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ABSTRACT

The research work presented in this article investigates and explains the conceptual
mechanisms of consciousness and common-sense thinking of animates. These
mechanisms are computationally simulated on artificial agents as strategic rules to
analyze and compare the performance of agents in critical and dynamic environments.
Awareness and attention to specific parameters that affect the performance of agents
specify the consciousness level in agents. Common sense is a set of beliefs that are
accepted to be true among a group of agents that are engaged in a common purpose,
with or without self-experience. The common sense agents are a kind of conscious
agents that are given with few common sense assumptions. The so-created environment
has attackers with dependency on agents in the survival-food chain. These attackers
create a threat mental state in agents that can affect their conscious and common sense
behaviors. The agents are built with a multi-layer cognitive architecture COCOCA
(Consciousness and Common sense Cognitive Architecture) with five columns and six
layers of cognitive processing of each precept of an agent. The conscious agents self-
learn strategies for threat management and energy level maintenance. Experimentation
conducted in this research work demonstrates animate-level intelligence in their
problem-solving capabilities, decision making and reasoning in critical situations.
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INTRODUCTION

Consciousness is a complex mental state that involves the integration of many different
mental abilities. Though it is a bold claim that agents can be made fully conscious,
agents can only be built with a minimum set of mental abilities that can make them
conscious. The main purpose of this research is to understand, adopt, and test some
of the principles and complexities of animate consciousness and common sense on
either robots or synthetic agents. This paper aims at proposing a self-configurable
computational model for implementing and testing animates consciousness and
common sense critics using a cognitive approach.

BACKGROUND

There are many existing cognitive architectures that are built to test and implement
cognitive capabilities of the human mind. The Emotion Machine Architecture (EM-
ONE) demonstrated human common sense thinking capability in the Roboverse
environment (Singh, 2005; Minsky, 2006). The Computational Model for Affect
Motivation and Learning (CAMAL) (Darryl & Suzanne, 2004; Darryl, 2010, 2002,
2001) architecture emulates emotions. The Society of Mind Cognitive Architecture
(SMCA) investigated the concept of mind as a control system by using the “Society
of Agents” metaphor that uses fungus eater testbed (Vijaykumar & Darryl, 2008;
Vijaykumar, 2008). The CERA-CREMIUM architecture of Arrabales (2009)
demonstrated different levels of consciousness on artificial agents. The research work
presented in this article attempts to address the problem by using ideas from Al and
cognitive science. Cognitive capabilities of animals and humans are evident when
they exhibit abilities such as learning, remembering, perceiving, thinking, decision-
making, recognizing, and visual, verbal, and language skills in their usual interactions.
Cognitive science proposes theories to build artificial minds based on natural mind
architectures called cognitive architectures (Anderson, 1993; 1996; Armstrong, 1968).
These architectures help in modelling a range of human behaviors into machines to
make them intelligent across a diverse set of tasks and domains. The main focus of
any cognitive architecture is to represent, organize, utilize, and acquire the knowledge
while performing the task (Newell, 1972;1990;1992).

Theory of Conscious Agents

According to Russell (2003), an agent is “anything that can be viewed as perceiving
its environment through sensors and acting upon that environment through actuators.”
The mapping between the percept sequence and the action chosen is called the agent
function, whereas the internal processes that choose actions according to the percept
sequence are the agent programs.
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Most of the human mental processes are unconscious though humans are considered
as highly conscious agents (Bargh & Morsella, 2008). The conscious agents are the
entities that exhibit intelligent behavior with properties such as autonomy, reactiveness,
and pro-activeness or being rational. According to Donald D Hoffman (2014), the
mathematical definition of a conscious agent involves three mental processes such
as perception, decision making, and action. An agent being in a conscious state can
also have subjective experiences, wishes, beliefs, desires, and complex thoughts
(Block,1995; 2002; 2002; 2007; Shoemaker,1996). It should be able to understand
a relatively complex sequence of actions at an abstract level and respond to such
situations (Franklin, 2009). A minimum prerequisite for conscious agents is social
interaction with its peers in the environment.

Conscious Agents with Common sense Critics

Common sense is a set of beliefs or propositions that are considered true by most people
as they experience the same and by virtue of this would be the obvious true judgment.
The other definition of common sense is the “sense of things given by each sensory
organ which can be interpreted and integrated into a single impression among multiple
possible impressions (Antonio & Giuseppe, 1999; Barry Smith & D.W. Smith, 1995).
” These common sense responses in a person can be presented in either a conscious or
an unconscious state. The quality of actions resulting from common sense drastically
differs from actions owing to conscious thinking or under the influence of emotions.
Common sense is sometimes accepted among people belonging to the same place,
culture, and occupation. In some situations, actions attributed to common sense can
improve performance and in some cases, they may not even trigger any reaction. In
this research, common sense is considered to trigger when agents are not influenced
by emotions.

The work presented in this article focuses on building intelligent agents that
are highly conscious of external world and adopt common sense and consciousness
strategies to respond in dynamic environments.

Theories of Consciousness

Dennett’s (1991) Multi-Draft-Model (MDM) and Bernard Baar’s (1997) Global
Workspace Theory (GWT) suggests that the human brain is a parallel set of specialized
unconscious networks of information processors. Each of these processor networks
functions independently and becomes conscious based on the context. The information
sensed is broadcasted to all these networks by a context processor. These networks
cooperatively work together to produce a cognitive task by using a central information
exchange memory area called “Global Workspace.” This memory is limited in size and
is a short-term resource. The sensed information is laid out by each of the processor
networks to understand different perspectives of the information. These processors
then send the processed view to other processors by getting an access to global
workspace and make it a conscious experience. As it is a short-term memory and a
limited resource, each conscious experience can only stay for a few seconds and then
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switch to the next experience. These mechanisms enable GWT to account for the
ability of consciousness to handle novel situations, its serial procession of states, and
the transition of information between consciousness and unconsciousness (Baars and
Katherine McGovern, 1988, Baars,1998,2003; Baars, Franklin S, 2003).

According to the BDI model proposed by Bratman (1988), the practical reasoning
process of humans has two steps: (a) consider all the desires of an agent and (b) select
the most desirable one by mapping it to its current belief set. In this deliberated
step, the agent pursues and adopts an intention to achieve a desire. The intentions
are persistent in nature and recur till they are achieved. If the intention chosen fails
repeatedly to achieve the desired state, the agent can drop this and update its belief
set. Hence, intentions are the prime reason for an agent to change its future belief
set. In each intentional state an agent considers or adopts options that are consistent
with that intention. In principle, intentions justify the possibility of achieving a goal
state in the current state. The second step in practical reasoning process involves
generating a plan of actions based on goals, beliefs, and actions of agents by using
means-ends reasoning. A running agent adopts varying plans that are triggered by
external or internal events. This plan involves a sequence of actions that are selected
based on the available set of beliefs.

As discussed above, practical reasoning systems are designed based on BDI models
that help in achieving the goals of agents. Hence BDI models and GWT principles
are adopted in building Consciousness and Common sense Cognitive Architecture
(COCOCA) architecture.

ANIMATE TESTBED SETUP

The animate testbed has been used as a computational tool to measure the performance
of ecologically inspired agents. These agents consciously survive in an environment
by demonstrating natural behavior of survival in unknown environments.

The Testbed setup considered for COCOCA agent is a 30X30 grid environment,
which can also be varied to different sizes. This is filled with food parameters, trap
points, and obstacles, as shown in Figure 1. The raw fruits, dry fruits, and juicy fruits
are created with different calorific values. All parameters are randomly created in
random positions. Both the agent and the attacker consume one unit of energy for
each move in normal grids and 2 units in trap grids. These trap grids are hidden and
are perceived as normal grids by agents. Both the attacker and the agent are created
with 100 units. The agents and attackers always maintain energy for at least 30 next
moves without food.

The attackers always look for a nearby agent as a prey to satisfy their food
requirement. The attackers ensure that they do not attack agents when in group and
agents with common sense use this knowledge to escape the threat. A safe-zone is
also created in an environment where the attacker does not enter and this is known to
the common sense agents too.

The agents of different levels of consciousness have been created to test their
performance in a given scenario. The agents’ most preferable food is the raw fruit,
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which gives them maximum energy. An agent collects dry fruits as energy store for
long-term survival. Here, the resource parameter is the dry fruit and the agent always
tries to collect maximum number of dry fruits. The juicy fruit is the least preferred
food and has less caloric value. The consciousness of the agents has been tested by
measuring their survival rates in the presence of an attacker. The other performance
parameters are the number of dry fruits collected and the energy level maintained.

The agents simulated in animate testbed can belong to one of these categories:
FSM agent, threat-conscious agent, energy-conscious agent, conscious2 agent, learning
agent, and a common sense agent. Each agent type simulates different types of cognitive
capabilities that contribute to the agent’s consciousness (see Table 1).

THE PROPOSED AND DEVELOPED COCOCA (CONSCIOUSNESS
AND COMMON SENSE COGNITIVE ARCHITECTURE)

The COCOCA is a six-layer cognitive architecture developed for building control
systems for agents that are conscious to survive in new and dynamic environments.
The layers included are reflexive, reactive, deliberative, conscious, meta-reasoning,
and common sense, as shown in Figure 2. The agents of each layer exhibit different
levels of intelligent behavior in the domain-specific tasks as they have varying cognitive

Figure 1. Animate testbed setup for COCOCA agents
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Table 1. Energy parameters in animate testbed environment

Parameter Type Preference Representation Aff(;:cltl:;agl;z(ig:;;s et
Rawfruit Numeric Energy < 30 Green Square 5 units
Juicy fruit Numeric If encounters on its way Golden Square 1 unit
Dry fruit Numeric Energy > 30 Yellow Square 3 units

capabilities. The percept of an agent is elaborated at each layer by mapping it with
different entities to form new associations. This leads an agent to show different levels
of intelligence at each layer. The reflexes and reactive behaviors are simple mapping
of percept on to behaviors that are implemented through control theory and finite
state machines. The deliberative layer and above are the conscious behaviors that are
implemented by using Belief Desire and Intention (BDI) models. These layers depict
rational behaviors in agents, which have desires based on their beliefs and emotions.
These rational desires of agents are treated as implicit or explicit goals that result in
control states, which in turn trigger motivations. The conscious actions of agents are
the motivated behaviors that satisfy their implicit or explicit goals. Each layer below
provides a service to the layer above and hence the functions coded in the lower
level layers are invoked and controlled by functions in the layers above. For example,
deliberative actions at the deliberative layer use the services of reactive and reflexive
layer behaviors to construct deliberated behaviors.

The COCOCA agent’s Sense-Plan-Act(SPA) cycle is distributed among six layers
and five columns of architecture with different control processes and representations
in each layer. The sensed data from the environment is processed in each layer through
perception filters for generating different levels of abstractions. The five columns of
the architecture are Perception, Affect/Emotion, Cognition, Motivation, and Action.

Information of the external world is perceived in the perception column. If the input
stimulus is relating to an alarming event, it overrides motivations of a higher layer and
generates an immediate action at the reflexive layer itself. As it is further processed
in a higher layer, the association an object forms with other objects is evaluated to see
if that object triggers emotions in agents and in turn affects the performance.

In the deliberative layer the precepts are mapped on to agents’ Belief-Desire-
Intention (BDI) to trigger motivated actions. The attention selector processes in
the consciousness layer evaluate the motivated actions in the deliberative layer and
update the belief set frequently. The self-reflective layer monitors every conscious
action triggered and their effect on the agent’s internal state and external world. This
forms a feedback for converting some of the beliefs as common sense beliefs. The
parameters that may affect the immediate goal or can trigger fear as an emotion in an
agent are pushed into global workspace or working memory to get conscious control.
The emotions and motivations play a major role in generating consciousness and
common sense in an agent’s behavior. This leads an agent to manage its motivations
and goals by selecting appropriate strategies. The strategies can be either conscious
or common sense that is based on the meta-reasoning logic adopted by an agent. The
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Figure 2. Layers of COCOCA architecture

COMMONSENSE LAYER
(Commonsense Strategies for planning)

METAREASONING LAYER
(Reasoning about choosing
strategies)

CONSCIOUS LAYER
(Conscious Strategies for planning)

DELEBRATIVE LAYER
(Motivations for survival using BDI)

REACTIVE LAYER
(Reactive behavior for energy and threat)

REFLEXIVE LAYER

(Simple reflexes for obstacle avoidance)

default meta-reasoning is: if in normal scenarios, common sense triggers and if in
fear, consciousness improves. These strategies selected are constructed into action

set and sent to an action generator, which in turn changes the external environment
(see Figure 3).
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Figure 3. Cognitive cycle of COCOCA agents
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Design of Reflexive and Reactive Agents

Action Geneiator‘

The reflexive and reactive behaviors of agents are closely associated with sensing
subsystem and actuator subsystem. As defined in Sloman architecture (2014), the
reflexive layer is defined with a set of ballistic actions that form the response for
alarming events in external world. The reflexes are like interrupts that can disable
the deliberated actions and execute with higher priority. The reactive behavior in
an agent is the awareness about how to react for a particular external/internal event.
For example, having the awareness of consuming a fruit to gain energy is a reactive
behavior. These reactive behaviors are initiated and controlled by motivation in the
deliberative layer, which are triggered to achieve the goals.

The reflexive behaviors are designed by using Finite-State-Machine (FSM), as
shown in Figure 4. These are the pre-defined responses for objects in the environment.
All agents use FSM as a basic algorithm for movement in the environment. The FSM
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defines action for each possible agent state in the environment. The COCOCA agents’
internal state can be either static, active, or turned. At any given time, the agent lives
in state S, and by executing an action A the agent can move to a new state S’ or it may
remain in the same state. The algorithm defines the possible action an agent can execute
being in a state. It gives the pre-conditions and post-conditions for every action that
is being executed. The agent is initially created in a “static” state and changes to an
“active” state with an execution of an action. The agent must be in the active state to
move in any direction. To take a turn in the corner, the agent must be in the “turned”
state. If there are no moves possible in current position, the state of the agent again
changes to “static” state irrespective of its current state. If the current state is “turned”
and there is free space in next move, its state changes to active again.

Design of Deliberative Layer

The deliberative behaviors are monitored by control processes in higher layers and
are broken down to a sequence of reflexive and reactive behaviors. The processes in
this layer use the BDI model for reasoning and planning.

The perceived inputs are processed in this layer to form association with current
the set of beliefs. The cross-product of the belief set and desire set gives a set of
intentions that are possible in the current state. The conscious process in higher layer
weighs the intention set and chooses the one with higher weight as a deliberated action.
The belief set of an agent is defined with the facts about the environment and the
self. This set initially contains the facts of the external world such as the availability
of raw fruits, dry fruits, juicy fruits, obstacles, and border of the arena. The set also
includes its internal parameters such as its energy level, state, direction, name, and
color. The desire set is a set of actions that an agent can execute based on the actuator
set at its disposal. There is a subset of beliefs that are defined as common sense
beliefs. Common sense agents may have the same set of desires but use a different
set of beliefs for reasoning.

The deliberative cycle of a COCOCA agent shown in Figure 5 explains the BDI
model adopted in this layer. This layer maintains an updated set of beliefs, which are
continuously cross-verified with parameters in the environment in each cycle. The
environment and agent keep changing their states to a new state on each action and
in turn their belief sets get updated. The intentional actions are then constructed as a
sequence of tasks at lower layers. These intentions in turn belong to either conscious
strategy or common sense strategy.

Design of Conscious Agents

The conscious layer is designed by using the axiomatic (Aleksander, I. & Dunmall,
2003; Aleksander, I., 2007) theory by simulating cognitive abilities that make an
agent conscious. The conscious agents are built by using proactive attitudes like
beliefs, desires, intentions, and emotions that form the basis for motivated actions,
which are conscious by default. The agents are given a collection of strategies that
suits different environmental conditions. The conscious agents, based on their goals,
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Figure 4. Finite state machine for reflexive behavior

Finite State Machine(FSM) algorithm
IF SpaceAhead(Free) AND State(Active)

THEN Action(MoveAhead)
IF SpaceAhead(Free) AND State(Turned)

THEN State(Active) AND Action(Nat hing)
IF SpaceAhead(Free) AND State(Static)

THEN State(Active) AND Action(Not hing)
IF SpaceAhead(Blocked) AND State(Active)

THEN State(Turned) AND Action(TurnlLeft)
IF SpaceAhead(Blocked) AND State(Turned)

THEN State(Static) AND Action(TurnLeft)

IF SpaceAhead(Blocked) AND State(Static)

THEN Action(TurnLeft).

choose the required parameters, which are in focal attention, from the perception list.
The changes in the environment make an agent trigger different actions by choosing
different strategies. Each conscious strategy depicts different cognitive abilities to
demonstrate consciousness levels in the agents. The conscious agents use internal
affect value of objects in the external world and BDI set to choose the strategies.
These strategies work on a partial order planning to accomplish the goals assigned.
The internal structure of the conscious agent is shown in Figure 6.
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Figure 5. Deliberative layer design

Consciousness Layer

The conscious layer cognitive process will have an access to declarative knowledge
and procedural knowledge; hence, the agents of this layer will have self-awareness
and consciousness of “I know I know” level of Theory of Mind. The control process,
on receiving the perceived information from the layer below, will be able to infer
possible actions. The mapping is done after a conscious evaluation of each percept and
its effect on goal achievement. This layer defines strategies for planning based on the
current state of the agent and the agent’s preferences with respect to goal achievement.
The layer has implicit learning process, a rote-learning for remembering traps after
experiencing them.

The agents in the conscious layer are built by using behaviors in the deliberative
layer and in-turn in the reactive and reflexive layers. The state-transition diagram
for conscious agent is as shown in Figure 7. The agent of this layer can be threat-
conscious, energy-conscious, or both. Initially, the agent demonstrates explore behavior
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Figure 6. Internal structure of a conscious agent
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by using simple reflexive behaviors and consume every fruit in the environment.
When its internal performance parameters are affected, the agent changes its state to
the conscious state. These agents in conscious state evaluate its internal needs and
external environment state to choose the optimal strategy. These agents adopt learning
methods to repeat the best strategies.

Designing Energy-Conscious Agents

The initial set of behaviors and actions of agents is:
BehA: { Reactive-Rfruit, Reactive-Jfriut, Reactive-
Dfruit, Go-Idle}
ActionA: { MoveForward, MoveUp, MoveRight,Moveleft,
consume-Rfruit, consume-Jfriut, consume-Dfruit }
IP,: { Internal-state, Initial-Energy, Threshold-Energy
(EMax, = 60, EMin = 30)}
where Internal-state can take one of the states in the
given set:
{NEW, ACTIVE, IDLE, cONSCIOQOUS}

BelifA = { CsSTl, CST2,CST3,CST4,CST5, CST6,CST7}
Energy consumption in agent: One Move - 1 unit, Idel - O
units, on trap - 2 units
Agent behavior in the NEW state:

stepl Create internal state of agent { Energy =100,
STATE = NEW}

step2 Initialize its belief set

step3 Initialize its action set

step4 RUN agent
Agent behavior in the ACTIVE state:

Step 1 Agent with Simple-Reflexive-Explore
{Update-Energy}

Step 2 Adopt default Conscious-Strategy {
Update-Energy}

Step 3 Monitor internal parameters { EMax, <=
Energy <= EMin__ }

Step 4 If Energy <= EMax,k go to IDLE state

Step 5 Go to step 1
Agent behavior in the CONSCIOUS state:

Step 1 If Energy <= EMin_

Step 2 Initialize strategic-planning

Step 3 Evaluate Pre-conditions

{current energy-level, current position (Grid-location),
current precepts}

Step 4 Change Strategy {Choose next strategy
available in 1list}
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Step 5 Monitor Energy
if EMax, >= Energy >= EMin,
i. Initiate learn-fruit
ii. Update knowledge

Else Go to step 4
Agent behavior in the IDLE state:

Step 1 Agent in same position for next 5
cycles
Step 2 If Energy > EMin _ AND Energy < EMax_

Change state to ACTIVE
Else Change state to CONSCIOUS

Characteristics of Conscious Agents

e Attention in Conscious Agents: The conscious agents have self-awareness of
their internal states such as goals, beliefs, and desires. The agents possess access-
consciousness and are aware of different food parameters in the environment. For
example, if the energy of an agent drops below the minimum threshold, the agent’s
attention is focused towards fruits in the environment.

e Attention Switching in Conscious Agents: The conscious agents are designed
to dynamically switch their attention to different parameters to meet the changing
needs. The attention switching in an agent can trigger due to a change in either
the external event or the internal state.

e Learning in Conscious Agents: The conscious agents adopt the rote-learning
method to memorize experiences. The agents existing in unknown environments or
having incomplete knowledge about the environment face difficulty in reasoning
and decision-making in critical conditions.

The learning in agent starts as soon it notices that its internal state is not a desired state
and the current strategy is failing to achieve. The agents are given a list of strategies
without the knowledge of necessary preconditions to apply them. The agents get a
positive reward if the current strategy is affecting the parameter connected with desired
state; else it gets a negative reward. The strategy getting a positive reward will be
learnt by saving the precondition when it was applied.

A generalized reinforcement learning algorithm given below allows an agent to
learn adopt different strategies on different conditions. In learning energy maintenance
the set of states, action set and learning parameters are as given below.

Set of States S = {LowEnergy, HighEnergy, , Current
Set of Actions A = { CST1l, CST2,CST3,CST4}
(CST1l: Consume-only-Rfruit, CST2: Move-opposite-2steps,
CST3: Jump-2steps-ahead

CST4:Consume-only-Dfruit)

}

Energy

Q(s,a) 1s the cumulative reward gained in previous
strategy adopted (+ve value 1if energy increased

33



International Journal of Agent Technologies and Systems
Volume 9 « Issue 1 « January-June 2017

otherwise -ve)
R(s, a’) is the reward gained by applying current
strategy
P ... 1s the previous best cumulative reward gained for
any strategy adopted by an agent
Best, . is the feasible incremental reward expected after
adopting a strategy
Step 1: Initialize Q(s,a) =0

a = 0.1

Y = 0.9
Step2: Calculate Q(s’,a’) + = o * (R(s, a&a'") , Y * (P
- Q(s,a))
Step3: if Q(s’',a’) > BestAvg

Save strategy with precondition

BestAvg =Q (s’ ,a’)

best

Else if Q(s’,a’) < BesAvg
Unlearn strategy for current preconditions
Step 4: s =s’ and Q(s,a) =Q(s’',a’)

Step 5: go to step 2

Common Sense Layer

The common sense agents are by default conscious agents with respect to state-
transitions and behavior preferences. These agents are given some initial common sense
strategies, which are similar to beliefs. The agents switch to common sense if they
have come across such situations repeatedly in their past experiences. The attackers in
the environment create a threat state for agents and survival becomes a decisive goal
if there is a threat for life, irrespective of their energylevel; they strive to escape the
threat by using their common sense. A similar behavior has been created by giving a
common sense belief set that says what plans it can adopt to escape the threat.

The common sense agents adopt known strategies first and then learn to optimize
the behavior. The initial strategies are regularly updated by agents through their
experiences. The common sense strategies are used by agents when they are aware
that they can always escape from the attacker.

Common Sense Agent’s Behavior in the CONSCIOUS
State for Threat Management

Step 1 If Threat-level = HIGH
Step 2 Initialize strategic-planning
Step 3 Evaluate Pre-conditions

{Current Threat-level, current position (Grid-
location), current precepts}
Step 4 Choose strategy from common sense by mapping
pre-conditions
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Step 5 Monitor Threat-level
if Threat - level == MEDIUM
Continue with the same strategy
Else if Threat-level == LOW

Update current strategy as best for
current pre-conditions
Else if Threat-level == HIGH
Delete the strategy from list
Go to step 5

Meta-Reasoning Layer

The meta-reasoning is a layer above the conscious layer of the COCOCA architecture.
This layer has self-reflection that monitors and controls the behaviors of agents. The
meta-reasoning process monitors the feedback of every conscious strategy of an agent
that affects the agent’s internal state and external environment. If the desired states
of agents are achieved repeatedly by the same strategy in the same pre-conditions, it
will be saved to common sense strategies. The emotions due to external events are
used by these layers to self-adjust the responses in the next cycles.

Attacker Strategies

The attacker kills agents for its survival. It adopts different strategies to attack agents
when they are alone or in group. The attacker does not kill an agent when the agent
is in the safe-zone, which is defined in the environment and when the agents are not
in group. The strategy is shown in Figure 8.

RESULT ANALYSIS OF COCOCA AGENTS
IN SIMULATED ANIMATE TESTBED

The results are captured from the agent’s behavior in handling their inner states in
critical conditions. All agent types are evaluated for energy-level maintenance and
escaping rates as performance metrics. Figure 9 is a graph that shows the energy-
level maintenance in FSM, energy-conscious, and conscious2 agents in a single-agent
environment and in the absence of an attacker. These agents are separately compared
for energy levels as they consciously monitor energy levels and use the same belief
set. The FSM agent is the least-conscious agent and does not maintain energy levels
even when sufficient fruits are available in the environment as it always goes with
default strategy.

The energy-conscious agent maintains its energy level on threshold, and does not
consume raw fruit unless its energy level drops below the threshold. The reinforcement
learning in conscious agents enables energy conscious agents to achieve this by
dynamically changing the strategies that are more probable to achieve the goal state.

In the presence of an attacker, the agents are evaluated for escape-count. As
energy-conscious agents are not threat-conscious, they can be killed by an attacker, but

35



International Journal of Agent Technologies and Systems
Volume 9 ¢ Issue 1 « January-June 2017

Figure 8. Attacker Strategy-1

Get _agent_count( )
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Get cur position agent()
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during its survival its energy maintenance is better compared to the threat-conscious
and FSM agents.

Figure 10 is a graph that shows the number of cycles each agent type survived
from an attacker by escaping. The threat-conscious agent could escape for maximum
number of cycles as it adopts better strategies. The common sense agents also perform
on par with threat-conscious agents by using common sense. The FSM and energy-
conscious agents are least performers in the presence of an attacker as they lack
conscious awareness of a threat.

The initial distance between the agent and an attacker affects the number of cycles
it can survive. If this distance is very small, the agent survives for very few cycles; if
not, it can survive a little longer. Table 2 shows the survival cycles and escape count
of different agents.
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Figure 9. Comparison of FSM, energy-conscious, and conscious2 agents
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Figure 10. Survival of agents in the presence of an attacker
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Table 2. Escape count of agents

Agent Type Number of cycles survived Number of times escaped
Threat-conscious 135 60
Conscious2 108 51
Common sense 113 45

CONCLUSION

The research work highlights the idea that many aspects of consciousness and common
sense thinking can be simulated on agents. The research experiment has progressively
achieved the results required to justify the outcomes. The conceptual mechanisms of
consciousness and common sense have been computationally represented by using
cognitive architecture called COCOCA with six-layers-five-columns. Experimentation
is conducted by using animate testbed with simulated agents. The agents are made
to survive in an environment with attacker coexistence. This makes an agent to
consciously focus on the threat level in each move to make a decision for the next move.

The agents of basic layers such as reflexive and reactive are designed by using
simple FSM logic. The deliberative agents are built with the BDI model to show
motivated actions. The conscious agents tend to maintain desired states according to
their native behavior by changing strategies. This process in conscious agents leads
to learning optimal behaviors. The meta-reasoning layer upgrades common sense
strategies. The agents of common sense layer are the default conscious agents with
an initial set of common sense. These agents have pre-hand knowledge for some pre-
conditions and adopt these known strategies in critical conditions. The work carried
out concludes that a layer of meta-reasoning can build a knowledgebase of common
sense through experience.

The comparative study of consciousness and common sense aspects can improve
the performance of agents in critical situations. All conscious agents perform better
than the FSM agents for both energy-level maintenance and in tackling threats in the
environment. The energy-conscious agents are not evaluated for escape from attackers
as they lack strategies for escaping. But the threat-conscious agents do maintain energy
levels above threshold while simultaneously managing to escape from threats.
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