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ABSTRACT Critical technological systems exhibit complex dynamic characteristics such as time-dependent 

behaviour, functional dependencies among events, sequencing and priority of causes that may alter the effects 

of failure. Dynamic fault trees (DFTs) have been used in the past to model the failure logic of such systems, 

but the quantitative analysis of DFTs has assumed the existence of precise failure data and statistical 

independence among events, which are unrealistic assumptions. In this paper, we propose an improved 

approach to reliability analysis of dynamic systems, allowing for uncertain failure data and statistical and 

stochastic dependencies among events. In the proposed framework, DFTs are used for dynamic failure 

modelling. Quantitative evaluation of DFTs is performed by converting them into generalised stochastic Petri 

nets. When failure data are unavailable, expert judgment and fuzzy set theory are used to obtain reasonable 

estimates. The approach is demonstrated on a simplified model of a Cardiac Assist System. 

INDEX TERMS Dynamic systems, Fault tree analysis, Fuzzy set theory, Petri nets, Reliability analysis. 

I. INTRODUCTION 

Fault tree analysis (FTA) is widely used for safety and 

reliability analysis of systems. FTA models are well-

structured and easily understood. However, they are unable 

to model some aspects of system behaviour such as 

dependencies between subsystems and components, and 

ordering among the component failure occurrences. For this 

reason, application of classical FTA is limited to systems 

whose components have no stochastic and temporal 

dependencies.  However, in practical technological systems, 

not all events are statistically independent, and in such 

situations, the assumption of statistical and stochastic 

independence of events can lead to an inappropriate 

estimation of system reliability. In order to model 

dependencies among events, classical FTA has been 

extended to introduce dynamic fault trees [1] and temporal 

fault trees (TFTs) [2], [3]. 

DFTs is a well-established dynamic version of the Fault 

Tree (FT) that enables modelling time-dependent behaviour in 

dynamic systems. Temporal dependencies among the system 

components and ordering among events are modelled using 

DFT gates such as functional dependency (FDEP), Priority-

AND (PAND), and SPARE gates. These gates capture 

temporal behaviour, and therefore classical combinatorial 

solutions for  the quantification of FTs are not suitable for 

DFTs. Alternative analytical solutions have been proposed in 

[4], [5], but these approaches do not account for stochastic 

dependencies among events or cater for uncertainty in failure 

data.  

DFTs can be quantified by converting them into Markov 

chains [6], [7]. However, Markov chains are limited to 

exponential distributions and the associated memoryless 

property. This requirement may be too tight for modelling 

complex systems. Bayesian networks (BN) based 

methodologies [8]-[12] have also been developed for the 

quantitative analysis of DFTs.  BN-based approaches can use 

both discrete- and continuous- time models. When BN models 

are used to quantify DFTs, first it is necessary to decide the 

model of time. On the one hand, with discrete-time models the 

issue of time-discretisation arises [9]. On the other hand, with 

continuous-time models it may become tedious to express the 

joint probability distribution of internal nodes with many 

parents with a probability density function. Expert judgments 

are often used for this purpose, but the integration of expert 

judgement may become more tedious because it will be 

necessary to specify the information as probability density 

functions instead of rules, and this is not always intuitive for 

the designer and engineers.  
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 Generalised Stochastic Petri Nets (GSPNs) [12] are also 

used to quantify DFTs. The underlying reachability graph of a 

GSPN is isomorphic to a continuous time Markov chain. 

However, in contrast to Markov chains, GSPN models are able 

to model non-exponential distributions. Similar to BN-based 

models, GSPN can model stochastic dependencies among 

events. In fact, Generalised Continuous time BN (GCTBN) 

models [13] are solved by converting them to GSPN. In 

addition to the benefits of BN-based models for DFT 

modelling, GSPN models provide a one-to-one interface for 

other purposes such as formal specification and verification, 

which cannot be handled with other formalisms. Accordingly, 

this work adopts GSPN as an underlying stochastic modelling 

formalism to quantify and evaluate DFT models. 

Generally, quantitative FTA assumes known failure rates or 

probabilities of failure of system components. In practice, it is 

often difficult to obtain this data for all the components, which 

introduces uncertainty in the analysis. A few methods have 

been proposed to perform quantitative analysis with unknown 

and uncertain failure data. One of such approaches is the fuzzy 

fault tree analysis (FFTA) [14], which is an extension to 

classical fault trees where fuzzy failure data are used in the 

reliability quantification process instead of crisp values. More 

information about FFTA and its applications in different areas 

can be found in [15]. As FFTA is an extension to classical FTs, 

it inherits all the limitations of the classical FTA. 

Recently, some attempts such as [16]–[23] have been made 

to incorporate the concept of uncertainty in DFT analysis. In 

this paper, we propose a comprehensive uncertainty-aware 

framework for reliability analysis of complex dynamic 

systems. The framework combines DFTs with GSPN and 

fuzzy set theory. DFTs are used to model the dynamic failure 

behaviour of systems. To quantify the DFTs including 

statistical and stochastic dependencies, DFTs are translated 

into a GSPN model. Fuzzy set theory and expert judgments 

are combined together to obtain estimates of failure data for 

basic events (BEs) of the DFT when such data are unavailable. 

Accordingly, the contribution of this paper is the proposal 

of a novel method, which is able to take into account statistical 

and temporal dependencies in the failure logic as well as 

uncertainty modelling in component failure data. This 

approach quantifies complex and dynamic systems accurately 

taking into account temporal and stochastic dependencies, and 

it enables the reliability analysis of complex systems with lack 

of exact failure data of its constituent components. 

The rest of this paper is organised as follows. Section II 

presents fundamental concepts and related work. Section III 

introduces the proposed reliability analysis framework. 

Section IV applies the proposed approach to a numerical case 

study and finally, Section V draws conclusions. 

 
II. BACKGROUND AND RELATED WORKS 

A. DYNAMIC FAULT TREE ANALYSIS 

Fault tree analysis was first introduced by Bell laboratories in 

1962 for a ballistic control system [24]. The process to design 

an FTA model follows a top-down procedure, starting from 

the undesired system level top-event (TE), which represents 

the system failure condition. The TE is decomposed into a 

combination of intermediate events, which are defined with 

Boolean logic. The intermediate events are further 

decomposed by using Boolean logic down to the specification 

of the lowest-level event causes, which are named Basic 

Events (BEs). Fig. 1 shows an FTA example. 

 

FIGURE 1.  Example fault tree. 

 

FTA cannot accommodate temporal dependencies. For 

instance, Boolean logic does not allow temporal ordering of 

events the effect of which may be significant. For instance, 

many systems use activation mechanisms to activate spares 

when primary systems fail. Whether the activation mechanism 

has failed before or after failure of the primary defines whether 

the spare is activated. To address such issues, classical FTA 

was augmented with gates that capture dynamics in the DFT 

method [1]. Fig. 2 below shows the main static and dynamic 

gates used in DFT analysis, the function of which is briefly 

defined as follows: 

 Y = AND (X1, …, XN), Y occurs only if all the BEs 

{X1, …, XN} fail simultaneously. 

 Y = OR (X1, …, XN), Y occurs if any of the BEs {X1, 

…, XN} fails. 

 Y = PAND (X1, …, XN), Y occurs only if BEs {X1, 

…, XN} fail in left-to-right graphical order. That is, 

let us denote before with the symbol “<”, then PAND 

is defined as: Y = AND (X1<X2, …, XN-1<XN). 

 FDEP (T, D1, …, DN): the occurrence of the trigger 

event T enforces the occurrence of the BEs {D1, …, 

DN}. This gate has no logical output. 

 Y = SPARE (P, S1, …, SN), the primary input P is an 

active BE, while the standby inputs {S1, …, SN} are 

standby BEs. The standby BEs can have a dormancy 

factor α that affects the failure rate of the BE 

indicating a hot spare (α=1), warm (1<α<0) or cold 

(α=0) spare. 
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 Y = SEQ (X1, …, XN) models the sequence 

enforcing event, which enforces the events to occur 

in an specific left-to-right order. 

A DFT model can be analysed qualitatively and 

quantitatively. The main result of qualitative analysis is the 

Minimal Cut Sequence Set (MCSQ) expression, which 

determines which are the temporal combination of minimal 

necessary BEs that can cause the system-level failure. The 

main outcome of quantitative analysis is the failure probability 

of the top event (TE), typically representing the probability of 

a system failure. The work presented in this paper focuses on 

quantitative analysis. 

Quantitative analysis requires specification of probabilistic 

distributions of BEs. Widely accepted distributions include 

Weibull and exponential distributions, but this is dependent on 

the specific system under study. Note that the quantitative 

analysis is not only limited to the system level failure 

probability, other assessments and metrics can be extracted 

from the DFT model such as the criticality analysis, which 

calculates the contribution of each BE to the occurrence of the 

TE. 

 

 

 

FIGURE 2.  DFT logic gates. 

 

B. PETRI NETS 

Petri nets (PNs) are a graphical and mathematical modelling 

formalism suitable for the specification and analysis of 

complex, distributed and concurrent systems [25]. A 

conventional PN is a bipartite directed graph containing a 

finite set of places, a finite set of transitions, and a finite set of 

directed arcs. In a PN model, places and transitions are 

graphically represented by circles and rectangles, respectively.  

Directed arcs are used to connect places to transitions and 

transitions to places. Tokens (black dots) are used to specify 

the states of the places in a PN model. The enabling condition 

of a transition is defined as the presence of a certain number 

of tokens in its input place(s). When a transition fires, a certain 

number of tokens are deposited to the output place(s) of the 

transition. 

 

FIGURE 3.  Example of a PN. 

 

Classical PNs are suitable to model simple behaviour of 

systems, however, to model more complex scenarios, PNs 

have been extended with different features. One such feature 

is the inhibitor arc, which is usually represented by an arc that 

ends in a small circle. This type of arc is different from a 

normal arc because it enables a transition when the input place 
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has no token and it disables a transition when a place has a 

token, i.e., opposite behaviour of the normal arc. Stochastic 

Petri nets (SPNs) [26] are another extension of PNs that allow 

defining exponentially distributed transition delays. GSPNs 

[13] extended SPNs by allowing inclusion of immediate and 

timed transitions in a single PN model. Black and white bars 

are used to represent immediate and timed transitions, 

respectively. In a GSPN model, an immediate transition has 

priority over a timed transition and fires first when both are 

enabled to fire simultaneously. 

Application of PNs for system safety and reliability analysis 

can be traced back to 1980s [27], [28]. In [29], [30] 

methodologies have been proposed to convert classical fault 

trees to PNs for reliability evaluation. DFTs have been 

translated into GSPNs for reliability analysis of dynamic 

systems in [31]–[33]. 

C. FUZZY SETS IN UNCERTAINTY ANALYSIS 

The fuzzy set theory was formalized in 1965 by Zadeh [34], 

and also has been widely applied, including for dealing with 

uncertainty in safety and reliability analysis. The use of 

qualitative fuzzy terms indeed provides flexible modelling of 

imprecise data and information. The main purpose of fuzzy 

terms is to assist gradual transition between varieties of 

conditions. A classical set contains expressions, which satisfy 

exact characteristics of membership. On the other hand, a 

fuzzy set contains expressions that satisfy ambiguous 

characteristics of membership, i.e. the characteristics of fuzzy 

set expressions can be partial. A comparison between a 

classical set (Boolean) and a fuzzy set can be seen in Fig. 4. 

As it can be seen for classical sets, in a universe U, an element 

D can either be a member of some crisp set S or not. This 

binary characteristic of membership can be defined as follows: 

 

US = {
1        when   D ∈ S  ( D is a member of S)
0   when   D ∉ S (D is not a member of S)

           (1)         

 

FIGURE 4.  Diagrams for a classical set (Boolean) and a fuzzy set [35]. 

 

The characteristic of the binary membership is extended by 

Zadeh to incorporate the different rate of membership on the 

real continuous distance interval from zero to one [0, 1]. Zero 

means that there is no membership whereas the endpoint of the 

distance (one) indicates complete membership. A set of 

universe U, which accommodates rates of membership is 

named a fuzzy set. Thus, using the mathematical notation 

μS̃ (D) ϵ [0,1], a fuzzy set  S̃ can be defined with μS̃ (D) the 

rate of membership of element D in S̃, or briefly membership 

of S̃. The value of  μS̃ (D) belongs in the distance interval [0, 

1] and corresponds to the rate to which element D is a member 

of fuzzy set S̃. The higher the value of μS̃ (D) the stronger the 

rate of membership of D in S̃. Information about  arithmetic 

operations on fuzzy numbers can be found in [36]. 

Several developments of fuzzy set theory have been 

proposed to improve the flexibility of conventional fuzzy set 

theory. Atanassov [37] introduced an extension of fuzzy set 

theory called intuitionistic fuzzy sets. These include 

membership as well as non-membership functions, and can 

deal better with uncertainties that may happen from biased 

results. However, intuitionistic fuzzy sets increase complexity 

and computation time. Chen and Hwang developed fuzzy 

reasoning using algebraic properties of fuzzy sets in order to 

provide a solution to complex problems, including bounded-

sum, unbounded-sum, union, intersection, and algebraic 

product [38]. In addition, Atanassov [39] introduced an 

extension to intuitionistic fuzzy sets with hesitation margin 

groups to cope with complexity. However, computation time 

remains a significant limitation of this model.  

III. THE PROPOSED UNCERTAINTY-AWARE DYNAMIC 
RELIABILITY APPROACH 

The framework of the proposed approach is shown in Fig. 5. 

The approach consists of four steps: Fault Tree Modelling, 

Petri Net Modelling, Failure Data Collection, and Reliability 

Quantification. Fault Tree Modelling deals with the creation 

of a DFT of the system under study. Petri Net Modelling and 

Failure Data Collection are executed in parallel, where in the 

Petri Net Modelling step the DFT is mapped into a GSPN 

model and in the Failure Data Collection step the failure rate 

of BEs with unknown data are collected. These data are then 

incorporated into the GSPN model. The final step is the 

Reliability Quantification, where all the analyses are 

performed on the GSPN model.  Detailed descriptions of the 

steps are provided in the following subsections. 

A. FAULT TREE MODELLING 

In this step, the dynamic behaviour of systems is modelled 

using DFT. As DFT is an extended version of classical fault 

trees, it can be created following the procedure described in 

the fault tree handbook [40].  The objectives of a DFT in 

general include (1) identifying all possible ways of causing an 

undesired event which is called top event (TE), (2) providing 

a provable record of the analysis process, and (3) providing the 

foundations of design evaluation and practical alternatives 

[41].  

Selection of a TE requires good knowledge of system 

function and from that projection of hazardous deviations 

from that function. An example TE is “failure of control circuit 

M which sends a signal when it is necessary” [42], [43]. 

Boundary conditions are then determined distinguishing 

which failures and contributing factors will be included in the 
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analysis and which are not. Finally, the resolution is 

determined defining the level of detail in the analysis of root 

causes. DFTs are constructed in a top-down fashion using the 

logic gates outlined in section II.A to show the logical and 

temporal connections between events. The following sections 

deal with DFT evaluation.

 

 

FIGURE 5.  Framework of the proposed uncertainty-aware approach. 

B. PETRI NET MODELLING 

This step takes the DFT generated in the previous step as input 

and converts it into a GSPN model. Εach DFT module (e.g., 

basic event, logic gate) is translated into a GSPN sub-net and 

all the sub-nets are combined to obtain an overall GSPN of the 

DFT. Τhe conversion of DFTs to GSPN is done by following 

the concepts from[29]–[32],[44].  The GSPN model of a BE is 

shown in Fig. 6. The place x.up represents the state when the 

basic event x has not occurred, i.e., the component associated 

with the BE has not failed. The timed transition x.f is 

characterised by the failure rate of the BE. If the failure rate 
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(𝜆) is exponentially distributed, then the probability that the 

transition is fired at the time instant 𝑡 is 1 − 𝑒−𝜆𝑡  .  The place 

x.dn represents the failed state of the basic event x. This place 

receives token when x.f fires. Note that the failure rate of some 

BEs may not be available. The GSPN of such events would 

still be created, but the value of the firing rate of the timed 

transition is left empty, and incorporated later on using expert 

judgment. 

 

FIGURE 6.  GSPN of a basic event. 

 

FIGURE 7.  GSPN of AND gate. 

 

FIGURE 8.  GSPN of OR gate. 

 

GSPN of Boolean gates (AND and OR) are shown in Figs. 

7 and 8, respectively. In the GSPN model of the AND gate, all 

input places (X1.dn, X2.dn,…, Xn.dn) are connected to a single 

immediate transition. When all the input places get a token, 

then the immediate transition fires and deposits a token to the 

output place, X.dn, i.e. all inputs of the AND gate must be true 

to make the outcome of the AND gate true. Unlike the GSPN 

model of the AND gate, the GSPN model of the OR gate 

represents disjunction of events. In the latter, each of the input 

places is connected to distinct immediate transition, which 

makes sure that the output place will get a token when any of 

the place gets a token, i.e., the output of the OR gate becomes 

true when any of the inputs becomes true. 

In the GSPN model of the PAND gate, the place X.dn 

represents the outcome of the PAND gate. If events occur in a 

required sequence, then this place gets a token. If the 

sequencing is violated, then the place X.ok gets a token, a 

confirmation that PAND gate output cannot be true. This place 

is connected to the immediate transition Tn using an inhibitor 

arc, which ensures that the place representing the PAND gate 

outcome will not get a token if all the input events of the 

PAND gate occur but not in the required sequence. 

  

FIGURE 9.  GSPN of PAND gate. 

  

FIGURE 10.  GSPN of FDEP gate. 

 

The GSPN model in Fig.10 models the behaviour of the 

FDEP gate. As seen in section II.A, the FDEP gate has no 

logical output. If the trigger event occurs, the dependent event 

will also occur. In the GSPN model, the place T.dn represents 

the failed state of the trigger event, whereas the places {D1.dn, 

…, Dn.dn} represent the failed state of the dependent events. 

The dependent events can fail independently due to their 

internal failures and the places representing their failed states 

can get tokens. However, as seen in the Fig. 10, the places 

{D1.dn, …, Dn.dn} will get a token if the place T.dn  gets a 
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token, i.e., dependent events will occur if the trigger event 

occurs. 

  

FIGURE 11.  GSPN of SPARE gate. 

 

 

   

FIGURE 12.  GSPN of SEQ gate. 

 

The GSPN model of a warm spare gate is shown in Fig. 11. 

The places S1.dn and S2.dn represent the failed state of the two 

spare components S1 and S2, respectively. For both 

components, it is possible to reach the failed state in two ways. 

In the first way, when the components are in passive mode, the 

internal failure of the components will take them to failed 

states. In the GSPN model, S1.passive and S2.passive 

represent the passive modes of the two spare components. 

Timed transitions S1.p_f and S2.p_f are two timed transitions 

representing the failure rate of the components in passive 

mode. Firing of these transitions will take the components to 

their failed mode. In the second way, firstly, the spare 

components are activated due to the failure of the primary 

component. This scenario is modelled by immediate 

transitions wsp1 and wsp2 for components S1 and S2, 

respectively. Timed transitions S1.a_f and S2.a_f are two 

timed transitions representing the failure rate of the 

components in their active mode and firing of these transitions 

will take the components from their active mode to their failed 

mode. When places P.dn, S1.dn and S2.dn get marked (i.e., all 

components failed), the immediate transition wsp3 will fire 

and deposit a token to place Y.dn, i.e., making the outcome of 

the spare gate true. A cold spare gate can be modelled using 

GSPN in the similar way; however, for the cold spare gate the 

part showing the failure of the spare components in passive 

mode will not be required. 

A GSPN model of a SEQ gate is shown in Fig. 12. This 

model forces the input events to occur in a sequence. For 

instance, if we consider timed transition X2.f, this can fire only 

after X1.dn gets a token, i.e., when the event X1 occurs. In this 

way, the GSPN model ensures that the event X2 can occur only 

after X1. The place X.dn represents the outcome of the SEQ 

gate and this place will get a token when the last event in the 

SEQ gate becomes true thus maintaining the sequencing. 

Given the above conversion rules for the basic event and the 

logic gates, Fig.13 shows a pseudocode of a function that 

converts a DFT to GSPN in the course of a depth first traversal 

of the DFT. We assume a typical computational representation 

of a tree, where a gate is a ‘node’ pointing to a ‘child’ (first 

input to the gate) which is then linked to a list of siblings 

representing the rest of gate inputs. Basic events do not have a 

child and can be detected as such. 

The function is called with the top event of the DFT as 

argument. The tree is traversed via a recursive call until basic 

events are found and translated to simple GSPN modules 

using the rules given in the paper. When gates are encountered, 

the algorithm determines whether inputs to the gate have been 

translated to GSPN or not. If inputs have not yet been 

translated, a recursive call is initiated to do the translation 

bottom up at lower levels first. On the other hand, if inputs to 

the gate have been translated, then a GSPN module for the gate 

can be constructed using the rules given in this section for each 

type of gate and the input GSPNs. Progressively, gates at 

higher level of the tree and ultimately the top event of the DFT 

are translated to GSPN using appropriate rules and input 

GSPN modules. The computational complexity of this 

translation process depends on the size and complexity of the 

DFT itself. Moreover, the types of logic gates that are 

translated also affects the performance of the translation 

process.
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C. FAILURE DATA COLLECTION 

The BEs of the DFT can be classed into those with known 

failure rates and those with unknown failure rates. Known 

failure rates are typically determined by consulting reliability 

data handbooks such as PDS or OREDA [45],[46]. For 

estimation of unknown failure rates, methods include 

statistical extrapolation, and expert judgment [47]. In this 

study, the expert judgment method is used as an integration of 

fuzzy set theory and subjective opinions [48]. Various 

methods are available to aggregate experts’ opinion, such as 

fuzzy priority relations, game theory, arithmetic averaging 

operation, max–min Delphi method, and similarity 

aggregation method (SAM) [49],[50],[51].  Liu et al. [52] have 

argued that there is no way to determine which technique is 

superior. 

In this study, we have opted for the SAM method, which 

considers both homogeneous and heterogeneous groups of 

experts. The qualitative terms used in the study to express and 

collect the experts’ opinions are defined as a combination of 

fuzzy triangular and fuzzy trapezoidal numbers from which 

failure rates are estimated [53]. The group of experts was 

defined as heterogeneous because in practice their opinion 

brings different value and weight to the final result. 

Consequently, for qualifying the measurements, the relevance 

of the experts was ranked using a methodology that takes into 

account the professional position, job experience, education 

level, and age (see [54]-[59]). The score rating of the experts 

was determined according to Table I. 

The rating of an expert judgment can be done according to 

the weight given to each BE. The concept of linguistic 

expressions has a high value in dealing with any circumstances 

that are ill-defined or complex to be described in the old model 

of quantitative expression [24]. In order to convert qualitative 

terms to corresponding fuzzy numbers, Chen and Hwang [38] 

represented a numerical approximation. To acquire this 

criterion, there are common verbal expressions in the system. 

Chen’s conversion scale is provided in Table II in which scale 

one contains two verbal terms and scale eight contains thirteen 

verbal terms [60], [61]. In addition, Lavasani et al. [58] 

suggested that humans are capable of distinguishing 

effectively between five and nine linguistic expressions that 

cover a range of possible outcomes. Using this theory, we have 

opted for a scale of six using five verbal terms that provide 

options for the subjective evaluation of experts with regards to 

estimating the probability of failure. Table III presents the 

fuzzy membership function in the form of trapezoidal 

numbers. 

The linguistic expressions of Fig. 14 are in the form of both 

triangular and trapezoidal fuzzy numbers and it is possible to 

transform all the triangular fuzzy numbers to the 

corresponding trapezoidal fuzzy numbers. Table III illustrates 

the fuzzy numbers of Fig. 14 in the form of trapezoidal 

numbers. 

dftTOgspn (dft node) { 

 

dft rn 

   

  if (node is basic event) { 

       translate node to GSPN module  

       add new GSPN module to list of GSPN modules 

  }     

  else {                                       //node is a gate 

      if (child of node has GSPN translation) { //gate inputs have GSPN translations 

              translate node to GSPN module     //create GSPN module for gate 

              add new GSPN module to list of GSPN modules 

       }  

       else {                                  //gate inputs not translated  

              for (rn = child of node and all siblings) {    //all gate inputs 

                     dftTOgspn (rn)             //recursive call  

              } 

       } 

  } 

} 

 
FIGURE 13. Pseudocode to convert DFT to GSPN. 
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FIGURE 14.  Transformation of scale six. 

 

Let us assume that each expert, El (l = 1, 2, . . ., m) expresses 

their viewpoint about a specific attribute in a certain context 

using qualitative terms. The qualitative terms are converted to 

the corresponding fuzzy numbers as follows: 

 

 

 

 

 

 

TABLE I. SCORE RATING ACCORDING TO THE EXPERT’S TRAITS 
Condition Classification Score 

Professional 

position 

Senior academic, GM/DGM, Director 5 

Junior academic, Manager, Factory 

Inspector 
4 

Engineer, Supervisors 3 

Technician, Graduate apprentice, 

Foreman 
2 

Operator 1 

Job 

Experience 

More than 30 years 5 

20–29 4 

10–19 3 

6–9 2 

≤ 5 1 

Education PhD 5 

Master 4 

Bachelor 3 

Higher National Diploma (HND) 2 

School level 1 

Age More than 50 4 

40–49 3 

30–39 2 

Less than 30 1 

 

 
TABLE II. QUALITATIVE TERMS AND THEIR CORRESPONDING FUZZY NUMBERS [38] 

Qualitative 

terms 
Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 

None        (0,0,0.1) 

Very low   (0,0,0.2)  (0,0,0.1,0.2) (0,0,0.1,0.2) (0,0,0.2) (0,0.1,0.2) 

Low-Very        (0,0,0.1,0.3) (0.1,0.2,0.3) 

Low  (0,0,0.2,0.4) (0.1,0.2,0.3) (0,0,0.3) (0,0.2,0.4) (0.1,0.25,0.4) (0,0.2,0.4) (0.1,0.3,0.5) 

Fairly low    (0,0.25,0.5) (0.2,0.4,0.6)  (0.2, 0.35,0.5) (0.3,0.4,0.5) 

Mol. Low        (0.4,0.45,0.5) 

Medium (0.4,0.6,0.8) (0.2,0.5,0.8) (0.3,0.5,0.7) (0.3,0.5,0.7)  (0.3,0.5,0.7) (0.3,0.5,0.7) (0.3,0.5,0.7) 

Mol. High        (0.5,0.55,0.6) 

Fairly High    (0.5,0.75,1) (0.4,0.6,0.8)  (0.5,0.65,0.8) (0.5,0.6,0.7) 

High (0.6,0.8,1) (0.6,0.8,1,1) (0.6,0.8,1) (0.7,1,1) (0.6,0.75,0.9) (0.6,0.75,0.9) (0.6,0.8,1) (0.5,0.7,0.9) 

High-Very High       (0.7,0.9,1,1) (0.7,0.8,0.9) 

Very High   (0.8,1,1)  (0.8,0.9,1,1) (0.8,0.9,1,1) (0.8,1,1) (0.8,0.9,1) 

Excellent        (0.9,1,1) 

Mol.: More or less.  

TABLE III. FUZZY NUMBERS OF CONVERSION SCALE SIX 

Linguistic Expressions Fuzzy Numbers 

Very low (VL) (0, 0, 0.1, 0.2) 

Low (L) (0.1, 0.25, 0.25, 0.4) 

Medium (M) (0.3, 0.5, 0.5, 0.7) 

High (H) (0.6, 0.75, 0.75, 0.9) 

Very High (VH) (0.8, 0.9, 1, 1) 

 

Step 1: Computing the degree of similarity (degree of 

agreement). Suv(R̃u, R̃v) is defined as similarity between 

opinions of each pair of experts 𝐸𝑢and 𝐸𝑣. If �̃� = (a1, a2, a3) 

and 𝐵 ̃= (b1, b2, b3,) are the two standard triangular fuzzy 

numbers, the degree of agreement function of S is defined as: 

𝑆(�̃�, �̃�) = 1 −
1

𝑗 = 3
∑|𝑎𝑖 − 𝑏𝑖|

𝑗=3

𝑖=1

                   (2) 

Step 2: When (Ã, B̃) ∈ [0, 1], the greater the value of S (Ã,B̃) 

the higher the similarity between two experts with respect to 

fuzzy numbers Ã and B̃. For two standard trapezoidal fuzzy 

numbers, the value of j in Equation (2) should be equal to 4.    

The Average of Agreement (AA) degree 𝐴𝐴(𝐸𝑢) of an 

expert’s opinions is given by: 

𝐴𝐴(𝐸𝑢) =
1

𝑚 − 1
∑ 𝑆(�̃�𝑢, �̃�𝑣)

𝑚

𝑢≠𝑣
𝑣=1

                                 (3) 

Step 3: The Relative Agreement (RA) degree, 𝑅𝐴(𝐸𝑢) of 

all experts is given by: 
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𝐸𝑢(𝑢 = 1,2, … , 𝑚)   𝑎𝑠   𝑅𝐴(𝐸𝑢) =
𝐴𝐴(𝐸𝑢)

∑ 𝐴𝐴(𝐸𝑣)𝑚
𝑣=1

         (4) 

Step 4: The Consensus Coefficient (CC) degree, 𝐶𝐶(𝐸𝑢) of 

expert opinions, 𝐸𝑢(𝑢 = 1, 2, . . . , 𝑚) is given by: 

𝐶𝐶(𝐸𝑢) = 𝛽 ∙ 𝑊(𝐸𝑢) + (1 − 𝛽) ⋅ 𝑅𝐴 (Eu)              (5) 

Where 𝑊(𝐸𝑢) is the weighting factor for expert 𝐸𝑢 . Using 

the weighting criteria from Table I, 𝑊(𝐸𝑢) can be calculated 

as: 

𝑊(𝐸𝑢) =
𝑊𝑆(𝐸𝑢)

∑ 𝑊𝑆(𝐸𝑗)𝑚
𝑗=1

                                  (6) 

where 𝑊𝑆(𝐸𝑗) is the total weight scored by an expert 𝐸𝑗 . 

The coefficient 𝛽 in Equation (5) is presented as a relaxation 

factor of the untaken procedure satisfying 0 ≤ 𝛽 ≤ 1. It 

illustrates the importance of W(Eu) over RA(Eu). When  β = 

0, no weight could be given to it by the experts and thereby a 

homogenous group of experts should be employed, whereas 

β = 1 signifies that the consensus degree among the different 

expert opinions is high enough to assign it to good weight. 

Hsu and Chen [62] suggest that the consensus coefficient of 

each expert is better known when the comparative competency 

of each expert opinion is estimated. Therefore, it is important 

for the decision maker to obtain a proper value of β. 

Step 5: The aggregated result of the experts’ judgment �̃�AG, 

can be calculated as follows: 

�̃�AG = 𝐶𝐶(𝐸1) × �̃�1 + 𝐶𝐶(𝐸2) × �̃�2 + ⋯ + 𝐶𝐶(𝐸𝑚) ×

�̃�𝑚       (7) 

Step 6: Defuzzification procedure. In the fuzzy set theory, 

defuzzification is employed to arrive at a crisp quantified 

outcome. Zhao and Govind [63] explore defuzzification issues 

in the application of fuzzy control in industrial operations. In 

general, the way defuzzification is done defines further 

decision making in a fuzzy environment. In this study, the 

center of area (CoA) of the defuzzification environment 

method is employed to obtain crisp failure possibilities (CFPs) 

of BEs. This method was extended by Sugeno et al. [64]. 

Equation (8) defines how deffuzzified output is derived using 

this technique from fuzzy membership functions: 

𝑋∗ =
∫ 𝜇𝑖(𝑥)𝑥𝑑𝑥

∫ 𝜇𝑖 (𝑥)𝑑𝑥
         (8) 

where X* denotes the defuzzified output, 𝜇𝑖(𝑥) models the 

aggregated membership function, and x denotes the output 

variable. 

Equation (8) can be applied to both trapezoidal and 

triangular fuzzy numbers. 

Defuzzification of triangular fuzzy number �̃� = (a1, a2, a3) 

is given by equation (9). 

𝑋∗ =
∫

𝑥 − 𝑎2

𝑎2 − 𝑎1
𝑥𝑑𝑥 + ∫

𝑎3 − 𝑥
𝑎3 − 𝑎2

𝑥𝑑𝑥
𝑎3

𝑎2

𝑎2

𝑎1

∫
𝑥 − 𝑎2

𝑎2 − 𝑎1
𝑑𝑥 + ∫

𝑎3 − 𝑥
𝑎3 − 𝑎2

𝑑𝑥
𝑎3

𝑎2

𝑎2

𝑎1

=
1

3
(𝑎1+𝑎2+𝑎3)         (9) 

Defuzzification of trapezoidal fuzzy number �̃� = (a1, a2, a3, 

a4) can be obtained by Equation (10). 

𝑋∗ =
∫

𝑥 − 𝑎1

𝑎2 − 𝑎1
𝑥𝑑𝑥 + ∫ 𝑥𝑑𝑥 + ∫

𝑎4 − 𝑥
𝑎4 − 𝑎3

𝑥𝑑𝑥
𝑎4

𝑎3

𝑎3

𝑎2

𝑎2

𝑎1

∫
𝑥 − 𝑎1

𝑎2 − 𝑎1
𝑑𝑥 + ∫ 𝑑𝑥 + ∫

𝑎4 − 𝑥
𝑎4 − 𝑎3

𝑑𝑥
𝑎4

𝑎3

𝑎3

𝑎2

𝑎2

𝑎1

 

=
(𝑎4 + 𝑎3)2 − 𝑎4𝑎3 − (𝑎1 + 𝑎2)2 + 𝑎1𝑎2

3(𝑎4 + 𝑎3 − 𝑎2 − 𝑎1)
     (10) 

 

Step 7: Converting corresponding crisp possibility of BEs 

into failure probability (FP)  

Equation (11) is expressed by Onisawa [65] to convert crisp 

possibility of BEs into corresponding FP. Onisawa [65], [66] 

have mentioned that this Equation is obtained by certain 

characteristics including appropriateness of anthropomorphic 

feeling to the logarithmic amount of a physical value. 

𝐹𝑃 = {
1/10𝐾   , 𝐶𝐹𝑃 ≠ 0
0           , 𝐶𝐹𝑃 = 0

     ,   𝐾

= [(
1

𝐶𝐹𝑃
− 1)]

1
3⁄

× 2.301           (11) 

If the FP is obtained for exponentially distributed data and 

for time t, then the failure rate of the BE can be determined 

as: 

𝜆 =
− ln(1 − 𝐹𝑃)

𝑡
                (12) 

D. RELIABILITY QUANTIFICATION 

The timed transitions of the GSPN model created in step 3 can 

now be completed with the failure data that have been 

estimated using fuzzy set theory and expert judgment. At this 

point, a mission time for the system can be defined and the 

completed GSPN model can be simulated to predict the 

reliability of the system for this mission time. 

1) CRITICALITY ANALYSIS 

Criticality analysis allows identifying the critical BEs in the 

dynamic fault tree. The criticality of a BE is determined by 

calculating its contribution to the TE probability. This 

information can identify the weakest parts of the system, thus 

pointing towards areas for design improvement. Different 

criticality analysis techniques such as Birnbaum importance 

measures (BIM) and risk reduction worth [40] are widely 

used. 
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Using BIM, the contribution of a BE to the occurrence of 

the TE is determined by taking the difference between the 

TE probability, by setting the occurrence of the BE to 1 and 

0, respectively. In our proposed framework, we can use the 

GSPN model to obtain BIM of BEs as follows: 

 

𝐼𝐵𝐸𝑖

𝐵𝐼𝑀 = 𝑃( 𝑇𝑜𝑝 𝐸𝑣𝑒𝑛𝑡 ∣∣ 𝐵𝐸𝑖 = 1 )

− 𝑃( 𝑇𝑜𝑝 𝐸𝑣𝑒𝑛𝑡 ∣∣ 𝐵𝐸𝑖 = 0 )               (13) 

Where 𝐼𝐵𝐸𝑖

𝐵𝐼𝑀is the BIM of the basic event 𝐵𝐸𝑖 , 

𝑃( 𝑇𝑜𝑝 𝐸𝑣𝑒𝑛𝑡 ∣∣ 𝐵𝐸𝑖 = 1 ) is the probability of the TE given 

that the probability of the 𝐵𝐸𝑖  is 1 and 

𝑃( 𝑇𝑜𝑝 𝐸𝑣𝑒𝑛𝑡 ∣∣ 𝐵𝐸𝑖 = 0 ) is the probability of the TE given 

that the probability of the 𝐵𝐸𝑖is 0. 

To make the probability of the 𝐵𝐸𝑖  equal to 1, in the GSPN 

model, we have to set the firing rate of the corresponding 

timed transition to 1. On the other hand, to make a component 

fully available, i.e. consider the probability of a BE to be 0, we 

need to remove the token from the place representing the 

event. By doing this, we are ensuring that the transition 

connected to the place will never fire during the simulation. 

When the BIM of all components have been determined, we 

can rank them. The higher the BIM of an event, the more the 

critical the event is. 

IV. NUMERICAL EXAMPLE 

To illustrate the application of the proposed method, we use a 

benchmark case study of a simplified Cardiac Assist System 

(CAS) in [8]. The system consists of four modules: trigger, 

CPU unit, motor section, and pumps. The DFT of the CAS is 

shown in Fig.15. BEs of the DFT with their reference tags are 

shown in Table IV. As seen in the DFT, the trigger connected 

to the FDEP gate can become true due to the failure of either 

the crossbar switch (CS) or the system supervision (SS) or 

both. This trigger will cause both CPU units (P and B) to fail. 

The CPUs themselves are in warm spare configuration, where 

P is the primary unit and the B is the backup unit with a 

dormancy factor of 0.5. For the motor section of the system to 

fail, both MOTOR and MOTORC have to fail. The pump unit 

contains two cold spare gates and for the pump unit to fail the 

CSPGate_1 has to fail before CSPGate_2. CSPGate_1 and 

CSPGate_2 have PUMP_1 and PUMP_2 as their primary unit, 

respectively, and both  CSP gates share a common spare 

(Backup_PUMP). 

 

   

FIGURE 15.  The CAS dynamic fault tree (modified after [8]).
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TABLE IV. THE CAS BASIC EVENTS (COMPONENTS) AND THEIR 

REFERENCE TAGS 

Reference Tag  Basic events (components) 

BE.1 CS 

BE.2 SS 

BE.3 P 

BE.4 B 

BE.5 MOTOR 

BE.6 MOTORC 

BE.7 PUMP_1 

BE.8 PUMP_2 

BE.9 Backup_PUMP 

 

We have considered that the failure rates of the BEs of the 

DFT are unknown. Following the process described in section 

III.B, the DFT in Fig. 15 is translated into a GSPN model and 

unknown failure rates of the BEs are collected according to the 

process described in section III.C. The GSPN model of the 

DFT after incorporating the failure rates of the BEs (values for 

timed transitions) is shown in Fig. 16. For the data collection 

process for BEs, a heterogeneous group of experts was 

employed. 

As it is evident from Table I, the experts’ weights are not 

same (see Table V). Four experts participated in this study to 

make the judgments. Two of them have a M.Sc. degree in 

systems engineering and had been working as system analysts 

for over 8 years. The third expert has a B.Sc. degree in 

manufacturing engineering and he had been working as a 

consultant and trainer for over four years. The last expert has 

a Ph.D. in industrial engineering and she had been working as 

an academic staff for over ten years. Job tenure and current 

activities of these experts are summarized in Table VI.

 

    

FIGURE 16.  GSPN model of the DFT of Fig.15. 
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TABLE V. EXPERT WEIGHTING 
Expert Professional position Job Experience Education Age Weighting score 

Expert 1: Engineer (3) 6–9 (2) Master (4) (2) 11/49=0.22 

Expert 2: Engineer (3) 6–9 (2) Master (4) (3) 12/49=0.24 

Expert 3: Engineer (3) ≤ 5 (1) Bachelor (3) (3) 10/49=0.21 

Expert 4: Senior academic (5) 10–19 (3) PhD (5) (3) 16/49=0.33 

Total     49/49=1.00 

 

TABLE VI. DETAILS OF THE EXPERTS 

Board name Occupation Age 
Educational 

Knowledge 

Job tenure in 

Industry 

Expert 1 (E1): System analyzer 36 Master of system engineering 

He has been working as system analyzer for 9 years. 

He is currently the head of system analyzer in design 

department of a company. 

Expert 2 (E2): System analyzer 42 Master of system engineering 

She has been working as system analyzer for 8 years. 

She is currently vice head of system analyzer in design 

department of a company. 

Expert 3 (E3): Consultant and trainer 43 
Bachelor of manufacturing 

engineering 

He has been working as a consultant and trainer since 

2013. He is currently a member of safety department 

of automobile manufacturing. 

Expert 4 (E4): Academic staff 41 PhD industrial engineering 
She has been working as an academic staff in 

industrial department for more than 10 years. 

The experts’ decision on the BEs which have unknown 

failure rates is given in Table VII. 

 
TABLE VII. EXPERTS’ DECISION ON THE UNKNOWN BES (COMPONENTS) 

Reference Tag 
Experts  

E1 E2 E3 E4 

BE.1 VL L M VH 

BE.2 M VL H VL 

BE.3 H VL M H 

BE.4 H M H M 

BE.5 H M H VH 

BE.6 VH H M L 

BE.7 L VH H M 

BE.8 M VH M VL 

BE.9 M VH L H 

 

The SAM technique was used to aggregate expert opinions 

for t=1000 hours. BE.1 is taken as an example and the details 

of aggregation are provided in Table VIII. To compute 

consensus coefficient using Equation (5), relaxation factor (β) 

is considered to be 0.5 to give the weight of the experts and 

their relative agreement an equal importance. 

In addition, Equations (9) and (10) are applied to defuzzify 

the failure possibility of each BEs and also to transfer the 

corresponding fuzzy number to FP, respectively. The 

computation of BE.1 is done as an example and the results 

of other BEs are provided in Table IX. 

Defuzzification 𝑜𝑓 BE. 1

=
1

3
(0.303 + 0.419 + 0.442 + 0.580

−
0.442 × 0.580 − 0.303 × 0.419

(0.442 + 0.580) − (0.303 + 0.419)
) 

                              

                              = 0. 437391 

𝐾 = (
1

0.437
− 1)

1
3⁄ × 2.301 =2.503 

𝐹𝑃 = 1
102.503⁄ = 0.003145 

From this FP value, using Equation (12) the failure rate is 

calculated as: 

𝜆 =
− ln(1 − 0.003145 )

1000
  

 

                            =3.15E-06 

 

In the last step, we simulated the GSPN model of Fig. 16. 

Note that we use ORIS Petri net simulator [67] to create and 

simulate the GSPN model. The unreliability of the CAS 

system for different mission times is graphically presented in 

Fig.17. The criticality of the BEs of the DFT was calculated 

using the process described in section III.D.1 and BEs were 

ranked based on their criticality, as shown in Table X. As seen 

in the table, the basic events BE.1 and BE.2 are identified as 

the two most critical events.  These BEs represent the crossbar 

switch (CS) and system supervision (SS), respectively. Thus, 

if the analysts want to increase the reliability of the system 

then they may consider replacing these critical components 

using components with higher reliability or they may consider 

introducing redundant components in parallel with the critical 

components. 
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TABLE VIII. AGGREGATION CALCULATIONS FOR THE BE.1 

Expert 1 (0,0,0.1,0.2) 

Expert 2 (0.1,0.25,0.25,0.4) 

Expert 3 (0.3,0.5,0.5,0.7) 

Expert 4 (0.8,0.9,1,1) 

S(E1&E2) 0.825 𝑆(�̃�, �̃�) = 1 −
1

𝐽
∑|𝑎𝑖 − 𝑏𝑖|

𝐽

𝑖=1

   

S(E1&E3) 0.575 𝑆𝐸1,𝐸2 = 1 − 1
4⁄ (0.1 + 0.25 + 0.15 + 0.2) = 0.825 

S(E1&E4) 0.175  

S(E2&E3) 0.75  

S(E2&E4) 0.35  

S(E3&E4) 0.6  

AA(E1) 0.525 𝐴𝐴(𝐸𝑢) =
1

𝐽 − 1
∑ 𝑆(�̃�𝑢, �̃�𝑣)

𝐽

𝑢≠𝑣
𝑣=1

 

AA(E2) 0.642 1
(4 − 1)⁄ (0.825 + 0.575 + 0.175) = 0.525 

AA(E3) 0.642  

AA(E4) 0.375  

RA(E1) 0.240 𝑅𝐴(𝐸𝑢) =
𝐴𝐴(𝐸𝑢)

∑ 𝐴𝐴(𝐸𝑢)𝐽
𝑢=1

 

RA(E2) 0.294 0.525
(0.525 + 0.642 + 0.642 + 0.375)⁄ = 0.240 

RA(E3) 0.294  

RA(E4) 0.172  

CC(E1) 0.230 𝐶𝐶(𝐸1) = 𝛽 ∙ 𝑊 (𝐸𝑢) + (1 − 𝛽) ⋅ 𝑅𝐴 (E1)   =  

CC(E2) 0.267 0.5 × 0.22 + 0.5 × 0.240 = 0.230 

CC(E3) 0.252  

CC(E4) 0.251  

Aggregation for BE.1 �̃�AG = 𝐶𝐶(𝐸1) ⊗ �̃�1 ⊕ 𝐶𝐶(𝐸2) ⊗ �̃�2 ⊕ … ⊕ 𝐶𝐶(𝐸𝑚) ⊗ �̃�𝑀 

0.230⊗ (0,0,0.1,0.2) ⊕ 0.267⊗ (0.1,0.25,0.25,0.4) ⊕ 0.252⊗ (0.3,0.5,0.5,0.7) ⊕ 0.251⊗ (0.8,0.9,1,1) = 

(0.303,0.419,0.442,0.580) 

 

TABLE IX. DEFUZZIFICATION OF NUMBERS AND CORRESPONDING FP OF EACH BES 

Reference Tag Aggregated fuzzy set Defuzzification of BEs FP of BEs Failure rate 

BE.1 (0.303,0.419,0.442,0.580) 0.437552 0.003149 3.15E-06 

BE.2 (0.195,0.275,0.330,0.464) 0.318972 0.001089 1.09E-06 

BE.3 (0.405,0.537,0.557,0.710) 0.553785 0.007225 7.25E-06 

BE.4 (0.440,0.616,0.616,0.793) 0.616333 0.010847 1.09E-05 

BE.5 (0.588,0.735,0.735,0.883) 0.735333 0.023080 2.34E-05 

BE.6 (0.438,0.588,0.588,0.739) 0.588333 0.009062 9.10E-06 

BE.7 (0.449,0.602,0.602,0.756) 0.602333 0.009917 9.97E-06 

BE.8 (0.331,0.458,0.483,0.636) 0.478838 0.004296 4.31E-06 

BE.9 (0.468,0.619,0.619,0.769) 0.618667 0.011009 1.11E-05 

    
FIGURE 17. System unreliability for different mission times.
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TABLE X. CRITICALITY OF THE BASIC EVENTS OF THE DFT IN FIG. 15 

BEs Name BIM RANK 

BE.1 0.625 1 

BE.2 0.563 2 

BE.3 0.251 5 

BE.4 0.181 6 

BE.5 0.261 4 

BE.6 0.492 3 

BE.7 0.040 7 

BE.8 0.034 8 

BE.9 0.022 9 

 

V. CONCLUSION 

Reliability analysis of complex and dynamic systems such 

as cyber physical systems is intricate. There are multiple 

stochastic and temporal dependencies that need to be taken 

into account and not all the existing stochastic formalisms are 

able to grasp these dependencies. Besides, the failure 

specification of some components, i.e., failure rate, is difficult 

to obtain. Frequently, the engineers have a qualitative 

knowledge about the possible failure behaviour, but with 

existing state-of-the-art methods this is not enough to quantify 

they system reliability.  

In this context, this paper presents a novel uncertainty-

aware dynamic reliability analysis approach. The approach 

enables the specification of failure data from expert judgement 

for components with unknown failure rates. Statistical, 

stochastic and temporal dependencies among events are 

treated in the analysis through Dynamic Fault Trees (DFT) and 

Generalised Stochastic Petri Nets (GSPN). There are other 

approaches that have addressed some of these issues in an 

isolated manner. However, to the best of the authors’ 

knowledge, not all issues have been covered in a single 

approach. Here this is achieved by combining DFT, GSPN, 

and fuzzy set theory.  

The use of DFTs helped to model time-dependant failure 

behaviour, dependency among events, redundancy in the 

system model, and priorities among events. Fuzzy set theory 

and expert judgment enable us to collect uncertain failure data 

and also to explicitly highlight the areas of uncertainty in the 

data. GSPN was used to take into account the statistical and 

stochastic dependencies among events, which helped to avoid 

inaccurate reliability estimation of the system by performing 

analysis under realistic assumptions. 

The effectiveness of the approach was demonstrated via 

application to a benchmark case study. The result obtained is 

believed to be improved and more useful than results derived 

with more traditional approaches due to the combined 

capabilities of the method.  

The use of expert judgement in estimating failure 

probabilities of BEs is not expected to be faultless, but can 

contribute to usefully quantifying what was previously 

unquantifiable. Note that the current method only obtained an 

exponentially distributed failure rate, however, to utilise the 

full potential of GSPN, it would be worthwhile to explore 

methods to obtain the failure rate function for other 

distributions. The criticality analysis allows analysts to 

identify weak areas of the system early and to focus redesign 

efforts correspondingly. The extent of scalability of this 

approach for the analysis of large-scale systems is not yet 

determined. It could be the case that GSPNs grow to sizes that 

make computations very demanding. However, if issues arise 

then modularisation techniques such as [68]-[71] may help to 

improve scalability of the analysis. 
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