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ABSTRACT 

ab initio and PBE density functional theory with dispersion correction (PBE-D3) calculations are 

performed to study N2–Arn (n ≤ 3) complexes and N2 trapped in Ar matrix (i.e. N2@Ar). For cluster 

computations, we used both Møller-Plesset (MP2) and PBE-D3 methods. For N2@Ar, we used a 

periodic-dispersion corrected model for Ar matrix, which consists on a slab of four layers of Ar atoms. 

We determined the equilibrium structures and binding energies of N2 interacting with these entities. 

We also deduced the N2 vibrational frequency shifts caused by clustering or embedding compared to 

an isolated N2 molecule. Upon complexation or embedding, the vibrational frequency of N2 is slightly 

shifted whilst its equilibrium distance remains unchanged. This is due to the weak interactions 

between N2 and Ar within these compounds. Our calculations show the importance of inclusion of 

dispersion effects for the accurate description of geometrical and spectroscopic parameters of N2 either 

isolated, in interaction with Ar surfaces or trapped in Ar matrices. 
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I. INTRODUCTION 

The study of interactions between rare-gas atoms and molecules provides a wealth of 

information on molecular properties (matrix spectroscopies, for example) but also on how their 

properties are modified by their environments (i.e. matrix shift) [1]. It has been shown that if the 

interaction between the rare-gas atoms and the molecule is weak, the molecular properties are only 

slightly perturbed by the surrounding environment and thus are a very close to those of the isolated 

molecule [2]. This condition is satisfied for neutral van der Waals (vdW) complexes containing 

molecules interacting with rare gas atoms [3]. Such interactions play important roles in several 

chemical, physical and biological media [3-8]. They are in subtle balance with electrostatic (ES) and 

exchange-repulsion (ER) interactions. For instance, they control the 3D structures of DNA and 

proteins, crystal packing, aggregates formation, and the orientation of molecules when approaching 

surfaces [9,10]. 

Several theoretical and experimental studies have been devoted to probing the spectroscopy of 

di- and poly-atomic molecules interacting with either rare-gas atoms or rare-gas matrices. These 

include, for instance, CO, NO, Cl2, CO2, C3, O3 and NO2 molecules [4-8] interacting with Ne, Ar, Kr 

or Xe. A full understanding of the effects occurring at the atomic scale requires reliable and relevant 

information on the potential energy surfaces of these systems. However, obtaining reliable interaction 

potentials remains challenging due to the many-body nature of those systems. 

High accuracy wave-function methods such as the coupled-cluster methods (for example 

CCSD(T) at the complete basis set (CBS) limit) provide an excellent account of the dispersion energy. 

However, these methods still suffer from unfavorable computational scaling [O(N7)] leading to large 

computation times even for medium-sized systems. Density functional theory (DFT), on the other 

hand, has an intrinsically lower computational cost, but standard approaches do not describe 

dispersion interactions accurately. To try to correct this drawback, various DFT techniques have been 

proposed to improve the description of dispersion interactions in the theory. Those are, for example, 

the non-local van der Waals density functional (vdW-DF) [11,12], the DFT symmetry-adapted 

perturbation theory (DFT-SAPT) [13,14] including more rigorous partitioning of intermolecular 

energies, the density functional theory/coupled cluster method (DFT/CC) based on the pairwise 

representability of the difference between the CCSD(T) and DFT energies [15], the density functional 

(DF) that takes into account the dispersion interaction from a physical point of view [16], and the 

empirically-corrected DFT-D approach [17-20]. Over the years, the DFT-D approach has been widely 

used because of its simplicity, low computational overhead and reliability. 

The present contribution examines the case of an N2 molecule interacting with small Ar 

clusters, surfaces or embedded into an Ar matrix. Because of its importance for atmospheric and 

planetary processes [21,22], the Ar–N2 cluster has been widely studied both theoretically [23-35] and 

experimentally [36-39]. These studies have provided an accurate characterization of this complex, of 

its potential energy surface and of its vibrational and rotational spectra. In particular, they established 
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the existence of two minima of Ar–N2: a linear structure and a T-shaped structure, located in shallow 

potential wells (a few tens of cm-1). Note that large and medium-sized mixed Arn-N2m clusters (n > 

200) have also been widely investigated [40-46] whereas we are not aware of studies of small N2–Arn 

clusters (1 ≤ n ≤ 5). In the case of methane clusters, for example, Sanaa Zaag et al. [47] showed that 

small clusters may behave differently and possess different properties and reactivities than medium-

sized or large clusters. Hence small N2–Arn clusters deserve specific investigations, which is one of the 

aims of this study. 

The present computations were carried out using the same first–principles methodology for all 

environments (gas phase clusters, molecules adsorbed on a rare-gas surface or embedded into a rare-

gas matrix). We compute the equilibrium structures and interaction potentials thus enabling us to 

examine the vibrational and structural effects caused by clustering or embedding. This highlights the 

induced environment effects on the structure and the spectroscopy of N2. Moreover, we establish the 

efficiency of the DFT-D3 method in accounting for the anisotropy of the interaction at the molecular 

level for all types of environments studied. 

Our paper is arranged as follows: we briefly describe the computational details in Section II. 

Our results for N2–Arn clusters are presented in Section III. Section IV contains the data relative to N2 

adsorbed on Ar surfaces or embedded in an Ar matrix. We discuss our findings in Section V. 

 

II. COMPUTATIONAL METHODS 

The DFT-D approach considers dispersion as an additive, pairwise, energy correction term, 

C6R
–6, where R and C6 are the interatomic distances and the dispersion coefficients, respectively 

[19,48,49]. Various versions of DFT-D have been proposed. The latest iteration proposed by Grimme 

et al. [13,18] includes third-order dispersion corrections and removes some of the initial empiricism 

(DFT-D3). Moreover, Grimme and co-workers introduced geometry-dependent information to 

improve transferability that was lacking in DFT-D1 [19] and DFT-D2 [20]. Several benchmark studies 

showed that DFT-D3 results differ from those obtained with CCSD(T) by less than 5-10% 

[17,18,50,51]. In addition, this approach has been shown to provide a reliable description of rare-gas 

interactions, which are usually hard to describe using uncorrected DFT functionals [52]. 

In this study, we use the Gaussian plane waves (GPW) method [53-57] to account for the 

periodicity of the embedded system. This approach uses pseudopotential associated Gaussian basis 

sets for the expansion of the Kohn–Sham valence orbitals, and auxiliary plane waves basis set for the 

description of the electronic density as implemented in the Quickstep code [56,58,59], which is a part 

of the CP2K open source program [60]. The interaction of valence electrons with the nuclei is 

modeled by means of relativistic, norm-conserving, separable, dual-space Gaussian-type 

pseudopotentials of Goedecker, Teter, and Hutter (GTH) [61], optimized for the gradient-corrected 

exchange-correlation functional of Perdew, Burke, and Ernzerhof (PBE) [62]. This functional is used 

for all our calculations following a careful benchmarking in our previous study [52]. 
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For molecular systems, a cut-off energy Ecut = 400 Ry was found to be sufficient. The atomic 

geometry of the matrix models, surfaces, molecules and dimers are optimized by minimizing the 

energy using the BFGS optimizer [63]. The convergence criteria between the current and the last 

optimizer iteration are: the maximum geometry change is set to 5×10-4 bohr, the root mean square 

(RMS) geometry change is set to 2.5×10-4 bohr and the maximum force component of the current 

configuration is set to 10-6 bohr-1 × Hartree. 

To model the N2–Arn cluster systems, we use a supercell of 20 × 20 × 20 Å in size. We 

remove the periodic images and use a 0-D analytic Poisson solver for the electrostatic terms. We use 

the QZV3P-GTH basis set [53,64] for Ar atoms and the diffuse aug-QZV3P-GTH basis set [53,64] for 

N atoms (the exponents of all polarization functions are taken from Dunning’s aug-cc-pVXZ (X = T, 

Q) basis sets [16,65]). The N2-Arn (n = 1, 2, 3) clusters are computed using Moller-Plesset second-

order perturbation theory (MP2) [65–67] in conjunction with Dunning and co-worker's aug-cc-pVXZ 

(X= T, Q) basis sets as implemented in Gaussian 09 package [68]. Additional CCSD(T) calculations 

are performed using the CFOUR suite of programs (V1.0) [69]. 

For each system, the DFT-D3 total energy is computed as the sum of the conventional DFT 

energy and the correction value based on a damped atom-pairwise potential [17]. The counterpoise 

correction for the basis set superposition error (BSSE) [70] was not considered during the DFT-D3 

calculation for our large systems (adsorbed molecule and embedded into Ar matrices), as suggested by 

Grimme [17,18] but was used for all wave-function based cluster calculations. 

 

III. N2–Arn (n = 0, 1, 2, 3) CLUSTERS 

a) The Isolated Nitrogen Molecule 

We start our investigations by a series of test calculations for the isolated N2 molecule to 

benchmark our theoretical approach, the basis sets and the pseudopotentials. We compute the 

equilibrium distance and the vibrational frequency of isolated N2 in its electronic ground state (X1Σg
+) 

using CCSD(T) and MP2 post Hartree–Fock methods in conjunction with the aug-cc-pVXZ (X= T, Q) 

basis sets. We also use the dispersion-corrected Density Functional Theory using the PBE functional 

with the GTH pseudopotential and aug-TZV2P or aug-QZV3P basis sets. Our results and their 

comparison to experimental data are listed in Table 1. 
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Table 1: Equilibrium Distance (re, Å) and Harmonic Vibrational Frequency (ωe, cm-1) of N2 

(X1
ΣΣΣΣg

+) Computed Using Various Methods and Basis Sets. The Notation FC Indicates Frozen-

Core CCSD(T) Calculations. Deviations From the Experimental Results are Given in Square 

Brackets. Note that the Given Experimental Vibrational Frequency is the Harmonic Value. The 

Experimental Fundamental Frequency for N2 is �� = ���	. 	 cm–1 [71]. 

Method Basis set re ωe 

MP2 aug-cc-pVTZ 1.114 [0.016] 2186.8 [–171.8] 
aug-cc-pVQZ 1.110 [0.012] 2201.6 [–157.0] 

PBE-D3 aug-TZV2P-GTH 1.102 [0.004] 2350.9 [–7.7] 
aug-QZV3P-GTH 1.102 [0.004] 2344.8 [–13.8] 

CCSD(T) aug-cc-pVTZ(FC) 1.104 [0.006] 2340.0 [–18.6]  

aug-cc-pVQZ(FC) 1.101 [0.003] 2354.5 [–4.1] 

Experiment a) --- 1.098 2358.6 

a) Ref. [71]. 

 

Table 1 shows that MP2 provides the least satisfactory description of both distances and 

frequencies, with deviations of the order of ~0.01 Å and ~171 cm–1, respectively. As expected, 

CCSD(T) leads to an order of magnitude improvement for both quantities, with largest deviations of 

the order of ~0.006 Å and ~20 cm–1 and will be considered as computational reference for our study. 

Interestingly, both PBE-D3/aug-TZV2P and PBE-D3/aug-QZV3P-GTH give the same distance (1.102 

Å) which is similar to that obtained with CCSD(T). For the harmonic vibrational frequency, MP2/aug-

cc-pVXZ (X= T, Q) levels underestimate ωe in comparison to experiment (deviations of more than 170 

cm–1) whereas CCSD(T) and PBE-D3 reassuringly agree well with the experimental value (differences 

of few cm-1 for the largest basis sets). The correlation effects present in the N–N system are poorly 

described by MP2, which is to be expected. However, PBE-D3 combined with either aug-TZV2P-

GTH or aug-QZV3P-GTH basis sets performs as well as CCSD(T)/aug-cc-VQZ. This is particularly 

interesting given the much lower computational cost of PBE-D3 as compared to CCSD(T). Therefore, 

PBE-D3/aug-QZV3P-GTH constitutes a cost-effective method of choice for the description of N2 in 

various environments. 

 

b) The N2–Ar Cluster 

The N2–Ar complex is a typical system that displays van der Waals interactions. It is 

characterized by the dominance of pure dispersion interactions. As mentioned in the introduction, two 

minimum energy structures exist for the N2–Ar cluster: a T-shaped form and a linear form. The 

geometrical parameters and harmonic vibrational frequencies of these two stable geometries are listed 

in Table 2. 
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Table 2: Harmonic Frequencies (ωωωωi, cm-1) and Equilibrium Geometries of T-shaped and Linear 

Structures of N2–Ar Complex. re, R and θ are the Jacobi Coordinates (Figure 1). Distances are in 

Å and Angles are in Degrees. ωωωω1 is the Harmonic Vibrational Frequency of N2. The Vibrational 

Shift From the Free N2 Frequency is Shown in square Brackets. BE (meV) is the Binding Energy 

of the Complex. 

Linear form 

Method MP2 a)
 PBE-D3 b)

 CCSD(T) c)
 

re 1.11 1.10 1.10 

R 4.72 4.37 4.20 

θ 0.0 0.0 0.0 

BE –8.9 –13.4 –9.7 (Ref [14]) 
ω1 2185.4 [+1.4] 2344.9 [–0.2] 2339.3 [+0.7] 

ω2 36.9 217.4 35.1 

ω3 6.0 191.1 12.6 

T-shaped form 

Method MP2 a)
 PBE-D3 b)

 CCSD(T) c)
 

re 1.11 1.10 1.10 

R 3.63 3.75 3.68 

θ 90.0 89.8 90.0 

BE –11.2 –17.3 –12.4 (Ref [14]) 

ω1 2185.3 [+1.5] 2344.9 [–0.2] 2339.5 [–0.5] 

ω2 41.4 231.7 36.4 

ω3 12.3 177.0 6.1 

a) aug-cc-pVTZ basis set 

b) aug-QZV3P-GTH and QZV3P-GTH basis sets for N and Ar. 

c) aug-cc-pVTZ basis set. 

 

Table 2 shows that our computed equilibrium parameters R and θ (as defined in Figure 1 

below) are in satisfactory agreement with the high-level CCSD(T) calculations. Indeed, the R distance 

is 4.37 Å for PBE-D3 and 4.20 Å at the CCSD(T) level for the linear form of N2–Ar and R = 3.75 Å 

and R = 3.68 Å using PBE-D3 and CCSD(T) for the T-shaped form, whereas MP2 provides an R 

distance that deviates noticeably from CCSD(T) for the linear form. As was the case above for isolated 

N2, MP2 underestimates the N–N stretch, while PBE-D3 is remarkably close to CCSD(T). Overall, the 

magnitude of the vibrational shift is small (~1.5 cm–1 for MP2, ~0 cm–1 for PBE-D3 and ~0.5 cm–1 for 

CCSD(T)) and remains similar for both configurations at all levels of theory. 
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Figure 1: Upper panel: Definition of the re, R and θ parameters. Lower panel: Potential energy for T-

shaped and linear forms of N2–Ar obtained with PBE DFT with and without dispersion correction D3, 

where Ar is described using the QZV3P basis set and N by the aug-QZV3P-GTH basis set. We also 

show the potential calculated at the CCSD(T)/aug-cc-pVTZ+BF level [24]. 

 

Figure 1 displays one-dimensional cuts of the 3D potential energy surface (3D-PES) of N2–Ar 

along the R Jacobi coordinate for perpendicular (θ = 90°, T-shape form) and collinear (θ = 0°, linear 

form) configuration. These potentials are computed using the PBE-D3 method with and without 

dispersion correction (i.e. standard PBE) and compared to the CCSD(T) calculations of Ref [24]. This 

enables us to assess the performance of the corrected dispersion density functional method for this van 

der Waals complex. For these cuts, the N–N distance (re) is fixed at 1.10 Å. 

 

Figure 1 shows that PBE, PBE-D3 and CCSD(T) potentials present minima, corresponding to 

the T-shaped and linear N2–Ar clusters. Nevertheless, the depth of these potential wells depends on the 

method used for computations. Indeed, we compute a binding energy (BE) of the T-shaped form of –

5.1 meV, –17.3 meV and –12.0 meV using PBE, PBE-D3 and CCSD(T), respectively. For the linear 

form, BE is evaluated –5.1 meV, –13.4 meV, –9.2 meV at the PBE, PBE-D3 and CCSD(T) levels. Our 

results indicate clearly that including the dispersion correction D3 is crucial for the description of the 

potential energy with DFT since it leads to deeper potentials, in agreement with the CCSD(T) results. 

Hence, D3 dispersion correction improves the characterization of the energy profile of these vdW 

systems. Nevertheless, it seems that PBE-D3 overestimates the dispersion energy as the well depths 
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are overestimated for both forms. Our results on this cluster indicate clearly that we can use a 

dispersion-corrected density functional level of theory to compute weak non-bonded interactions.  

 

c) The N2–Ar2 System 

For the N2–Ar2 complex, we limited our geometry optimizations to the global minimum which 

corresponds to a structure where both argon atoms are close to each other. This structure is displayed 

in Figure 2 and described in Table 3, with a summary of its geometrical parameters and harmonic 

vibrational frequencies. Note that the minimum energy structure is similar to the most stable form of 

the CO–Ar2 system (denoted as Minimum 1 in Ref. [52]). 

 

 

Figure 2: The optimized structure of N2–Ar2 system. We give also the definition of the geometrical 

parameters listed in Table 3. 

 

The binding energy of the complex (BE) is computed as the energy difference between the 

cluster and that of a free N2 molecule and an Ar2 dimer. Using MP2, the BE is computed to be –

26.7 meV which is smaller than the value obtained using PBE-D3 (–33.5 meV).  

 

Table 3: Harmonic Frequencies (ωωωωi, cm-1) and Geometrical Parameters of the N2–Ar2 Structure 

at Equilibrium Computed Using MP2/aug-cc-pVTZ and PBE-D3/aug-TZV2P (N)/QZV3P (Ar) 

Methods. Distances are in Å and Angles are in degrees. ωωωω1 is the Harmonic Vibrational 

Frequency of N2. The Vibrational Shift From the Free N2 Frequency is Shown in Square 

Brackets. BE (meV) is the Binding Energy of the Complex Computed as the Energy Difference 

Between the Cluster and that of a Free N2 Molecule and an Ar2 Dimer. 

Parameters MP2 PBE-D3 

r 1.11 1.10 

R1 3.65 3.86 

R2 3.65 3.86 

D 3.76 3.81 
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θ 79.8 80.0 

α 61.9 61.0 

ω1 2183.8 [+3] 2343.5 [+1.3] 

ω2 47.7 205.1 

ω3 35.8 203.0 

ω4 29.9 186.1 

ω5 13.5 142.0 

ω6 11.3 29.0 

BE –26.7 –33.5 

 

Table 3 also shows that the N–N distance remains almost unchanged upon clustering whereas 

the harmonic vibrational frequency of N2 decreases by 1.3 cm-1 using PBE-D3 method (but by 3 cm-1 

at MP2 level) with respect to that of isolated N2 molecule. Therefore, there is a negligible effect of 

complexation on the N-N distance, whereas the N2 harmonic vibrational frequency is affected. We 

note that, compared to the CO–Ar2 complex [52], the inter-monomer distances (R1, R2) are longer for 

N2–Ar2. This is due to the slightly weaker interaction between N2 and Ar2 as compared to that of CO 

and Ar since N2 is non-polar. 

 

d) The N2–Ar3 System 

 

 

Figure 3: Optimized structure of N2–Ar3 system and definition of the parameters listed in Table 4. 

 

Figure 3 presents the most stable form of the N2–Ar3 cluster, which is obtained after several 

geometry optimizations with different starting structures. This stable structure is formed by a quasi-

equilateral triangle constructed by the three Ar atoms situated above the N2 molecule. The binding 

energy of this cluster, computed as the energy difference between the cluster and that of a free N2 
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molecule and that of an Ar3 trimer, is –39.6 meV at the MP2 level and –46.2 meV using the PBE-D3 

approach. 

 

Table 4: Harmonic Frequencies (ωωωωi, cm-1) and Geometrical Parameters of N2–Ar3 Structure 

Using MP2/aug-cc-pVTZ and PBE-D3/aug-TZV2P (N)/QZV3P (Ar) Methods. Distances are in Å 

and Angles in degrees. ωωωω1 is the Harmonic Vibrational Frequency of N2. The Vibrational Shift 

From the Free N2 Frequency is Shown in Square Brackets. BE (meV) is the Binding Energy of 

the Cluster, Computed as the Energy Difference Between the Cluster and that of a Free N2 

Molecule and that of an Ar3 Trimer. 

Parameters MP2 PBE-D3 

R 1.114 1.102 

R1 3.523 3.725 

R2 4.137 4.285 

R3 3.523 3.725 

d1 3.748 3.930 

d2 3.759 3.987 

d3 3.748 3.924 

θ 99.36 99.73 

α1 57.92 58.2 

α2 57.91 58.4 

ω1 2182.1 [+4.7] 2342.9 [+1.9] 

ω2 54.0 208.0 

ω3 51.1 204.9 

ω4 40.3 195.1 

ω5 37.6 148.3 

ω6 27.7 142.5 

ω7 27.7 34.7 

ω8 13.2 24.6 

ω9 8.1 22.8 

BE –39.6 –46.2 

 

Table 4 summarizes the geometrical parameters of this structure. The Ar–N1–Ar angles (αi) are 

similar for both methods, 58°, but there is a difference in the Ar1–N1–N2 angle (θ) as seen previously 

for the N2–Ar2 complex. Also, we notice that the distance between the two nitrogen atoms remains 
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almost unchanged within N2–Ar3 as compared to that of isolated N2. As noticed above for N2–Ar2, the 

distances between Ar and N atoms are longer than those computed for CO–Ar3 [52] because of the 

weaker dispersive interaction between N2 and Ar. Note that the computed harmonic vibrational 

frequency shift for N2 is more noticeable, amounting to ~2 cm–1 using the PBE-D3 method (4.7 cm–1 at 

MP2 level). This is an increase in magnitude compared to N2–Ar2. Note also that the harmonic 

vibrational frequency of N2 is smaller than that of isolated N2 (X
1Σg

+). 

 

IV. N2 Interacting with Ar Surfaces or Trapped in Ar Matrices 

In the previous section, we showed that the PBE-D3/aug-QZV3P level of theory gives 

accurate enough results, which agree well with CCSD(T) or experimental values for the isolated and 

clustered nitrogen molecule. This is associated with a significant reduction of the computational cost 

compared to CCSD(T), for example. Thus larger systems, such as N2 adsorbed on Ar surfaces or 

trapped in Ar cold matrices, can be explored with similar accuracy using this approach.  

 

a) Pure Ar Crystal 

We choose to study four layers of 18 Ar atoms as a periodic model for the Ar matrix, which 

leads to a cubic unit cell containing 72 Ar atoms. After a PBE-D3/QZV3P optimization of our model 

crystal, we calculate a face centered cubic (fcc) lattice of 5.223 Å. This value agrees well with the 

experimental value (of 5.222 Å) measured at 0 K by Fujii et al. [72] and with the theoretical value (of 

5.30 Å) by Migen Halo et al. [73] derived using periodic MP2 computations. 

 

b) N2 Interacting with an Ar Surface 

For these computations, we used our four argon layers model and added ~20 Å of vacuum 

above the surface to construct the super-lattice. The N2 molecule is then positioned above the Ar 

surface. The large size of our super-cell (15.669 ×15.669 ×25 Å) minimizes any N2–N2 neighboring 

periodic interaction. We performed three sets of calculations. We started by fixing all argon atoms, 

then, we released the Ar planes one by one by moving away from the molecule. The model where all 

Ar layers are fully frozen is denoted as “All 4 layers”. When only the first Ar layer (first two Ar 

layers) is relaxed the model is denoted as “Bottom 3 layers” (as “Bottom 2 layers”). Two starting 

orientations of the nitrogen molecule were chosen: either perpendicular or parallel to the surface. The 

results of these computations are collected in Table 5, where we list the N–N equilibrium distance, its 

harmonic frequency and the vibrational shift caused by surface attachment. We also give the binding 

energy (BE) of N2 to the surface computed as the energy difference between the system and that of a 

free N2 molecule and the relaxed argon surface.  

After optimization, two stable configurations were found: N2 parallel to the surface and N2 

perpendicular to the surface. Since the electron density on both N atoms is the same, the tilt angle (δ) 

of the molecular axis of the N2 molecule with respect to the Ar surface is 0° or 90°. Note that for 
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anisotropic electron densities, δ is different from these two values. This is the case, for instance, for 

CO adsorbed on Ar surface [52], or for imidazole and histidine interacting with a gold Au (111) 

surface [74,75]. 

 

Table 5: Characteristics of the Interaction of N2 Located Parallel or Perpendicular to an Argon 

Surface. re (Å) and ωe (cm-1) are the N-N Equilibrium Distance and the N2 Harmonic Vibrational 

Frequency, respectively. ∆ω∆ω∆ω∆ωe (cm-1) corresponds to the Vibrational Shift with respect to Free N2. 

Re (Å) is the Distance from the Centre of Mass of N2 and the First Ar Layer. BE (meV) is the 

Binding Energy Surface Computed as the Energy Difference Between the System and that of a 

Free N2 Molecule and the Relaxed Argon Surface. 

Number of frozen Ar layers re ωe ∆ωe Re BE 

N2 // Ar72 

All 4 layers 1.10 2335.3 +9.5 3.74 –42.9 

Bottom 3 layers 1.10 2335.0 +9.8 3.71 –45.0 

Bottom 2 layers 1.10 2335.0 +9.8 3.79 –45.2 

 

N2 ⊥⊥⊥⊥ Ar72 

All 4 layers 1.10 2357.2 –12.4 3.69 –25.4 

Bottom 3 layers 1.10 2356.9 –12.1 3.66 –28.3 

Bottom 2 layers 1.10 2357.3 –12.5 4.02 –28.8 

 

 

Page 13 of 25

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 14

Table 5 lists the equilibrium geometries of N2 interacting with the Ar surface models. This 

table shows that the N−N equilibrium distance remains unchanged regardless of the orientation of the 

nitrogen molecule on the argon surface. The distance between N2 and the Ar surface (Re ~3.4 Å) is 

relatively long. The computed harmonic frequencies of N2 are 2335 cm-1 and 2357 cm-1 for N2 // Ar72 

and N2 ⊥ Ar72 respectively, which correspond to approximate vibrational shifts of +10 cm-1 and –12 

cm-1 compared to isolated N2, respectively. Interestingly, relaxing the Ar layers does not influence the 

adsorption geometry which is different to what was observed for CO interacting with Ar surface [52]. 

Yet the binding energies of N2 to the surface differ and BE is –45.2 meV for N2 // Ar72 and –28.8 meV 

for N2 ⊥ Ar72. This is consistent with what was observed earlier for the two minimum energy structures 

of N2–Ar (linear and T-shaped) with unchanged N–N distance, but different BEs (stronger binding for 

the T-shaped structure). Thus, the perpendicular orientation of N2 on the Ar surface is similar to the 

linear stationary point of N2–Ar and the parallel orientation of N2 on the Ar surface is similar to the T-

shaped stationary point of N2–Ar. This is also in agreement with the data obtained for N2–Ar2 and N2–

Ar3. The vibrational shift is strongly dependent on the binding mode with a positive shift for the 

parallel arrangement and a negative shift for the perpendicular arrangement. 

 

c) N2 Molecule Trapped in Argon Matrices 

 

 
 

N2–Ar31 N2–Ar47 
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N2–Ar74 N2–Ar107 

Figure 4: Optimized equilibrium structures of N2 embedded in argon matrices of different sizes.  

 

We treated the nitrogen molecule trapped in argon matrix using PBE-D3 in order to evaluate 

the effect of the gas rare environment around this diatomic. For that purpose, we used the optimum 

geometry calculated for pure Ar crystal and we replaced one Ar atom situated in the centre of the unit 

cell by a N2 molecule. This procedure ensures that the N2 molecule is fully embedded in a periodic 

argon environment. Moreover, we have used four unit cells obtained by translation of the primary unit 

cell, cell size effects of (2x2x2), (3x2x2), (3x3x2) and (3x3x3) were used to assess these effects. These 

correspond to N2–Ar32, N2–Ar47, N2–Ar74 and N2–Ar107, where the separation between adjacent 

nitrogen diatomics increases with the number of Ar atoms in the matrix. Then we performed geometry 

optimizations. The parameters of the equilibrium structures are depicted in Figure 4 and reported in 

Table 6. 

The experimental vibrational shift is inherently anharmonic as it is computed using the 

difference between the measured fundamentals for N2@Ar (Ref. [76]) and that for a free N2 molecule 

(Ref. [71]). In our calculations, we use the computed harmonic frequency of N2 trapped in argon 

matrix (Table 6) and the value computed for an isolated N2 molecule (Table 1) assuming that the 

anharmonicity constant remains similar in both cases. This approximation allows us to estimate the 

experimental vibrational shift using only the harmonic approximation.  

 

Table 6: Characteristics of N2 Embedded into Ar Matrices. re (Å) is the Equilibrium Distance of 

N2. ωωωωe (cm-1) is the N2 Harmonic Vibrational Frequency. ∆ω∆ω∆ω∆ωe (cm-1) Corresponds to the 

Vibrational Shift with Respect to Free N2. RNAr (Å) Corresponds to the Distance Between Ar and 

N and RN2-N2 (Å) is the Distance Between N2 and its Periodic Image. 

System re ωe ∆ωe RNAr RN2-N2 

free N2 1.103 2344.8 0 – – 

N2@Ar31 1.102 2367.6 –22.8 3.37 10.6 

N2@Ar47 1.103 2340.8 +4.0 3.42 12.1 
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N2@Ar74 1.103 2335.6 +9.2 3.98 14.2 

N2@Ar107 1.103 2335.6 +9.2 3.91 15.5 

N2@Armatrix
 a)

 – 2325.9 +4.0 – – 

a) Ref. [76].  

 

Upon embedding, the N–N equilibrium distance (re) remains almost unchanged. For N2@Ar31, 

the N2 stretch frequency is computed to be 2367 cm-1 (negative vibrational shift). However, this shift 

increases as we increase the size of the matrix. Indeed, Table 6 shows that there is a slight decrease in 

the N2 harmonic vibrational frequency from ~2345 cm-1 for isolated N2 to 2340–2335 cm-1 for N2 

trapped in a matrix made of 47 or 74 or 107 Ar atoms per unit cell. Convergence is reached with an Ar 

matrix containing at least 74 Ar atoms. The corresponding harmonic vibrational frequency shifts 

remain then constant at the value of ~9 cm-1. 

Thus, N2 trapped into a unit cell containing 31 Ar atoms is most likely too small a model to 

prevent N2 from interacting with its periodic image. Indeed, the lateral interactions between N2 and its 

N2 image (N2–N2) could be the cause for the intermediate harmonic frequency value, as the distance 

between N2 and its periodic image is of ~10.6 Å. For cells formed by more than 74 Ar the separation 

between N2 and its image is larger than 14.2 Å and the harmonic N2 frequency starts converging. In 

fact, both cells of 31 and 47 Ar atoms are insufficient to completely solvate N2. This contrasts with our 

previous study of CO [52] where the convergence started already with 31 Ar atoms. Since both 

diatomics have similar sizes, this difference could be related to the different interactions in the 

CO@Ar and N2@Ar systems, as N2 is non-polar while CO is polar. 

The frequency shift of N2 trapped in an Ar matrix remains invariant and converges when the 

nitrogen is fully solvated in the argon matrix (Ar74 matrix). Our theoretical study gives ∆ωN2 ~9 cm–1 

which is in agreement with the experimental shift (~4 cm-1 [76]). The remaining deviation can be 

attributed to anharmonic corrections (which have been assumed to be negligible in this study), 

possible impurities in the experimental Ar matrix or an overestimation of the weak interactions in the 

system by the DFT-D3 approach.   

 

V. DISCUSSION 

Our systematic study of the interaction of nitrogen molecule with different environments of 

argon shows that the presence of argon atoms surrounding the N2 molecule disturbs its vibrational 

structure. Indeed, the harmonic vibrational frequency of nitrogen decreases linearly as the number of 

Ar atoms in the clusters increase until it reaches a plateau for a number of Ar atoms larger than 3. The 

largest deviation upon clustering or embedding with respect to free N2 is of ~9 cm-1. Indeed, the 

harmonic vibrational frequency of N2 is nearly unaffected by the presence of a single argon atom. 

Once we add another Ar atom (N2–Ar2, N2–Ar3) the vibrational frequency shift increases to ~2 cm-1. 

For N2 interacting with Ar surfaces or embedded in Ar matrices, the shift becomes distinctly larger (~9 
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cm–1). In addition, we notice that the vibrational shift of N2 interacting with an Ar surface is subject to 

strong orientation effects when N2 is perpendicular to the Ar surface (negative vibrational shift) or 

parallel to the Ar surface (positive vibrational shift).  

For CO–Arn [52] and HCl–Arn (n = 1, 2, 3), these effects are slightly larger [77]. Indeed, the 

frequency shifts for CO–Arn are in the range ~3 cm-1 to ~8 cm-1 for 1 ≤ n ≤ 3. This shift equals 

1.76 cm-1 for HCl–Ar then becomes 4.53 cm-1 when HCl interacts with three Ar atoms. These 

differences may be related to the polarity of the embedded molecule. The gas rare effects on the 

harmonic vibrational frequency are in the following order ∆ωN2 < ∆ωHCl < ∆ωCO, which is roughly 

proportional to the polarity of the diatomic interacting with gas rare environment (i.e. µN2 = 0, µCO = 

0.11 D and µHCl = 1.109, in Debye), although stronger for CO. 

 

 

VI. CONCLUSIONS 

The present work attempts to assess and evaluate the performance of the corrected dispersion 

density functional method in describing N2–Arn van der Waals complexes, which are characterized by 

the dominance of pure dispersion interactions. Hence, we show that dispersion-corrected DFT 

provides an accurate and reliable framework to investigate weak interactions between small molecules 

and noble gas atoms. We illustrate also the use of the Grimme’s PBE-D3 approach which may provide 

a uniform formalism for the treatment of molecules in gas phase, adsorbed on surfaces or embedded in 

matrices, and in solid state. Our results reveal that there are slight changes on both geometrical 

parameters and vibrational frequency on N2 upon embedding on van der Waals matrices. We also 

demonstrate that these effects remain unchanged from cluster containing few Ar atoms up to full 

matrix embedding (up to 107 Ar atoms surrounding N2). These effects are rationalized in terms of the 

equivalence of bimolecular interaction potentials between N2–Ar and Ar–Ar species. 

Using a periodic approach to matrix embedding, we show that we can model the N2 molecule 

and its interactions with a rare gas matrix. However, cautions should be taken when comparing 

spectroscopic data obtained using matrix embedding to measurements in the gas-phase or to 

theoretical data of individual molecules, since the influence on spectroscopic properties can be 

significant. This approach has been developed in our laboratories to treat embedding of CO molecule 

and it is currently being further developed for other neutral and charged molecules relevant for 

astrophysical, planetary or atmospheric media (e.g. CN, N2
+, CO2 …). 
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