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Abstract
Weapply the time-delayed Pyragas control scheme to the dissipativeDickemodel via amodulation of
the atom-field-coupling. The feedback creates an infinite sequence of non-equilibriumphases with
fixed points and limit cycles in the primary superradiant regime.We analyse thisHopf bifurcation
scenario as a function of delay time and feedback strength and determine analytical conditions for the
phase boundaries.

1. Introduction

Interacting quantum systemswith time-dependentHamiltonians offer rich and exciting possibilities to study
many-body physics beyond equilibrium conditions. There has been a recent surge in generating correlated non-
equilibriumdynamics in a controlledway by changing the interaction parameters as a function of time, for
example, by periodicallymodulating the coupling constants or by abruptly quenching them.Of particular
interest then is the fate of coherent quantumdynamics and phase transitions in such scenarios. Indeed,
intriguing phenomena have been discussed, such as coherent control of tunnelling in Bose–Einstein
condensates [1], thermalization after quenches [2], or dynamical and excited state quantumphase
transitions [3, 4].

In this paper, we show another and conceptually very different option for driving quantum systems out of
equilibrium, i.e., bymodulating interaction parameters via ameasurement-based feedback loop. The time-
delayed Pyragas control scheme [5] thatwe propose here has been successfully employed in a classical context
over the past twenty years, for example, as a tool to stabilize certain orbits in chaotic systems or networks [6–9].
Its key idea is to feed back the difference between two signals of the same observable at different times, such that a
stabilization occurswhen the delay timematches an intrinsic period of the dynamical system.

Our key idea is to generate newnon-equilibriumphases via Pyragas control of the interaction between the
single bosonic cavitymode and the collection of quantum two-level systems [10] inDicke–Hepp–Lieb
superradiance. The superradiant transitionwithout control, which has been observed only recently in cold
atomswithin a photonic cavity [11–14], alsowith applied quenches [15] or using cavity-assisted Raman
transitions [16], has an underlying semi-classical bifurcation, whichmakes it an ideal candidate to study
feedback at the boundary between non-linear (classical) dynamics and quantummany-body systems [17].

Open loop control of theDickemodel has been studied in the past, for example, in the formof periodic
modulations of the atom-field-coupling constants [13, 18] or the level splittingmodulation [19, 20]. Recently,
Grimsmo et al [21] found a speed-up towards the stationary state and qualitative changes of the phase diagram
when applying Pyragas-feedback to the cavitymode alone incoherently. In ourmodel, we condition the effective
coupling strength between the cavity and the atoms of theDicke system—in the experiment just proportional to
the laser intensity [11]—on a difference of photon numbers emitted from the cavity at different times.We use a
meanfield approach and linear stability analysis in order to show that closed loop control dramatically affects the
states in the primary superradiant regime, creating a new phasewith an infinite sequence ofHopf bifurcations
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between stable fixed points and limit cycles.We also derive analytical results in the formof a single
transcendental equation that determined the boundaries between the different zones in the phase diagrams.

The structure of this paper is as follows: In section 2we introduce themodel with the conditioned coupling
constant g(t) and perform the linearized stability analysis based on semiclassical equations ofmotion; in
section 3we visualize and discuss the results and also go beyond the linear stability analysis and givemore details
on the numerical procedure; in section 4we summarize ourfindings, discussing them in amore general context.

2.NonequilibriumDickemodel with time delayed feedback

2.1.Model
TheHamiltonian of theDickemodel

ω ω= + + + ++ −( )( )H a a J
g t

j
a a J Jˆ ˆ ˆ ( )

2
ˆ ˆ ˆ ˆ (1)z

†
0

†

describes the interaction between a single bosonicmode (with frequencyω and annihilation operator â) andN
two-level systems (with level splittingω0 and collective angularmomentumoperators ±Ĵz, ) with total angular
momentum =j N 2 [17].We set the length of the pseudo-spin j to itsmaximumvalue.We assume an
interaction between the bosonicmode and the collective angularmomentumwith a time-dependent coupling g
(t) that ismodulated by a time-delayed feedback loop. Among variousmodels for g(t), the Pyragas form [5]

λ τ= + − −( )g t g
N

a a t a a t( ) ˆ ˆ ( ) ˆ ˆ ( ) (2)0
† †

with the time-delayed feedback of the boson number at two different times t and τ−t and feedback strength λ
turns out to lead to the richest phase diagrams. In the pioneering experiments (more details are in 4.1) for the
Dicke–Hepp–Lieb phase transition in open photonic cavities [11], the form equation (2)would correspond to
measured, average photon fluxes (proportional to themean cavity photon occupation number [22, 23]) coupled
back to a pump laser. Apart from the Pyragas delay form, this scheme is in fact close to the original feedback
loops used formodulating the photon counting statistics in lasers [24].

We note that by usingmean (expectation) values in equation (2) instead of operators (and additional noise
terms in a stochasticmaster equation [25]) for the boson occupations, we already assume ameanfield
description that we expect to hold for → ∞N and that we formalize in the following.

2.2. Semiclassical equations
In analogywith semiclassical laser theory, phase transitions in theDickemodel for → ∞N arewell described by
mean-field equations for (factorized) operator expectation values [23, 26–28], whichwe denoted by the
corresponding symbols without hat. Splitting a and ±J into real and imaginary parts, = +a x yi and

= ±±J J Jix y, these equations read

κ ω κ ω= − + = − − −x x y y y x
g t

j
J˙ , ˙ 2

( )

2
, (3)x

ω ω= − = − =J J J J
g t

j
x J J

g t

j
x J˙ , ˙ 4

( )

2
· · , ˙ 4

( )

2
· · ,x y y x z z y0 0

where κ is decay rate of the bosonicmode andwhere the coupling g(t) takes the form

λ= + − + −τ τ( )g t g x x y y( ) 0
2 2 2 2 with the shorthand τ≡ −τf f t( ). Note that the angularmomentum is a

conserved quantity even for time dependent g(t), and the time development therefore takes place on the surface
of a Bloch sphere with the radiusN 2. For zero time-delay τ = 0, i.e., without feedback, the phase diagram is

well known [27]. For ω κ ω ω< ≡ +g g ( ) 4c 0
2 2 , a stable normal phase solution corresponds tofixed point

= = = = = −J J x y J N0, 2, (4)x y z
0 0 0 0 0

whereas

ω κ ω

ω
ω

κ ω
κ
ω

= ± − = =
− +

= −
+

=

( )

( )

J
N

J J J
N

g

x J
g

N
y

x

4
, 0,

8
,

2
, (5)

x z y z

x

0
2

02 0 0
0

2 2

0
2

0 0 0

2 2

0 0

corresponds to the stable superradiant phase that exists only if ⩾g gc.
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2.3. Stability analysis and feedback
Tofind out how the time-delayed feedback affects the stability of the system, we linearize equation (3) around
thefixed points. (These do not depend upon τ, since the feedback equation (2) vanishes in the steady state.)
Using the usual procedure [29], the linearized equations read

δ δ δ τ′ = + −t t tv B v A v( ) · ( ) · ( ) (6)

withδ δ δ δ δ= J J x yv ( , , , )x y
T describing the deviation from thefixed point and

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

λ λ

λ λ

ω

ω λ λ

κ ω
λ ω λ κ

= − −

− −

=

−

+ −

−

− − −

N N

J x J x y

J x J y

g J x

J N
J x

N N

g

N
J J x y

N N

g

N
J x

N N
J y

N N
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0 0 0 0

0 0 4 4

,

0 0 0

4
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z
z z z

x x
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0

0
0 0

0 0
0 02 0 0 0 0 0

0 0 0 0 0

Note that the Jz component is determined by the conservation of angularmomentum.Using the ansatz
δ δ= Λv v e ,t we obtain the characteristic equation

Λ − − =Λτ−( )1 B Adet e 0. (8)

For τ ≠ 0, this transcendental equation has an infinite set of solutions for the eigenvalues Λ ∈ . Thefixed point
v0 is stable if the real parts of all solutionsΛ are negative, inwhich case the fluctuations decay to zero for → ∞t .

3. Results

3.1. Phase diagrams
Weobtain the phase diagramof ourmodel in theω–g0–plane (figure 1) from the numerical solution of
equation (8) forΛ. In all plots, the parameters are taken close to the experimental realization [11, 27].We use
1600 different initial conditions for Λ = +a bi0 0 0 ( ∈ −a b, [ 40, 40]0 0 ) in the root-search algorithm in order to
obtain all solution branches. The colour infigure 1 then encodes themaximum real part of all solutions Λ for a
given system configuration.

First, in the left part of the phase diagram (for ⩽g gc0 ) we recover the usual normal phase, where the boson
occupation is zero and, as a consequence, the feedback scheme equation (2) remainswithout effect. In contrast,
for >g gc0 and positive τ, the superradiant phase splits up into an infinite sequence of tongue-like areas that

Figure 1.Phase diagram forfixed time delay τ and feedback strength λ. The dashed (orange) line separates the normal from the
superradiant phase. The superradiant regime is split by time-delayed control into zones with stablefixed points (F) and limit cycles (L)
with boundaries (black curves) determined from equation (10). Colour encodes the largest real part of the eigenvalue. Parameters:
τ = 20 μs, λ = 5MHz, andω = 0.050 MHz, κ = 8.1MHz [11, 27].
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alternate between zones with stable, superradiant fixed points (F), and—aswewill see later—limit cycles (L) with
periodically oscillating systemobservables.Wewill devote the rest of this paper to analysing and interpreting this
rather surprising effect.

Figure 2 displays the twomarkedly different types of time evolution in the superradiant regime: in the fixed-
point zones (F), the only effect of the Pyragas scheme is to speed up the convergence of the spin-components and

themean boson occupationa a* towards their fixed-point values. This has to be contrastedwith the limit-cycle
zones (L), where thefixed point is unstable, and the observables end up oscillatingwith a single frequency.
Therefore the systemof coupled time-delayed differential equation (3) is solved numerically.We have to specify
not only the initial conditions but also the history for τ∈ −t [ , 0], keeping it constant at the initial condition
values. In all simulationswe keep the values for x (0) and y (0)fixed around N0.1 , set =J N(0) · 0,y and

change the initial conditions for J (0)z or J (0),x respectively.

3.2. Analysis of zone boundaries
Weobtain a simplified transcendental stability equation from equation (8) in the limit of very small level
splittingω ω≪ g,0 0, which describes the ultra-strong coupling limit of theDickemodel [30] and corresponds
to a feedback-controlled displaced harmonic oscillator. However, this assumption is valid in the existing
experimental setups [11, 27]. In this case, the angularmomenta deviations δJx y, decouple from thefield
deviationsδ δx y, and describe periodic oscillations with the frequency

Ω
ω

κ ω
=

+

g4
. (9)0

2

2 2

Using equation (8), we derive an equation forδẍ just by inserting the equations into each other (see for details
appendix A). As a result, we obtain

⎜ ⎟⎛
⎝

⎞
⎠

Ωτ =
− ± − + +

+
C C C C

C C
tan

2
, (10)

2 1
2

2
2

3
2

1 3

with κΩ Ω= + λκ
ω

C 2 ,
g1
2 2

0

λ=C g2 ,2 0 Ω= λκ
ω

C ,
g3 2

2

0

which leads to the roots of the equation (8)with a vanishing

real part, i.e., Λ Ω= ±i . Parameter configurations satisfying this equationmark the boundary between stable (F)
and unstable (L) fixed points, which is included infigure 1 andmatches the numerically determined boundaries
verywell.

This analysis also allows us to elucidate the role of the delay time τ in the control scheme: to obtain real-
valued results for the time delay τ, the root in equation (10) has to be positive. This condition is only satisfied if
the feedback coupling λ is larger than some critical value λl, whichwe determine from the vanishing of the root
in equation (10).We corroborate these findings by plotting the largest real part of the eigenvalue numerically
determined from equation (8) in the λ τ( , )-plane for fixedω and g0 values (see figure 3).We recognize tongue-
like zones switching between stablefixed-point and limit cycle (L) zones uponmodification of the time delay τ
and, furthermore, the existence of a critical feedback strength λl for entering in the (L) zones.

Figure 2.Time evolution ofmode occupationa a* and angularmomentum component Jx corresponding to stablefixed point P2 (left)
and stable limit cycle P1 (right) in the phase diagram figure 1.
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3.3. Limit cycle properties
Finally, we discuss the delay time τ and its role as a control parameter. Thereforewe solve the equations of
motion (3), keeping all parameters except τ atfixed values. Increasing the time delay τ, we cross the boundary
and switch into the (L) zone of the corresponding phase diagram (figure 3). This is accompanied by a stability
swap; the fixed point becomes unstable, and a stable limit cycle appears. This is known as a supercritical Hopf
bifurcation. Figure 4 (upper panel) visualizes this behaviour, showing the time evolution of the atom-subsystem
on the Bloch sphere for two different τ-values. Instead of plotting the typicalHopf bifurcation diagramby using
absolute values (figure 4, lower left), we show the equivalent representation by plotting only the radius
(amplitude) of the emerging limit cycle as a function of time delay τ (figure 4, lower right). Zero amplitude
would correspond to a stablefixed point. Note that, due to the parity invariance

→ − → − → − → −x x y y J J J J, , ,x x y y of equation (3), there are not only twofixed points in the superradiant
regime but also two stable limit cycles with the same amplitude if τmatches the (L) zone. This bifurcation
diagramdoes not distinguish between the two limit cycles, as we plot only relative values and they are the same
for both limit cycles.

Solving the equations ofmotion (3) for parameter values along the dashed lines infigure 3, wefind that the
amplitude and periodT of the limit cycles depend upon τ, as depicted infigure 5 for the Jz amplitude. First, we
recognize that for initial conditions close to thefixed point (typically we use =J (0) 0z or

− ≈J J J( (0) ) 0.1%z z z
0 0 as initial conditions), both the amplitude and the period show the sameHopf

bifurcation scenario (connected lines) appearing for certain values of τ. The non-zero slope of the curvesmarks
the beginning of the L-zone and theHopf bifurcation; themaxima of the curvesmark the end of the L-zone. As a
particularly striking feature, we observe a drastic collapse of the limit cycle (vertical lines) for values of λ λ> l and
the birth of an unstable limit cycle (disconnected unfilled symbols, shown only in the upper part offigure 5) by a
subcriticalHopf bifurcationwhen the time delay τ reaches the end of the (L) zone. Our numerics show that this
collapse occurs as a jump discontinuity. Furthermore, a stable limit cycle still exists behind the (L) zone
(disconnected filled symbols) as a continuation of the previous one, but, because of bistability with the stable
fixed point, it can only be reached if the initial amplitude lies above the amplitude of the unstable limit cycle,
whichmarks the boundary between the basins of attraction of the fixed point and limit cycle attractors. The
branches of the stable and the unstable limit cyclesmerge in a saddle-node-bifurcation (arrows infigure 5). The
inset shows this bifurcation schematically. The dotted arrows point to the stable solution (black solid line) that
the systemwill take for different initial conditions. Note that, to assess the amplitude of the unstable limit cycle,
we change the initial condition ∈ −J N(0) · [0.5, 0.5]z in small stepsδJ (0)z until the solution converges to the
other attractor. Thenwe identify the initial amplitude of Jz(t) with the amplitude of the unstable limit cycle,
which is a good approximation for smallδJ (0)z .

In addition, the theoretical prediction for the oscillating frequencyΩ from the linear stability analysis of the
fixed-point equation (9)matches well with the damped oscillation period in the F-region (see figure 5). The

Figure 3.Phase diagramwith sequence of stablefixed point (F) and limit cycle (L) zones in the λ (coupling strength) versus τ (delay
time) plane. The black lines represent zone boundaries derived from the single trancendental equation (8). Dashed lines indicate
cross-sections, shown infigure 4. Colour represents the largest real part of the eigenvalues. Parameters:ω = 10 MHz, =g 1.50 MHz,
ω = 0.050 MHz, and κ = 8.1 MHz.
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mean occupation of the opticalmodea a* —as all v components—shows the same oscillating behaviour. As a

consequence ofa a* being proportional to the photon output, themean number of photons emitted from the
system also oscillates with afixed frequency that can be externally controlled.

4.Discussion

The application of the Pyragas control to the coupling g of theDickemodel generates a complex phase diagram
with stablefixed points (F) and limit cycles (L) in the superradiant regime. The alternations between (F) and (L)
zones (figure 3) in fact constitute an infinite sequence of super- and subcritical Hopf bifurcations of the

Figure 4.Time evolution of the spin component for two different time delays τ corresponding to stable fixed point and stable limit
cycle, respectively (upper panel). A sketch of theHopf bifurcation scenario by plotting the Jz values offixed point (FP) and themax/
min Jz-value of the limit cycle (LC) and the corresponding amplitude representation (lower panel). Parameters: as infigure 3, λ = 3
MHz.

Figure 5.Bifurcation scenario for limit-cycle amplitudes (upper) and periodsT (lower) of Jz as a function of delay time τ along the
cross-sections (dashed lines atfixed λ) infigure 3. The filled symbols in the upper part describe the continuation of the limit cycle for
initial value above the unstable limit cycle (unfilled symbols). The inset sketches the appearing saddle-node bifurcation of limit cycles,
and the dotted arrows show the direction of the phase flow for fixed tau.
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stationary state generating stable and unstable limit cycles, respectively. Furthermore, the feedback generates
bistable regions ending by a saddle-node bifurcation.

4.1. Experimental realization
In the experimental setup [11], a Bose–Einstein condensate (BEC) is trapped inside an optical cavity and is
additionally driven by a pump laser. The two-level atomic system is built of atomswith twodifferent
momentum states, where one is the BEC ground state. Othermomentum states have to be excluded by a two-
mode assumption, which is fulfilled if the pumping frequency is far detuned from the resonant atomic
frequencies. The collective spin operators ±J describe the atomic transitions in the collectivemomentum space.
The interaction term in theDicke–Hamiltonian (1) is an effect of the interplay between the photons of the
pumping field and the cavity photons via the two-level system. Furthermore, equation (1) is given in the rotating
frame at the pump laser frequency. In that way, theHamiltonian has no direct dependence on the pumping laser;
its properties are already included in the parameters. Thus the coupling constant g, which becomes time-
dependent in our approach, is defined by the light intensity of the pumping field.

On the one hand, our approachmodifies only this intensity and does not add additional frequencies to the

cavity. The intensity increase/decrease is small compared to the uncontrolled system, because λ≪g Na a* ,0 as

we can conclude from figure 2, and λ can be assumed to be unity to achieve the calculated effects (seefigure 3).
Thus, the two-mode approximation of theDickemodel in the atomicmomentum space should remain valid,
and no other energy states except these two should be excited.On the other hand, it should be possible to restrict
the feedback strength parameters such that the possible excitations are avoided.

Deviations due to photon loss between themeasuredmean photon number and its actual value can be
compensated by time interval extension for calculating themean value (because of rather slow dynamical
evolutionwith fast oscillations) or by tuning the λ-coupling.

4.2. Aspects of Pyragas control
The open loop control provided in [18] creates new fixed points in the normal and superradiant regime, so a
bifurcation is induced by periodicmodulation of the coupling constant. In contrast, the closed loop control
scheme used here completely changes the impact on theDicke system and the bifurcation scenario. Although the
Pyragas control performed byGrimsmo et al [21] is physically very different fromour scheme, it creates similar

phase diagramswith limit cycles. Furthermore, adding the back action of the cavity fieldUJ a aˆ ˆ ˆz
† to theDicke–

HamiltonianH equation (1), there are some parameter regimeswhere the solution of themean-field equation
has persistent oscillations [27]. This is linked to the absence of stablefixed points; the same happens in the LC-
zone and is caused by time delay. These analogies indicate that the analysed limit cycle phase is not something
that is artificially added to themodel by Pyragas control. Rather, this phase is hidden in themodel and becomes
visible by the control.We remark that the possibility of periodic dynamics in such systemswas also observed in
optomechanical BEC experiments [31, 32].

We emphasize that the time dependence of → ∞g t( ) (equation (2)), does not disappear in the L-regions, in
contrast to the F-regions, leading to the phase diagramdiscussed above. In the L-region, g(t) oscillates with the
same period as the other systemobservables. This is a consequence of subtracting two oscillating functions

τ τ− + −x t y t( ) ( )2 2 and +x t y t( ) ( )2 2 with the same period. Our feedback scheme here switches between
non-invasive and invasive behaviour by crossing the boundaries within the phase diagram.Our results also
demonstrate that the Pyragas form in equation (2) is essential to create a new stable phase. In contrast, for the

direct feedback scheme λ τ= + 〈 〉 −g t g a a t( ) ˆ ˆ ( )0
† , depending on parameter values, the occupation of the

opticalmode diverges, and the control does notworkwell, or the time delay does not seriouslymodify the phase
diagram at all (not shown here).

Finally, we also checked that the (experimentally less practical) Pyragas feedback for the angularmomentum
(instead of the photonic feedback) also leads to the creation of a limit-cycle phase in the superradiant regime but
cannot influence the stability of the normal phase.

We expect that our feedback scheme can be implementedwhenever semiclassical equations ofmotion
provide an adequate description for the quantumbifurcation-type phase transitions that governmodels with
collective degrees of freedom, such as theDicke or the Lipkin–Meshkov–Glickmodel [33].

An open and challenging problem is the implementation of time-delayed feedback control for quantum
critical systems beyond themean-field level, i.e., where quantum fluctuations are expected to play amajor
role [34].
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Appendix. Boundaries

In the case ofω → 0,0 the superradiant fixed-point solutions can be approximated as

ω

ω ω
→ → ± → −

+
→

( )
J J N x

g

N k
J y

k
x0,

1

2
,

2
, . (A.1)z x x

0 0 0 0

2 2

0 0 0

The linearized equation (6) for thefluctuations δv becomes, then,

δ δ δ τ′ = + −t t tv B v A v( ) · ( ) · ( ), (A.2)0 0

⎛
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⎟⎟⎟⎟⎟

ω
Ω ω

κ ω
λ ω λ κ

=

−

−

− − −
g

N
J x

N N
J y

N N

B

0 0 0

0 0 0

0 0

2 0 4 4x x

0

0

2
0

0 0 0 0 0

withΩ =
ωg J x

J N
2 4 x

z

0
0 0 0

0 .

Using δ δ δ δ δ⃗ =v J J x y( , , , )x y
T , we see first that

⎫
⎬
⎪⎪

⎭
⎪⎪

δ ω δ

δ Ω
ω

δ
δ Ω δ

= −

=
⇒ = −

J J

J J
J J

˙

˙
˙˙ ˙ .

x y

y x

x x

0

2

0

2

From equation (A.2)we get

δ κδ ω κ δ λ δ δ

λ κ

ω κ
δ δ ωδ

= + + + − −

−
+

− +

τ

τ

( ) ( )

( )

x x x g x x

N N
g N

x x g N J

0 ¨ 2 ˙ 2

2
˙ ˙ 2 . (A.3)x

2 2
0

0

2 2 0

Applying an additional time derivative and inserting then the two upper equations into each other, we obtain

δ κδ ω κ δ ωδ

λ ω δ δ δ δ

= + + + +

+ + − + −τ τ( )

( )

( )( ) ( )

x x x
g

N
J

N N
J x ky x x y x x

0 ¨ 2 ˙ 2

4 ˙ ˙ . (A.4)

x

x

2 2 0

0 0 0 0

By use of the superradiant fixed-point solutions equation (A.1), it can be shown that

λ ω λ+ = −( )
N N

J x ky g4 2 , (A.5)x
0 0 0

0

λ λκ

κ ω
Ω

ω

κ ω
= −

+
=

+( )N N
J y

g g
4

2
,

4
.x

0 0 0

2 2

0
2

2 2

This simplifies equation (A.4) to

δ κδ ω κ δ λ δ δ

λκ

ω κ
δ δ ωδ

= + + + − −

−
+

− +

τ

τ

( ) ( )

( )

x x x g x x

g
x x

g

N
J

0 ¨ 2 ˙ 2

2
˙ ˙ 2 . (A.6)x

2 2
0

0

2 2

0
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Inserting the ansatzδ Ω δ Ω= =J E t x E tsin ( ), sin ( )x 1 2 into this differential equation, we obtain the following
condition for its validity

Ωτ Ωτ= + −C C C0 · sin ( ) cos ( ) (A.7)1 2 3

withCi defined in equation (10). Using the connections = =
+

−
+

x xsin ( ) , cos ( ) ,x

x

x

x

2 tan ( 2)

1 tan ( 2)

1 tan ( 2)

1 tan ( 2)2

2

2 the upper

expression can be rewritten as equation (10).
This expression determines the boundaries between the (F) and (L) zones in the phase diagrams.Note that

the ansatz assumes that the the eigenvalues of equation (8) have no real parts. Thatmeans that Λ Ω= i and the
components of v oscillate undampedwithfixed frequency if the linear approximation near the fixed point is
valid.
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