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Centro de Álgebra da Universidade de Lisboa

1649-003 Lisboa, Portugal, wfbentz@fc.ul.pt

Peter Mayr
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Abstract

We address the question of the dualizability of nilpotent Mal’cev algebras, showing that nilpo-

tent finite Mal’cev algebras with a non-abelian supernilpotent congruence are inherently non-

dualizable. In particular, finite nilpotent non-abelian Mal’cev algebras of finite type are non-

dualizable if they are direct products of algebras of prime power order.

We show that these results cannot be generalized to nilpotent algebras by giving an example

of a group expansion of infinite type that is nilpotent and non-abelian, but dualizable. To our

knowledge this is the first construction of a non-abelian nilpotent dualizable algebra. It has the

curious property that all its non-abelian finitary reducts with group operation are non-dualizable.

We were able to prove dualizability by utilizing a new clone theoretic approach developed by

Davey, Pitkethly, and Willard.

Our results suggest that supernilpotence plays an important role in characterizing dualizability

among Mal’cev algebras.

2010 Mathematics Subject Classification. 03C05, 08A05,08B05,08C15.

Keywords: Natural duality, Mal’cev algebra, nilpotence, partial clones.

1 Introduction

Natural dualities are representations of elements of an algebra as continuous structure preserving
maps (obtained in a certain natural way). For example, Stone duality represents Boolean algebras by
Boolean spaces. A finite algebra A is dualizable if every algebra from the quasi-variety generated by
A has such a representation.

Clark and Davey ([4], p. 291) asked the question: “Characterize the dualizable finite algebras in
a given class C of algebras”, suggesting (among other options) to let C be the class of all algebras
generating a congruence permutable variety (i.e. algebras with a Mal’cev term). Recently at the
Conference on Order, Algebra, and Logics in Nashville 2007, Ross Willard [17] revived this question
in light of a new approach to show dualizability.

While Mal’cev algebras are in general considered to be well-understood, the question of their
dualizability has so far only been addressed for various classes of classical algebras (see below for
examples). This contrasts sharply with the situation for algebras in congruence distributive varieties,
which have been shown to be dualizable if and only if they have a near-unanimity term [7].

In this paper, we will make a start on the dualizablity problem for Mal’cev algebras by examining
the role of nilpotence. As usual, we will restrict commutator theoretic properties to the setting of

1

This article has been published in a revised form in Journal of the Australian Mathematical Society http://doi.org/10.1017/
S1446788713000517. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or 
use in derivative works. © 2013 Australian Mathematical Publishing Association Inc. 

http://arxiv.org/abs/1210.3185v2


congruence-modular varieties; note that this implies that any nilpotent algebra is a Mal’cev algebra
[9, Theorem 6.2].

Our interest in nilpotence comes from the observation that in the previously classified classes of
Mal’cev algebras, all dualizable nilpotent algebras were in fact abelian. As we will see, this prop-
erty is false for Mal’cev algebras in general, but holds if one replaces nilpotence with the slightly
stronger condition of supernilpotence. Our main theorem can be expressed in the usual terminology
of nilpotence as follows:

Theorem 1.1. Let A be a finite nilpotent algebra of finite type in a congruence modular variety.
Assume that A is non-abelian and a direct product of algebras of prime power order. Then A is
inherently non-dualizable.

This implies several known non-dualizability results, for example:

1. finite groups with non-abelian Sylow subgroups are not dualizable [13];

2. a finite ring with 1 is not dualizable if the square of its Jacobson radical is not 0 (see [6] for
commutative rings);

3. a finite ring is not dualizable if it contains a nilpotent subring that is not a zero-ring [14].

An application of the theorem to a class of algebras that were not previously known to be non-
dualizable are the finite non-abelian loops whose multiplication group (the group generated by all left
and right translations) is nilpotent ([15], Proposition 3.2, see also [2], Corollary III, p. 282).

We will prove Theorem 1.1 in Section 3. In fact, there we will obtain a more general non-
dualizability result for nilpotent algebras with a non-abelian, supernilpotent congruence (Theorem 3.1).
In the next section, we will define this notion of supernilpotence (a stronger condition than nilpotence),
give equivalent formulations of the conditions of the theorem, and prove several auxiliary results on
Mal’cev algebras. In Section 3 we will then generalize a construction that Szabó used on rings in [14]
to our setting to prove Theorem 1.1.

In Section 4, we describe a new clone theoretic approach to duality that was originally suggested
by Willard [17] and further developed by Davey, Pitkethly, and Willard in [8]. Finally, in Section 5, we
exhibit a non-abelian nilpotent expansion of 〈Z4,+〉 with infinitely many operations that is dualizable.
As far as we are aware this is the first example of a dualizable algebra that is nilpotent but non-abelian.
It shows that it is really supernilpotence which prevents dualizability, not nilpotence on its own. It also
demonstrates that Theorem 1.1 does not generalize to algebras of infinite type. Our example appears
to be the first instance of a dualizable algebra of infinite signature, all of whose finitary non-abelian
reducts with group operation are non-dualizable.

Note that we will delay defining the notion of dualizability until Section 4, when technical details
will become more important. We will instead provide a standard lemma giving conditions for non-
dualizability. We refer the reader to Clark and Davey [4] for a background on natural duality.

2 Nilpotence and supernilpotence

We denote the set of all k-ary term operations on an algebra A by Clok(A) and call Clo(A) :=⋃
k∈N

Clok(A) the clone of term operations on A [12, Definition 4.2]. The clone of polynomial functions
Pol(A) on A := 〈A,F 〉 is formed by the fundamental operations F , the constant functions on A, the
projections from Ak to A for k ∈ N – and all compositions thereof [12, Definition 4.4].

In [1] a stronger condition than nilpotence is defined, based on the concept of the higher commu-
tators [α1, . . . , αk] as introduced by Bulatov [3].

Definition 2.1. [3] Let k ≥ 2, and α1, . . . , αk, ν be congruences on an algebra A. We say that
α1, . . . , αk−1 centralize αk modulo ν if for all polynomial operations f(x̄1, . . . , x̄k) of A and tuples
ā1, . . . , āk, b̄1, . . . , b̄k over A that satisfy

1. āi ≡αi
b̄i for all i ∈ {1, . . . , k} and
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2. f(x̄1, . . . , x̄k−1, āk) ≡ν f(x̄1, . . . , x̄k−1, b̄k) for all

(x̄1, . . . , x̄k−1) ∈
(
{ā1, b̄1} × · · · × {āk−1, b̄k−1}

)
− {(b̄1, . . . , b̄k−1)}

we also have
f(b̄1, . . . , b̄k−1, āk) ≡ν f(b̄1, . . . , b̄k−1, b̄k).

We now let the k-ary commutator [α1, . . . , αk] be the smallest congruence ν on A such that
α1, . . . , αk−1 centralize αk modulo ν.

One can show that for a group G with normal subgroups N1, . . . , Nk the k-ary commutator cor-
responds to the product of the iterated binary commutators from classical group theory [11, Lemma
3.6]. For a ring R with ideals I1, . . . , Ik the k-ary commutator corresponds to the ideal generated by
the products of I1, . . . , Ik in all permutations [11, Lemma 3.5].

We refer the reader to [1] and [11] regarding further details of higher commutators. For our
results, it is sufficient to know that the k-ary higher commutator is well-defined and coincides with
the term condition commutator from [9] if k = 2 (see Lemma 2.8 below for a description of [α1, . . . , αk]
specialized to nilpotent algebras).

Definition 2.2. [1] Let k ∈ N, and A an algebra in a congruence permutable variety. A congruence
α on A is k-supernilpotent if

[α, . . . , α︸ ︷︷ ︸
k+1

] = 0,

with 0 the equality relation on A. The algebra A is k-supernilpotent if the total relation 1 on A is
k-supernilpotent. An algebra or a congruence is supernilpotent if it is k-supernilpotent for some k.

Definition 2.3. [10, p. 179], [9, p. 124] Let A be a set, let k ∈ N. Then c : Ak+1 → A is a commutator
if ∀x1, . . . , xk, z ∈ A:

z ∈ {x1, . . . , xk} ⇒ c(x1, . . . , xk, z) = z.

The commutator c has rank k if ∃a1, . . . , ak, o ∈ A : c(a1, . . . , ak, o) 6= o. Otherwise we say it is trivial.

By [1, Lemma 7.5] an algebra A in a congruence permutable variety is k-supernilpotent if and only
if A is nilpotent and all non-trivial commutators in Pol(A) have rank at most k (see also Lemma 2.8
below).

Let A be a finite nilpotent algebra of finite type that generates a congruence modular variety. We
then have that the following properties are equivalent:

1. A is a direct product of algebras of prime power order.

2. ∃M such that every non-trivial commutator in Clo(A) has rank at most M .

3. A is supernilpotent.

(1)⇒(2) follows from [9, Theorem 14.16]. (2)⇒(1) is due to Kearnes [10, Theorem 3.14]. (1)⇔(3)
was proved by Aichinger and Mudrinski [1, Lemma 7.6].

Lemma 2.4. Let A be an algebra with Mal’cev term operation m, let α be a central congruence of
A, and let a, b, c, o ∈ A with (c, o) ∈ α. Then

m(m(a, o, b), o, c) = m(a, o,m(b, o, c)) = m(m(a, o, c), o, b)

and
m(a, c, o) = m(a, o,m(o, c, o)).
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Proof. As [α, 1] = 0, [9, Proposition 5.7] implies that

m(m(a1, a2, a3),m(b1, b2, b3),m(c1, c2, c3))
= m(m(a1, b1, c1),m(a2, b2, c2),m(a3, b3, c3))

whenever bi ≡α ci for all i ∈ {1, 2, 3}. Hence

m(m(a, o, b), o, c) = m(m(a, o, b),m(o, o, o),m(o, o, c))
= m(m(a, o, o),m(o, o, o),m(b, o, c))
= m(a, o,m(b, o, c))

m(m(a, o, b), o, c) = m(m(a, o, b),m(o, o, o),m(c, o, o))
= m(m(a, o, c),m(o, o, o),m(b, o, o))
= m(m(a, o, c), o, b)

and
m(a, c, o) = m(m(a, o, o),m(c, c, c),m(c, c, o))

= m(m(a, c, c),m(o, c, c),m(o, c, o))
= m(a, o,m(o, c, o))

.

Lemma 2.5. [9, Lemma 7.3, Corollary 7.4] Let A be a nilpotent algebra with Mal’cev term operation
m. Then there exists f ∈ Clo3(A) such that ∀x, b, c ∈ A :

m(f(x, b, c), b, c) = x and f(m(x, b, c), b, c) = x.

In particular, for all b, c ∈ A
t : A → A, x 7→ m(x, b, c)

is a bijection.

In the proof of Theorem 1.1 we will need a more explicit version of Lemma 14.6 from [9] describing
term operations on nilpotent algebras which we will state next.

Set k := {1, . . . , k}, and for x ∈ Ak and S ⊆ k, let

xS := (xi)i∈S .

Lemma 2.6. [9, cf. Lemma 14.6] Let A be a finite nilpotent algebra with Mal’cev term operation m,
let k ∈ N, and fix a linear order � on the power set of k.

Let f ∈ Clok+1(A). Then for every S ⊆ k, S 6= ∅, there exists a commutator cS ∈ Clo|S|+1(A)

such that for all x ∈ Ak, z ∈ A

f(x, z) = f(z, . . . , z, z) +z

∑

S⊆k,S 6=∅

cS(xS , z)

where the sum is taken with respect to a +z b := m(a, z, b), associated left to right and ordered with
respect to �.

Proof. In the following, all additions refer to +z, and all sums are associated and ordered as in the
statement of the lemma. Let 1 denote the total relation on A, let 0 denote the equality relation on
A. Let (1, 1]0 := 1 and (1, 1]n+1 := [1, (1, 1]n] for n ∈ N0.

First we fix n ∈ N and consider an operation e ∈ Clok+1(A) such that ∀x ∈ Ak, z ∈ A

e(x, z) ≡ z mod (1, 1]n and e(z, . . . , z, z) = z.

We claim that there exist commutators dS ∈ Clo|S|+1(A), S ⊆ k, S 6= ∅, such that ∀x ∈ Ak, z ∈ A

e(x, z) ≡
∑

S⊆k,S 6=∅

dS(xS , z) mod (1, 1]n+1 and dS(xS , z) ≡ z mod (1, 1]n. (2.1)

4



We prove this by induction on k. If k = 1, then e itself is a commutator, and the assertion is trivially
true. Assume k > 1 in the following. Let eo := e, and for j ∈ k define ej ∈ Clok+1(A) iteratively by

ej(x1, . . . , xk, z)
:= m(ej−1(x1, . . . , xk, z), ej−1(x1, . . . , xj−1, z, xj+1, . . . , xk, z), z).

Then ej(x, z) ≡ z mod (1, 1]n for all x ∈ Ak, z ∈ A and ej(x1, . . . , xk, z) = z whenever xl = z for
some l ≤ j. In particular, ek is a commutator.

For T ⊆ k define δT : Ak+1 → Ak+1 by

(δT (x1, . . . , xk, z))i :=

{
xi if i ∈ T,

z else.

For a, z ∈ A write −za := m(z, a, z). Note that (1, 1]n/(1, 1]n+1 is central in A/(1, 1]n+1. Hence, for
every z ∈ A, the operations +z,−z, and z induce addition, inverse, and zero element of an abelian
group on {a/(1, 1]n+1 : a ≡ z mod (1, 1]n} by Lemma 2.4. From the definitions and Lemma 2.4 it
is straightforward that ∀x ∈ Ak, z ∈ A

ek(x, z) ≡
∑

T⊆k

(−1)k−|T |e (δT (x, z)) mod (1, 1]n+1

with − referring to −z and the order of the sum irrelevant because the summands commute (mod
(1, 1]n+1) with respect to +z. Since e ◦ δk = e, we obtain ∀x ∈ Ak, z ∈ A

e(x, z) ≡ ek(x, z) +
∑

T⊂k

(−1)k+1−|T |e (δT (x, z)) mod (1, 1]n+1. (2.2)

Let T ⊂ k. Then e ◦ δT does not depend on xi for i ∈ k \ T . From the induction assumption for k− 1
it follows that we have commutators dTS ∈ Clo|S|+1(A), for S ⊆ T, S 6= ∅, such that ∀x ∈ Ak, z ∈ A

e (δT (x, z)) ≡
∑

S⊆T,S 6=∅

dTS (xS , z) mod (1, 1]n+1, dTS (xS , z) ≡ z mod (1, 1]n.

Hence for every x ∈ Ak, z ∈ A we obtain
∑

T⊂k

(−1)k+1−|T |e (δT (x, z))

≡
∑

T⊂k

(−1)k+1−|T |
∑

S⊆T,S 6=∅

dTS (xS , z) mod (1, 1]n+1

≡
∑

S⊂k,S 6=∅

∑

S⊆T⊂k

(−1)k+1−|T |dTS (xS , z)

︸ ︷︷ ︸
=:dS(xS,z)

mod (1, 1]n+1.

We observe that dS ∈ Clo|S|(A) is a commutator because dTS is a commutator for every S ⊆ T ⊂ k

and that dS(xS , z) ≡ z mod (1, 1]n for every x ∈ Ak, z ∈ A. Finally (2.2) yields

e(x, z) ≡ ek(x, z)︸ ︷︷ ︸
=:dk(x,z)

+
∑

S⊂k,S 6=∅

dS(xS , z) mod (1, 1]n+1

which proves (2.1).
Next we consider an arbitrary operation f ∈ Clok+1(A). Let n ∈ N0. We claim that we have

commutators cS ∈ Clo|S|+1(A) for S ⊆ k, S 6= ∅, such that ∀x ∈ Ak, z ∈ A

f(x, z) ≡ f(z, . . . , z, z) +
∑

S⊆k,S 6=∅

cS(xS , z) mod (1, 1]n. (2.3)
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For the proof we use induction on n. For n = 0 the statement is trivially true. So assume we have (2.3)
for some fixed n ≥ 0. By Lemma 2.5 there exists e ∈ Clok+1(A) such that ∀x ∈ Ak, z ∈ A

f(x, z) = f(z, . . . , z, z) +
∑

S⊆k,S 6=∅

cS(xS , z) + e(x, z) (2.4)

as well as e(x, z) ≡ z mod (1, 1]n and e(z, . . . , z, z) = z. Now e can be written as a sum of commu-
tators dS modulo (1, 1]n+1 as in (2.1). Then (2.1) and (2.4) yield

f(x, z) ≡ f(z, . . . , z, z) +
∑

S⊆k,S 6=∅

cS(xS , z) +
∑

S⊆k,S 6=∅

dS(xS , z) mod (1, 1]n+1.

From Lemma 2.4 we obtain

f(x, z) ≡ f(z, . . . , z, z) +
∑

S⊆k,S 6=∅

(cS(xS , z) + dS(xS , z)) mod (1, 1]n+1.

Since cS + dS is a commutator for every S, the induction step is proved. Thus we can represent f as
in (2.3) for every n ∈ N0. For N such that (1, 1]N = 0 this yields the lemma.

We conclude the section with three observations on commutator polynomials and higher commu-
tators of congruences.

Lemma 2.7. Let A be an algebra in a congruence modular variety, let k ≥ 2, and let c ∈ Clok+1(A)
be a commutator. Let α, β be congruences of A, and let a1, . . . , ak, o ∈ A such that a1 ≡α o, a2 ≡β o.
Then

c(a1, . . . , ak, o) ≡[α,β] o.

Proof. Consider MA(α, β), the subuniverse of A2×2 that is generated by all the elements

(
a b
a b

)
,

(
e e
f f

)
for a, b, e, f ∈ A with a ≡α b, e ≡β f.

Then

c

((
o a1
o a1

)
,

(
o o
a2 a2

)
,

(
a3 a3
a3 a3

)
, . . . ,

(
ak ak
ak ak

)
,

(
o o
o o

))

=

(
o o
o c(a1, . . . , ak, o)

)

is contained in MA(α, β) and the result follows from the definition of the term condition commutator.

Lemma 2.8. Let A be a nilpotent algebra generating a congruence modular variety, let k ∈ N, and
let α1, . . . , αk be congruences of A. Then [α1, . . . , αk] is the congruence of A that is generated by

T := {(c(a1, . . . , ak, o), o) : c ∈ Polk+1(A), c is a commutator,

(a1, o) ∈ α1, . . . , (ak, o) ∈ αk}.

Proof. Let (o1, . . . , ok) ∈ Ak. As in Definition 4.9 of [1] we say that f : Ak → A is absorbing at
(o1, . . . , ok) if for all (x1, . . . , xk) ∈ Ak :

(∃i ∈ k : xi = oi) ⇒ f(x1, . . . , xk) = f(o1, . . . , ok).

By [1, Lemma 6.9] [α1, . . . , αk] is the congruence of A that is generated by

R := {(f(b1, . . . , bk), f(o1, . . . , ok)) : f ∈ Polk(A), f is absorbing at (o1, . . . , ok),

(b1, o1) ∈ α1, . . . , (bk, ok) ∈ αk}.
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Hence it suffices to prove
T = R. (2.5)

For the inclusion ⊆ let (a, o) ∈ T . Then we have a commutator c in Polk+1(A), and (a1, o) ∈
α1, . . . , (ak, o) ∈ αk such that (c(a1, . . . , ak, o), o) = (a, o).

Consider f : Ak → A, (x1, . . . , xk) 7→ c(x1, . . . , xk, o). Then f is a k-ary polynomial function on A

that is absorbing at (o, . . . , o). Since (f(a1, . . . , ak), f(o, . . . , o)) = (a, o), we obtain (a, o) ∈ R.
For the converse inclusion ⊇ in (2.5), let (a, o) ∈ R. Then we have (b1, o1) ∈ α1, . . . , (bk, ok) ∈ αk

and some f ∈ Polk(A) that is absorbing at (o1, . . . , ok) such that (f(b1, . . . , bk), f(o1, . . . , ok)) = (a, o).
Since A is nilpotent, it has a Mal’cev term operation m by [9, Theorem 6.2]. Define a (k + 1)-ary
polynomial operation c on A by

c(x1, . . . , xk, z) := m(f(m(x1, z, o1), . . . ,m(xk, z, ok)), o, z).

Note that c is a commutator. Let i ∈ k. By Lemma 2.5, we have ai ∈ A such that m(ai, o, oi) = bi.
Note that oi ≡αi

bi implies ai ≡αi
o. Now c(a1, . . . , ak, o) = f(b1, . . . , bk) and (a, o) ∈ T .

Let m be a Mal’cev term operation on an algebra A. Under certain conditions commutator terms
on A turn out to be multilinear and alternating with respect to the operation a+z b := m(a, z, b).

Lemma 2.9. Let A be a nilpotent algebra with Mal’cev term operation m, let k ∈ N, let c ∈ Clok+1(A)
be a commutator, and let α ∈ Con(A) be k-supernilpotent.

1. Then ∀x1, . . . , xk, y, z ∈ A with (x1, z), . . . , (xk, z), (y, z) ∈ α :

c(x1, . . . , xi +z y, . . . , xk, z) = c(x1, . . . , xi, . . . , xk, z) +z c(x1, . . . , y
i

, . . . , xk, z)

(multilinearity).

2. Let i, j ∈ {1, . . . , k} be distinct. Assume that ∀x1, . . . , xk, z ∈ A with (x1, z), . . . , (xk, z) ∈ α :

xi = xj ⇒ c(x1, . . . , xk, z) = z.

Then ∀x1, . . . , xk, z ∈ A with (x1, z), . . . , (xk, z) ∈ α :

c(x1, . . . , xi, . . . , xj , . . . , xk, z) +z c(x1, . . . , xj
i

, . . . , xi
j
, . . . , xk, z) = z

(alternating).

Proof. For simplicity, we will write + instead of +z throughout the proof. For (1) define

d(x1, . . . , xk, y, z)

:= m

(
c(x1, . . . , xi + y, . . . , xk, z), c(x1, . . . , xi, . . . , xk, z) + c(x1, . . . , y

i

, . . . , xk, z), z

)
.

Then d is a commutator. Let x1, . . . , xk, y, z ∈ A be fixed such that (x1, z), . . . , (xk, z), (y, z) ∈ α.
Since [α, . . . , α︸ ︷︷ ︸

k+1

] = 0, Lemma 2.8 yields d(x1, . . . , xk, y, z) = z. Since

m

(
c(. . . , xi, . . . ) + c(. . . , y

i

, . . . ), c(. . . , xi, . . . ) + c(. . . , y
i

, . . . ), z

)
= z,

Lemma 2.5 yields c(. . . , xi + y, . . . ) = c(. . . , xi, . . . ) + c(. . . , y, . . . ).
For (2) we note that (1) implies

c(. . . , xi + xj , . . . , xi + xj , . . . ) = c(. . . , xi, . . . , xi, . . . ) + c(. . . , xi, . . . , xj , . . . )

+c(. . . , xj , . . . , xi, . . . ) + c(. . . , xj , . . . , xj , . . . ).
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3 Proof of Theorem 1.1

This section consists almost entirely of the proof of the following result which will then yield Theo-
rem 1.1 in the end.

Theorem 3.1. Let A be a finite nilpotent algebra in a congruence modular variety. Assume that A
has a non-abelian k-supernilpotent congruence α (such that [α, . . . , α︸ ︷︷ ︸

k+1

] = 0) for some k ≥ 2. Then A

is inherently non-dualizable, i.e. every finite superalgebra B of A is non-dualizable.

Let A and B satisfy the assumptions of Theorem 3.1. We will show that B is not dualizable using
the ghost element method in the form of the following lemma.

Lemma 3.2 (Non-dualizability [5, Lemma 5.2]). Let B be a finite algebra and let N ∈ N. Assume
there is a subalgebra D of BJ , for some set J , and an infinite subset D0 of D such that

1. for each homomorphism ϕ : D → B, the equivalence relation ker(ϕ|D0
) has a unique block of

size more than N , and

2. the algebra D does not contain the element g of BJ given by g(i) := bi(i), where i ∈ J and bi
is any element of the unique infinite block of ker(πi|D0

).

Then B is non-dualizable.

Since A is nilpotent, it has a Mal’cev term operation m by [9, Theorem 6.2]. By assumption there
exists a non-abelian congruence β of A and some k′ ≥ 2 such that [β, . . . , β︸ ︷︷ ︸

k′+1

] = 0. Let α ∈ Con(A) be

minimal such that α ≤ β and α is non-abelian. Since A is nilpotent, γ := [α, α] is strictly smaller than
α and consequently abelian. Further we have 2 ≤ k ≤ k′ such that [α, . . . , α︸ ︷︷ ︸

k+1

] = 0 but [α, . . . , α︸ ︷︷ ︸
k

] 6= 0.

Hence, by Lemma 2.8, there exist a commutator c ∈ Polk+1(A) and (x1, z), . . . , (xk, z) ∈ α such that
c(x1, . . . , xk, z) 6= z. We will distinguish the following two cases.

Case 1, all commutators c ∈ Pol(A) of rank k satisfy c(x1, . . . , xk, z) = z whenever xi = xj for
some i 6= j and (x1, z), . . . , (xk, z) ∈ α: Fix a commutator f ∈ Polk+1(A), and fix o ∈ A, (a1, o), . . . ,
(ak, o) ∈ α such that f(a1, . . . , ak, o) 6= o.

Case 2, there exists a commutator c ∈ Pol(A) of rank k and (x1, z), . . . , (xk, z) ∈ α such that
xi = xj for some i 6= j and c(x1, . . . , xk, z) 6= z: By permuting coordinates if necessary, we then also
have a commutator f ∈ Polk+1(A) of rank k and o ∈ A, (a1, o), . . . , (ak, o) ∈ α with a1 = a2 such that
f(a1, . . . , ak, o) 6= o.

With elements a1, . . . , ak, o and commutator f chosen according to the above cases we proceed to
construct the subuniverse D of (BP(k))Z (where P(k) is the power set of k).

For a ∈ A, let ā ∈ AP(k) such that ā(S) := a for all S ⊆ k. For i ∈ k, define ui ∈ AP(k) by

ui(S) :=

{
ai if i ∈ S,
o else.

Let t := 2|B|+ 1. For i ∈ Z let di ∈ (AP(k))Z be given by

di(j) :=





u1 if j ∈ {i, i+ t+ 3},
u2 if j ∈ {i+ 1, i+ t+ 2},
ō else.

Then
di = (. . . , ō, u1

i
, u2, ō, . . . , ō︸ ︷︷ ︸

t

, u2, u1, ō, . . . ).

For l ∈ {3, . . . , k}, let
cl := (. . . , ul, ul, . . . ) ∈ (AP(k))Z,
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and for a ∈ A let
¯̄a := (. . . , ā, ā, . . . ) ∈ (AP(k))Z,

i.e., cl(j) = ul and ¯̄a(j) = ā for all j ∈ Z.
We let D be the subuniverse of (BP(k))Z that is generated by {di : i ∈ Z} ∪ {c3, . . . , ck} ∪ {¯̄a :

a ∈ A}. Note that D ⊆ (AP(k))Z.
To describe the set D0 from Lemma 3.2 we construct yet more elements in D. For i ∈ Z consider

di = (. . . ō
i−t−2
ō ō ō . . . ō

i
u1 u2 ō . . . ō

i+t+2
u2 u1 ō . . . )

di−t−2 = (. . . ō u1 u2 ō . . . ō u2 u1 ō . . . ō ō ō ō . . . )

and define vi,i+1 := f(di, di−t−2, c3, . . . , ck, ¯̄o). Then

vi,i+1(j) =





f(u1, u2, u3, . . . , uk, ō) if j = i,
f(u2, u1, u3, . . . , uk, ō) if j = i+ 1,
ō else.

Now let e := f(u1, . . . , uk, ō). Since f is a commutator, we have

e(S) =

{
f(a1, . . . , ak, o) if S = k,
o else.

We recall that γ = [α, α] is abelian. For x, y ∈ o/γ define

x+o y := m(x, o, y).

Then 〈o/γ,+o〉 is an abelian group by Lemma 2.4.
Since k ≥ 2, we have that f(a1, . . . , ak, o) ≡γ o by Lemma 2.7. Hence all entries of f(u1, u2, u3, . . . ,

uk, ō) are contained in o/γ. Similarly f(u2, u1, u3, . . . , uk, ō) ∈ (o/γ)P(k).
In Case 1: Lemma 2.9 yields f(a2, a1, a3, . . . , ak, o) = −f(a1, a2, a3, . . . , ak, o) in the group 〈o/γ,+o〉.

Hence
vi,i+1 = (. . . , ō, e

i
,−e
i+1

, ō, . . . ).

For i < j define vi,j :=
∑j−1

l=i vl,l+1. Then

vi,j = (. . . , ō, e
i
, ō, . . . , ō,−e

j
, ō, . . . ).

In Case 2: From a1 = a2 we obtain

vi,i+1 = (. . . , ō, e
i
, e
i+1

, ō, . . . ).

For i < j let vi,j :=
∑j−1

l=i (−1)l−ivl,l+1, which yields

vi,j = (. . . , ō, e
i
, ō, . . . , ō, (−1)j−i−1e

j

, ō, . . . ).

We want to use Lemma 3.2 with D0 := {v0,i : i ∈ N}, N := 2|B|(2|B|−1), and the ghost element
g with g(0) := e and g(i) := ō for i 6= 0. We will first establish the second condition of the Lemma,
i.e., that the ghost is not in D. This still requires some more preparation.

First we observe that if an element in D is congruent to ¯̄o modulo γ, then it can be written as sum
of a constant and commutators evaluated at generators of D such that every summand is congruent
to ¯̄o modulo γ.

Lemma 3.3. Let l < r, n := r − l + k − 1, and let h ∈ Poln+1(A) such that

h(dl, dl+1, . . . , dr, c3, . . . , ck, ¯̄o) ≡γ ¯̄o.
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For S ⊆ n, S 6= ∅, let cS ∈ Pol|S|+1(A) be commutators such that ∀x ∈ An, z ∈ A

h(x, z) = h(z, . . . , z, z) +z

∑

S⊆n,S 6=∅

cS(xS , z).

Write g1 := dl, g2 := dl+1, . . . , gr−l+1 := dr, gr−l+2 := c3, . . . , gn := ck. Then h(¯̄o, . . . , ¯̄o) ≡γ ¯̄o and
∀S ⊆ n, S 6= ∅:

cS(gS , ¯̄o) ≡γ ¯̄o.

Proof. We will once again write + instead of +z. We have

g1 = (. . .
l
u1 u2 ō . . . u2

l+t+3
u1 ō . . . ō ō . . . )

g2 = (. . . ō u1 u2 . . . ō u2 u1 . . . ō ō . . . )
...

gt+4 = (. . . ō ō ō . . . ō u1 u2 . . . u2 u1 . . . )
...

Note that (h(g1, . . . , gn, ¯̄o))(l)(∅) = h(o, . . . , o) implies h(¯̄o, . . . , ¯̄o) ≡γ ¯̄o. If |S| ≥ 2, then cS(gS , ¯̄o) ≡γ ¯̄o
by Lemma 2.7. So it only remains to prove the assertion for cS with |S| = 1. First we claim

c{s}(a1, o) ≡γ o for all s ∈ {1, . . . , r − l+ 1}. (3.1)

For the proof we use induction on s. For s ∈ {1, . . . , t+ 3} we have

(h(g1, . . . , gn, ¯̄o))(l − 1 + s)({1}) = h(o, . . . , o) + c{s}(a1, o)

and consequently c{s}(a1, o) ≡γ o. Now let s ∈ {t+ 4, . . . , r − l+ 1}. Then

(h(g1, . . . , gn, ¯̄o))(l − 1 + s)({1}) = h(o, . . . , o) + c{s−(t+3)}(a1, o) + c{s}(a1, o).

Since c{s−(t+3)}(a1, o) ≡γ o by induction assumption, we get c{s}(a1, o) ≡γ o as well. Hence (3.1) is
proved.

Similarly we obtain c{s}(a2, o) ≡γ o, which together with (3.1) implies c{s}(gs, ¯̄o) ≡γ ¯̄o for all
s ∈ {1, . . . , r − l + 1}.

Now let j ∈ {3, . . . , k}. Then

(h(g1, . . . , gn, ¯̄o))(l)({j}) = h(o, . . . , o) + c{r−l+j−1}(aj , o),

which yields c{s}(gs, ¯̄o) ≡γ ¯̄o for all s ∈ {r − l + 2, . . . , n}.

We are now ready to characterize those elements in D that are congruent to ¯̄o modulo γ by their
parities.

Lemma 3.4. Let w ∈ D be such that w(i)(S) ≡γ o for all i ∈ Z, S ∈ P(k). Assume that w(i) = ō for
all but finitely many i ∈ Z. Then the following parity conditions hold in the abelian group 〈o/γ,+o〉.
In Case 1: ∑

i∈Z

∑

S⊆k

(−1)|S|w(i)(S) = o.

In Case 2: ∑

i∈Z

(−1)i
∑

S⊆k

(−1)|S|w(i)(S) = o

10



Proof. By Lemmas 2.6 and 3.3, w is a sum of elements c(g1, . . . , gn, ¯̄o) where c ∈ Poln(A) is a
commutator and {g1, . . . , gn} ⊆ {di : i ∈ Z} ∪ {c3, . . . , ck}. Since [α, . . . , α︸ ︷︷ ︸

k+1

] = 0, we may assume

n ≤ k (otherwise c(g1, . . . , gn, ¯̄o) = ¯̄o by Lemma 2.8). Further, by Lemma 3.3, all these summands are
congruent to ¯̄o modulo γ. Since +o is commutative on o/γ, it suffices to prove the assertion for every
summand. So assume w = c(g1, . . . , gn, ¯̄o) where c ∈ Poln(A) is a commutator and {g1, . . . , gn} ⊆
{di : i ∈ Z} ∪ {c3, . . . , ck}.

Case, {g1(i), . . . , gn(i), ō} 6= {u1, . . . , uk, ō} for all i ∈ Z: We claim that

∀i ∈ Z :
∑

S⊆k

(−1)|S|w(i)(S) = o. (3.2)

For i ∈ Z fixed, let l ∈ k be such that ul 6∈ {g1(i), . . . , gn(i)}. Let S ⊆ k\{l}. Since uj(S) = uj(S∪{l})
for all j ∈ k, j 6= l, we obtain

w(i)(S) = (c(g1, . . . , gn, o))(i)(S) = (c(g1, . . . , gn, o))(i)(S ∪ {l}) = w(i)(S ∪ {l}).

From this, (3.2) and the result follows.
Case, we have i ∈ Z such that {g1(i), . . . , gn(i)} = {u1, . . . , uk}: Then n = k. Without loss of

generality we may assume that gj(i) = uj for all j ∈ k. Then

g1 ∈ {di, di−t−3},

g2 ∈ {di−1, di−t−2},

g3 = c3,

...

gk = ck.

In each of these 4 cases we have c(g1, . . . , gk, ¯̄o)(j) = ō for all but possibly 2 integers j. We always
have

c(g1, . . . , gk, ¯̄o)(i) = c(u1, . . . , uk, ō)

and depending on the choice for g1, g2 also

c(di, di−1, c3, . . . , ck, ¯̄o)(i + t+ 2)
c(di, di−t−2, c3, . . . , ck, ¯̄o)(i + 1)
c(di−t−3, di−1, c3, . . . , ck, ¯̄o)(i − 1)
c(di−t−3, di−t−2, c3, . . . , ck, ¯̄o)(i − t− 2)





= c(u2, u1, u3 . . . , uk, ō).

In Case 1, Lemmas 2.9 and 2.7 yield c(u2, u1, u3 . . . , uk, ō) = −c(u1, . . . , uk, ō). Hence

∑

j∈Z

w(j) = ō

and the result follows.
In Case 2, a1 = a2 yields c(u1, . . . , uk, ō) = c(u2, u1, u3 . . . , uk, ō). Since the difference between i

and the second index at which w is not ō is always odd, we obtain

∑

j∈Z

(−1)jw(j) = ō.

Again the result follows.

Lemma 3.5. g = (. . . , ō, e
0
, ō, . . . ) is not in D.

Proof. Immediately from Lemma 3.4.
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Now we verify that the first condition of Lemma 3.2 holds for N := 2|B|(2|B|− 1). Let ϕ : D → B

be a homomorphism with kernel ker(ϕ) =: θ. We will show that ker(ϕ|D0
) has only one block of size

greater than N .
First we establish a bound on the number of elements vi,i+1 that are not congruent to ¯̄o modulo θ.

Lemma 3.6. Let I := {i ∈ Z : vi,i+1 6≡θ ¯̄o}. Then |I| ≤ 2|B|.

Proof. Suppose that |I| > 2|B|. Then there are p, q, r ∈ I with p < q < r such that dp ≡θ dq ≡θ dr.
Observe that

dr = (. . .
p−t−2
ō ō . . .

p

ō ō (. . . )
r
u1 u2 . . .

r+t+2
u2 u1 . . . )

dp−t−2 = (. . . u1 u2 . . . u2 u1 (. . . ) ō ō . . . ō ō . . . )

where the (. . . ) stands for arbitrary (potentially 0) many terms ō. In particular,

∀i ∈ Z : dp−t−2(i) = ō or dr(i) = ō.

Thus
vp,p+1 = f(dp, dp−t−2, c3, . . . , ck, ¯̄o) ≡θ f(dr, dp−t−2, c3, . . . , ck, ¯̄o) = ¯̄o

which contradicts p ∈ I. Hence |I| ≤ 2|B|.

Next we show that if L is a small enough integer and J a long enough interval with vl,l+1 ≡θ ¯̄o for
all l ∈ J , then vL,l ≡θ ¯̄o for all l ∈ J .

Lemma 3.7. Let L < min(I), and let J := {j, . . . , j + 2|B| − 2} such that I ∩ J = ∅. Then vL,l ≡θ ¯̄o
for all l ∈ J .

Proof. Choose an integer n ≥ 1 such that j + 2|B| − 1− L ≤ (2n+ 1)(t+ 3). For i ∈ Z define

wi := m(. . . (m(di, di+(t+3), di+2(t+3)), . . . ), di+(2n−1)(t+3), di+2n(t+3)).

Let −u2 := m(ō, u2, ō). It is straightforward to see

wi(l) =






u1 if l ∈ {i, i+ (2n+ 1)(t+ 3)},

u2 if l = i+ 1 + λ(t+ 3) for some λ ∈ {0, 2, 4, . . . , 2n},

u2 if l = i+ t+ 2 + λ(t + 3) for some λ ∈ {0, 2, 4, . . . , 2n},

−u2 if l = i+ 1 + λ(t+ 3) for some λ ∈ {1, 3, 5, . . . , 2n− 1},

−u2 if l = i+ t+ 2 + λ(t + 3) for some λ ∈ {1, 3, 5, . . . , 2n− 1},

ō else.

That is,

wi = (. . . , ō, u1
i
, u2, ō, . . . , ō, u2, ō

i+t+3
, −u2, ō, . . . , ō, −u2, ō

i+2(t+3)
, u2, ō, . . .

. . . , ō, −u2, ō
i+2n(t+3)

, u2, ō, . . . , ō, u2, u1
i+(2n+1)(t+3)

, ō, . . . ).

Let T := (2n+ 1)(t+ 3).
Now consider wi and wi−1 given by

wi = (. . . ō
i
u1 u2 . . . ō u2

i+t+3
ō −u2 . . . ō u2

i+T
u1 . . . ),

wi−1 = (. . . u1 u2 ō . . . u2 ō −u2 ō . . . u2 u1 ō . . . ).

Then
f(wi, wi−1, c3, . . . , ck, ¯̄o) = vi,i+T−1,

where in Case 2, we used that T−1 is odd, and hence vi,i+T−1(i+T−1) = +e = f(u2, u1, c3, . . . , ck, ō).
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We have integers p, q, r with j − T + 1 ≤ p < q < r ≤ j − T +2|B|+ 1 such that wp ≡θ wq ≡θ wr.
Since p+ 1 < r < p+ t, we have (similar to the argument for Lemma 3.6)

wp−1 = (. . . u1 u2 ō (. . . ) ō ō (. . . )
wr = (. . . ō ō

p
ō
≤q

(. . . ) u1
r

u2
≤(p−1)+t+1

(. . . )

u2 ō −u2 (. . . ) ō ō ō (. . . )
ō

(p−1)+t+2
ō ō

≤q+t+2
(. . . ) u2

r+t+2
ō −u2

≤(p−1)+2(t+3)−2
(. . . )

u2 u1 (. . . ) ō ō . . . )
ō

(p−1)+T−1
ō

≤q+T−1
(. . . ) u2 u1

r+T
. . . )

We observe that
∀i ∈ Z : wp−1(i) = ō or wr(i) = ō.

Thus
vp,p+T−1 = f(wp, wp−1, c3, . . . , ck, ¯̄o) ≡θ f(wr, wp−1, c3, . . . , ck, ¯̄o) = ¯̄o.

Since p ≤ j − T + 2|B| − 1 ≤ L and vl,l+1 ≡θ ¯̄o for all l ≤ L, this yields

vL,p+T−1 ≡θ ¯̄o.

Note that p+ T − 1 is in J . Since vl,l+1 ≡θ ¯̄o for all l ∈ J , we finally obtain

vL,l ≡θ ¯̄o for all l ∈ J.

Lemma 3.8. Let L be an even negative integer with L < min(I). Then

|{i ∈ N : v0,i 6≡θ −vL,0}| ≤ 2|B|(2|B| − 1).

Proof. Let i ∈ N. Note that
vL,i = vL,0 + v0,i.

Assume v0,i 6≡θ −vL,0. Then vL,i 6≡θ ¯̄o. So, by Lemma 3.7, we have j ∈ I such that |i − j| ≤ |B| − 1.
Together with Lemma 3.6 this yields the result.

Finally all assumptions of Lemma 3.2 are satisfied for N = 2|B|(2|B|− 1) and D and D0 as above.
It follows that B is not dualizable. Theorem 3.1 is proved.

Proof of Theorem 1.1. Let A be a finite non-abelian nilpotent algebra of finite type that splits into
a direct product of prime power algebras. Then A is supernilpotent by [1, Lemma 7.6]. Hence A

satisfies the assumptions of Theorem 3.1 with α := 1, and the result follows.

4 A clone theoretic characterization of duality

In the next section, we will give an example of a dualizable algebra that limits how far Theorem 3.1
can be generalized. We will show duality by a novel approach using clone theory that was suggested
by Willard in a conference talk [17] and further developed by Davey, Pitkethly, and Willard in the
paper [8]. We note that in [8] the authors develop an extension of the duality theory from [4]; see
the appendix for a discussion of the clone theoretic approach in this new so-called symmetric setting
and explanations about the (minor) differences between the theories. As explained in the appendix
to [8], results stated in one setting can be readily translated to the corresponding results in the other
setting.
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In the present section we state Willard’s clone theoretic condition that is sufficient for dualizability
in Corollary 4.3. For the convenience of the reader, we give a proof based on wellknown results from
the book [4], namely the Third Duality Theorem and the Duality Compactness Theorem; see the
appendix for a development of the corresponding results in the symmetric setting of [8].

We briefly recall the definition of duality from [4]. Let A0 be a finite algebra with universe A0,
and consider a topological structure A

˜ 1 := 〈A0,F ,R, τ 〉 on A0, where F is a set of total or partial
operations, R is a set of relations, and τ is the discrete topology, such that each operation of A
preserves each relation R ∈ R and the graph of each F ∈ F . Then A

˜ 1 is called an alter ego of A0.
The aim of duality theory is to find suitable choices of F and R in order to set up a dual represen-

tation between two different categories. One corresponds to the quasi-variety A := ISP(A0) generated
by A0, consisting of all isomorphic copies of subalgebras of powers of A0. The other corresponds to
the topological quasi-variety X := ISCP

+(A
˜ 1) of isomorphic copies of closed substructures of powers

of A
˜ 1, where powers are taken over non-empty index sets. The morphisms of the categories are the

homomorphisms and continuous homomorphisms, respectively, among their objects.
We can set up mappings D : A → X and E : X → A. For A ∈ A let D(A) be the substructure

of A
˜

A
1 whose universe consists of all homomorphisms from A to A0. For X ∈ X let E(X) be the

subalgebra of AX
0 whose universe consists of all continuous homomorphisms from X to A

˜ 1 (we remark
in passing that D and E can be extended to contravariant functors between A and X ).

Now for each A ∈ A we have a natural embedding eA : A → ED(A) given by evaluation, i.e.
eA(a) is given by h 7→ h(a) for each continuous homomorphism h ∈ D(A).

We say that A
˜ 1 dualizes A0 if eA is an isomorphism for each A ∈ A. A0 is dualizable if there is a

structure A
˜ 1 that dualizes A0. We say that A

˜ 1 dualizes A0 at the finite level if eA is an isomorphism
for each finite A ∈ A.

The next definitions will be used in providing a clone theoretic approach to dualizability. Let A
be an algebra. A subset D of some finite power Ak of A is c.a.d. (conjunct-atomic definable [8]) over
A if it is definable by a conjunction of atomic formulas over A. That is, D is c.a.d. over A if there
exist f1, . . . , fl, g1, . . . , gl ∈ Clok(A) such that

D = {x ∈ Ak : f1(x) = g1(x), . . . , fl(x) = gl(x)}.

Note that the empty set ∅ may be c.a.d. over A. In [4, p. 66] c.a.d. relations are called term closed.
Let R ⊆ An, and for D ⊆ Ak let f be a partial operation f : D → A. We can extend f to a partial

operation fAn

on An by evaluating f coordinatewise. We say that f preserves R if

∀r1, . . . , rk ∈ R : fAn

(r1, . . . , rk) ∈ R whenever defined.

We denote the set of all restrictions of term operations on A to c.a.d. domains by Clocad(A). We
say that the partial clone Clocad(A) is finitely related if there exist a finite set R = {R1, . . . , Rl} of
subuniverses of finite powers of A such that the following are equivalent for every partial operation f
on A with c.a.d. domain over A:

1. f preserves the relations R1, . . . , Rl,

2. f ∈ Clocad(A).

We note that the implication (2) ⇒ (1) is trivially satisfied because R1, . . . , Rl are subuniverses of
powers of A.

We will need the following variants of well known results.

Theorem 4.1 (cf. Third Duality Theorem, 3.1.6 in [4]). Let R := {R1, . . . , Rl} be a finite set of
relations on A, the universe of the finite algebra A, and let A

˜
:= 〈A, ∅,R, τ 〉 be with τ the discrete

topology on A. The following are equivalent:

1. The structured space A
˜

dualizes A at the finite level.

2. For any k ∈ N and any substructure D
˜
of A

˜
k whose universe D is c.a.d. over A, every morphism

D
˜
→ A

˜
extends to a total k-ary term function on A.
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3. Clocad(A) is finitely related by the relations R1, . . . , Rl.

Proof. (1) ⇔ (2) is a special case of the finite level case of the Third Duality Theorem 3.1.6 in [4].
For (2) ⇒ (3) consider a partial operation f : D → A with domain D ⊆ Ak c.a.d. over A such that f
preserves the relations in R. Then D induces a substructure D

˜
of A

˜
k. As D is finite and τ discrete,

and f preserves all relations R in R, f is actually a morphism from D
˜

to A
˜

in the sense of [4, p. 21].
By (2) f extends to a total term operation on A, that is, f ∈ Clocad(A). Hence we have (3).

The converse implication (3)⇒ (2) follows similarly: Let D
˜
be a substructure ofA

˜
k whose universe

is c.a.d. over A, and let f : D
˜

→ A
˜

be a morphism. Then f preserves the relations R1, . . . , Rl and
f ∈ Clocad(A) by (3). Thus f extends to a term operation on A, and we have (2). Clocad(A). No

Theorem 4.2 (Duality Compactness Theorem, 2.2.11 in [4]; independently Willard [16], Zadori [18]).
Let A be a finite algebra. If the structure A

˜
is of finite type and dualizes A at the finite level, then A

˜dualizes A.

Combining the above results (equivalently, combining the version of Duality Lemma 4.1 from [8]
for the so-called usual setting with the Duality Compactness Theorem), we immediately get:

Corollary 4.3 (Willard [17]). Let A be a finite algebra. If Clocad(A) is finitely related by relations
R1, . . . , Rl, then A is dualized by the finitary structure A

˜
:= 〈A, ∅, {R1, . . . , Rl}, τ〉 with τ the discrete

topology on A.

5 Nilpotent and dualizable

We give an example that shows that in Theorem 3.1 the condition that A has a non-abelian, su-
pernilpotent congruence cannot be removed. In particular dualizable non-abelian nilpotent Mal’cev
algebras exist.

Throughout the remainder of this section let

A := 〈Z4,+, 1, {2x1 . . . xk : k ∈ N}〉.

We note that A is nilpotent with center ≡2 but not supernilpotent. Observe that every reduct of
finite type of A with group operation is inherently non-dualizable by Theorem 1.1. Still we have the
following result:

Theorem 5.1. A := 〈Z4,+, 1, {2x1 . . . xk : k ∈ N}〉 is dualizable by the alter ego A
˜

:= 〈A, ∅,R, τ 〉,
where R is the set of all subuniverses of A4.

Before proving the theorem we describe the term operations on A. For k ∈ N and v ∈ Zk
4 , define

cv : Z
k
4 → Z4, x 7→

{
2 if x ∈ v + 2Zk

4 ,

0 else.

Lemma 5.2. Let f : Zk
4 → Z4 with f(0, . . . , 0) = 0. Then f ∈ Clok(A) iff ∃λ1, . . . , λk ∈ Z4, ∃v1, . . . , vl

∈ Zk
4 such that ∀x ∈ Zk

4 :

f(x) =

k∑

i=1

λixi + cv1(x) + · · ·+ cvl(x). (5.1)

Proof. Any f ∈ Clok(A) with f(0, . . . , 0) = 0 can be written as

f(x) =

k∑

i=1

λixi + g(x),

where g(x) is a sum of terms 2xj1 . . . xjn for some n ∈ N and j1, . . . , jn ∈ {1, . . . , k}. It follows that
g(x) = g(x+y) for all y ∈ 2Zk

4 . Pick a set vi of representatives for those residue classes of Z
k
4 mod 2Zk

4

which are mapped to 2 by g. Expression (5.1) follows.
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Conversely, let f be of the form (5.1). If vi = (w1, . . . , wk), then ∀x1, . . . , xk ∈ A

cvi(x1, . . . , xk) = 2(1 + x1 + w1) · · · (1 + xk + wk).

Hence all cvi are in Clok(A), and hence f ∈ Clok(A).

Next we determine the c.a.d. relations over A.

Lemma 5.3. Let D ⊆ Zk
4 with (0, . . . , 0) ∈ D, let B := 2Zk

4 . Then D is c.a.d. over A if and only if
there exists a subgroup U of 〈B,+〉 and v1, . . . , vl ∈ Zk

4 such that vi − vj 6∈ B whenever i 6= j, 2vi ∈ U
for all i, and

D = v1 + U ∪ · · · ∪ vl + U. (5.2)

Proof. Assume D is c.a.d. We have f1, . . . , fn ∈ Clok(A) such that D = {x ∈ Zk
4 : f1(x) =

0, . . . , fn(x) = 0}. By Lemma 5.2 we have a k × n-matrix H over Z4 and vectors bw ∈ 2Zn
4 for

w ∈ {0, 1}k such that

D =
⋃

w∈{0,1}k

{x ∈ w +B : H · x = bw}.

Let U := {x ∈ B : H · x = 0}. Since (0, . . . , 0) ∈ D, we have b(0,...,0) = (0, . . . , 0) and D ∩B = U .

Let w ∈ {0, 1}k such that D ∩w+B 6= ∅, say v ∈ D ∩w+B. It follows that D ∩w+B = v +U .
Since H · v = bw ∈ 2Zn

4 , we have H · (2v) = 0 and 2v ∈ U . Hence D is as in (5.2).
The converse implication of the lemma is now straightforward.

Finally we show that Clocad(A) is finitely related.

Lemma 5.4. Clocad(A) is the set of partial operations with c.a.d. domain over A that preserve all
subuniverses of A4.

Proof. Let D ⊆ Zk
4 be c.a.d. over A, and let f : D → Z4 preserve all subuniverses of A4. We will

show that f is the restriction of a term operation on A. Since all constants are term operations on
A, we may assume w.l.o.g. that (0, . . . , 0) ∈ D and f(0, . . . , 0) = 0.

Let U := D∩ 2Zk
4 . By Lemma 5.3 we have v1, . . . , vl ∈ Zk

4 such that vi− vj 6∈ 2Zk
4 whenever i 6= j,

2vi ∈ U for all i, and D = v1 + U ∪ · · · ∪ vl + U . Note that

M := {

(
a b

a+ 2c b+ 2c

)
: a, b, c ∈ A}

is a subuniverse of A2×2 and hence preserved by f . Thus for all x ∈ D, u ∈ U with x+u ∈ D we have

(
f(0, . . . , 0) f(x)

f(u) f(x+ u)

)
∈ M.

Hence
∀x ∈ D, u ∈ U : x+ u ∈ D ⇒ f(x+ u) = f(x) + f(u). (5.3)

In particular f |U is a group homomorphism from U to Z4. Hence we have t ∈ Clok(〈Z4,+〉) such that
f |U = t|U . For x ∈ D define

g(x) := f(x)− t(x).

Let i ∈ {1, . . . , l}. From (5.3) it follows that

∀u ∈ U : g(vi + u) = g(vi). (5.4)

We claim that
g(vi) ∈ 2Z4. (5.5)

For the proof consider
hi : Z4 → Z4, x 7→ g(xvi).
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Note that hi is indeed a total unary operation on Z4 since 2vi ∈ U implies that Z4vi ⊆ D. Since
Clo1(A) embeds into A4, we have that g preserves Clo1(A) and consequently hi ∈ Clo1(A). Now
hi(0) = g(0) = 0 and hi(2) = g(2vi) = 0. As hi is a term operation on A, this implies either hi(x) = 0
for all x ∈ Z4 or hi(x) = 2x for all x ∈ Z4. In any case hi(1) = g(vi) is in 2Z4 which proves (5.5).

From (5.4) and (5.5) we obtain that for all x ∈ D

g(x) =
∑

{cvi(x) : g(vi) = 2, i ∈ {1, . . . , l}}.

Hence f is the restriction of the term operation t+
∑

{cvi : g(vi) = 2, i ∈ {1, . . . , l}}.

Proof of Theorem 5.1. Since Clocad(A) is finitely related by the elements of R by Lemma 5.4, A
˜dualizes A by Corollary 4.3.

6 Problems

Pontryagin duality yields that finite abelian groups are dualizable. In general, abelian algebras in con-
gruence modular varieties are polynomially equivalent to modules over rings. Although the structure
of these algebras is well understood, to our knowledge the following is still open.

Problem 6.1. Is every finite abelian algebra in a congruence modular variety dualizable? Is every
finite module over a ring dualizable?

More generally we would also like a characterization of all nilpotent algebras that are dualiz-
able. Is supernilpotence the only obstacle for dualizability? Can we prove some kind of converse to
Theorem 3.1?

Problem 6.2. Are the following equivalent for every finite nilpotent algebra A?

1. A is dualizable.

2. For every subalgebra B of A, all supernilpotent congruences of B are abelian.

7 Appendix

In [8], Davey et al. develop a new approach to dualities that extends the theory (on the algebraic
side) to structures with partial operations and relations, and also places it in a slightly more restricted
setting (termed the symmetric setting). An extension to the duality theory from [4] is discussed in an
appendix and termed the usual setting. The differences between the various settings are restricted to
trivial members of the involved categories, however they do effect part of the argument from Section 4.
We have therefore decided to base the arguments in that section on [4], and to included this appendix
showing how to derive the same conclusions in the symmetric setting of [8].

We need to make slight adjustments to the definitions from Section 4. In order to state the result
in the language of [8] we will formulate it for structures, although we will only use structures that
are effectively algebras. We will also slightly change the definition of Clocad to Clo∗cad. This change is
actually not necessary in formulating the result, but reflects that the symmetric setting avoids partial
operations with empty domains. Note that the modifier ∗ is not from [8] but is used here to clearly
distinguish the two definitions.

Duality in [8] is defined not for algebras but for base structures. A base structure is a finite non-
empty structure 〈A,F ,R〉 where F is a set of partial operations on A and R a set of relations on A,
where (in the symmetric setting) all functions are non-nullary and have non-empty domain, and all
relations are non-empty.

For our purposes, let 〈A0,F〉 be an algebra without nullary operations. This modification is
inconsequential, as we will also (see below) exclude the empty structure from our modified version of
X . Hence we may replace any constants by the corresponding unary function with constant image.
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We will identify A0 with the base structure 〈A0,F , ∅〉, keeping the name A0 for both. We will leave
it to the reader to check that dualizability of the algebra A0, as defined in Section 4 corresponds to
dualizability of the base structure A0 in the so called usual setting of [8].

Duality in the context of the symmetric setting is characterized by replacing the category A with
a slightly more restricted versions of itself. Let A∗ be the category ISP

+(A0) of all base structures
isomorphic to substructures of powers ofA0 over non-empty index sets, together with their morphisms.
So when considered as a class of algebras,A∗ will either equalA or can be obtained fromA by removing
all one-element algebras. Similarly, on the topological side we replace X with X ∗, which is obtained
from X by removing the empty structure and its morphisms (if present). We define the functors D
and E as before, and we get a notion of duality or finite level duality in the symmetric setting by
restricting the corresponding definitions to structures from A∗.

As before we define a subset D ⊆ Ak
0 for k ≥ 1 to be c.a.d. (conjunct-atomic definable) over A0 if

it is definable by a conjunction of atomic formulas over A0. The set of all finitary non-empty relations
that are c.a.d. over A0 is called Defca(A). We denote the set of all restrictions of term operations
on A to domains in Defca(A) by Clo∗cad(A) (note that in [8], the elements of Clo∗cad(A) are called
structural functions).

Let R ⊆ An
0 be non-empty. For non-empty D ⊆ Ak

0 a partial operation f : D → A0 preserves R if

∀r1, . . . , rk ∈ R : fAn

(r1, . . . , rk) ∈ R whenever defined,

where fAn

is defined as in Section 4. We say Clo∗cad(A0) is finitely related if there exist finitely many
subuniverses R1, . . . , Rl of finite powers of A0 such that the following are equivalent for every partial
operation f on A with non-empty c.a.d. domain over A0:

1. f preserves the relations R1, . . . , Rl,

2. f ∈ Clo∗cad(A0).

We are now able to state a sufficient condition for dualizability in the sense of [8]. Instead of a
direct derivation in this setting (in a similar fashion to Section 4 with the role of the Third Duality
Theorem replaced by Theorem 4.1 of [8]), we will instead translate between the theories.

Corollary 7.1. Let A0 be a finite algebra without nullary operations. Assume that Clo∗cad(A0) is
finitely related by R1, . . . , Rl. Then A0 is dualized in the symmetric setting of [8] by

〈A0, ∅, {R1, . . . , Rl}, τ〉,

where τ is the discrete topology.

Proof. As the empty operation is compatible with all relations, Clocad(A0) is also finitely related by
R1, . . . , Rl and hence is dualized by 〈A0, ∅, {R1, . . . , Rl}, τ 〉 in the usual setting by Corollary 4.3. By
Lemma A.4 of [8] we get a duality in the symmetric setting if we remove all empty operations from
A0 and replace all nullary operations of 〈A0, ∅, {R1, . . . , Rl}, τ〉 with unary ones. However, in our case
these changes preserve both the algebraic and the topological structure. The result follows.
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[13] R. Quackenbush and Cs. Szabó. Nilpotent groups are not dualizable. J. Aust. Math. Soc.,
72(2):173–179, 2002.
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