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Feedback loops are known as a versatile tool for controlling transport in small systems, which
usually have large intrinsic fluctuations. Here we investigate the control of a temporal correlation
function, the waiting time distribution, under active and passive feedback conditions. We develop a
general formalism and then specify to the simple unidirectional transport model, where we compare
costs of open loop and feedback control and use methods from optimal control theory to optimize
waiting time distributions.
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I. INTRODUCTION

Feedback is a closed loop control scheme where some
part of the dynamics of a system is recycled in order to
achieve a certain control goal1–5. Often, this goal con-
sists in stabilizing the overall system dynamics, reducing
fluctuations, or preparing certain states6–23. This is par-
ticularly challenging in small systems with large intrinsic
fluctuations, where one has to combine methods from
non-equilibrium statistical mechanics, measurement and
(quantum) information theory to properly design and
analyse the control action.

An important issue is to assess under which conditions
feedback is useful and more efficient and effective than
other control schemes such as open loop control or an
a priori optimization of system parameters. At present,
there is no complete framework within thermodynamics
or some kind of resource theory24 that would fully resolve
this issue, and the best way forward seems to be the study
of well-defined physical setups where feedback operations
are expected to be beneficial.

In this paper, we concentrate on minimal mod-
els for transport, motivated by recent experimental
realizations25 of feedback loops in mesoscopic solid state
systems, i.e., quantum dots. An interesting finding there
was the reduction of the overall fluctuations of the elec-
tric current due to the feedback loop at large times26,
in the form of the freezing of the full counting statis-
tics p(n, t), the probability of n charges being transfered
across the dot during a time interval [0, t]. In contrast,
short-time correlations as quantified by the waiting time
distribution w(τ) were found to be essentially unaltered
by the feedback scheme.

We have confirmed these observation in our calcula-
tions, and taken this as a motivation to turn the question
around by asking, more generally, for feedback schemes
(‘protocols’ for the time-dependent steering of system pa-
rameters as introduced below) that have a strong impact
on w(τ). In simple words, the feedback goal then is to re-
duce short–time fluctuations, i.e., the stochasticity in the
random time intervals τ between two (quantum) jumps.

Our choice of waiting times as the subject of studying

feedback control of correlation functions has several rea-
sons. First, in Markovian processes they are a natural
choice, in particular in simple situations where the sys-
tem is reset to one and the same state after each jump
(as described by re-newal theory27). Often enough, there
is a close connection of w(τ) to other correlations func-
tions such as the g(2)(τ) function in quantum optics28.
In physical chemistry29 and applied mathematics (queue-
ing theory), a vast literature on various aspects of wait-
ing times exists. Second, waiting times form the ba-
sis of quantum trajectories that have been developed
for the master equations in quantum optics since the
1980s30. The unraveling of such master equations, i.e.,
the splitting into jump and non-jump parts, then auto-
matically leads to the path-integral like formal series so-
lution that has turned out to be most suitable for a phe-
nomenological introduction of measurement-based feed-
back, even with delay1. Finally, in solid state physics
waiting times have recently emerged as a powerful tool
to analyse transport31–33, also beyond the simple Marko-
vian limit34–43. This last aspect is particularly promising
as it might offer a way to introduce feedback control, at
least as passive control44, in highly non-Markovian situ-
ations.

The distinction between measurement-based (active)
and passive feedback is particularly important in the
quantum regime. There, passive feedback (sometimes
called coherent then) avoids issues related to the quan-
tum measurement problem by building the feedback loop
as part of the total system. Coherent feedback has been
introduced very successfully in quantum optics45–55 and
in coherent quantum transport recently44.

In general, a key question in all feedback schemes is
to determine the efficiency of the control loop, also in
comparison with open loop control. Much progress has
been achieved over the past few years in the analysis
of feedback from a thermodynamic perspective, based
on concepts such as entropies, mutual information, and
modifications of fluctuation relations or the various for-
mulations of the second law57–73. Applied to concrete
control scenarios, this analysis however often requires cer-
tain assumptions, e.g., a bipartite splitting into system
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and controller67, or the maintainance of a certain system
state as the control goal73.

One feature of the waiting times feedback scheme in-
troduced below is the possibility to perform feedback con-
trol without modifying the exchange fluctuation relation.
Costs and efficiencies for feedback conditioned upon the
previous quantum jump can also be optimized by using
methods from optimal control theory, which in our view
is a successful path towards a phenomenological under-
standing of this kind of feedback. Still, from a micro-
scopic perspective the most transparent way to interpret
an active feedback scheme is a mapping onto an equiva-
lent passive realisation of that scheme within a physical
setting that can then be analysed. This clearly lacks the
generality with that statements can then be made, since
such a mapping is not unique, but it often has the advan-
tage of being more realistic in terms of a concrete physical
implementation and experimental realization56,65.

The outline and the main results of this paper are as
follows. We first introduce the formal framework and
various feedback protocols in Sect. II and III. In Sec. IV
we introduce the waiting times, before analysing a partic-
ular control scheme, feedback conditioned on the previ-
ous jump, and ability to influence waiting times and full
counting statistics in Sect. V. It turns out that within
this particular feedback scheme, many of the calculations
are very similar to the Markovian case except for time-
dependencies which always occur, in contrast to open
loop control, as differences t − tn between the present
time t and the time tn of the previous jump. In Sect.
VI we show that this property can be used to optimize
the feedback protocol with methods from classical opti-
mization theory. The costs functionals appearing in the
optimization also turn out to be a very efficient tool for
assessing and comparing the ‘costs’ of various feedback
schemes. We use these in order to carry out a detailed
comparison between open and closed loop feedback in
Sect. VII, before carrying out a thermodynamic analysis
based on fluctuation relations, the Kullback–Leibler di-
vergence, and finally a passive feedback analogon for an
analysis in terms of Shannon entropies in Sect. VIII.

II. METHOD

Our starting point is an open physical system – classi-
cal or quantum – interacting with several reservoirs, mea-
surement and feedback devices. The state of the system
at time t is given by a reduced system density operator
ρ(t). In the classical case, this is a vector of probabilities
in the space of system states (assumed as discrete here),
in the quantum case one has additional coherences. We
decompose ρ(t) according to

ρ(t) ≡
∞∑
n=0

ρ(n)(t), (1)

where n is the total number n of (quantum) jumps in
[0, t] defined via stochastic trajectories, i.e. sequences

{xn} = xn, ..., x1 of transitions among the system states.
These transitions are of type li and occur at time ti, and
we use the shorthand notation xi = (li, ti).

Next, we introduce conditioned and unnormalized den-
sity operators ρ(t|{xn}) in the sense that the ρ(n)(t) are
given in terms of a ‘path integral’;

ρ(n)(t) =

M∑
l1=1,...,ln=1

∫ t

0

dtn...

∫ t2

0

dt1ρ(t|{xn}). (2)

For a Markovian, time-independent quantum master
equation without any form of control, the ρ(t|{xn}) can
be expressed explicitly in the usual unraveling procedure:
The reduced density operator obeys

ρ̇(t) = Lρ(t), L = L0 + L1, L1 =

M∑
k=1

Jk, (3)

where the total Liouvillian L is split into two superop-
erators: L1 describes M different types of jump pro-
cesses, whereas L0 is the generator for the time evolution
St ≡ eL0t between the jumps. In this case, Eq. (2) is the
usual unraveling with

ρ(t|{xn}) ≡ St−tnJlnStn−tn−1Jln−1 ...Jl1St1ρin (4)

and ρ(0)(t) = Stρin, which technically follows from the
solution of Eq. (3) in the interaction picture with respect
to L0. Here and in the following, ρin ≡ ρ(t = 0) denotes
the initial density operator at time t = 0.

A. Feedback model

We now introduce control operations in the following
way: the system parameters at time t > 0 are continu-
ously modulated depending on the values xi of the pre-
vious jump events. Starting the time evolution at t = 0,
the system is monitored until the first jump occurs at
time t = t1. During that period, the Liouvillian becomes
time-dependent,

L(t) = L0(t) +

M∑
l=1

Jl(t), 0 ≤ t ≤ t1, (5)

and thus until the occurance of the first jump, the time
evolution becomes

ρ(t) = S(t)ρin, S(t) ≡ Te
∫ t
0
dt′L0(t′), (6)

where T is the time ordering operator. In the course
of the time evolution, all jump events xn are recorded
and taken as parameters in the subsequent Liouvillians,
which read (tn ≤ t ≤ tn+1)

L(t|{xn}) = L0(t|{xn}) +

M∑
l=1

Jl(t|{xn}). (7)
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The time evolution between the nth and n+ 1th jump is
now generated by

S(t|{xn}) ≡ Te
∫ t
tn
dt′L0(t′|{xn}), (8)

as the solution of d
dtS(t|{xn}) = L0(t|{xn})S(t|{xn})

with S(tn|{xn}) = 1̂ (unity operator).
For example, with n = 2 jumps, the density operator

conditioned on x1, x2 reads

ρ(t|{x2}) = S(t|{x2})Jl2(t2|{x1})S(t2|{x1})
× Jl1(t1)S(t1)ρin, (9)

and the corresponding n-resolved density operator, i.e.,
the n = 2 term in Eq. (2), is obtained by summa-
tion/integration over the jump variables x1, x2,

ρ(2)(t) =

M∑
l1=1,l2=1

∫ t

0

dt2

∫ t2

0

dt1ρ(t|{x2}). (10)

Iterating Eq. (9), we obtain the sequence

ρ(t|{xn}) = S(t|{xn})Jln(tn|{xn−1})S(tn|{xn−1})...
× Jl2(t2|{x1})S(t2|{x1})Jl1(t1)S(t1)ρin,(11)

with (non)-jump time-evolutions for the unraveling of
ρ(t) according to Eq. (2) in which each step in condi-
tioned upon the previous ones.

The form Eq. (11) is a key result in the formulation
of active, measurement based control as introduced here.
This formulation is phenomenological in the sense that,
in contrast to the expression Eq. (4) without control, it
has not been derived from a total, microscopic Hamil-
tonian for the system including all reservoirs, measure-
ment, and control devices. As in Eq. (4), the ρ(t|{xn})
are given by a sequence of jump and non-jump time-
evolutions. Here, this sequence is generated by superop-
erators which themselves in general depend on the tra-
jectories {xn} and thus are random quantities. As we
show below, this leads to a number of powerful control
schemes, some of which have been successfully applied in
the past already.

III. FEEDBACK PROTOCOLS

The specific form of the jump operators Jl(t|{xn}) de-
fines a particular feedback procedure, called ‘protocol’
in the following. In general, this opens numerous ways
to control a stochastic process, possibly also including
modulation of the parameters in the Hamiltonian in the
quantum case.

A. Open loop control

The simplest case is open loop control with jump op-
erators

Jl(t|{xn}) = Jl(t) (12)

that are just modulated as a function of time and thus
do not depend on the stochastic process itself. Needless
to say that this already leads to a vast variety of control
schemes, cf. section VII below. For example, a periodic
modulation of parameters leads to Floquet-type (quan-
tum) master equations. More general time-dependencies
could be optimized with methods of optimal control the-
ory (see below) in order to reach a specific control target,
such as adiabatic control with slow pulses.

B. Time-versus-number feedback

The next example is a dependence

Jl(t|{xn}) = Jl(t, n) (13)

on time t and the number n of quantum jumps only. A
protocol of this nature has been proposed and realized
experimentally recently25,26,76. More will be said about
this scheme after Eq. (24) and in section V B.

C. Feedback conditioned on the previous jump

Next, we introduce an efficient feedback protocol that
in the main focus for the rest of this paper. This is
feedback conditioned on the previous jump event xn
only, instead on the whole trajectory xn, xn−1, ..., x1, i.e.,
Jl(t|{xn}) = Jlln(t − tn). Here and in the following,
we already assumed that the protocol immediately starts
(without delay) after the time tn of the previous jump,
and used the jump-type ln as an additional index at the
jump operators. The conditioned density operators in
Eq. (11) now become

ρ(t|{xn}) = Sln(t− tn)Jln,ln−1
(tn − tn−1)× (14)

... Jl2,l1(t2 − t1)Sl1(t2 − t1)Jl1(t1)S(t1)ρin.

A feature of this protocol is that the same form of time–
dependence in the control parameters is repeated over
and over again after each jump.

One simple example of this type of protocol is a dis-
continuous change in the jump operators from Jl to J ′l
after a fixed delay time:

Jlln(t− tn) = Jlθ(τ − t+ tn) + J ′l θ(t− tn − τ),(15)

with θ(t) the unit step function, and where we have as-
sumed a uniform delay time τ for all jump processes.
Jump operators of this form were employed in Ref. [77],
(see also Ref. [6]) to model delayed-feedback control in
quantum transport. In this context, the jump operators
Jl were the ones of the original system, and J ′l = eKlJl
were the controlled jump operators where the original
operator is followed by a control operation. In the limit
τ → 0, the first term in Eq. (15) vanishes, and we
are left with Jlln(t − tn) = J ′l = eKlJl, which is the
instantaneous-control form of Wiseman and Milburn2,6.
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In this way, we see that the Wiseman-Milburn feedback
scheme maps onto an effective time-independent open-
loop control problem, in which we simply design the con-
trol operations eKl to produce the desired modification of
system behaviour. A generalization of this scheme where
the control operations eKl are chosen randomly has re-
cently been proposed78.

IV. WAITING TIMES

In the following, we will consider the feedback-
conditioned-on-the-previous-jump protocol, and further
restrict ourselves to jump superoperators Jl that can be
expressed as dyadic products multiplied by the rates γl
at which the jumps occur,

Jl(t|{xn}) ≡ γl(t|{xn})|l〉〉〈〈l̃|. (16)

This is a convenient notation where kets like |l〉〉 de-
note column vectors with dimension d which is given by
the number of real elements (including coherences in the
quantum case) of the density operator ρ. Superopera-
tors like Jl then act as d × d matrices and are conve-
niently represented in dyadic form. Note that bras 〈〈l̃| (d-
dimensional row vectors) and kets |l〉〉 in Eq. (16) in gen-
eral need not to be orthogonal to each other. By conven-
tion, one sets 〈〈0̃| = (1, 1, ...., 1, 0, 0...0) which represents
the trace operation via the normalisation 〈〈0̃|l〉〉 = 1, and
one defines |0〉〉 as the representative of ρin (the state at
t = 0). The form Eq. (16) means that the character of
the jump processes remains invariant under feedback, it
is just the rates of the processes that are altered.

A. Definitions

Using this notation, we can re-write the conditioned
density operator of Eq. (11) as

ρ(t|{xn}) = S(t|{xn})|ln〉〉wlnln−1
(tn|{xn−1})×

× ...wl2l1(t2|{x1})vl1(t1). (17)

This defines the (feedback-conditioned) waiting time dis-
tributions between a jump of type l′ at time tn followed
by a jump of type l at time t > tn

wll′(t|{xn}) ≡ γl(t|{xn})〈〈l̃|S(t|{xn})|l′〉〉 (18)

via the matrix elements of the non-jump time evolution
operators S. Additionally,

vl1(t1) ≡ γl1(t1)〈〈l̃1|S(t1)|0〉〉 (19)

is the waiting time distribution for the first jump at time
t1 after initialization at t = 0.

The waiting time distributions must be normalized to
one when summed over all final jump types l and inte-
grated over all times t ≥ tn. Indeed, using the normal-
ization 〈〈0̃|l〉〉 = 〈〈0̃|l′〉〉 = 1 and S(tn|{xn}) = 1̂, one

Active Passive 

g(t-t
n
) (N+1)g

0

eih eic
electrons phonons 

FIG. 1: LEFT: Scheme of active (measurement based) feed-
back control for the example of a unidirectional stochastic
process, Eq. (22). The feedback protocol is realized via the
single time-dependent rate γ(t− tn), starting again and again
at the time tn of the previous jump, cf. Eq. (30). RIGHT:
Passive feedback scheme (‘hardwiring’) with series of N+1 in-
elastic transitions (with phonon emissions from quantum dot
with N levels) at identical rates (N+1)γ0, and electrons leav-
ing from the lowest dot level only, to simulate an equivalent
waiting time distribution without feedback from measurement
devices, cf. Sect. VIII C.

finds

M∑
l=1

∫ ∞
tn

dtwll′(t|{xn})

=

∫ ∞
tn

dt〈〈0̃|
[
L(t|{xn})− L0(t|{xn})

]
S(t|{xn})|l′〉〉

= −
∫ ∞
tn

dt〈〈0̃| d
dt
S(t|{xn})|l′〉〉 = 〈〈0̃|l′〉〉 = 1, (20)

where in the total Liouvillian we used the vanishing of
all column sums, 〈〈0̃|L(t|{xn}) = 0, which expresses con-
servation of probability.

B. Examples

At this stage, it is instructive to give a few instructive
examples of the general expressions Eq. (17) and Eq. (18)
before we proceed to specific feedback protocols.

Unidirectional stochastic process.— This is defined by
transitions between states 0 → 1 → 2 → ... at (condi-
tioned) time-dependent rates γ(t|{xn}) between n and
n + 1 with n ∈ N, where by convention the process
starts with n = 0 at time t = 0. Consequently, the
set of jump events {xn} is uniquely defined by the times
tn, tn−1, ..., t1 only. Clearly, there is no additional struc-
ture apart from the probabilities p(n, t) of the system
being in state n at time t.
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Starting at n = 0, the first jump operators are

J1(t1) ≡ γ(t1)|1〉〈0|, J2(t2|t1) ≡ γ(t2|t1)|2〉〈1|
J3(t3|t2t1) ≡ γ(t3|t2t1)|3〉〈2|, ... (21)

where the kets (denoted as |n〉 here) simply form
a Cartesian basis with dual basis 〈n|. Formally,
the S–operators Eq. (8) are diagonal as S(t|{tn}) =

exp
[
−
∫ t
tn
dt′
∑∞
m=0 |m〉〈m|γ(t′|{tn})

]
. In Eq. (2) we

have the normalization 〈〈0̃|ρ(t) =
∑∞
n=0 p(n, t) = 1 with

p(n, t) ≡ 〈〈0̃|ρ(n)(t), and explicitly

p(n, t) =

∫ t

0

dtn...

∫ t2

0

dt1e
−

∫ t
tn
dt′γ(t′|{tn}) ×

× w(tn|{tn−1})× ...× w(t2|{t1})w(t1), (22)

with the definition of the waiting time distributions (n ≥
2)

w(tn|{tn−1}) ≡ γ(tn|{tn−1})e
−

∫ tn
tn−1

dt′γ(t′|{tn−1})
(23)

and w(t1) ≡ γ(t1)e−
∫ t1
0 dt′γ(t′).

In quantum transport, Eq. (22) is a model for the
counting statistics of a detector that counts transi-
tions across a highly biased single tunnel barrier (with-
out any additional internal structure like quantum
dots energy level). In this context, a time-versus-
number protocol has been proposed and recently realized
experimentally25,26,76. Here the single rate γ(t|{xn}) is
taken to depend only on time t and the number n of
quantum jumps. In Refs. [25,26,76], the form taken was

γ(t, n) ≡ γ[1 + g(γt− n)], (24)

where γ is a target rate and g > 0 a feedback parame-
ter that is used to continuously adapt the jump rate de-
pending on the current status of the system n, compared
against a target status γt.

Explicitly, the waiting times

wn(tn, tn−1) ≡ γ(tn, n− 1)e
−

∫ tn
tn−1

dt′γ(t′,n−1)
(25)

now depend on two times (first and subsequent second
jump) and are conditioned upon the total number of
jumps n in the time interval between [0, tn] . We de-
fine a stationary waiting time distribution w(τ) as the
wn, Eq. (25) weighted with the probabilities pn(t) in the
limit t→∞,

w(τ) ≡ lim
t→∞

∞∑
n=0

pn(t)wn(tn = t+ τ, tn−1 = t). (26)

The w(τ) are normalized,
∫∞

0
dτw(τ) = 1, which follows

from wn(t + τ, t) = − d
dτ e
−

∫ t+τ
t

dt′γ(t′,n−1) and the nor-
malization

∑∞
n=0 pn(t) = 1. The explicit evaluation of

Eq. (26) in Appendix A yields

w(τ) = γe−γτ
(

1 + g

(
1− γτ

2
− (γτ)2

4

))
+O(g2),(27)

which for small feedback parameters g � 1 is very close
to the (Poissianian) non-feedback distribution. This is in
agreement with the experiment75, where at the same time
a strong reduction of the shot noise was found in the form
of a feedback–frozen second cumulant25, cf. Eq. (44) in
Sect. V B.

Bidirectional stochastic process.— This is defined by
forward and backward rates γ±(t|{xn}) between states
m and m± 1 with m ∈ Z. The jump operators Eq. (16)
are defined as

Jm±(t|{xn}) ≡ γm±(t|{xn})|m± 1〉〈m|. (28)

This is a minimal model for a discussion of detailed bal-
ance and fluctuation relations and will be analysed in
more detail in Sect. VIII A.

Single atom resonance fluorescence.— This is an exam-
ple of a two-level system with quantum coherences in the
density operator ρ, which in absence of feedback control
obeys a master equation

ρ̇ = γ(2σ−ρσ+ − ρσ+σ− − σ+σ−ρ) + i
Ω

2
[σ+ + σ−, ρ],(29)

where Ω is the Rabi frequency, γ the spontaneous emis-
sion rate, and σ− ≡ |−〉〈+|, σ+ ≡ |+〉〈−|. Writing
ρ = (ρ++, ρ−−, ρ+−, ρ−+)T in vector form, the feed-
back conditioned jump operators becomes J(t|{tn}) ≡
γ(t|{tn})|1〉〉〈〈1̃| with |1〉〉 = (0, 1, 0, 0)T , 〈〈1̃| =
(1, 0, 0, 0), and the rate γ conditioned on the previ-
ous jump times {tn}. We note that these times could
also be also used for conditioning the Rabi frequency
Ω = Ω(t|{tn}) (‘Hamiltonian feedback’) which enters the
non-jump time-evolution operators S, Eq. (8).

V. FULL COUNTING STATISTICS AND
WAITING TIME FEEDBACK

We now discuss the relation between waiting times
and the full counting statistics under the previous-jump-
conditioned feedback protocol of Sec. III C. In this case,
the trajectories can be written

ρ(t|{xn}) = Sln(t− tn)|ln〉〉wlnln−1
(tn − tn−1)×

× ...wl2l1(t2 − t1)vl1(t1), (30)

with wll′(t − t′) ≡ γl(t − t′)〈〈l̃|Sl′(t − t′)|l′〉〉 replac-
ing Eq. (18) for the waiting time distributions. Here,
the non-jump time-evolution operators, Eq. (8), are

S(t|{xn}) ≡ Sln(t − tn) ≡ T exp[
∫ t
tn
dt′L0

ln
(t′ − tn)] and

thus only functions of the time differences t − tn, which
we recognize by substituting t′− tn → t′ in the integrand
L0
ln

(t′ − tn).
An advantage of this protocol is that the same form of

time–dependence in the control parameters is repeated
over and over again after each jump. Technically, this
has the advantage that we can immediately simplify
Eq. (30) by Laplace transformation of Eq. (2), with
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ρ̂(n)(z) ≡
∫∞

0
dte−ztρ(n)(t) and similarly for all other

quantities,

ρ̂(n)(z) =
∑
l1...ln

Ŝln(z)|ln〉〉...ŵl3l2(z)ŵl2l1(z)v̂l1(z).(31)

Due to the simple structure of Eq. (31) in Laplace space,
many of the Markovian waiting time calculations without
feedback31 carry over here.

A. Moment generating function

Counting statistics is introduced by counting fields χl
via phase factors eiχl multiplying individual jump opera-
tors Jll′ . In the equation for the density operator ρ̂(n)(z)
after n jumps, Eq. (31), the statistics of the jumps can
then be obtained from the moment generating function
Ĝ({χl}, z). This function is defined as

Ĝ({χl}, z) ≡ 〈〈0̃|Ŝ(z)|0〉〉+

∞∑
n=1

M∑
l1=1,...,ln=1

ûln(z)eiχln

... ŵl3l2(z)eiχl2 ŵl2l1(z)v̂l1(z), (32)

where

ûln(z) ≡ 〈〈0̃|Ŝln(z)|ln〉〉. (33)

Note that we do not count the very first jump here - this
would yield another factor eiχl1 .

Introducing the diagonal matrix eiχ ≡diag(eiχl), the
sums of the li in Eq. (32) define a product of ma-
trices multiplied by the vectors ûT (z), Eq. (33) from
the left and v̂(z), Eq. (19), from the right, for ex-

ample ûT (z)eiχŴ(z)v̂(z) for n = 1 with the matrix

(Ŵ(z))ll′ ≡ ŵll′(z). The sum over n in Eq. (32) now
leads to the geometric series

Ĝ({χl}, z) = 〈〈0̃|Ŝ(z)|0〉〉

+ ûT (z)
[
1− eiχŴ(z)

]−1

v̂(z), (34)

which generalizes the relation between counting statis-
tics and waiting time distributions31 to the feedback-
controlled case. The equality

det
[
1− eiχW(z)

]
= 0 (35)

defines a polynomial in z, of which the zero z0({χk}) with
z0(0) = 0 determines the counting statistics in the long-
time limit79. Examples for this behaviour are provided
below.

B. Unidirectional process

For the unidirectional process Eq. (22), in the control
scheme with conditioning upon the previous jump as in

Eq. (30), the rates γ(t|{tn}) in Eq. (23) have the specific
form

γ(t|{tn}) = γ(t− tn), t ≥ tn. (36)

The equation of motion belonging to this protocol is an
integral equation

p(n, t) =

∫ t

0

dt′w(t− t′)p(n− 1, t′) + δn,0p(0, t) (37)

with p(0, t) ≡ e−
∫ t
0
dt′γ(t′), and where the memory kernel

w(t− t′) is given by the waiting time distribution

w(τ) ≡ γ(τ)e−
∫ τ
0
dt′γ(t′), (38)

cf. Eq. (23).
The simple idea behind this type of control is to choose

the rates such that a particular form of waiting times
w(τ) is generated. The time–dependent modulation of
the rates γ(t − tn) starts again and again after the n-
th jump occuring at times tn. This renders the rates
themselves as random quantities, in contrast to open loop
control with a protocol γ(t|{tn}) = γ(t) independent of
the tn.

The probabilities p(n, t) define the moment generating
function

G(χ, t) ≡
∞∑
n=0

eiχnp(n, t), (39)

and its Laplace transformed Ĝ(χ, z) corresponding to

Eq. (34), now only involves scalars, with v̂(z) = Ŵ(z) ≡
ŵ(z) and 〈0|Ŝ(z)|0〉 = û(z) = p̂(0, z), where p̂(0, z) ≡∫∞

0
dte−zte−

∫ t
0
dt′γ(t′). We thus have

Ĝ(χ, z) = p̂(0, z) + p̂(0, z)
[
e−iχ − ŵ(z)

]−1
ŵ(z)

=
p̂(0, z)

1− eiχŵ(z)
(40)

ŵ(z) ≡
∫ ∞

0

dte−ztγ(t)e−
∫ t
0
dt′γ(t′), (41)

which we also obtain directly from Eq. (37) with p̂(n, z) =
[ŵ(z)]np̂(0, z) and by summing the geometric series of the
Laplace transformed Eq. (39).

The probabilities p(n, t) are therefore linked to the
waiting time distribution w(τ) via the expression for the

moment generating function Ĝ(χ, z), Eq. (40). In the
time domain, the long–time dynamics of G(χ, t) is deter-
mined by a zero z0(χ) of the denominator 1 − eiχŵ(z)

in the moment generating function Ĝ(χ, z) in Laplace
space, Eq. (40), with G(χ, t → ∞) ∼ exp[tz0(χ)] and
z0(χ = 0) = 031.

An important quantity in full counting statistics are
cumulants of the distribution p(n, t). The k–th cumulant
is defined as

Ck(t) ≡ ∂k

∂(iχ)k
lnG(χ, t)

∣∣∣∣
χ=0

, (42)
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and thus Ck(t→∞) = t ∂k

∂(iχ)k
z0(χ)

∣∣∣
χ=0

. Differentiating

the denominator equation 1−eiχŵ(z0(χ)) = 0 twice with
respect to χ, we find

lim
t→∞

C2(t)

C1(t)
=
〈τ2〉 − 〈τ〉2

〈τ〉2
, (43)

where 〈τk〉 is the k–th moment of the waiting time distri-
bution w(τ). For feedback conditioned on the previous
jump, Eq. (43) relates the full counting statistics directly
to the width of the waiting time distribution as expressed
by its variance var(τ) ≡ 〈τ2〉 − 〈τ〉2. This is completely
analogous to the situation without feedback31,74.

We note that in general, the result Eq. (43) does no
longer hold for other feedback protocols. An example
is the time-versus-number feedback with rates γ(t, n) ≡
γ[1+g(γt−n)], Eq. (24) with w(τ) given by Eq. (27). In
this case, is has been shown26 that the second cumulant
converges towards a constant

C2(t→∞) =
1

2g
, (44)

whereas the first cumulant C1(t) = γt, and the ratio
C2(t)
C1(t) becomes zero at large times. As a consequence,

the relation Eq. (43) is no longer valid for this feedback
protocol.

C. Gamma distribution example

A form of ŵ(z) in Laplace space convenient for analyt-
ical treatment is

ŵ(z) ≡
(

1 +
z

(g + 1)γ0

)−(g+1)

, (45)

with a feedback parameter g that interpolates between
a usual Poissonian process with waiting time w(τ) =
γ0e
−γ0τ (no feedback, g = 0), and the deterministic

w(τ) = δ(τ − γ−1
0 ) for g → ∞ (where ŵ(z) = ez/γ0

in Laplace space31).
The w(τ) belonging to Eq. (45) then have the form of

a Gamma distribution,

w(τ) =
(g + 1)γ0e

−(g+1)γ0τ ((g + 1)γ0τ)g

Γ(g + 1)
, (46)

where Γ(a) ≡
∫∞

0
dte−tta−1 is the Gamma–function. We

obtain the protocol for the jump rate belonging to this
waiting time distribution, i.e., the time dependence γ(t),
by using w(τ) = γ(τ)p(0, τ) and ṗ(0, τ) = −w(τ) with
p(0, τ) = 1−

∫ τ
0
dtw(t), which leads to

γ(t) = γ0
(g + 1)e−(g+1)γ0t((g + 1)t)g

Γ(g + 1, (g + 1)γ0t)
(47)

with the incomplete Gamma–function Γ(a, x) ≡∫∞
x
dte−tta−1. Fig. (2) shows w(τ) and γ(t) for three

different values of the feedback strength g.

1 2 3 4 5
Γ0 Τ

0.5

1.0

1.5

wHΤL�Γ0

1 2 3 4 5
Γ0 t
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10

12

ΓHtL�Γ0

FIG. 2: Waiting time distributions w(τ), Eq. (23), (LEFT)
of single jump process with rates γ(t) (RIGHT) with a time-
dependence according to Eq. (47) that starts again after each
jump. Feedback strength g = 0 (black, dashed), g = 5 (ma-
genta, dotted) and g = 15 (blue, solid).

The waiting time distribution w(τ), Eq. (46), fulfills

〈τ〉 =
1

γ0
, var(τ) =

1

γ2
0(g + 1)

. (48)

In Laplace space, from p̂(n, z) = [ŵ(z)]np̂(0, z), p̂(0, z) =
(1 − ŵ(z))/z and Eq. (45), we obtain the probabilities
p(n, t) in the time-domain by Laplace inversion as

p(n, t) =
Γ((g + 1)(n+ 1), (g + 1)γ0t)

Γ((g + 1)(n+ 1))

− Γ((g + 1)n, (g + 1)γ0t)

Γ((g + 1)n)
. (49)

The p(n, t) as a function of n are very close to Gaussians

p(n, t) ≈ pG(n, t) ≡ 1√
2πγ0t/(g + 1)

e
− 1

2
(γ0t−n)2

γ0t/(g+1) (50)

at times γ0t � 1, as we also checked numerically (not
shown here). The long–time dynamics is determined by a
zero z0(χ) of the denominator 1−eiχŵ(z) in the moment

generating function Ĝ(χ, z) in Laplace space, Eq. (40),
with G(χ, t→∞) ∼ exp[tz0(χ)] and

z0(χ) = (g + 1)γ0

(
ei

χ
g+1 − 1

)
. (51)

The first and second cumulants C1 and C2 at large times
then simply follow by taking derivatives according to
Eq. (42),

C1 ∼ γ0t, C2 ∼
γ0t

g + 1
. (52)

Feedback control conditioned on the previous jump thus
reduces the width of the distribution pn(t) by a factor
g + 1, but leaves the first moment C1 unchanged.

VI. OPTIMIZED FEEDBACK CONTROL

In this section, we combine feedback conditioned on the
previous jump with ideas from optimal control theory80.
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A. Optimization goal

One goal of the feedback could be to generate a par-
ticularly regular series of (still stochastic) jumps, i.e., a
waiting time distribution that approaches a delta func-
tion, w(τ)→ δ(τ−γ−1

0 ), with jumps separated by regular
time intervals denoted here as the inverse of a nominal
rate γ0. In order to have a concrete example, we will
use the particular form Eq. (46) with feedback parame-
ter g for the unidirectional stochastic process from Sect.
V C. As mentioned there, g interpolates between a usual
Poissonian process with waiting time w(τ) = γ0e

−γ0τ (no
feedback, g = 0), and the deterministic w(τ) = δ(τ−γ−1

0 )
for g →∞.

B. The cost functional and its optimisation

The feedback protocol Eq. (36) gives the rela-
tionship between the waiting time distribution w(t)
and the feedback-controlled rate γ(t), to be w(t) =

γ(t)e−
∫ t
0
dt′γ(t′), Eq. (38). Inversion of this relation can

be used to find a prescription for the rate γ(t) required
to provide a particular target waiting time distribution,
wT (t). However, this does not guarantee that the rate
is realistic, or be one that could be implemented experi-
mentally.

We now address this issue by introducing a cost func-
tion and optimisation procedure to find an optimal γ(t)
given the existence of these external considerations. In
the first step, we introduce a cost functional

J = Jw + aJa + bJb. (53)

Here Jw is a measure of the distance between the actual
waiting time distribution and the target. We take the
simplest choice of a quadratic cost function and write

Jw =

∫ ∞
0

dt (w(t)− wT (t))
2
. (54)

The second and third terms read

Ja =

∫ ∞
0

dt γ2(t); Jb =

∫ ∞
0

dt γ̇2(t), (55)

and account for constraints on the magnitude and rate-
of-change of the rate respectively. Again, we choose a
quadratic form for simplicity. The parameters a and b
describe the relative importance of these two consider-
ations relative to the desire to match the waiting time
distribution to its target. The problem is to find the rate
γ(t) that minimises the cost J given a particular target
waiting time distribution and set of parameters a and b.

The cost J is a functional of the rate. From Eq. (38)
we see that it depends not only on γ(t) and γ̇(t), but also
on the integral of γ(t), which complicates matters. The
scheme we employ to minimise J is as follows. We first

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Γ0t0
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FIG. 3: Results from the optimisation of the cost functional
J with a = 0, in which case we only impose a cost with the
gradient of γ(t). The target waiting time distribution is that
in Eq. (46) with g = 5. LEFT: the optimised rate function
γ(t). RIGHT: the corresponding waiting time distribution.
The thin black lines show the target γ(t) and w(τ), and op-
timised results are given for b = 0.01, 0.1, 1.0 (dashed lines;
black, blue, magenta).

write Eq. (53) as

J =

∫ ∞
0

dt
[
(γ(t)A(t)− wT (t))

2
+ aγ2(t) + bγ̇2(t)

]
,(56)

with A(t) = e−
∫ t
0
dt′ γ(t′). We then vary J under the

assumption that A(t) is some known function of t, rather
a functional of the unknown γ(t). With A fixed, the
variation of J is straightforward, and gives the simple
Euler-Lagrange equation

bγ̈ −
[
A2(t) + a

]
γ(t) + wT (t)A(t) = 0, (57)

subject to the natural boundary conditions γ̇|t=0 =
γ̇|t=∞ = 0. We then solve this problem iteratively. First
we calculate A(t) using the known target rate without
control γT (t). We then solve Eq. (57) equation for a new
γ(t) and use this to calculate a new A(t). This procedure
is then iterated until convergence is obtained.

C. Optimization results

We take as our target distribution that of Eq. (46)
with g = 5 and optimize γ(t). Fig. (3) and Fig. (4) show
results for two end-point cases of this optimisation; the
first with a = 0 and the second with b = 0. With a = 0,
we associate a cost to the gradient of γ(t). Thus, in
Fig. (3) we see a flattening of the optimised rate curve
with increasing b. In large b limit, the rate becomes flat
and the waiting time distribution becomes Poissonian.
Interestingly, even for small b, the rate at large times
is significantly reduced by the optimisation. This is be-
cause the high tail of the γT (t) hardly effects the bulk of
the waiting time distribution and can thus be culled by
the optimisation. With b = 0, a finite value of a makes
minimization of the total area under the rate curve a pri-
ority. Thus in Fig. (4), we see an overall shrinkage in
the rate with increasing a. At large times, the value of
the rate has little overall effect on the waiting time dis-
tribution, and thus this can be optimised away to zero.
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FIG. 4: As Fig. (3), but here we set the rate parameter
b = 0 and investigate behaviour with cost parameter a =
0.05, 0.25, 2.0 (dashed lines; black, magenta, blue), i.e. we
impose a cost associated with high rates.

Interestingly, we see that as a increases, the optimised
waiting time distribution approaches the target wT (t) by
first matching the front edge of the distribution, whilst
still optimising for a suppressed tail at large time.

VII. COMPARISON OF OPEN AND CLOSED
LOOP CONTROL

We now turn to a more detailed comparison of two
feedback protocols in section III in an analysis of open
loop control versus feedback (closed loop) control condi-
tioned on the previous jump. We define identical control
goals in both schemes as the goal to achieve the same
average waiting time 〈τ〉 at a minimal width of the wait-
ing time distribution. We quantify this goal by using the
variance var(τ) ≡ 〈τ2〉 − 〈τ〉2 and introduce the dimen-
sionless Fano factor, cf. Eq. (43),

F ≡ 〈τ
2〉 − 〈τ〉2

〈τ〉2
. (58)

Our reference will be the unidirectional Poissonian pro-
cess Eq. (22) without control, where w(τ) = γ0e

−γ0τ with
constant rate γ0 and F = 1.

A. Piece-wise constant rates

For a simple comparison within an analytically
tractable model we compare waiting time distributions
with the controlled rates γ(tn|{tn−1}) given by piece-wise
constant rates γ0 as in Fig.(5). For feedback (fb), we thus
use rates

γfb(t) ≡ γ0θ(t− τ0) (59)

that are switched on at time t = τ0 after each previ-
ous jump, while for open loop (ol) control we introduce
periodic rates

γol(t) ≡ γ0

∞∑
n=−∞

χn(t), (60)

which are continuously switched on and off with period T
and duration ∆T � T . Here, the unit function χn(t) = 1
in the time interval t ∈ [nT, nT + ∆T ] and zero else.
Further below, we will optimize the control in the sense
of choosing between open or closed loop control based on
the rates Eq. (59), Eq. (60).

In both protocols, these rates define a unidirectional
stochastic process Eq. (22) with waiting time distribu-
tions Eq. (23) controlled by γ(t|{tn}). For feedback con-
trol, we thus thus have

wfb(τ) = γ0θ(τ − τ0)e−γ0(τ−τ0). (61)

For open-loop control, there is a subtlety in the fact that
we have periodic rates and wol(t + τ, t) depends on the
times t of the first and the time t+ τ of the second jump
separately. We define

wol(τ) ≡ wol(τ + ∆T + 0+,∆T + 0+) (62)

= γ0

∞∑
n=1

χn(τ + ∆T + 0+)e−γ0τe−γ0(∆T−T )n

as the relevant waiting time distribution that follows as
the effective description of a model with two instead of
one barriers, with strong time-scale separation between
the then two jump rates, as explained in Appendix B.

B. Costs of control schemes

We now quantify the costs of the two control schemes
using cost functionals as in section VI. For open loop
control, we introduce the cost over one period as

Jol ≡
a

T

∫ T

0

dtγ2
ol(t) + abγ2

0 =
aγ2

0∆T

T
+ abγ2

0 , (63)

where a > 0 is a scale factor. Here, the first term in
Eq. (63) corresponds to the cost caused by the magnitude
of the rate, and the second term bγ2

0 is a model for the
cost of switching the rates on and off during one period
T , determined by the parameter b > 0 . We fix the scale
factor using the fixed average 〈τ〉 such that a = 〈τ〉2 and
the cost without feedback (b = 0, ∆T = T ) is unity,
Jol = 〈τ〉2γ2

0 = 1. The dimensionless quantity Eq. (63)
then defines the open loop cost in units of the no-control
cost.

For feedback control, the rates and thus the cost func-
tional Jfb(τ) ≡

∫ τ
0
dtγ2

fb(t) for an interval with waiting
time τ becomes a stochastic quantity. A meaningful
quantity for comparison with open loop control, Eq. (63),
then involves the average of Jfb over an average waiting
time 〈τ〉 interval, and we define

Jfb ≡
a

〈τ〉

∫ τ

0

dτwfb(τ)Jfb(τ) + abγ2
0 + c

= γ0〈τ〉+ b(γ0〈τ〉)2 + c, (64)
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FIG. 5: LEFT: Comparison of control schemes: piece-wise
constant rates, Eq. (59), for feedback (closed loop) control
starting after each jump at time tn with delay τ0, and open
loop control with rates Eq. (60) switched on during time in-
tervals ∆T with period T . RIGHT: Comparision of costs for
feedback control (dotted curves) Jfb, Eq. (64), with costs for
open loop control (solid curve), Jol, Eq. (63) as a function
of scaled Fano factor F , Eq. (58). Parameters for the obser-
vation cost c in Jfb increase from bottom to top curve with
c = 0 (black), c = 0.5 (blue), c = 1 (magenta). Switch cost
parameter b = 0.1.

where we again used the same scaling factor a = 〈τ〉2 and
the switching cost, assuming the same parameter b as in
Eq. (63) for simplicity. In addition, we have to consider
the cost of continuously monitoring the system in order
to start the feedback protocol right after each jump, a
cost that is not present in the open loop scheme. Micro-
scopic models for this kind of information related costs
have been proposed in the context of Maxwell’s demon
and entropy flows recently65,67. In our phenomenological
model Eq. (64), we therefore postulate a fixed cost c > 0
per interval 〈τ〉 for the feedback observer.

C. Results

Using Eq. (61) and Eq. (62), we also obtain explicit
expressions for the average waiting time 〈τ〉, the variance
and the Fano factor Eq. (58). For feedback control, these
follow as

〈τ〉fb = γ−1
0 + τ0, Ffb =

1

(〈τ〉fbγ0)
2 . (65)

For open-loop control, the expressions are lengthy but
can be simplified in the limit γ0T � 1 and T � ∆T
assumed in the following. The result is

〈τ〉ol =
T

1− e−α
, Fol = 1− T

〈τ〉ol
, α ≡ γ0∆T, (66)

where the parameter α defines the effective strength of
the pulse Eq. (60). Note that for given values of 〈τ〉ol and
the Fano factor Fol, the period T is fixed, and thus by
Eq. (66) so is the feedback strength α of the open-loop
control scheme.

We are now in a position to carry out a quantita-
tive comparison. First, in the extreme case of infinite
cost with γ0, α → ∞, not so surprisingly the wait-
ing time distributions becomes sharp in both schemes,

w(τ) = δ(τ − 〈τ〉), with open-loop period T = 〈τ〉. At
any finite γ0, for fixed Fano factor Ffb = Fol = F as the
control target, the comparison then amounts to directly
comparing the control costs in both schemes.

The result of this comparison is shown in Fig. (5),
where we plot the costs as a function of the Fano fac-
tor, which are given by Jfb = 1√

F
+ b

F + c and Jol =

−[log(F )]/(
√
F (1 − F )) + b

F . Clearly, at small enough
Fano factor F , feedback control is always less expensive
and thus superior to open loop control: it is more efficient
to achieve sharply peaked waiting time distributions with
feedback than with simple periodic driving. This advan-
tage is particularly pronounced at small switching costs b
and small observation costs c. On the other hand, if the
feedback goal is less ambitious and only a small reduc-
tion of F from the non-controlled value F = 1 is desired,
the observation costs c are too high to make feedback ef-
ficient, and open loop control becomes the better choice.

VIII. THERMODYNAMICS OF WAITING
TIME FEEDBACK CONTROL

In this last section, we make an attempt towards
analysing waiting time feedback control from a ther-
modynamic point of view. In other feedback schemes,
this has been successfully achieved recently. An exam-
ple is the bi-partite splitting of a physical system into
a controller and the controlled part, a situation where
one can use the concept of mutual information and the
flow of entropies. One can then interpret, e.g., devices
that are close to – within certain limits of parameters
– thermodynamic feedback paradigms such as Maxwell’s
demon65,81,83,84.

A. Fluctuation relation

Our first observation concerns the role of detailed bal-
ance and a possible modification of the exchange fluc-
tuation relations82 in presence of waiting time feedback.
In fact, the protocol Eq. (30) conditioned on the previ-
ous jump allows one to perform feedback control without
modifying the exchange fluctuation relation

lim
t→∞

p(n, t)

p(−n, t)
= eAn (67)

for the bidirectional stochastic process Eq. (28). Here,
A ≡ β(µ1 − µ2) denotes the affinity in a situation with
transport between two reservoirs at equal inverse tem-
perature β and chemical potentials µ1,2.

We demonstrate Eq. (67) for the particular example of
a single tunnel junction between two fermionic reservoirs
1 and 2, with rates for forward (1 → 2) and backwards
(2→ 1) jumps

γ+(t− tn) = Γ+(t− tn)f1(1− f2)

γ−(t− tn) = Γ−(t− tn)f2(1− f1). (68)
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FIG. 6: Comparison of time-versus-number feedback (blue
solid line), Eq. (27), and feedback conditioned on previous
jump (dashed black line), Eq. (46), with dimensionless control

parameter g. LEFT: Fano factors F ≡ 〈τ2〉−〈τ〉2
〈τ〉2 . RIGHT:

Fisher information F(g) for waiting times, Eq. (71), and Fp(g)
(dotted lines) for p(n, t) in Gaussian approximation (see text).

Here, Γ±(t − tn) denotes the bare, feedback controlled
tunnel rates without the thermal Fermi distributions
fα ≡ (eβ(ε−µα) + 1)−1.

The crucial point now is that these rates fulfull detailed
belance, as long as the bare rates Γ±(t− tn) = Γ(t− tn)
do not depend on the direction (±) of the jump,

γ+(t− tn) = eAγ−(t− tn). (69)

In this situation, feedback control is still present in the
form of conditioning the bare rates on the previous jumps
and thereby modifying the waiting time distribution and
the full counting statistics p(n, t), cf. Eq. (43). However,
the feedback is not sensitive to the direction of transport,
and thus in particular does not act like the Maxwell de-
mon type rectifyer that would lead, e.g., to directional
transport even at zero affinity A = 0 as in63,81.

This is corroborated by elevating the detailed belance
condition of the rates, Eq. (69), onto the fluctuation rela-
tion Eq. (67) which here follows from a simple analysis of
a symmetry in the moment generating function G(χ, t):
the two types of jumps lead to a 2× 2 waiting times ma-
trix Ŵ(z), Eq. (34), with elements ŵ++(z) = ŵ+−(z) ≡
ŵ+(z) and ŵ−+(z) = ŵ−−(z) ≡ ŵ−(z) as the Laplace
transforms of

w±(τ) = γ±(τ)e−
∫ τ
0
dt′[γ+(t′)+γ−(t′)]. (70)

The long–time dynamics of the moment generating func-
tion G(χ, t) now follows from the determinant condition
Eq. (35), det

[
1− eiχW(z)

]
= 0, with the counting field

matrix eiχ =diag(eiχ, e−iχ). This condition is invariant
under the change χ → −χ + iA owing to Eq. (69) and
Eq. (70), and from the symmetry G(χ, t) = G(−χ+iA, t)
we obtain Eq. (67) as usual82.

B. Information gain

We can quantify the information gain in a phenomeno-
logical way by introducing the Kullback–Leibler diver-
gence (or relative entropies) between waiting time distri-

butions wg(τ) with different control parameters g,

D(g + δg, g) ≡
∫ ∞

0

dτwg+δg(τ) log
wg+δg(τ)

wg(τ)

=
1

2
F(g)δg2 +O(δg3), (71)

where the second line defines the Fisher information
F(g). We use these quantities to compare the two
feedback protocols; feedback conditioned on the previ-
ous jump in the example of the Gamma distribution,
Eq. (46), and time-versus-number feedback, Eq. (27) and
Eq. (A4). Note that this comparison is formal in the
sense that the dimensionless feedback parameter g will
correspond to different physical parameters in any real
implementation for each of the two schemes.

Fig. (6) shows the Fano factor F , Eq. (58) for the two
waiting time distributions. In both cases, the Fano factor
F = 1−g+O(g2) for small g, but the time-versus-number
feedback clearly has larger Fano factors for larger values
of g. For feedback conditioned on the previous jump, we
find

D(g, 0) = log(g + 1)− log Γ(g + 1) + gΨ(g + 1)− g,(72)

where Ψ() denotes the Digamma function, and corre-
spondingly F(0) = π2/6 − 1. Using the equivalence
Eq. (43) between Fano factors of wg(τ) and the full count-
ing statistics pg(n, t), we can introduce a corresponding
Kullback–Leibler divergence

Dp(g + δg, g) ≡ lim
t→∞

∞∑
n=0

pg+δg(n, t) log
pg+δg(n, t)

pg(n, t)
,(73)

which we evaluate within the Gaussian approximation
Eq. (50) and which leads to a corresponding Fisher in-
formation Fp(g) = 1

2(g+1)2 . The good agreement between

the latter and the Fisher information for wg(τ) proves the
quality of the Gaussian approximation for not too small
g.

In contrast, in the time-versus-number feedback proto-
col, the feedback–frozen second cumulant C2(t → ∞) =
1
2g , Eq. (44), diverges for g → 0 and so does the Gaussian

approximation to the Fisher information, Fp(g) = 1
2g2 ,

in that case. Since the close connection between w(τ)
and p(n, t), Eq. (43), no longer holds, the Fisher infor-
mation F(g) for the waiting times remains finite and is
monotonously decreasing, with F(0) = 5

2 .

C. ‘Hardwiring’ of a passive control system

Finally and in the spirit of previous work on feedback
in transport65,76, we now present an analysis of a micro-
scopic model which in its (passive) feedback operations is
equivalent to a given active feedback scheme. As an ex-
ample, we here consider again the unidirectional process
with (actively) feedback–controlled waiting time distri-
butions given by the Gamma distribution Eq. (46) and
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ŵ(z) ≡
(

1 + z
(g+1)γ0

)−(g+1)

in Laplace space, Eq. (45),

where g ≥ 0 is the feedback parameter.
In order to introduce passive control, we replace the

single jump process by a sequence of N + 1 transitions
0 → 1 → 2 → ... → N → 0 (a ring in the space of
states). A concrete example for a physical realisation is as
follows: a single electron jumps into an empty quantum
dot (transition 0 → 1) and then cascades down to lower
energy levels in the dot (1 → 2 → ... → N) due to
emission of phonons until it leaves the dot from the lowest
level (N → 0) and the process starts afresh, cf. Fig. (1).

For simplicity, we assume all jumps to occur at the
same (inelastic phonon emission) rate γN , which results
in a simple (N + 1)× (N + 1) matrix for the Liouvillian
L(χ, η) that includes a counting field χ for the electron
(number of transitions N → 0) and counting fields η for
the phonons (for each jump). The density matrix (includ-
ing counting fields) fulfills ρ̇(χ, η, t) = L(χ, η)ρ(χ, η, t).

Here, we are interested in a reduced description where
the internal levels remain unobserved and the corre-
sponding counting field is set to zero, η = 0. The count-
ing is then for the electrons (transitions N → 0) only and
determined by the moment generating function

Ĝ(χ, η = 0, z) =
1

z

1− ŵN (z)

1− eiχŵN (z)
, (74)

with the waiting time distribution in Laplace space,

ŵN (z) ≡
(

1 +
z

γN

)−(N+1)

. (75)

These expressions are derived from the explicit matrix
form of L(χ, η) in Appendix C. Upon comparison we re-
alize that Eq. (75) is (by construction, of course), identi-
cal with the active feedback control form Eq. (45), if we
identify the feedback parameter g there with g = N , the
number of internal levels in our passive control scheme,
and the rates

γN = (N + 1)γ0. (76)

The case g = N = 0 formally corresponds to no feedback
and a single jump process (single tunnel barrier) only.

We also note that Ĝ(χ, η = 0, z) then co–incides with
the expression Eq. (40) for active control.

We thus have identified a system where active feedback
control can be simulated via passive control: here, ac-
tive feedback control appears in the reduced sub-system
(electron) dynamics of a larger total system (electrons,
phonons, dot).

D. Entropies in the passive control scheme

We are now in a position to evaluate the entropic costs
of our electron–phonon feedback system. For this pur-
pose, we evaluate the Shannon entropies

S(t) ≡ −
∑
n

p(n, t) log p(n, t) (77)

of the various probability distributions: the full count-
ing statistics pel(ph)(n, t), n ∈ N of the electrons (emitted
phonons), and the occupations pdot(n), n = 0, ..., N of
the dot levels.

Clearly, in the long time limit one has pdot(n) = 1
N+1

regardless of the state n of the dot. On the other hand,
the long–time behavior of the cumulant generating func-
tion for electrons and phonons is

logG(χ, η, t→∞) ∼ tγN
(
e

iχ
N+1 +iη − 1

)
, (78)

cf. Appendix C, from which the second cumulants of the
electron (el) and phonon (ph) statistics follow by differ-
entiating twice and using Eq. (76),

C2,el(t→∞) ∼ γ0t

N + 1
, C2,ph(t→∞) ∼ γ0t(N + 1).(79)

Note that the counting field χ (electron), this co–incides
with Eq. (52) of the active scheme as must be.

Using the Gaussian approximation as in Eq. (50) with
n as a continuous variable, the cumulants Eq. (79) yield
the Shannon entropies (t→∞)

SNph(t) =
1

2
ln(2πγ0t(N + 1)) +

1

2

SNel (t) =
1

2
ln

(
2πγ0t

N + 1

)
+

1

2

SNdot = ln(N + 1). (80)

As expected, SNph(t) increases as a function of time t, and

at a rate (N + 1)2 times faster than the entropy SNel (t)
of the electrons. We interpret the two entropies SNph(t)

and SNel (t) as Shannon entropies characterizing the inner
state of the electron and phonon counting devices, cf.
Fig. (1). Note that the (unphysical) divergence at time
t = 0 in Eq. (80) is due to the two delta-peak type initial
conditions in the Gaussian approximation Eq. (50).

At long times, phonon and electron entropies are bal-
anced as SNph(t) = SNel (t) + SNdot. If we consider the en-

tropies Eq. (80) as a function of N , the thermodynamic
costs of the passive feedback mechanism become clear:
increasing the number of dot levels N logarithmically
suppresses the electronic FCS entropy SNel (t), thus mak-
ing the electronic transport more regular with a sharper
waiting time distribution, cf. Eq. (43). This occurs at
the expense of logarithmically increasing the entropy in
the ‘feedback device’, i.e. by increasing the entropy of
the dot and generating more and more phonons.

Finally, we can use the expressions Eq. (80) and quan-
tify the relative costs of this active feedback scheme in
terms of a (phenomenological) efficiency

η ≡ −∆Starget

∆Sresource
, (81)

i.e., the ratio of decrease of entropy of the target sub-
system (the electrons leaving the system, ∆Starget =
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SNel (t) − S0
el(t)) and the cost in terms of an increase

in entropy of the passive controller providing the re-
source of the feedback control (the dot and the phonons,
∆Sresource = SNph(t)−S0

ph(t)+SNdot−S0
dot). Using Eq. (80),

we find the value η = 1
3 independent of the number

N > 0.

IX. DISCUSSION

In contrast to our previous ‘hardwiring’ scheme of
Maxwell demon feedback56,65, the passive feedback
scheme in Sect. VIII C unfortunately appears less rel-
evant for a direct experimental realisation. In the analo-
gon of the active feedback protocol Eq. (45), the stochas-
ticity of the time intervals between the jumps into the
drain reservoir is simply reduced by ‘brute force’, i.e.,
many copies of the same stochastic process in series, with
the rates scaling up, Eq. (76). This ultimately amounts
to an ‘over–scaled’ version of the law of large numbers
where due to scaling the variance C2,el vanishes in the
limit N → ∞, cf. Eq. (79), and the whole process be-
comes deterministic.

A desirable extension into the passive feedback direc-
tion would therefore be a smarter and yet simple phys-
ical realisation of waiting time feedback, possibly using
systems involving quantum coherences such as in the ex-
ample Eq. (29) of resonance fluorescence in Sect. IV B.
Recent work in this direction is, e.g., the analysis51 of
photon bunching as observed85 in a quantum-dot laser
with optical feedback, based on a microscopic quantum
model for the g(2)–correlation function.

At the same time, we argue that the decision between
active and passive control has to be made case by case
depending on the feedback goal and the corresponding
feedback protocol. For example, in the ‘number-versus-
time’ protocol25,26 discussed above, active feedback has
been proven to be very successful experimentally. In con-
trast, the passive feedback version of that protocol76 in-
volves relative complicated interactions among particles
that are unrealistic for, e.g., electronic systems. From
such a perspective, and also in view of our results on op-
timization of waiting time feedback in sections VI and
VII, the active schemes look quite promising.

What needs further clarification then, though, remains
an understanding of this kind of feedback from a ther-
modynamical perspective beyond a mere comparison of
phenomenological costs and efficiencies.
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Appendix A: Waiting times for time-versus-number
feedback

Here, we derive the waiting time distribution w(τ),
Eq. (26) for the time-versus-number feedback protocol
γ(t, n) ≡ γ[1 + g(γt− n)], Eq. (24), of the unidirectional
stochastic process p(n, t), Eq. (22),

pn(t) =

∫ t

0

dtn...

∫ t2

0

dt1e
−

∫ t
tn
dt′γ(t′,n) × (A1)

× wn(tn, tn−1)...w2(t2, t1)w1(t1, 0),

with waiting time distributions wn(tn, tn−1) ≡ γ(tn, n−
1)e
−

∫ tn
tn−1

dt′γ(t′,n−1)
, Eq. (25). Eq. (A1) corresponds to

the simple master equation (n ≥ 1)

d

dt
p(n, t) = γ(t, n− 1)p(n− 1, t)− γ(t, n)p(n, t). (A2)

This can be solved analytically via the moment gener-
ating function G(χ, t), Eq. (39) which in the long–time
limit reads26

G(χ, t→∞) = eiγtχ+ 1
g (iχ−Li2(1−e−iχ)), (A3)

with the polylogarithm integral Li2(z) ≡
∫ 0

z
dt
t ln(1 − t).

Using the definition Eq. (26) for the waiting time distri-
butions weighted with the probabilities pn(t) in the limit
t→∞, we obtain

w(τ) = − lim
t→∞

∞∑
n=0

pn(t)
d

dτ
e−γτ[1+g(γ(t+ τ

2 )−(n−1))]

= − lim
t→∞

d

dτ
G(χ = −igγτ, t)e−γτ[1+g(γ(t+ τ

2 )+1))]

= − d

dτ
e−fg(τ)

fg(τ) ≡ gγτ
[γτ

2
+ 1
]

+
1

g
Li2(1− e−gγτ ). (A4)

For small g � 1, using Li2(z) ≈ z we find this to be very
close to the Poissonian waiting time distribution w(τ)→
γe−γτ . Expansion up to first order in g is valid for not too
large τ and leads to Eq. (27). Since fg(τ) monotonously
increases as a function of τ , the waiting time distribution
Eq. (A4) is always positive.

We note that formally, a Poissonian form also ap-
pears at very large g � 1 when scaling the time τ as
1
gw(τ/g) → γe−γτ , though the linear feedback model

Eq. (24) for the rates becomes unrealistic then.

Appendix B: Two–barrier model with feedback

Here, we outline how to obtain Eq. (61), Eq. (62) as
the waiting time distributions in an effective description
within a mapping onto a unidirectional transport process.

The two–barrier model is defined by states |n, σ〉 and
|n, σ〉, n ∈ N, where σ = 0, 1 denotes the state of a small
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region such as a quantum dot with a single level (‘single
electron transitor’) that is either occupied (1) or empty
(0). Particles enter one by one from a source reservoir
at a fixed (un-controlled) constant rate γin if the dot is
empty, and leave at a (controlled) rate γ(t|{tn}) into a
drain reservoir which is filled with n particles, with n
increasing as time passes.

The simplified description leading to the stochastic
process p(n, t), Eq. (22), and the specific forms Eq. (61),
Eq. (62), then follow by assuming a separation of time
scales, in which the whole stochastic process is goverened
by the slow rate γ(t|{tn})� γin only. For feedback con-
trol, wfb(τ) in Eq. (61) then follows from the convolution
of subsequent waiting time distributions, i.e., the deter-
ministic win(τ) = limγin→∞ γine

−τγin = δ(τ) for jumps
0 → 1, and the waiting time distributions for jumps
1→ 0.

In open-loop control, the limit γin → ∞ of immediate
‘re-charging’ of the inner dot region after a jump 1 → 0
would allow for arbitrarily small waiting times τ which
would leave the control scheme a priori in disadvantage
as compared with feedback. We exclude this by assuming
a small delay larger than ∆T for re-charging, as indicated
by the 0+ in Eq. (62). Technically this can be achieved
by also periodically varying the rates for jumps 0 → 1,
with the deterministic limit win(t, t′) = δ(t− n∆T − 0+)
for (n− 1)∆t ≤ t′ ≤ n∆T .

Appendix C: Moment generating function for
passive feedback model

Here, we derive Eq. (74) for the passive control system
in the model in Fig. (1). The Liouvillian L(χ, η) in the
space of states 0, ..., N then reads

L(χ, η) = γN


−1 0 0 ... eiχ+iη

eiη −1 0 ... 0
0 eiη −1 0 ...
... ... ... ... ...
0 ... 0 eiη −1

 . (C1)

The moment generating function for counting to start at
time t = 0 in Laplace space obtained as

Ĝ(χ, η, z) = 〈0| (z − L(χ, η))
−1 |0〉 (C2)

=

N+1∑
i=1

(z − L(χ, η))
−1
i1 , (C3)

where we used the (empty) state 0 as initial condition.
Here, the inverse can be calculated explicitly, using the
determinant

det (z − L(χ, η)) = (z + γN )N+1 − eiχ(γNe
iη)N+1(C4)

and the formula for the inverse of a matrix with expres-
sions for the adjuncts that can be easily derived. The
result is given by

Ĝ(χ, η, z) =
(z + γN )N+1 − (γNe

iη)N+1

(z + γN )N+1 − eiχ(γNeiη)N+1

× 1

z + γN (1− eiη)
. (C5)

If we are interested in a reduced description, one of the
counting field can be set to zero. When only counting
phonons, we have the simple expression Ĝ(χ = 0, η, z) =(
z + γN (1− eiη)

)−1
corresponding to a Poissonian pro-

cess of phonon emission at rate γN . When only counting
electrons, we have to set η = 0 and obtain Eq. (74) with
Eq. (75).

The long–time behavior of G(χ, η, t) ∝ etz0 in the time
domain is determined by the zero z0(χ, η) in Eq. (C4) as
the denominator of the first factor in Eq. (C5), z0(χ, η) =
γN
(
eiηeiχ/(N+1) − 1

)
, from which Eq. (78) follows.
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