL(i, F ) with the maximal subgroup
of Fn that contains Ei. Denote the identity matrix on Fn by 1 and the zero matrix by 0. We
have 1 = En, and we set E0 = 0.

The description of the congruences of Fn can be found in [34]. We will however use the
following slightly different description from [27]. While this is an unpublished source, the two
characterization only differ on condition (b) of the following description, and it is an easy
exercise to check that they are indeed equivalent.

Theorem 6.1. A binary non-universal relation R on Fn is a congruence if and only if, there
exists µ ∈ {0, . . . , n} and

(1) there exists a normal subgroup Ḡµ of GL(µ, F );
(2) if µ ≤ n − 1 there exist subgroups Gµ+1, Gµ+2, . . . , Gn of F ∗ such that Gn ⊆ Gn−1 ⊆

. . . ⊆ Gµ+1 and Gµ+1Eµ ⊆ Ḡµ;
(3) two matrices A and B are in R if and only if one of the following conditions holds:

(a) rankA < µ and rankB < µ;
(b) rankA = rankB = µ, and there exist s1, s2 ∈ GL(n, F ) such that s1As2 and s1Bs2

are both in GL(µ, F ), and belong to the same coset of GL(µ, F ) modulo Ḡµ;
(c) rankA = rankB = i, for some µ < i ≤ n, and A = λB for some λ ∈ Gi.

In addition, we need the following result from [27].

Lemma 6.2. A matrix A ∈ Fn is a non-zero scalar multiple of the identity matrix if and only
if A fixes all subspaces of Fn of dimension n− 1.

The following will be applied later without further reference. Let A,B ∈ Fn. From Theorem
6.1, the principal congruence of Fn generated by (A,B) corresponds to the following parameters
in the theorem:

• If A = λB for some λ ∈ F ∗, then µ = 0, Gn = · · · = GrankA+1 = {1}, GrankA = · · · =
G1 = 〈λ〉, and Ḡ0 = {0};
• If rankA = rankB, A 6= λB for all λ ∈ F ∗, and AHB, then µ = rankA, Gn =
· · · = Gµ+1 = {1}, and Ḡµ is the normal subgroup of GL(µ, F ) that corresponds to the
congruence generated by the pair (s1As2, s1Bs2), where s1, s2 ∈ GL(n, F ) are such that
s1As2, s1Bs2 ∈ GL(rankA,F );
• If (A,B) /∈ H, and max{rankA, rankB} ≤ n − 1, then µ = max{rankA, rankB} + 1,
Gn = · · · = Gµ+1 = {1}, and Ḡµ = {Eµ}.
• If (A,B) /∈ H and max{rankA, rankB} = n, then (A,B) generates the universal con-

gruence.

For 0 ≤ i ≤ m, let I
(n)
i stand for the ideal of Fn consisting of all matrices A with rankA ≤ i.

We will usually just write Ii if n is deducible from the context. Let θIi stand for the Rees
congruence on Fn defined by the idealIi.

7. Principal congruences on Fm × Fn
For A ∈ Fm ∪ Fn, let |A|= rankA, and for (A,B) ∈ Fm × Fn let |(A,B)|= (|A|, |B|), where

we order these pairs according to the partial order ≤ × ≤. Throughout, π1 and π2 denote the
projections from Fm × Fn to the first and second factor, respectively.

We will start with some general lemmas concerning congruences on Fm × Fn.

Lemma 7.1. Let θ be a congruence on Fm × Fn and fix A ∈ Qm; let

θA := {(B,B′) ∈ Fn × Fn | (A,B)θ(A,B′)}.
Then

(1) θA is a congruence on Fn;
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(2) if A′ ∈ Fm and |A′|≤ |A|, then θA ⊆ θA′;
(3) if |A|= |A′|, then θA = θA′.

Proof. The proof of this lemma is virtual identical to the proof of Lemma 3.1, and is obtained
from it by the syntactic substitutions f → A, g → B, Q→ F . �

In an analogous construction, given a congruence θ on Fm × Fn and fixed B ∈ Fn, we define
θB := {(A,A′) ∈ Fm × Fm | (A,B)θ(A′, B)}. The next result describes the ideals of Fn × Fm.

Lemma 7.2. The ideals of Fm×Fn are exactly the unions of sets of the form I
(m)
i ×I(n)

j , where

I
(m)
i and I

(n)
j are ideals of Fm and Fn, respectively.

Once again, a proof for this result can be obtained from Lemma 3.2 by making obvious
adaptations. The same holds for our next result, we only have to modify parts (1) and (3) of
Lemma 3.3, using the fact that Fm×Fn contains a zero element as in the case that Q ∈ {PT , I}.

Lemma 7.3. Let θ be a congruence on Fm × Fn. Then

(1) θ contains a class Iθ which is an ideal;
(2) θ contains at most one ideal class.

For the remainder of this section we fix the following notation. Let K,K ′ ∈ Fm and L,L′ ∈
Fn. Let θ be a principal congruence on Fm × Fn generated by ((K,L), (K ′, L′)). Let θ1 be the
principal congruence generated by (K,K ′) on Fm and θ2 be the principal congruence generated
by (L,L′) on Fn.

Now suppose that (K,L), (K ′, L′) ∈ Fm × Fn are such that KHK ′ and LHL′. Let |K|=
i, |L|= j. To the pair ((K,L), (K ′, L′)) we associate a normal subgroup H of GL(i, F ) ×
GL(j, F ) as follows. As |K|= i and |L|= j, there exist (s1, s2), (s3, s4) ∈ Sm × Sn such that
(s1, s2)(K,L)(s3, s4) = (Ei, Ej). Then (s1, s2)(K ′, L′)(s3, s4) ∈ GL(i, F ) × GL(j, F ), and we
take H as the the normal subgroup generated by (s1, s2)(K ′, L′)(s3, s4).

We claim that the definition of H is independent of our choice for (s1, s2), (s3, s4). For
suppose that (t1, t2), (t3, t4) ∈ Sm × Sn are such that (t1, t2)(K,L)(t3, t4) = (Ei, Ej). Then

(5) (Ei, Ej) = (t1, t2)(s1, s2)−1(Ei, Ej)(s3, s4)−1(t3, t4).

Let V,W be the subspaces of Fm and Fn generated by the columns of Ei and Ej , respectively.
It is easy to check that left multiplication by (t1, t2)(s1, s2)−1 maps V ×W onto itself. Hence
there is s ∈ GL(i, F ) × GL(j, F ) such that for all v ∈ V ×W we have sv = (t1, t2)(s1, s2)−1v.
It follows that sA = (t1, t2)(s1, s2)−1A for all A ∈ GL(i, F )×GL(j, F ).

Symmetrically, there exists t ∈ GL(i, F ) × GL(j, F ) such that At = A(s3, s4)−1(t3, t4), for
all A ∈ GL(i, F ) × GL(j, F ). Now, (5) shows that in the group GL(i, F ) × GL(j, F ), we have
t = s−1. Thus, in GL(i, F ) × GL(j, F ), (t1, t2)(K ′, L′)(t3, t4) = s(s1, s2)(K ′, L′)(s3, s4)s−1 is a
conjugate of (s1, s2)(K ′, L′)(s3, s4) and thus generates the same normal subgroup.

If K ′ = λK for some λ ∈ F ∗, it is easy to see that the normal subgroup H of GL(i, F ) ×
GL(j, F ) associated with ((K,L), (K ′, L′)) is contained in F ∗Ei ×GL(j, F ). We then associate

a normal subgroup Ĥ of F ∗ ×GL(j, F ) with the pair ((K,L), (K ′, L′)), taking Ĥ as the image
of H under the canonical map from F ∗Ei × GL(j, F ) to F ∗ × GL(j, F ). If L′ = λL for some
λ ∈ F ∗, we dually associate a normal subgroup of GL(i, F )× F ∗.

Lemma 7.4. Let θ be a congruence on Fm × Fn. Let (K,L), (K ′, L′) ∈ Fm × Fn be such
that (K,L)θ(K ′, L′), KHK ′, and LHL′. Let |K|= i, |L|= j, and H be the normal subgroup of
GL(i, F )×GL(j, F ) associated with the pair ((K,L), (K ′, L′)).

Let (M,N), (M,N ′) ∈ Fm × Fn where |M |= i, |N |= j, MHM ′ and NHN ′. Let H ′ be the
normal subgroup of GL(i, F )×GL(j, F ) associated with the pair ((M,N), (M ′, N ′)). If H ′ ⊆ H,
then (M,N)θ(M ′, N ′).

Proof. Let (s1, s2), (s3, s4) ∈ Sm × Sn be the elements considered in the definition of H:
(s1, s2)(K,L)(s3, s4) = (Ei, Ej) and H is the normal subgroup of GL(i, F ) × GL(j, F ) gen-
erated by (s1, s2)(K ′, L′)(s3, s4). Let (t1, t2), (t3, t4) ∈ Sm × Sn be the corresponding elements
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taken to define H ′. We have that

(6) (s1, s2)(K ′, L′)(s3, s4)θ(s1, s2)(K,L)(s3, s4) = (Ei, Ej).

Let θ̂ be the restriction of θ to the group GL(i, F ) × GL(j, F ), and R the normal subgroup of

GL(i, F ) × GL(j, F ) corresponding to θ̂. By (6), we have (s1, s2)(K ′, L′)(s3, s4) ∈ R. As H is
normal, H ⊆ R, and so H ′ ⊆ R, since H ′ ⊆ H. In particular, (t1, t2)(M ′, N ′)(t3, t4) ∈ R, hence
(t1, t2)(M ′, N ′)(t3, t4)θ(Ei, Ej), and thus

(M,N) = (t1, t2)−1(Ei, Ej)(t3, t4)−1θ(t1, t2)−1
(
(t1, t2)(M ′, N ′)(t3, t4)

)
(t3, t4)−1 = (M ′, N ′).

�

Lemma 7.5. Let θ be a congruence on Fm × Fn. Let (K,L), (K ′, L′) ∈ Fm × Fn be such that

(K,L)θ(K ′, L′), LHL′, and K ′ = λK for some λ ∈ F ∗. Let |K|= i, |L|= j, and Ĥ be the
normal subgroup of F ∗ ×GL(j, F ) associated with the pair ((K,L), (K ′, L′)).

Suppose that (M,N), (M,N ′) ∈ Fm × Fn are such that |M |= k ≤ i, |N |= j, NHN ′, and

M ′ = λ′M for some λ′ ∈ F ∗. Let Ĥ ′ be the normal subgroup of F ∗ ×GL(j, F ) associated with

the pair ((M,N), (M ′, N ′)). If Ĥ ′ ⊆ Ĥ, then (M,N)θ(M ′, N ′).

Proof. We have KHK ′and MHM ′ so, by Lemma 7.4, we may assume that (K,L) = (Ei, Ej).
We then have (Ei, Ej)θ(λEi, L

′), and (Ek, Ej) = (Ek, En)(Ei, Ej)θ(Ek, En)(λEi, L
′) = (λEk, L

′).
It is straightforward to check that the normal subgroup of F ∗ × GL(k, F ) associated with

((Ek, Ej), (λEk, L
′)) is Ĥ.

Let H̄ be the normal subgroup of GL(k, F ) × GL(j, F ) associated with this pair, so that

Ĥ = φ(H̄), where φ is the natural isomorphism from F ∗Ek × GL(j, F ) to F ∗ × GL(j, F ). Let
H̄ ′ be the normal subgroup of GL(k, F )×GL(j, F ) associated with the pair ((M,N), (M ′, N ′)).

Notice that H̄ ′ ⊆ F ∗Ek ×GL(j, F ) since M ′ = λ′M . Then H̄ ′ = φ−1(Ĥ ′) ⊆ φ−1(Ĥ) = H̄. The
result now follows with Lemma 7.4. �

It is clear that a dual version of Lemma 7.5 holds as well, so let us look at the principal
congruences on Fm × Fn.

Theorem 7.6. Let θ be a principal congruence on Fm × Fn generated by ((K,L), (K ′, L′)). If
K ′ = λK and L′ = νL for some λ, ν ∈ F ∗, we have (M,N)θ(M ′, N ′) if and only if (M,N) =
(M ′, N ′) or |M |≤ |K|, |N |≤ |L|, and there exists a (λ′, ν ′) ∈ 〈(λ, ν)〉 ⊆ F ∗ × F ∗ such that
M ′ = λ′M and N ′ = ν ′N .

Proof. This theorem can be shown by applying Lemma 7.5 followed by its dual. However, we
will give a short direct proof.

Let θ′ be the binary relation defined by the statement of this theorem.
If |M |≤ |K|, |N |≤ |L| then M = UKV , N = WLX for some U, V ∈ Fm, W,X ∈ Fn, and

(M,N) = (UKV,WLX)θ(UK ′V,WL′X) = (UλKV,WνLX) = (λUKV, νWLX) = (λM, νN).

As |M |≤ |K|= |K ′|, |N |≤ |L|= |L′|, we can similarly show that (M,N)θ(λ−1M,ν−1N). Thus
θ′ ⊆ θ, since (M ′, N ′) = (λ′M,ν ′N), and (λ′, ν ′) belongs to the cyclic group generated by (λ, ν).

Conversely, it is straightforward to check that θ′ is a congruence containing ((K,L), (K ′, L′)),
therefore θ ⊆ θ′. The result follows. �

Lemma 7.7. Let θ be the principal congruence on Fm×Fn generated by ((K,L), (K ′, L′)), and
let j = max{|K|, |K ′|}. If (K,K ′) 6∈ H, then θL or θL′ contains the Rees congruence θIj of Fm.

We remark that the following proof is essentially equivalent to the proof of Lemma 3.6. As
the technical adaptations required to transform one lemma into the other are more complex
than in previous cases, we have decided to provide a complete proof.

Proof. We will show that for j = |K ′|, θIj ⊆ θL′ . An anologous result for j = |K| follows
symmetrically. So let us assume that |K|≤ |K ′|= j. As (K,K ′) 6∈ H, K and K ′ must differ in
either the image or the kernel. We consider two cases.

First case: imK 6= imK ′.
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As |K ′|= j ≥ |K|, then imK ′ 6⊆ imK. As Fm is regular, there exists an idempotent M ∈ Fm
such that MRK. Hence imM = imK, and as M is idempotent, MK = K.

We have that (MK ′, L′) = (M,En)(K ′, L′)θ(M,En)(K,L) = (MK,L) = (K,L)θ(K ′, L′)
and so (MK ′,K ′) ∈ θL′ on Fm. As imK ′ 6⊆ imK, and imM = imK, the transformations
MK ′ and K ′ have different images, and it follows that (MK ′,K ′) /∈ H. Now, the congruence
θ′ generated by (MK ′,K ′) is contained in θL′ and by Theorem 6.1 and the remarks following
it, we have θ′ = θIj . We get θIj ⊆ θL′ .

Second case: kerK 6= kerK ′.
Now |K ′|= j ≥ |K|, implies that kerK 6⊆ kerK ′. As above, the regularity of Fm implies that

there exists an idempotent M that is L-related to K; thus M and K have the same kernel and
KM = K. Hence (K ′M,L′) = (K ′, L′)(M,En)θ(K,L)(M,En) = (KM,L) = (K,L)θ(K ′, L′)
and so (K ′M,K ′) ∈ θL′ . Now kerK = kerM ⊆ ker(K ′M). As kerK 6⊆ kerK ′, we get
kerK ′ 6= ker(K ′M) and so (K ′M,K ′) 6∈ H. As above, by Theorem 6.1 and the remarks
following it, we get θIj ⊆ θL′ . �

Theorem 7.8. Let θ be the congruence on Fm×Fn generated by ((K,L), (K ′, L′)). Assume that
(K,K ′) 6∈ H, (L,L′) 6∈ H, |K|= i, |K ′|= j, |L|= k, and |L′|= l. Then θ is the Rees congruence
on Fm × Fn defined by the ideal J = Ii × Ik ∪ Ij × Il.

The proof of this theorem is once again essentially the proof of Theorem 3.7.

Corollary 7.9. Under the conditions of Theorem 7.8, if i ≤ j and k ≤ l then θ = θIj×Il.

The proof of the following Theorem corresponds to the proof of Theorem 3.9.

Theorem 7.10. Let θ be the congruence on Fm × Fn generated by ((K,L), (K ′, L′)), and let
θ2 be the congruence on Fn generated by (L,L′). If (L,L′) ∈ H and (K,K ′) 6∈ H; let j =
max{|K|, |K ′|} and k = |L|= |L′|. Then (M,N)θ(M ′, N ′) if and only if (M,N) = (M ′, N ′) or
|M |, |M ′|≤ j, |N |, |N ′|≤ k, Nθ2N

′.

Notice that we can once again give a more explicit description of θ by incorporating the
classification of θ2 given by Theorem 6.1.

Corollary 7.11. (A) Let (K,L), (K ′, L′) ∈ Fm × Fn, such that L′ 6= λL for any λ ∈ F ∗,
(L,L′) ∈ H and (K,K ′) 6∈ H. Let j = max{|K|, |K ′|} and k = |L|= |L′|. Let s1, s2 ∈ GL(n, F )
be such that s1Ls2 and s1L

′s2 are in GL(k, F ), and H the normal subgroup of GL(k, F ) generated
by (s1Ls2, s1L

′s2). If θ is the congruence on Fm × Fn generated by ((K,L), (K ′, L′)), then
(M,N)θ(M ′, N ′) if and only if one of the following holds:

(1) (M,N) = (M ′, N ′) for |M |> j or |N |> k,
(2) |M |, |M ′|≤ j, |N |= k, NHN ′ and there exist t1, t2 ∈ GL(n, F ) such that t1Nt2, t1N

′t2 ∈
GL(k, F ) and lie in the same coset of H.

(3) |M |, |M ′|≤ j and |N |, |N ′|< k.

(B) Let (K,L), (K ′, L′) ∈ Fm × Fn, such that L′ = λL for some λ ∈ F ∗, and (K,K ′) 6∈ H. Let
j = max{|K|, |K ′|} and k = |L|= |L′|. Let H be the subgroup of F ∗ generated by λ. If θ is the
congruence on Fm×Fn generated by ((K,L), (K ′, L′)), then (M,N)θ(M ′, N ′) if and only if one
of the following holds:

(1) (M,N) = (M ′, N ′) for |M |> j or |N |> k,
(2) |M |, |M ′|≤ j, |N |≤ k, N ′ = λ′N for some λ′ ∈ H.

Switching the roles of the coordinates we get an obvious dual version of Theorem 7.10.

Theorem 7.12. Let θ be the principal congruence on Fm × Fn generated by ((K,L), (K ′, L′)),
where K ′ = λK for λ ∈ F ∗, and LHL′, such that L′ is not a scalar multiple of L. Let |K|= i,

|L|= j, Ĥ the the normal subgroup of F ∗ ×GL(j, F ) associated with the pair ((K,L), (K ′, L′)),
and G the subgroup of F ∗ generated by λ. Then, for (M,N), (M ′, N ′) ∈ Fm×Fn, (M,N)θ(M ′, N ′)
if and only if one of the following holds:

(1) (M,N) = (M ′, N ′);
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(2) |M |≤ i, M ′HM , |N |= j, N ′HN and the normal subgroup Ĥ ′ of F ∗×GL(j, F ) associated

with the pair ((M,N), (M ′, N ′)) is contained in Ĥ;
(3) |M |≤ i, M ′ = λ′M for some λ′ ∈ G, |N |, |N ′|< j.

Proof. Let θ′ be the relation defined by the statement of the theorem. It is straightforward to
check that θ′ is a congruence.

Conversely, θ contains the pairs from (1) trivially, and the ones from (2) by Lemma 7.5.
It remains to show that θ contains the pairs from (3). By multiplying with suitable (En, s1),
(En, s2) ∈ GL(m,F ) × GL(n, F ) on the left and right, we may assume that L = Ej , L

′ ∈
GL(j, F ), and that L′ is not a scalar multiple of Ej . For the following considerations, we will
identify the ideal FnEjFn with Fj .

Now, as L′ is not a scalar multiple of Ej , by Lemma 6.2, there exists a subspace V of F j

with dimension j − 1 that is not preserved by L′. Let A ∈ Fj be such that A has rank j − 1
and is the identity on V . Then (K ′, L′A) = (K ′, L′)(Em, A)θ(K,L)(Em, A) = (K,EjA).

Considering those elements in Fm × Fn again, we see that V = im(EjA) 6= im(L′A), and so
(EjA,L

′A) /∈ H. By applying Theorem 7.10 to the pair ((K,EjA), (K ′, L′A)), we see that the
pairs in (3) belong to θ. �

In view of Theorem 7.6, Theorem 7.8, Theorem 7.10, Theorem 7.12, and, where applicable,
their dual versions, it remains to determine the principal congruence θ when KHK, LHL′,
K ′ 6= λK for all λ ∈ F ∗ and L′ 6= λL for all λ ∈ F ∗.

Theorem 7.13. Let θ be the principal congruence on Fm × Fn generated by ((K,L), (K ′, L′)),
where KHK ′, and LHL′, such that K ′ is not a scalar multiple of K and L′ is not a scalar
multiple of L. Let |K|= i, |L|= j, H the the normal subgroup of GL(i, F )×GL(j, F ) associated
with the pair ((K,L), (K ′, L′)). Then for (M,N), (M ′, N ′) ∈ Fm × Fn, (M,N)θ(M ′, N ′) if and
only if one of the following holds:

(1) (M,N) = (M ′, N ′);
(2) |M |= i, M ′HM , |N |= j, N ′HN and the normal subgroup H ′ of GL(i, F ) × GL(j, F )

associated with the pair ((M,N), (M ′, N ′)) is contained in H;
(3) |M |= i, M ′HM , |N |, |N ′|< j, and there exists s1, s2 ∈ GL(m,F ) such that s1Ms2 and

s2M
′s2 are both in GL(i, F ) and belong to the same coset of GL(i, F ) modulo π1(H);

(4) |N |= j,N ′HN , |M |, |M ′|< i, and there exists s1, s2 ∈ GL(n, F ) such that s1Ns2 and
s2N

′s2 are both in GL(j, F ) and belong to the same coset of GL(j, F ) modulo π2(H);
(5) |M |, |M ′|< i, |N |, |N ′|< j.

Proof. Let θ′ be the relation defined by the statement of the theorem. It is straightforward to
check that θ′ is a congruence.

Conversely, θ contains the pairs from (1) trivially, and the ones from (2) by Lemma 7.4.
It remains to show that θ contains the pairs from (3), (4), and (5). Using an analogous

argument to the last part of the proof of Theorem 7.12, we can find an A ∈ Fn such that
(K ′, L′A)θ(K,EjA), where L′A and EjA have rank j − 1 but have different images and hence
are not H-related. Now the congruence β generated by ((K ′, L′A), (K,EjA)) is contained in θ
and an application of Corollary 7.11 to β shows that β contains all pairs from (3) and (5), and
then so does θ. Finally, θ contains the pairs in (4) by a symmetric argument. �

8. Problems

In this final section we propose a number of problems motivated by the results above. Clearly,
the most natural is the following.

Problem 8.1. Let S and T be any transformation semigroup whose congruences have been
described. Find the congruences of S × T .

The description of the congruences of Tn provided in [33] is used in [37] to describe the
endomorphisms of Tn. Regarding the monoid Fn, its congruences are known since 1953 [34],
but the description of End(Fn) is still to be done.
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Problem 8.2. Describe the endomorphisms of the monoid Qn×Qm, where Q ∈ {PT , T , I}, and
the endomorphisms of the monoid Fn. Use the description of the congruences on S = Fn × Fm
to find the endomorphisms of S.

Let G be a permutation group contained in the symmetric group Sn and let t ∈ Tn; let
〈G, t〉 denote the submonoid of Tn generated by G and t. These monoids proved to be a source
of exciting new results involving different parts of Mathematics such as group and semigroup
theories, combinatorics, number theory, linear algebra or computational algebra. (For an illus-
tration see [2,5–11,28–31,35,36,39] and the references therein.) In [30], the congruences of the
monoids 〈Sn, t〉 are described, and so in this context one may ask the following.

Problem 8.3. Let G ≤ Sn be a permutation group (in particular a 2-transitive or imprimitive
group) and let t, q ∈ Tn \ Sn. Describe the congruences and the endomorphisms of 〈G, t〉 and of
〈G, t〉 × 〈G, q〉.

The previous problems admit linear analogous.

Problem 8.4. Let V be a finite dimension vector space and let G ≤ Aut(V ); let t, q ∈ End(V )\
Aut(V ). Describe the congruences and the endomorphisms of 〈G, t〉 and of 〈G, t〉 × 〈G, p〉. For
some results on linear monoids of the form 〈G, t〉 we refer the reader to [15].

The next natural step is to ask for analogous results for the endomorphism monoid of an
independence algebra, as sets and vector spaces are examples of such algebras. See [12,17,25].

Problem 8.5. Let A and B be finite dimension independence algebras. Describe the congru-
ences on End(A)× End(B).

To tackle this problem one should rely on the classification of these algebras [17,40] as in [4].

Clearly, the same type of questions may be posed for other algebras.

Problem 8.6. Solve the analogous problems for the algebras introduced in [22, 23] and for
MC-algebras, MS-algebras, SC -algebras, and SC -ranked algebras [16, Chapter 8].

A first step towards the solution of this last problem would be to solve it for an SC -ranked
free M -act and for an SC -ranked free module over an ℵ1-Noetherian ring [16].

We recall that we were driven to the results in this paper by some considerations on central-
izers of idempotents. Let e2 = e ∈ Tn, and denote by CTn(e) the centralizer of the idempotent
e in Tn, that is, CTn(e) = {f ∈ Tn | fe = ef}. The monoid CTn(e) has very interesting features,
in particular it generalizes both Tn and PT n. See [3, 13,14].

Problem 8.7. Describe the congruences of CTn(e), starting with the regular case. See [3].

The solution of this problem requires a complete description of the congruences of PT n ×
PT m, and that was what prompted us to write this paper.

Finally, we cannot avoid thinking about the partition monoid [1, 18–21]; this has a very rich
structure and has been attracting increasing attention.

Problem 8.8. Describe the congruences and the endomorphisms of the partition monoid. Solve
similar problems for the direct product of two partition monoids.
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