Table 4: Addition of malnutrition indices to base model improves model performance in predicting all-cause mortality. Improvement in model performance was measured using Harrell's concordance (C) index and log-likelihood ratio (LLR) – the more negative the LLR, the bigger the improvement in model performance. Amongst the malnutrition scores, GNRI improves model performance most compared with base model.

Model	С	LLR	P-value for LLR
		improvement	improvement from base
		from base	
Base model*	0.719		
Base* + CONUT score	0.721	-16.2	0.001
Base* + GNRI	0.724	-31.4	<0.001
Base* + PNI	0.721	-12.1	0.002
Base* + BMI (linear)	0.719	0	NA
Base* + BMI (decile)	0.720	-13.0	0.16

^{*}Variables adjusted for in the base model: age, sex, diastolic blood pressure, heart rate, New York Heart Association class III+ IV vs I+II, urea, logNTproBNP, CVA, PVD. The model + CONUT score from base means that CONUT has been 'adjusted' for our 9 covariates.

 $CONUT = Controlling \ nutritional \ status, \ CVA = cerebrovascular \ disease, \ GNRI = Geriatric \ nutritional \ risk \ index, \ NTproBNP = N-terminal \ Pro \ Brain \ Natriuretic \ Peptide, \ PNI = Prognostic \ nutritional \ Index, \ PVD = peripheral \ vascular \ disease.$