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Abstract 

Objective Most algorithms for automated analysis of phonocardiograms (PCG) require 

segmentation of the signal into the characteristic heart sounds. The aim was to assess the 

feasibility for accurate classification of heart sounds on short, unsegmented recordings. 

 

Approach PCG segments of 5 second duration from the PhysioNet/Computing in Cardiology 

Challenge database were analysed. Initially the 5 second segment at the start of each 

recording (seg 1) was analysed. Segments were zero-mean but otherwise had no pre-

processing or segmentation. Normalised spectral amplitude was determined by fast Fourier 

transform and wavelet entropy by wavelet analysis.  For each of these a simple single feature 

threshold based classifier was implemented and the frequency/scale and thresholds for 

optimum classification accuracy determined. The analysis was then repeated using relatively 

noise free 5 s segments (seg 2) of each recording. Spectral amplitude and wavelet entropy 

features were then combined in a classification tree. 

 

Main results There were significant differences between normal and abnormal recordings for 

both wavelet entropy and spectral amplitude across scales and frequency. In the wavelet 

domain the differences between groups were greatest at highest frequencies (wavelet scale 1, 

pseudo frequency 1 kHz) whereas in the frequency domain the differences were greatest at 

low frequencies (12 Hz). Abnormal recordings had significantly reduced high frequency 

wavelet entropy: (Median (interquartile range)) 6.63 (2.42) vs 8.36 (1.91), p < 0.0001, 

suggesting the presence of discrete high frequency components in these recordings. 

Abnormal recordings exhibited significantly greater low frequency (12 Hz) spectral 

amplitude: 0.24 (0.22) vs 0.09 (0.15), p< 0.0001. Classification accuracy (mean of specificity 

and sensitivity) was greatest for wavelet entropy: 76% (specificity 54%, sensitivity 98%) vs 

70% (specificity 65%, sensitivity 75%) and was further improved by selecting the lowest 

noise segment (seg 2): 80% (specificity 65%, sensitivity 94%) vs 71% (specificity 63%, 
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sensitivity 79%). Classification tree with combined features gave accuracy 79% (specificity 

80%, sensitivity 77%).   

 

Significance The feasibility of accurate classification without segmentation of the 

characteristic heart sounds has been demonstrated. Classification accuracy is comparable to 

other algorithms but achieved without the complexity of segmentation.   

 

1. Introduction 

 

Heart sounds have long been recognised as a diagnostic tool which can indicate a range of 

cardiac pathologies related to valve disease (Nazeran 2015). Heart sounds are generated by 

turbulent flow of blood and the resultant mechanical vibrations are transmitted through the 

torso and can be heard at different locations on the body surface using a stethoscope. 

Recordings of the heart sounds in electronic format via an electronic stethoscope enable the 

processing and analysis of the sounds with the potential for automated diagnosis (Brusco & 

Nazeran 2006). Many works have looked at this challenging problem using different signal 

processing methods.  For example, Maglogiannis et al (2009) used wavelet decomposition for 

heart sound segmentation and support vector machine for classification and reported accuracy 

of 91% for classification of ‘normal’ and ‘pathological’ heart sounds. Where available 

simultaneously recorded ECG can improve diagnostic performance by providing definitive 

cardiac cycle reference points. For example, El-Segaier et al (2005) use short time Fourier 

transform and associated frequency characteristics of the heart sounds for both segmentation 

and classification aided by ECG reference points. A review of segmentation and 

classification methods is provided in Liu et al (2016). Classification of heart sounds using 

only PCGs was recently posed as the PhysioNet/Computing in Cardiology Challenge 2016 

(PhysioNet 2016, Goldberger 2000) and attracted a large number of entries (Clifford et al 

2016). Almost universally the proposed algorithms performed segmentation of the recording 

into the characteristic heart sounds S1, S2 and associated systolic and diastolic intervals. 

While such segmentation provides many classification features which may be useful in 

identifying abnormal heart sounds it also introduces considerable complexity and increased 

computational burden into the algorithms (Schmidt et al 2010). Here the aim was to test the 

feasibility of accurate classification of heart sounds from recordings without segmentation of 

heart sounds and intervals. Following our initial work based on classification of heart sounds 

using wavelet entropy of unsegmented recordings (Langley & Murray 2016) here we extend 
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the work to include spectral amplitude as a classification feature and the selection of noise 

free segments. 

 

2. Methods 

 

2.1 Database of recordings 

 

Data for this study was obtained from the PhysioNet/Computing in Cardiology Challenge 

2016 (PhysioNet 2016). The dataset is fully described in Liu et al (2016) and the Challenge is 

fully described in Clifford et al (2016). It comprises a training set of PCG recordings of 

variable duration classified as either ‘normal’ (2408 recordings) or ‘abnormal’ (630 

recordings) and a hidden test set which was unavailable to challenge participants. Recordings 

classified as normal were from healthy subjects and those classified as abnormal from 

patients with a confirmed cardiac diagnosis. The database is heterogeneous since it contains 

recordings from several contributing centres, with no standardised recording position, from 

adults and children and using different recording instruments (Liu et al 2016). Sample rate 

was 2000 Hz for all recordings. Recordings had an additional descriptor ‘clean’ or ‘noisy,’ 

but this was not utilised in the present study since we employed our own assessment of 

recording noise. Since all recordings in the training set had either the classification of 

‘normal’ or ‘abnormal’ the aim of our study was to make the binary classification ‘normal’ or 

‘abnormal’ without use of a third ‘uncertain’ classification category. All analysis was done in 

the Matlab environment using the appropriate tool boxes. 

 

2.2. Recording duration 

 

The database comprises recordings of variable duration. Although the recording duration of 

some phonocardiograms extended to almost 120 s the vast majority had short duration of less 

than 8 s with the shortest duration of 5 s (Langley & Murray 2016, Liu et al 2016). Hence to 

fix on a consistent analysis length for all recordings in this study the analysed data length was 

5 s for all recordings. Initially the segment analysed was the first 5 s segment of each 

recording (seg 1). However, some recordings had considerable noise at the start of the 

recordings so the analysis was repeated on 5 s segments with lowest noise (seg 2). The 

selection of this segment is described in the appropriate section 2.4. 
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2.3 Classification features 

 

Training set recordings were analysed by both spectral and wavelet techniques to explore the 

time/frequency characteristics of the heart sounds. Specifically, two features i) spectral 

amplitude and ii) wavelet entropy were assessed as features for classification of heart sounds. 

Spectral amplitude measures the relative amplitude of the signal as a function of frequency.  

Wavelet entropy on the other hand measures the temporal energy distribution as a function of 

frequency. The presence of abnormal heart sounds, such as murmurs, clicks and rubs was 

expected to generate distinct spectral amplitude and wavelet entropy characteristics compared 

to normal heart sounds.  In the following sections the calculation of these characteristics is 

described along with their use as classification features. 

 

 

2.3.1 Spectral amplitude 

 

After subtracting the mean from the 5 s segment the one-sided amplitude spectrum was 

calculated using fast Fourier transform (Rao et al 2011). The amplitude was normalised to the 

peak amplitude. The segment length (10000 samples (5 s)) provided a spectral resolution of 

0.2 Hz across the range 0 to 1000 Hz. This provided spectral amplitudes in 5001 frequency 

bins (0 to 1000 Hz) for each recording. According to the observed differences between 

groups in spectral amplitude across the full frequency range, a simple threshold based 

classification algorithm was implemented to assign recordings to either ‘normal’ or 

‘abnormal’ groups depending the recording’s spectral amplitude relative to a threshold. 

Specifically, the spectral amplitude of abnormal recordings was found to be significantly 

greater than normal recordings at low frequencies (see results section for full details) so the 

classification algorithm assigned recordings to the ‘abnormal’ class if the spectral amplitude 

at a given frequency was greater than the threshold and to the ‘normal’ class otherwise. This 

algorithm was implemented for all frequency bins and the threshold yielding the highest 

classification accuracy at each bin was determined by sequentially incrementing the threshold 

from a base value and identifying the threshold achieving the greatest accuracy. Finally, with 

the aim of producing a single feature classifier, the frequency bin (and associated threshold) 

yielding the highest classification accuracy was selected as the optimum. A colour map of 

classification accuracy was plotted as a function of frequency and threshold. 
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2.3.2 Wavelet entropy 

 

Using the ‘Gaus4’ mother wavelet the continuous wavelet transform coefficients were 

generated according to 

 

𝑇(𝑎, 𝑏) =
1

√𝑎
∫ 𝜓∗ (

𝑡−𝑏

𝑎
)𝑑𝑡

∞

−∞
       (1) 

 

where 𝜓∗is the complex conjugate of the wavelet function with scale and translation 

variables a and b respectively. 

 

From the wavelet coefficients the wavelet energy at each scale and translation was calculated 

according to 

 

𝐸(𝑎, 𝑏) = |𝑇(𝑎, 𝑏)|2        (2) 

 

Wavelet entropy, a measure of the temporal energy distribution, was calculated according to 

(Langley 2015) 

 

𝑆(𝑎) = −∫𝑃(𝑎, 𝑏) log(𝑃(𝑎, 𝑏)) 𝑑𝑏      (3) 

 

where the wavelet energy probability distribution was defined as 

 

𝑃(𝑎, 𝑏) =
|𝑇(𝑎,𝑏)|2

∫|𝑇(𝑎,𝑏)|2𝑑𝑏
        (4) 

 

With this formulation wavelet entropy is calculated at each scale. Scales with a broad 

temporal wavelet energy distribution, (ie a scale with energy distributed across the duration 

of the recording segment) would have greater wavelet entropy than scales with a narrow 

temporal energy distribution (ie a scale with energy concentrated at particular time points of 

the recording segment) (Langley 2015).  It was expected that the presence of heart sound 

abnormalities such as clicks and rubs would have temporally concentrated energy at distinct 

scales resulting in reduced wavelet entropy at those scales. Note that wavelet entropy is 

calculated using the wavelet energy probability distribution (equation 4) and as such it is not 
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dependent upon the amplitude of the wavelet coefficient. Hence it characterises the temporal 

energy distribution even at scales with low amplitude.  

 

Wavelet entropy was calculated for scales 1 to 100 with increment 0.1 which, for the ‘Gaus4’ 

mother wavelet, corresponded to the frequency range 1000 Hz to 10 Hz. Scales below 1 were 

not considered as they correspond to frequencies above the Nyquist frequency. Similar to the 

analysis of the spectral amplitude, a simple threshold based classification algorithm was 

implemented to assign recordings to either ‘normal’ or ‘abnormal’ groups depending on the 

recording’s wavelet entropy relative to a threshold. Particularly it was noted that wavelet 

entropy was greatly reduced for abnormal recordings at the lowest scales (highest 

frequencies) so the classification algorithm assigned recordings to the ‘normal’ class if the 

wavelet entropy at a given scale was greater than the threshold and to the ‘abnormal’ class 

otherwise. To determine the scale and threshold yielding the highest classification accuracy a 

colour map of classification accuracy was plotted as a function of scale and threshold. 

 

2.3.3 Combined spectral amplitude and wavelet entropy classifier 

Having developed two single feature classifiers based on either spectral amplitude or wavelet 

entropy alone as described in sections 2.3.1 and 2.3.2, the utility of using both these features 

in a single classifier was assessed.  A classifier taking both wavelet entropy and spectral 

amplitude as classification features was designed using a decision tree. The decision tree 

approach was used because overtraining of the classifier can be avoided by limiting the 

number of decision nodes. Also, the resulting classifier retains physical meaning of 

classification features so is simple to interpret.  As such we designed a decision tree classifier 

having the minimum number of decision nodes using the Matlab ‘fitctree’ command trained 

on the training set data. 

 

2.4 Selection of lowest noise segment of recordings 

 

It was noticed that some recordings had significant noise during the first 5 s segment of the 

recording while other parts of the recordings were relatively noise free. To identify the 

segments with lowest noise levels to use in the analysis as an alternative to the first 5 s 

segment it was necessary to estimate the noise content of segments. PCG signal noise due to 

patient movement or other recording artefact generally produces large amplitude disturbance 

in the signal.  An example is shown in figure 1. Wavelet entropy described in the previous 
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section was used as a relative measure of signal noise within recordings. Noisy recording 

segments have a concentration of signal energy during the noise disturbance which is 

reflected in low wavelet entropy.  For clean recording segments signal energy occurs more 

evenly temporally distributed across the recording (with energy peaks only at each heart 

sound) and this is reflected in higher wavelet entropy. In another application wavelet entropy 

was used previously as a measure of noise due to residual ventricular activity in 

electrocardiogram recordings of the abnormal heart rhythm atrial fibrillation (Langley 2015). 

As an illustrative example consider figure 1. Figure 1 top panel shows a PCG recording 

exhibiting considerable noise during the first few seconds while the later parts are relatively 

noise free. Figure 1 lower panels show the wavelet entropy for the noisy and clean segments. 

It indicates that noise free segments had higher wavelet entropy across all scales. In order to 

automatically select the cleanest segment of a recording, wavelet entropy was calculated for 5 

s segments in increments of 1 s intervals across the full recording and the segment providing 

the highest entropy was selected as the lowest noise segment (seg 2). Spectral and wavelet 

analysis was repeated on these 5 s segments. 

 

2.5 Statistical analysis 

 

Specificity and sensitivity of classification were calculated according to standard formula by 

counting the number of true/false positive/negative classifications on the training set. A 

measure of classification accuracy was defined as (specificity + sensitivity)/2 as in the 

PhysioNet/Computing in Cardiology Challenge 2016 (Clifford et al 2016).  Cross-validation 

was implemented by bootstrapping 300 random samples of the training set recordings over 

1000 iterations and mean and standard deviation of specificity, sensitivity and accuracy are 

reported. Data were non-normally distributed so significance of differences between features 

of the normal and abnormal recordings of the training set were evaluated with the Wilcoxon 

rank sum test.  
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Figure 1. Illustration of a PCG recording with noisy and clean segments and their associated 

wavelet entropies. The first 5 s of the recording is contaminated by noise resulting in low 

wavelet entropy (mean wavelet entropy = 6).  The cleanest 5 s segment had higher wavelet 

entropy (mean wavelet entropy = 8).  

 

 

3. Results 

  

For the single feature classifiers the results obtained by analysis of the first 5 s segment of 

each recording are presented in sections 3.1 and 3.2. Section 3.3 presents the results for the 

lowest noise segments and the decision tree classifier.  

 

3.1 Spectral amplitude 

 

The median normalised amplitude spectra for normal and abnormal recordings are shown in 

figure 2 (left panel). There were clear differences in the median spectral amplitude with 
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abnormal recordings exhibiting higher amplitude over the range 0 to 35 Hz. Based on these 

distributions of amplitude a simple classifier which assigned recordings to the ‘abnormal’ 

group for spectral amplitude above ‘threshold’ and to the ‘normal’ group for those equal or 

below ‘threshold’ was implemented.  The classification accuracy map for this algorithm 

showing the accuracy of classification as a function of frequency and threshold is shown in 

the right panel of figure 2. The highest accuracy was 70% (specificity 65%, sensitivity 75%) 

at a frequency of 12 Hz with a threshold of 0.14. 

 

 

Figure 2. Left panel: Median spectral amplitudes from fast Fourier transform analysis of 

normal (red) and abnormal (blue) PCG recordings. Right panel: Classification accuracy map 

for a simple classifier (spectral amplitude of abnormal recordings greater > threshold) 

showing greatest accuracy (70%) at 12 Hz for a threshold of 0.14 (white cross).  

 

Statistical analysis of the differences between spectral amplitude for normal and abnormal 

recordings at 12 Hz showed that median (interquartile range) amplitude was significantly 

greater in the abnormal group compared to the normal group (0.24 (0.22) vs 0.09 (0.15), p < 

0.0001) as illustrated in figure 3. 
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Figure 3. Spectral amplitude distributions at 12 Hz for normal and abnormal recordings. 

Abnormal recordings had significantly greater amplitude at this frequency. The dashed line 

indicates the threshold (0.14) for maximum classification accuracy at this frequency. 

 

 

Figure 2 left panel also indicates that median amplitude was lower for abnormal recordings 

above 35 Hz, however, a simple classifier based on assigning recordings to the abnormal 

group if their amplitude was below ‘threshold’ yielded a maximum accuracy of 66% (at 100 

Hz) so was not considered further. 

 

3.2 Wavelet entropy 

 

Figure 4 left panel shows median wavelet entropy across scales from 1 to 30 for both the 

normal and abnormal heart sounds.  Although median entropy was greater for abnormal 

recordings at scales greater than 7 the largest difference between median entropy was at the 

lowest wavelet scales where the entropy of normal heart sounds exceeded those of abnormal 

heart sounds. Based on these distributions of wavelet entropy a simple classifier which 

assigned recordings to the ‘abnormal’ group for wavelet entropy below ‘threshold’ and to the 

‘normal’ group for those equal or above ‘threshold’ was implemented.  The classification 

accuracy map for this algorithm showing the accuracy of classification as a function of scale 
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and threshold is shown in the right panel of figure 4. Accuracy was highest at scales from 1 to 

2 with corresponding pseudo frequencies from 1000 to 500 Hz respectively. The highest 

accuracy 76% (specificity 54%, sensitivity 98%), was obtained for scale 1 with a threshold of 

8.3.  

 

Figure 4. Left panel: Median wavelet entropy from wavelet analysis of normal (red) and 

abnormal (blue) PCG recordings. Right panel: Classification accuracy map for a simple 

classifier (wavelet entropy of abnormal recordings less than threshold) showing greatest 

accuracy (76%) at scale 1 for a threshold of 8.3 (black cross).  

 

Median (interquartile range) wavelet entropy was significantly greater in the normal heart 

sound recordings at this scale (8.4 (1.9) vs 6.6 (2.4) p < 0.0001) as illustrated in figure 5. 

Wavelet entropy for the normal group were highly negatively skewed (figure 5) which is 

thought to be due to the poor quality of some of the recordings. 
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Figure 5. Wavelet entropy distributions at scale 1 for normal and abnormal recordings. 

Normal recordings had significantly greater wavelet entropy at this scale. The dashed line 

indicates the threshold (8.3) for maximum classification accuracy at this scale. 

 

3.3 Spectral amplitude and wavelet entropy for lowest noise segments 

 

The data presented so far relate to the 5 s segment at the start of the recording (seg 1). The 

analysis was repeated for the 5 s segments exhibiting the lowest noise (seg 2) and the data are 

presented here. 

 

As expected wavelet entropy increased for both normal (seg 1: 8.36 (1.91) vs seg 2: 8.42 

(0.69)) and abnormal (seg 1: 6.63 (2.42) vs 7.50 (1.63)) recordings as a result of the 

automatic selection of the lowest noise segments (table 1).  Classification accuracy increased 

from 76% (seg 1) to 80% (seg 2) when applying the wavelet entropy algorithm to the lowest 

noise segments with no change in optimum scale or threshold (table 1). Spectral amplitude 

was relatively unaffected by the choice of segments and accuracy only increased marginally. 

Table 1 compares the performance of classification by spectral amplitude and wavelet 

entropy for both segments. 
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Table 1. Spectral amplitude and wavelet entropy parameters and classification performance 

for the first 5 s segments (seg 1) and lowest noise segments (seg 2) on the full training set. 

Spectral Amplitude 

 Freq (Hz) Thres Se (%) Sp (%) Acc (%) Abnormal 

Median (IQR) 

Normal 

Median (IQR) 

seg 1 12.0 0.14 75 65 70 0.24 (0.22) 0.09 (0.15) 

seg 2 11.4 0.12 78 63 71 0.24 (0.24) 0.09 (0.14) 

Wavelet entropy 

 Scale Thres Se (%) Sp (%) Acc (%) Abnormal 

Median (IQR) 

Normal 

Median (IQR) 

seg 1 1 8.3 98 54 76 6.63 (2.42) 8.36 (1.91) 

seg 2 1 8.3 94 65 80 7.50 (1.63) 8.42 (0.69) 

 

 

Figure 6 provides illustrative examples of normal and abnormal PCG recordings and their 

associated spectral amplitude, wavelet energy and wavelet entropy distributions. Their 

wavelet coefficients at scale 1 are also shown.  These examples were chosen because their 

spectral amplitudes at 12 Hz (0.09 (normal) vs 0.25 (abnormal)) and wavelet entropy at scale 

1 (8.4 (normal) vs 6.7 (abnormal)) were close to the group median values so are 

representative examples of the normal and abnormal recordings. Note that the abnormal 

recording exhibits spikes in its wavelet coefficients at scale 1 (figure 6 (row E)) resulting in 

low wavelet entropy at this scale. The normal recording does not exhibit such spikes resulting 

in a larger wavelet entropy at this scale.  
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Figure 6. Example normal and abnormal PCG recordings (row A) and their spectral 

amplitude distribution (row B), wavelet coefficient energy distribution (row C) (light colour 

indicates maximum energy), wavelet entropy distribution (row D) and wavelet coefficients 

for wavelet scale 1 (row E).  

 

3.4 Combined feature classifier 

The decision tree used to combine the spectral amplitude (12 Hz) and wavelet entropy (scale 

1) features is illustrated in figure 7. The minimum number of decision nodes was 3. All 

recordings with wavelet entropy of 8.3 or greater were classified as normal consistent with 
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the threshold determined for the single feature classifier. Only recordings with wavelet 

entropy between 5.6 and 8.3 and spectral amplitude of 0.07 or greater were classified as 

abnormal. Although classification accuracy was no better than the single feature wavelet 

entropy classifier at 79%, this was achieved at higher specificity (80%) than either of the 

single feature classifiers.  Sensitivity was 78%.   

 

 

Figure 7. Decision tree for the two feature classifier with the minimum number of decision 

nodes (n = 3).  The two features are wavelet entropy at scale 1 (WE) and spectral amplitude 

at 12 Hz (SA).  

 

3.5 Cross validation 

Results from the cross validation study for each of the single feature classifiers and the 

combined feature decision tree classifier are presented in table 2. Cross validation was only 

performed on the lowest noise segments (seg 2). Mean values are very similar to those 

obtained from the entire training set demonstrating the robustness of the algorithms. Standard 

deviations of performance measures were similar for all classifiers with the exception of the 

sensitivity of the single feature wavelet entropy classifier which had half the variability of the 

other classifiers. 
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Table 2. Classification performance from cross-validation. Values are mean (standard 

deviation) across 1000 bootstrap iterations.  

Classifier Se (%) Sp (%) Acc (%) 

Spectral amplitude 75 (6) 60 (3) 68 (3) 

Wavelet entropy 94 (3) 65 (3) 80 (2) 

Decision tree 77 (5) 80 (3) 79 (3) 

 

 

Further validation was provided by our initial wavelet entropy algorithm submitted as an 

entry to the PhysioNet Challenge which achieved a score of 76% (specificity 56%, sensitivity 

96%) on the Challenge test set (Langley & Murray 2016).  This demonstrates consistent 

performance across both training and test sets of the PCG database. We were unable to 

submit further entries to evaluate the performance of subsequent algorithms on the test set. 

 

4. Discussion 

 

Two single feature algorithms for classification of short unsegmented PCGs have been 

demonstrated. Using features of either low frequency spectral amplitude or low scale wavelet 

entropy, a simple threshold classifier achieved accuracies of greater than 70%.  Of the two 

algorithms wavelet entropy proved to be the best performing with up to 10% improved 

accuracy with high sensitivity (> 94%) compared to spectral amplitude (table 1). Combining 

these classification features into a decision tree classifier resulted in similar classification 

accuracy but with reduced sensitivity (78%) and increased specificity (80%). 

 

Abnormal recordings had significantly higher spectral amplitude at low frequencies 

compared to normal recordings, consistent with the presence of low frequency murmurs in 

abnormal recordings. The differences in spectral amplitude were most significant at 

frequencies around 12 Hz and this frequency yielded classification accuracies of around 70%.  

Note that this frequency is below the human audible frequency range so would be unlikely to 

be detected by manual auscultation. Wavelet entropy proved to be the better performing 

algorithm. It was shown that by selecting the 5 s segment with the highest wavelet entropy as 

a measure of the lowest noise segment the classification accuracy was improved from 76% to 

80% on the training set. Abnormal recordings were associated with reduced wavelet entropy 
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at the lowest scales. This suggests the presence of discrete high frequency (500 to 1000 Hz) 

components in abnormal recordings. Low amplitude, high frequency components such as this 

have been noted previously, in particularly with murmurs associated with regurgitation 

(Leatham 1975, Liu et al 2016).  

 

The unique feature of the approach is that feature extraction is performed without the 

requirement for segmentation of the recordings into the characteristic heart sounds and 

systolic and diastolic intervals. This has the potential to significantly reduce the complexity 

and computational burden of the algorithms and facilitate their implementation as embedded 

algorithms in PCG devices. For example, we tested the execution time to classify a recording 

by the unsegmented single feature wavelet entropy classifier compared to the sample logistic 

regression-hsmm heart sound segmentation based classifier available on PhysioNet 

(PhysioNet 2016). The unsegmented classifier executed on average 11 times faster than the 

segmented one. It might have been expected that this simple approach would yield 

considerably poorer classification performance compared to algorithms using segmented 

recordings. However, the wavelet entropy algorithm showed comparable accuracy to other 

algorithms in the Computing in Cardiology/PhysioNet Challenge and was ranked 34th out of 

47 entries and achieved a score of 76% which was slightly lower than the median (range) 

score of 79% (54 – 86%) of all the entries submitted to the test set. 

 

It should be noted that the PCG database is comprised of recordings from multiple centres 

(Liu et al 2016). It was noted that there were considerable differences between spectral 

amplitude and wavelet entropy characteristics between the recordings from different centres. 

So although our algorithms are based on features derived from the recordings from all the 

centres, caution must be used when applying the algorithms to new data. It is however 

reassuring that the wavelet entropy algorithm performed comparably on training and test sets, 

especially since the test set contained recordings from two centres not included in the training 

set (Liu et al 2016). 

 

In conclusion the feasibility of accurate classification without segmentation of the 

characteristic heart sounds has been demonstrated. Classification performance is comparable 

to other algorithms but achieved without the complexity of segmentation.   
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