
Accepted Manuscript

Ecological enhancement techniques to improve habitat heterogeneity on coastal
defence structures

AliceE. Hall, RogerJ.H. Herbert, J. Robert Britton, SusanL. Hull

PII: S0272-7714(17)31132-0

DOI: 10.1016/j.ecss.2018.05.025

Reference: YECSS 5870

To appear in: Estuarine, Coastal and Shelf Science

Received Date: 30 November 2017

Revised Date: 17 April 2018

Accepted Date: 29 May 2018

Please cite this article as: Hall, A., Herbert, R.H., Britton, J.R., Hull, S., Ecological enhancement
techniques to improve habitat heterogeneity on coastal defence structures, Estuarine, Coastal and Shelf
Science (2018), doi: 10.1016/j.ecss.2018.05.025.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.ecss.2018.05.025


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Ecological Enhancement Techniques to Improve Habita t 1 

Heterogeneity on Coastal Defence Structures  2 

 3 

Alice. E. Hall a, Roger. J.H. Herbert a, J. Robert Britton a, Susan. L. Hull b 4 

a Faculty of Science and Technology, Department of Life and Environmental Sciences, Bournemouth 5 

University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK  6 

b University of Hull, Cottingham Road, Hull, HU6 7RX, UK 7 

Corresponding author: E-mail address: ahall@boutnemouth.ac.uk (A.E. Hall)  8 

  9 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Abstract 10 

Sea level rise and higher storm frequency are increasing the need for the placement of hard 11 

coastal defences worldwide. The majority of these defences lack optimal habitats for 12 

intertidal species, resulting in low diversity and abundance. The construction of coastal 13 

defences within marine protected areas (MPA) is also increasing and this study investigates 14 

ways to limit the loss of species diversity and intertidal habitat caused by installing rock 15 

armour defence structures and other coastal developments. Arrays of holes and grooves 16 

were created on granite rock armour in the north of England at Runswick Bay, N. Yorkshire 17 

and limestone rock groynes in southern England at Boscombe, Poole Bay, Dorset. Runswick 18 

Bay is a Marine Conservation Zone (MCZ) designated for its intertidal habitat and Boscombe 19 

is located in close proximity to a Special Area of Conservation (SAC). After 12 months, the 20 

treatments had attracted new species to the defence structures and increased the overall 21 

diversity and abundance of organisms compared to control areas. Mobile fauna including 22 

crabs and fish were also recorded utilising the holes and grooves at Boscombe. Non-native 23 

species were recorded in grooves at one site however their abundance was not significantly 24 

different to that of control areas. At the southern site, species known to be spreading in 25 

response to climate change were found in treatments but not in control areas. The cost of 26 

the installation of these enhancement techniques was low in relation to that of the defence 27 

scheme and could be easily incorporated before, during or after construction. Through 28 

evaluation of the use of these ecological enhancement techniques on coastal structures, it is 29 

suggested that they have considerable potential to increase biodiversity on artificial 30 

structures, particularly when used within large-scale coastal engineering defence projects. 31 

Keywords: Ecological Enhancement, Structures, Biodiversity, Ecological Engineering, 32 

Marine Protected Area 33 

 34 
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1 Introduction 35 
 36 
Sea level rise and higher storm frequency are increasing the need for hard coastal defences 37 

worldwide (Firth et al., 2016b).  These structures are predominantly fabricated from materials 38 

that are novel to the local geology and marine environment and are designed to be durable 39 

and effective (French, 2001; Dong, 2004). Yet the construction of new defences may result 40 

in loss of intertidal habitat (Moschella et al., 2005). Hard coastal defence structures can form 41 

either a solid or permeable barrier, which can both absorb and dissipate wave energy, and 42 

are designed to provide a long-term cost- effective way of protecting land or assets from 43 

flooding and erosion (French, 2001). A variety of materials including concrete, wood and 44 

rock are used, although placement of rock armour boulders has more recently been 45 

favoured due to their longevity and efficiency at dispersing wave energy (Bradbury & Allsop, 46 

1987; Crossman et al., 2003). The type of rock used in a particular area can be determined 47 

by the cost of transportation and aesthetic influences, particularly in marine protected areas 48 

(MPA). The design of coastal defence structures is informed by the specific erosion risks and 49 

local environmental conditions (Crossman et al., 2003; Garcia et al., 2004). In Europe, 50 

structures built within marine protected areas may be subject to formal Environmental Impact 51 

Assessment (85/337/EEC and 97/11/EEC), Habitat Directive Regulations (1992/43/EC) and 52 

the EU Water Framework Directive (2000/60/EC). Where there is a need to limit the loss of 53 

biodiversity caused by construction, coastal managers may be required to mitigate against 54 

any habitat loss.  55 

Intertidal structures are typically colonised by sessile intertidal species, such as algae, 56 

barnacles, mussels and hydroids (Bacchiocchi & Airoldi, 2003; Bulleri & Chapman, 2004; 57 

Moschella et al., 2005; Mineur et al., 2012) with community composition differing due to the 58 

substrate type (Green et al., 2012), tidal height (Firth et al., 2013), wave exposure (Pister, 59 

2009), orientation (Glasby & Connell, 2001) and location within a structure (Sherrard et al., 60 

2016). The majority of structures lack surface heterogeneity and the ability to retain water at 61 

low tide (Bulleri & Chapman, 2004; Coombes et al., 2011; Firth et al., 2013, 2016b). In 62 
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comparison, natural rocky shores generally have rougher surfaces and a variety of habitats 63 

including rock pools and crevices which provide refuge from both biotic and abiotic 64 

pressures at all states of tide (Raffaelli & Hawkins, 1996; Little et al., 2009; Firth et al., 2013; 65 

Aguilera et al., 2014). Barnacles are key space occupiers and habitat-forming species which 66 

occupy distinct zones on most UK intertidal rocky shores (Ballantine, 1961; Lewis, 1964) and 67 

the cold-temperate species Semibalanus. Semibalanus balanoides has been known to 68 

preferentially settle onto rough surfaces (Anderson & Underwood, 1994; Walters & Wethey, 69 

1996; Holmes et al., 1997; Hills et al., 1999; Berntsson et al., 2000). The colonisation of 70 

these  habitat-forming species then facilitate community succession and have positive 71 

impacts on species richness, abundance and community productivity (Jenkins et al., 1999; 72 

Thomsen et al., 2016).  Limpets are key grazers on intertidal shores and control the 73 

abundance of algal species including ephemeral greens and fucoids (Raffaelli & Hawkins, 74 

1996) Juvenile limpets are known to inhabit damp cracks and crevices until they reach 4-5 75 

mm, at which point they move out onto drier rocks (Crump et al., 2003). 76 

Adaptations can be made to coastal defence structures to encourage the colonisation and 77 

survival of intertidal species (Moschella et al., 2005; Dyson & Yocom, 2015), a process 78 

termed ‘ecological enhancement’ or ‘ecological engineering’ (Mitsch, 2012; Firth et al., 2014, 79 

2016b; Sella & Perkol-Finkel, 2015; Strain et al., 2017). The purpose of ecological 80 

enhancement is to increase and/ or improve the habitat for biodiversity whilst also protecting 81 

human health and the environment (ITRC, 2004). Evans et al., (2017) found that ecological 82 

benefits were considered more important to stakeholders than socio-economic benefits 83 

when creating multifunctional structures. These adaptations can take many forms, including 84 

features that can be retrofitted on to existing structures (Firth et al., 2014, 2016b; Evans et 85 

al., 2015; Hall, 2017), perhaps within newly designated MPAs or be incorporated into the 86 

construction of new defence projects. In England, Marine Conservation Zones (MCZs) are 87 

created under The Marine and Coastal Access Act (2009) and if new structures were to be 88 
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constructed within a MCZ ecological enhancement could be used to encourage colonisation 89 

of communities on the defence structure if appropriate.  90 

Previous ecological engineering trials have aimed to improve the habitat heterogeneity of 91 

artificial structures through increasing the roughness of concrete (Coombes et al., 2015), 92 

drilling pits to seawalls (Martins et al., 2010, 2015), attaching precast concrete tiles (Borsje 93 

et al., 2011; Loke et al., 2015) in order to improve biodiversity (see Firth et al., 2016 for a 94 

review). Small scale water-retaining features have also been trialled by omitting blocks in the 95 

concrete (Chapman & Blockley, 2009), attaching flowerpots to seawalls (Browne & 96 

Chapman, 2011; Morris et al., 2017) core drilling pools in rock armour (Evans et al., 2015) 97 

and moulding concrete between boulders to form pools (Firth et al., 2016a). All of these 98 

interventions have had a measure of success in increasing the variety of habitats on the 99 

structures, resulting in either an increase in species richness or a change in community 100 

composition. On a larger scale, pre-cast habitat enhancement units have been trialled that 101 

incorporate rock pools of varying sizes, crevices and pits (Firth et al., 2014). Whilst these 102 

units can be incorporated into rock armour (Sella & Perkol-Finkel, 2015), it is difficult for 103 

them to be installed post-construction. This is important, as due to the prevalence of exsiting 104 

coastal defence structures, there is an outstanding need for low-cost retrofitting options, i.e. 105 

simple techniques which can be executed without large plant machinery or high construction 106 

costs, particularly in MPAs where disturbance from heavy machinery may damage features 107 

of the MPA. However, obtaining funding to retrofit   improvements after the main project 108 

budget has been spent may be problematic, therefore, where possible, ecologcial 109 

enhancments should be incoroprated in the planning phase to enable adequate funds.   110 

The current study evaluates the application of low-cost ecological enhancement techniques 111 

on coastal defence structures in sensitive marine habitats exposed to moderately high wave 112 

energy. In high wave energy environments, the use of rock armour (2-20 tonnes boulders) 113 

predominates and the attachment of artificial pools or tiles on the boulders is not an option 114 

as these could be removed by wave action, as already demonstrated in sheltered 115 
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environments (Browne & Chapman, 2011). The low-cost treatments in this study are 116 

designed to be replicated on any boulder defence structure, including groynes, breakwaters 117 

and rock armour. These trials aimed to determine if these ecological enhancement 118 

techniques (“holes” and “grooves”) resulted in differences in community composition, 119 

species richness, total abundance, and species diversity of fauna and flora when compared 120 

to non-manipulated (Control) rock faces.  121 

 122 

The following hypotheses were tested:  123 

1) Species richness, total abundance and species diversity of fauna and flora would 124 

be greater in the treatment areas than prior to the treatment and in control areas. .  125 

2) The community composition would vary between treatment and control areas.  126 

3) There would be significantly more water retention in the treatment areas compared 127 

with the controls.  128 

4) There would be an increased total abundance of habitat-forming functional groups 129 

(barnacles) and grazers (limpets) in the treatment areas compared to the controls.  130 

2 Methods 131 

2.1  Study Sites  132 
 133 

Field trials were conducted to examine the ecological response of rocky shore species to two 134 

different enhancement treatments at each of two sites within the UK: Runswick Bay, North 135 

Yorkshire and Boscombe in Poole Bay, Dorset (Figure 1a). Runswick Bay was designated a 136 

Marine Conservation Zone (MCZ) (Marine and Coastal Access Act 2009) in 2016 for low 137 

energy intertidal rock, moderate energy intertidal rock, high energy intertidal rock and 138 

intertidal sand and muddy sand biotopes. Runswick Bay is a popular tourist area with a 139 

moderately exposed sandy shore and shale bedrock platforms approximately 100 m to the 140 

north of the test site. The existing rock granite armour consists of 5-10 tonne granite 141 
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boulders sourced from the High Force Quarry in Middleton (UK), and was constructed in 142 

2000 to dissipate wave energy and reduce overtopping of defences. Boscombe is located 11 143 

km west of intertidal reef biotopes included within the Studland to Portland marine Special 144 

Area of Conservation (SAC) (EU Habitats Directive) designated in 2012. Boscombe has a 145 

moderately exposed urbanised coastline and is a popular tourist destination. It is 146 

predominantly sandy and the test site at Boscombe experiences a prevailing eastward 147 

longshore drift. The test site includes 3-6 tonne Portland limestone rock armour which was 148 

constructed in 2010 at Mean Low Water to strengthen the toe of older concrete groynes. 149 

Compared to nearby natural shores the rock armour at both study sites had a low 150 

abundance and diversity of colonising species (Authors personal observations), yet included 151 

barnacles and limpets that are important constituents of rocky shore ecosystems. Runswick 152 

Bay rock armour supported lower densities of barnacles, limpets and other intertidal 153 

molluscs  compared  to Boscombe, which had a more diverse community including 154 

barnacles, limpets, mussels and filamentous green, red and brown algae.  155 
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 156 

Figure 1  Site locations of i) Runswick Bay and ii) Boscombe within Poole Bay, UK. 157 

 158 

2.2 Interventions 159 
 160 

Where logistically possible, treatments were created on the centre of the seaward surface of 161 

separate boulders. Two different enhancement treatments were evaluated at both sites. 162 

(a) ‘Holes’, consisting of an array of four 20 mm deep x 16 mm diameter holes spaced 163 

70mm apart, orientated to retain water at low tide, were drilled perpendicular into 164 

vertical surfaces of boulders using a rotary SDS hammer hand drill. Dimensions were 165 

chosen to mimic natural microhabitats observed on natural rocky shores.  166 

(b) ‘Grooves’ aimed to replicate the groove-microhabitat occasionally observed in natural 167 

rocky shores and occasionally seen in rock armour as a consequence of use of 168 

explosives in the quarrying process. Each array consisted of two, thin horizontal 169 

grooves (approx. 60 cm long x 1 cm deep x 0.3 cm wide) and one thicker, coarser 170 
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groove (approx. 60 cm long x 1 cm deep x 2 cm wide) that were cut in to the vertical 171 

surface of the rock using a petrol saw/angle grinder. The coarser middle grooves 172 

were chiselled out, which created a rough surface texture on the base and sides of 173 

the groove (Figure 1c). Both thin and thick grooves were included to provide a variety 174 

of habitats as observed in natural rocky shores.  175 

(c) Control: At both sites, 20 x 20 cm control areas with similar orientation were created 176 

near each treatment on the same boulders by removing encrusting fauna and flora 177 

with a wire brush, paint-scraper and blow torch to create a bare surface. 178 

2.3 Experimental Design 179 
 180 

At Runswick Bay, two arrays of holes spaced 30 cm or more apart, were created on each of 181 

eight separate boulders (N=16) (Figure 1b, Figure 2a). In addition, three arrays of grooves 182 

were created on separate boulders (N=7) (Figure 1c, Figure 2b). All boulders were located 183 

between Mean Tide Level (MTL) and Mean Low Water at (MLW) and cleared of encrusting 184 

fauna and flora with a wire brush, paint-scraper and blow torch to create a bare surface prior 185 

to experimentation. 186 

At Boscombe a larger trial was conducted in which two arrays of holes spaced 30 cm or 187 

more apart,  were created on twenty-four boulders across two rock groynes which were 188 

situated 180 m apart (N=48) (Figure 1b, Figure 2c). In addition, three arrays of grooves were 189 

created on twenty-four separate boulders located across two groynes (N=24) (Figure 1c, 190 

Figure 2d). All boulders were located at Mean Low Water at (MLW) and cleared of 191 

encrusting fauna and flora with a wire brush, paint-scraper and blow torch to create a bare 192 

surface prior to experimentation. 193 
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 194 

 195 
 196 

Figure 2  Positioning of a) Holes at Runswick Bay, b) Grooves at Runswick Bay, c) Holes at 197 

Boscombe, d) Grooves at Boscombe. 198 

 199 

The cost of the treatments in Boscombe was £500 (€570, $700 USD), which covered two 200 

workers’ for 4 hours, tool hire and a replacement blade/ drill bit. At Runswick Bay the 201 

structures were built of granite so the time taken to complete the enhancements was longer 202 

than at Boscombe due to the hardness of the rock, so less replication of treatments was 203 

undertaken. In addition, diamond tipped drill bits and blades were needed to create the 204 

treatments which were included in the overall cost of £660 (€750, $924 USD). 205 

2.4 Surveillance  206 
 207 

At both sites, boulders on each structure were thoroughly surveyed using 20 x 20cm 208 

quadrats to record the percentage cover of seaweed and counts of fauna prior to the 209 

installation of treatments. Treatments and controls were established in October 2014 at 210 

a) b) 

c) d) 
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Runswick Bay and March 2015 at Boscombe, and then sampled after one year. The 211 

boulders with holes were sampled using a 20 x 20 cm quadrat placed over each array and 212 

control areas and the percentage cover of seaweed and counts of fauna, such as barnacles, 213 

limpets, mussels and smaller gastropods were recorded to measure species abundance.  214 

 215 

For boulders with grooves, nine 20 x 20 cm quadrats were placed on the treatment area and 216 

on the adjacent control areas and the percentage cover of seaweed and counts of fauna 217 

were recorded, from which a mean abundance was calculated for both treatment and 218 

control. Percentage cover of water retention and sediment in each treatment and control 219 

quadrat was also recorded through visual estimates. During each survey, a record of all 220 

species observed on the whole of each structure at both sites was made to determine 221 

whether any new species colonised the structures as a result of the treatments. 222 

 223 

An estimate of surface heterogeneity of the rocks (in order to account for the increased 224 

surface area due to treatments) in each sampled quadrat was made at the start of the 225 

experiment using a fine scale variation of the chain and transect method (Luckhurst & 226 

Luckhurst, 1978; Frost et al., 2005). A thin chain was secured at the top of the quadrat and 227 

run to the bottom edge ensuring it touched the bedrock. This distance was then measured 228 

and used as a measure of relative surface texture (space available for colonisation (Loke & 229 

Todd, 2016)) within each quadrat sampled.  230 

2.5  Statistical Analysis  231 
 232 

To account for the increased surface area provided through the installation of holes and 233 

grooves onto a boulder surface, a correction factor was applied to standardise all abundance 234 

data of flora and fauna collected from treatment quadrats. This was calculated using an 235 

average of the surface area measurements collected across all quadrats for each treatment. 236 

The correction factor applied to abundance data was 0.8 for quadrats containing grooves 237 

and 0.82 for quadrats containing holes.  238 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 239 

Species richness, total abundance of fauna and flora and Shannon-Weiner species diversity 240 

indices were determined using the DIVERSE function in PRIMER-e V6 (Clarke, 2001). A 241 

one-way ANOVA was performed for each treatment and site separately with treatment 242 

(Before vs Holes/Grooves vs Control) as the main factor (Long & Ervin, 2000). Any 243 

significant effects were explored using a Tukey post hoc test. A Bray Curtis similarity matrix 244 

was generated from square-root transformed data and the ANOSIM procedure used to test if 245 

there was any significant difference in communities of benthic organisms between 246 

treatments (Clarke, 2001). The SIMPER routine was performed for each site separately to 247 

determine species contributing most to the similarity within treatments and dissimilarity 248 

between treatments and controls (Clarke, 2001).  249 

 250 

To determine if there was a difference in the average number of barnacles and limpets 251 

recorded in the different treatments versus the control areas, a negative binomial 252 

Generalised Liner Model (GLM) was applied for each site separately. Due to numerous zero 253 

observations in count data the application of the negative binomial model resolved issues 254 

relating to over-dispersion and had the lowest Akaike Information Criterion (AIC) of the 255 

models trialled and, after examination of the residuals, was determined to be the most 256 

applicable to the data (Zuur et al., 2009).  All analyses were undertaken in R Studio using 257 

the MASS routine (Venables & Ripley, 2002) and base package (R Core Team, 2016).  258 

3 Results 259 

3.1 Runswick Bay – granite rock armour 260 
 261 

Only 2 species were recorded on the boulders before the treatments were installed (Table 262 

1), yet following the treatments an additional 6 species were observed to have colonised the 263 

holes and an additional 5 species in the grooves. These new species included algae 264 

Porphyra sp., Fucus sp. and Mastocarpus stellatus, two gastropod snail species Littorina 265 
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saxatilis and Melarhaphe neritoides and the mussel Mytilus edulis (Table 1), all but Fucus 266 

sp. and Mastocarpus stellatus were also found in the control areas. 267 

  268 
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Table 1  Presence and absence of species after a 12 month period for before, holes, grooves 269 
and  controls at Runswick Bay and Boscombe (* indicates presence after 12months, + 270 
indicates presence between 0-12months). 271 

Group 
 

Species 
 

Runswick Bay Boscombe 

Before Holes Grooves Control Before Holes Grooves Control 
Algae Ceramium sp.       * * * 

Chaetomorpha sp.        *  
Cladophora 
rupestris        *  
Codium fragile        + + 

Diatom      * + * * 

Dumontia cortorta        +  
Fucus sp.  * +      
Halurus sp       + + 
Lomentaria 
articulata        + + 
Mastocarpus 
stellatus   +      

Polysiphonia sp.      + *  

Porphyra sp   * * *  + *  
Rhodochorton 
purpureum   + *     
Rhodothamniella 
floridula    +   + * * 
Scytosiphon 
lomentaria       + + + 

Ulva lactuca    +  *  * + 

Ulva linza   * * * * * * * 
Cnidaria 

Actina equina       * + 

Anemonia viridis       *  
Annelida 

Eulalia viridis       *  

Polydora ciliata      + *  
Spirobranchus 
triqueter      * * * 

Crustacean Austrominius 
modestus       * * 
Perforatus 
perforatus      + *  

Carcinus maenas      * +  

Idotea granulosa   +      
Semibalanus 
balanoides * * * * * * * * 

Mollusca Lepidochitona 
cinereus      + *  
Littorina saxatilis  * * *     
Melarhaphe 
neritoides  * * *     
Mytilus edulis  * * * * * * * 
Nucella lapillus      * +  
Patella depressa        * 

Patella vulgata * * * * * * * * 

Rissoa sp.       + + 
Bryozoa Bryozoa sp.      * *  
Ascidicea Ascidiella aspersa       * +  
Chordata Lipophrys pholis      *   

Total Number of Species 
observed between 0-12months  2 8 13 8 6 19 30 17 

Total Number of Species after 12 
months 

2 8 7 8 6 11 21 10 

 272 
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There was a significantly greater species richness, Shannon-Weiner species diversity and 273 

total abundance of fauna and flora in the holes (Table 2a; Figure 3a) compared to before 274 

(P<0.001) and the controls (P<0.001). The grooves treatments supported a greater species 275 

richness and total abundance of organisms when compared to before and the controls 276 

(P<0.001), alongside supporting a higher Shannon-Weiner species diversity than before, 277 

however there were no significant difference in Shannon-Weiner species diversity between 278 

grooves and controls (Table 2a; Figure 3a). Both treatments created novel areas of water 279 

retention which were lacking on the control sites (Figure 4). 280 

Table 2  Results of one way ANOVA for comparison in species richness, total abundance 281 

and species diversity (H) in before, holes and control quadrats and before, grooves and 282 

control quadrats at a) Runswick Bay and b) Boscombe after 12 months. 283 

a) Runswick Bay 

 Species r ichness  Total a bundance  Species d iversity  
 df F p df F p df F p 
Holes  

2 38.65 <0.001 2 22.80 <0.001 2 20.91 <0.001 

Contrasts           
Before- Holes 45  <0.001 45  <0.001 45  <0.001 
Holes - Control 45  <0.001 45  0.001 45  <0.001 
          
Grooves  2 165.8 <0.001 2 33.61 <0.001 2 3.48 0.052 

Contrasts   
Before- Grooves 18  <0.001 18  <0.001 18  0.046 
Grooves -Control 18  <0.001 18  <0.001 18  0.670 

b) Boscombe 

 Species richness  Total abundance  Species diversity  
 df F p df F p df F p 

Holes  2 7.80 <0.001 2 12.07 <0.001 2 16.91 <0.001 

Contrasts           
Before- Holes 141  <0.001 141  0.253 141  <0.001 
Holes - Control 141  0.489 141  <0.001 141  0.006 
          

Grooves  2 27.86 <0.001 2 0.23 0.794 2 6.91 0.001 

Contrasts          
Before- Grooves 69  <0.001 69  0.88 69  0.001 
Grooves -Control 69  <0.001 69  0.78 69  0.08 
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 284 

 285 

Figure 3  Mean species richness (S), total abundance (N) and species diversity (H) for a) 286 

holes and b) grooves before installation compared to the test and control after 12 months at 287 

Runswick Bay and Poole Bay (+/- SE). 288 
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 290 

Figure 4  Mean percentage of water retention for the control, holes and grooves at a) 291 

Runswick Bay and b) Boscombe (Mean +/- S.E.). 292 

 293 

Community similarity was found to be significantly different between the holes and controls 294 

(ANOSIM, R=0.17, P<0.01) and grooves and controls (ANOSIM, R=0.95, P<0.02) after 12 295 

months. Of the overall 84.5% dissimilarity between holes and control, 98.8% could be 296 

attributed to the higher abundance of Semibalanus balanoides, Ulva linza, Melarhaphe 297 

neritoides, Littorina saxatilis and Mytilus edulis in the holes (Table 3a). Whereas 98.9% of 298 

the overall 86.6% dissimilarity between grooves and control was attributed to greater 299 

abundance of S. balanoides, Ulva linza and Melarhaphe neritoides in the grooves (Table 300 

3b).   There were significantly higher counts of habitat-forming barnacles in both the grooves 301 

and holes treatments compared to the controls (Table 4a & Figure 5). No significant 302 

difference was found for limpet abundance (Table 4b & Figure 5b).  303 

 304 

 305 
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Table 3  SIMPER table indicating average abundance of species per array in a) Holes and 308 

Control b) Grooves and Control at Runswick Bay after 12 months (Av.Abund= Mean 309 

Abudance (Raw), Av.Diss = Average Dissimiliarity, Diss/SD= Dissimilarity SD, 310 

Contrib%=Contribution percentage, Cum %= Cumulative percentage, c= counts, & = 311 

percentage cover). 312 

a) Holes  &  Control Average dissimilarity = 84.49  

Species 
   Holes 
Av.Abund  

    Control  
Av.Abund  Av.Diss 

   
Diss/SD Contrib%  

 
Cum.% 

Semibalanus balanoides (c ) 76.44 12.18 56.27 1.8 66.6 66.6 

Ulva linza (%) 5.67 13.64 13.74 0.55 16.26 82.87 

Melarhaphe neritoides ( c ) 5.49 0.82 5.91 0.63 6.99 89.85 

Littorina saxatilis (c ) 5.67 0.09 5.37 0.73 6.36 96.21 

Mytilus edulis (c ) 2.95 0.05 2.2 0.41 2.61 98.82 

Porphyra sp. (%) 0.22 1.05 0.83 0.5 0.98 99.8 

Fucus sp. (%) 0.07 0.00 0.08 0.21 0.1 99.9 

Patella vulgata (c ) 0.07 0.00 0.08 0.3 0.1 100 

b) Grooves & Controls Average dissimilarity = 86.61  

Species 
Grooves 
Av.Abund  

Control 
Av.Abund  Av.Diss 

   
Diss/SD Contrib%  

 
Cum.% 

Semibalanus balanoides (c ) 174.22 11.06 79.01 4.30 91.23 91.23 

Ulva linza (%) 3.67 0.00 3.97 0.48 4.59 95.82 

Melarhaphe neritoides ( c ) 4.22 0.00 2.63 1.32 3.03 98.85 

Littorina saxatilis (c ) 1.31 0.24 0.85 0.83 0.98 99.83 

Patella vulgata (c ) 0.08 0.11 0.09 0.69 0.10 99.93 

Rhodochorton purpureum 
(%) 0.00 0.08 0.04 0.36 0.05 99.98 

Mytilus edulis (c ) 0.03 0.00 0.01 0.59 0.01 99.99 

Porphyra sp. (%) 0.01 0.00 0.00 0.40 0.01 100.00 

 313 

  314 
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Table 4  Summary of the results of the negative binomial GLM applied to i) barnacle and ii) 315 

limpet count data with treatment as the factor at a) Runswick Bay b) Boscombe (***= 316 

P<0.001, **= P<0.01, NS=Not significant). 317 

 
a) Runswick Bay 

i) Barnacles                                                                  AIC=517.33, Theta=0.472 
 Estimate  Std. Error  Z value  P value  
Intercept 2.477 0.275 8.998 *** 
Grooves 2.682 0.615 4.359 *** 
Holes 1.859 0.145 4.475 *** 

ii) Limpets                                                                        AIC=29.412, Theta=1962 
Intercept -3.615 1.323 -3.193 ** 
Grooves 1.053 1.770 0.595 NS 
Holes 0.994 1.381 0.720 NS 

b) Boscombe  
i) Barnacles                                                                   AIC= 465.95 Theta= 0.059 

 Estimate  Std. Error  Z value  P value  
Intercept 2.782 0.483 5.751 **** 
Grooves -0.034 0.967 -0.036 NS 
Holes -2.276 0.772 -2.942 ** 

ii)  Limpets                                                                       AIC=476.92, Theta=0.282 
Intercept 0.214 0.246 0.872 NS 
Grooves 0.257 0.484 0.532 NS 
Holes 0.850 0.376 2.259 * 
 318 

   319 

Figure 5  Mean abundance of a) barnacles and b) limpets in the holes, grooves and control 320 

quadrats at Runswick Bay and Boscombe (Count data, Mean +/- S.E). 321 
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3.2 Boscombe, Poole Bay– limestone rock armour 323 

 324 

The rock groyne boulders at Boscombe supported 6 taxa before the treatments were 325 

installed and, after 12 months, 11 taxa were recorded in the holes and 21 taxa in the 326 

grooves and 10 taxa recorded in the control areas (Table 1). Species that were only found 327 

within the holes and groove treatments and observed nowhere else on the structures 328 

included Ascidiella aspersa, Anemonia viridis, Carcinus maenas and a bryozoan (Table 1).  329 

Overall, there was a significant difference in species richness and species diversity before 330 

and after the holes treatment (Table 2), yet there was no difference in total abundance. 331 

There was however a significant difference in total abundance and species diversity between 332 

the holes and control quadrats after 12 months (Table 2). The groove treatments showed a 333 

significant difference in species richness and species diversity in quadrats before and after 334 

the treatment and a significant difference in species richness between the treatment and 335 

control areas (Table 2). The grooves treatment at Boscombe resulted in the greatest 336 

increase in species diversity compared to that present prior to the treatment and the control 337 

quadrats. The non-native barnacle species Austrominius modestus was only recorded in the 338 

control and grooves quadrats. 339 

 340 

Community similarity was found to be significantly different between the holes and controls 341 

(ANOSIM, R=0.07, P<0.02) but not between the grooves and controls (ANOSIM, R=0.01, 342 

P>0.05) after 12 months. Four species accounted for 87.8% of the overall 91% dissimilarity 343 

between holes and controls, there was a greater abundance of Ulva linza, Semibalanus 344 

balanoides and Rhodthamniella fluoridula in the control areas and a higher number of 345 

Patella vulgata in the holes treatment (Table 5). Six taxa were only recorded in the holes and 346 

not the control areas, these were the crab Carcinus maenas, sea squirt Ascidiella aspersa, 347 

gastropod Nucella lapillus, bivalve Mytilus edulius, Bryozoan and the fish Lipophrys pholis.  348 
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The variation in communities between the grooves and control areas was attributed to 22 349 

taxa (Table 5). Of the overall 80% dissimilarity between grooves and control, 90.5% could be 350 

attributed to the greater abundance of Diatom and Rhodothamniella floridula in the controls 351 

and a higher abundance of Semibalanus balanoides in the grooves (Table 5). The grooves 352 

supported 14 taxa which were absent from the controls, these included the chiton 353 

Lepidochitona cinereus, the anemone Actina equina and the barnacle Perforatus perforatus.  354 

There were significantly lower numbers of barnacles found in the holes quadrats compared 355 

to the control (Table 4b, Figure 5). However, the number of limpets was significantly higher 356 

in the holes treatment compared to the control and grooves samples (Table 4b).  357 

  358 
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Table 5  SIMPER table indicating average abundance of species per array in a) Holes and 359 
Control b) Grooves and Control at Boscombe, Poole Bay after 12 months (Av.Abund= Mean 360 
Abudance (Raw), Av.Diss = Average Dissimilarity, Diss/SD= Dissimilarity SD, 361 
Contrib%=Contribution percentage, Cum %= Cumulative percentage, c= counts, & = 362 
percentage cover). 363 
 364 

a) Holes  &  Control Average dissimilarity = 91.01 

Species 

Holes 

Av.Abund 

Control 

Av.Abund Av.Diss 

   

Diss/SD Contrib%  Cum.% 

Ulva linza (%) 0.52 25.42 32.26 0.86 34.09 34.09 

Semibalanus balanoides (c ) 1.67 23.33 20.76 0.63 21.94 56.03 

Patella vulgata (c ) 2.90 1.29 18.70 0.64 19.76 75.79 

Rhodothamniella floridula (%) 0.00 12.92 11.32 0.45 11.96 87.75 

Spirobranchus triqueter (c ) 1.15 0.08 4.87 0.37 5.14 92.90 

Ceramium sp. (%) 0.20 1.96 3.57 0.40 3.77 96.67 

Carcinus maenas (c ) 0.05 0.00 1.10 0.14 1.16 97.83 

Ascidiella aspersa (c ) 0.08 0.00 0.58 0.15 0.61 98.44 

Nucella lapillus (c ) 0.02 0.00 0.56 0.08 0.59 99.03 

Mytilus edulius (c ) 0.07 0.00 0.39 0.16 0.42 99.44 

Bryozoan (%) 0.05 0.00 0.35 0.10 0.37 99.81 

Lipophrys pholis (c ) 0.02 0.00 0.18 0.10 0.19 100.00 

b) Grooves & Controls Average dissimilarity = 80.03 

Species 

Grooves 

Av.Abund 

Control 

Av.Abund Av.Diss 

   

Diss/SD Contrib%  Cum.% 

Diatom (%) 23.77 58.44 38.21 1.13 47.75 47.75 

Rhodothamniella floridula  (%) 11.20 13.52 22.10 0.73 27.61 75.36 

Semibalanus balanoides (c ) 15.61 1.81 12.14 0.58 15.17 90.53 

Patella vulgata (c ) 1.60 1.13 4.01 0.39 5.01 95.54 

Spirobranchus triqueter (c ) 1.96 0.01 2.62 0.45 3.27 98.81 

Austrominius modestus (c ) 0.14 0.06 0.24 0.43 0.30 99.10 

Ulva linza (%) 0.21 0.00 0.21 0.54 0.26 99.37 

Ceramium sp. (%) 0.17 0.00 0.18 0.44 0.22 99.59 

Mytilus edulis (c ) 0.10 0.01 0.15 0.49 0.19 99.78 

Ulva lactuca (%) 0.04 0.00 0.04 0.38 0.04 99.82 

Lepidochitona cinereus (c ) 0.02 0.00 0.02 0.38 0.03 99.86 

Polysiphonia sp. (%) 0.02 0.00 0.02 0.19 0.03 99.88 

Actina equina (c ) 0.01 0.00 0.02 0.18 0.02 99.91 

Bryozoan (%) 0.02 0.00 0.01 0.20 0.02 99.92 

Porphyra sp. (%) 0.01 0.00 0.01 0.18 0.02 99.94 

Patella depressa (c ) 0.00 0.01 0.01 0.20 0.01 99.95 

Cladophora rupestris (%) 0.01 0.00 0.01 0.26 0.01 99.97 

Eulalia viridis (c ) 0.00 0.00 0.01 0.18 0.01 99.98 

Pseudopolydora pulchra (c ) 0.00 0.00 0.01 0.18 0.01 99.98 

Perforatus perforatus (c ) 0.01 0.00 0.01 0.28 0.01 99.99 

Anemonia viridis (c ) 0.00 0.00 0.00 0.20 0.00 100.00 

Chaetomorpha sp. (%) 0.00 0.00 0.00 0.20 0.00 100.00 

 365 
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4 Discussion  366 
 367 

The holes and grooves ecological enhancement techniques on both the granite rock armour 368 

at Runswick Bay and the limestone rock groynes at Boscombe supported significantly 369 

greater species richness and diversity compared to the un-manipulated control areas 370 

(Tables 2 and 4). The creation of holes on the boulders significantly increased total 371 

abundance of organisms on both artificial structures (Tables 2 and 4), whereas total 372 

abundance in the grooves treatment was only significantly different for the granite boulders 373 

at Runswick Bay. The type of rock used to construct coastal defence structures has been 374 

shown to affect community composition, with hard, fine-grained rocks, such as granite and 375 

basalts, supporting less diverse communities than sandstones (Green et al., 2012) and 376 

limestones (Sherrard et al., 2016). Yet, the greater species richness observed on the 377 

limestone boulders in the English Channel at Boscombe compared to the granite boulders at 378 

Runswick Bay in the North Sea can also be attributed to biogeographical differences and 379 

sea temperature (Forbes & Goodwin-Austen, 1859; Southward et al., 1995; Herbert et al., 380 

2003; Hawkins et al., 2009). Softer rocks, such as limestone, naturally weather to create 381 

crevices and rough surfaces, whereas harder rock, such as granite, weather more slowly, 382 

leaving smooth, flat rock faces that are less favourable to species settlement and 383 

colonisation (Berntsson et al., 2000; Moschella et al., 2005; Herbert & Hawkins, 2006). The 384 

quarrying process of cutting rock to size also produces smooth surfaces with little surface 385 

heterogeneity and so until significant weathering occurs, surface roughness will remain low 386 

(Coombes et al., 2011, 2015), resulting in variation of communities with age of the structures 387 

(Moschella et al., 2005; Pinn et al., 2005). The increased heterogeneity resulting from the 388 

treatments on the granite boulders at Runswick Bay enhanced colonisation resulting in a 389 

marked increase in richness, abundance and diversity. Although variation in species 390 

richness has previously been observed on the inside and outside faces of limestone 391 

boulders used for rock groynes (Sherrard et al., 2016), this was not assessed in this study.  392 

 393 
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Whilst a significant increase in number of barnacles occupying the grooves was observed on 394 

both shores (Table 3), this was not the case for the holes treatment. Barnacle settlement has 395 

been shown to be greater on rough surfaces, whilst mobile intertidal snails (e.g. Littorina 396 

saxatilis) actively select a groove or hole in a rock compared to a bare rock surface with no 397 

refuge (Pardo & Johnson, 2004; Martins et al., 2010; Skov et al., 2011). In the current trials, 398 

newly settled and mobile species were found in greater abundance in the treatment areas 399 

compared with the bare rock faces and the before communities. The treatments used in the 400 

current trial not only introduced additional substrate heterogeneity and rugosity, but also 401 

created areas of water retention (Figure 4). The lack of water retention and available refuges 402 

on artificial structures has previously been shown to result in reduced species richness 403 

(Bulleri & Chapman, 2004; Coombes et al., 2011; Firth et al., 2013; Aguilera et al., 2014). On 404 

a granite breakwater, Evans et al., (2015), revealed that artificial pools supported equivalent 405 

species richness to the nearby natural rock pools and were shown to create suitable habitat 406 

for species previously absent from the artificial structure at mid-shore height. The results 407 

here support this, as new species were also recorded in the holes and grooves at both sites 408 

that were previously absent from the boulders. Firth et al., (2013a) found that rock pools in 409 

artificial structures have a more pronounced effect on species richness in both the mid and 410 

upper-shore zones. This suggests that modifications will have the greatest impact in the 411 

upper and mid shore habitats. 412 

 413 

Limpets, however, did not show an increase in abundance with all treatments, which was 414 

attributed to the small amount of space in the holes, resulting in a limited size and 415 

abundance of individuals able to utilise them (See Methods section 2.2 for dimensions). At 416 

Boscombe, the number of limpets was significantly higher in areas which included the holes 417 

treatment, but the same effect was not observed at Runswick Bay.  Furthermore, the 418 

grooves at Boscombe regularly trapped stones, shells and sand which could both encourage 419 

and deter species from colonising (Airoldi & Hawkins, 2007; Liversage et al., 2017). The 420 

additional refuge created by shell and stone debris could facilitate development of algal 421 
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propagules (Bulleri, 2005) and colonisation by small gastropod snails, yet prevent refuge for 422 

large species such as limpets and fish. Overall, the use of these simple treatments had a 423 

positive effect on richness and diversity of marine life on rock armour structures and 424 

enhanced the colonisation of common rocky shore species. 425 

 426 

The reduced abundance of mobile fauna has previously been noted on artificial structures 427 

which results from low habitat heterogeneity and limited refugia (Chapman, 2003). Here, the 428 

addition of holes and grooves resulted in previously absent mobile fauna to be recorded on 429 

the groynes, including fish (Lipophrys pholis) and crabs (Carcinus maenas) in the holes of 430 

the Boscombe treatment. At Boscombe, the limpets (especially juveniles typically less than 431 

16 mm) favoured the holes that acted as refugia until they had outgrown the hole, when they 432 

could potentially migrate onto the surrounding rock surface. In the Azores, Martins et al., 433 

(2010) showed that holes can be used to successfully attract and harvest limpets for human 434 

consumption. Several algal species, including Fucus sp. and Mastocarpus stellatus, that 435 

attached to the rough textures within the grooves, were absent on the bare rock faces. The 436 

creation of rough surfaces as a consequence of these interventions allowed algal propagules 437 

to attach and ‘escape’ due to the refuge provided from predators, dislodgement and 438 

desiccation (Hawkins, 1981; Moore et al., 2007). The presence of macrophytes such as 439 

Fucus spp. will encourage subsequent mobile fauna, as the alga provides refuge from 440 

predators and desiccation (Christie et al., 2009).  441 

 442 

The community establishment of an artificial structure will be dependent on season as larval 443 

and propagule supply will effect subsequent community development (Moschella et al., 444 

2005; Pinn et al., 2005). The timing of ecological enhancements needs to be considered as 445 

this will determine the community establishment and development. As coastal defence 446 

structures are commonly constructed in high wave energy environments, the communities 447 

formed on hard structures can be stripped back to a bare substratum during storm events or 448 

maintenance activities (Sousa, 1979).  The development and survival of these communities 449 
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will depend on the impacts particular species may have on community development prior to 450 

their arrival (priority effects) which are determined by biological and environmental conditions 451 

(Hall, 2015). Consequent changes in communities could be observed in subsequent months 452 

and years due to succession and disturbances, reinforcing the need for long term monitoring 453 

(Sheehan et al., 2013).   454 

 455 

It has been established that artificial structures support less diverse communities than 456 

natural rocky shores (Chapman & Bulleri, 2003; Bulleri & Chapman, 2004; Moschella et al., 457 

2005; Glasby et al., 2007; Vaselli et al., 2008; Firth et al., 2013). Following an initial 458 

colonisation of microbial film, structures are colonised by larger opportunistic species such 459 

as Ulva spp. with subsequent community development then dependent on local conditions 460 

and propagule supply (Benedetti-Cecchi, 2000).  In the current study, the holes and grooves 461 

trials resulted in an increase in richness and diversity, irrespective of geology (See Table 2 462 

and Figure 3), indicating that even simple measures can have a beneficial effect on the 463 

biodiversity of a rock armour structure. The nature of the enhancement technique also 464 

means that this can be implemented at any stage during the life history of the coastal 465 

defences, adding biodiversity to existing structures as well as being incorporated into new 466 

ones.  467 

 468 

There has been concern that artificial structures can increase the spread and abundance of 469 

non-native species (Bulleri & Airoldi, 2005) which could be detrimental, however in the 470 

current study the number of non-native species recorded at both sites was low. Non-native 471 

species were not recorded at Runswick Bay, either in previous baseline surveys, treatments 472 

or controls. The barnacle Austrominius modestus was found in both the holes and grooves 473 

treatments in Boscombe but in numbers comparable to control areas and densities across 474 

the structures. The increased interspecific competitive and predatory interactions resulting 475 

from higher species diversity associated with these treatments may limit populations of 476 
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invasive species on these structures (Levine, 2000); however this was not confirmed at the 477 

scale of these experiments.  478 

 479 

Climate migrants, such as Gibbula umbilicalis  whose range is  expanding in response to 480 

rising temperatures  (Keith et al., 2011) may benefit from such treatments (Hawkins et al., 481 

2009). Both the warm-temperate barnacle species Perforatus perforatus and sea anemone 482 

Anemonia viridis were found in some of the treatments at Boscombe, but could not be found 483 

elsewhere on the groyne rock armour. The increased surface texture created by the 484 

treatments could facilitate further expansion of climate migrants as they provide refugia 485 

(Bourget et al., 1994) and could promote establishment. The increased effects of climate 486 

change are increasing the pressures on ecosystems and ecological enhancement may 487 

provide a tool to provide suitable habitat for species through assisted colonisation (Hoegh-488 

Guldbery et al., 2008).  489 

 490 

It is important to carefully consider the rationale for ecological enhancement of artificial 491 

structures prior to creation and installation. For example, is the requirement as a 492 

compensation for habitat loss elsewhere in the region or are they primarily for an educational 493 

resource and local tourism? The interest shown by the general public at field events 494 

illustrates that these techniques can add value to these schemes by improving biodiversity 495 

and visitor engagement and awareness (Morris et al., 2016). 496 

 497 

5 Conclusions 498 
 499 

Increasing habitat heterogeneity on granite and limestone rock armour can promote and 500 

encourage biodiversity. The holes and grooves technique trialled here can be used at any 501 

stage of construction and are suitable for use in moderate and high wave energy 502 

environments where attached features such as tiles and artificial rockpools might not be 503 
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suitable. In addition, the correct positioning of quarried boulders can also create habitats to 504 

maximise water-retaining features, for example where ‘blast lines’ or holes are already 505 

present. Future projects should upscale these smaller trials to large defence schemes, and 506 

aim to include a variety of sizes and depth of holes and grooves to further increase species 507 

richness and diversity of larger mobile species. Collaboration between ecologists and 508 

engineers is needed to develop multifunctional structures which can protect the land from 509 

coastal erosion and also create suitable habitat for marine organisms. 510 
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