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Large deviations for the annealed Ising model
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Abstract

We prove a large deviations principle for the total spin and the number of edges under the annealed
Ising measure on generalized random graphs. We also give detailed results on how the annealing over
the Ising model changes the degrees of the vertices in the graph and show how it gives rise to interesting
correlated random graphs.

1 Introduction and main results

Recently, there has been substantial work on Ising models on random graphs, as a paradigmatic model
for dependent random variables on complex networks. While much work exists on random graphs with
independent randomness on the edges or vertices, such as percolation and first-passage percolation (see [20]
for a substantial overview of results for these models on random graphs), the dependence of the random
variables on the vertices raises many interesting new questions. We refer to [4, 5, 8, 11, 12, 13, 18, 17]
for recent results on the Ising model on random graphs, as well as [20, Chapter 5] and [9] for overviews.
The crux about the Ising model is that the variables that are assigned to the vertices of the random
graph wish to be aligned, thus creating positive dependence. Since the Ising model lives on a random
graph, we are dealing with non-trivial double randomness of both the spin system as well as the random
environment. While [8, 12, 13, 17] study the quenched setting, in which the random graph is either
fixed (random-quenched) or the Boltzmann-Gibbs measure is averaged out with respect to the random
medium (averaged-quenched), recently the annealed setting, in which both the partition function and the
Boltzmann weight are averaged out separately has attracted substantial attention [4, 5, 11, 18]. The
random graph models investigated are rank-1 inhomogeneous random graphs [11, 18], as well as random
regular graphs and configuration models [4, 5, 17]. Depending on the setting, the annealed setting may
have a different critical temperature. However, as predicted by the non-rigorous physics work [23, 14], the
annealed Ising model turns out to be in the same universality class as the quenched model for all settings
investigated [5, 11, 13].

In this paper, we extend the analysis of the annealed Ising model on inhomogeneous random graphs
to their large deviation properties. We investigate both the large deviations of the total spin, which is a
classical problem dating back at least to Ellis [16, 15], but we also consider the large deviation properties
under the annealed measure of purely graph quantities, such as the number of edges or the vertex degrees.
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Such problems are in general difficult since the rate function is not convex at low temperatures (β > βc),
so the Gärtner-Ellis theorem cannot be used directly.

Our main results provide a formula for the large deviation function of the total spin that holds true even
when the hypothesis of the theorem are not satisfied, i.e., at low temperatures. This formula is indeed valid
for all values of the parameters determining the phase diagram. To overcome the lack of differentiability of
the annealed pressure (which is a necessary condition for the application of the Gärtner-Ellis theorem) at
low temperatures, we shall use the key property that the annealed Ising model on the generalized random
graph can be mapped to an inhomogeneous mean-field (Curie-Weiss) model. As a consequence, the large
deviation function of the total spin can be deduced from classical results for independent variables and
application of the Varadhan’s lemma.

The study of large deviations for the number of edges brings the fact to light that, if one focuses
solely on graph observables and properties, then annealing can be described in terms of a modified law
for the graph. Our results show that in the annealed setting, the typical number of edges present is
substantially larger than the typical value under the original law of the graph, thus quantifying the effect
that the annealing has on the structure of the random graph involved. As explained in more detail below,
one could think of the annealed Ising model on a random graph as giving rise to a random graph with
an interesting correlation structure between the edges. To gain more understanding on this correlation
structure we also investigate the degrees distribution under the annealed Ising measure. Again we find
that the degree of a fixed vertex (or the degree of a uniformly chosen vertex) under the modified graph
law has a distribution with a larger mean.

1.1 The annealed Ising model on generalized random graphs

We now introduce the model. We first define the specific random graph model, the so-called generalized
random graph, and then define the (annealed) Ising model.

1.1.1 Generalized random graph

To construct the generalized random graph [3], let Iij denote the Bernoulli indicator that the edge between
vertex i and vertex j is present and let pij = P (Iij = 1) be the edge probability, where different edges are
present independently. Further, consider a sequence of non-negative weights w = (wi)i∈[n] whose label i
runs through the vertex set [n] = {1, . . . , n}. Then, the generalized random graph, denoted by GRGn(w),
is defined by

pij =
wiwj

ℓn + wiwj
, (1.1)

where ℓn =
∑

i∈[n]wi is the total weight of all vertices. Denote the law of GRGn(w) by P and its
expectation by E. There are many related random graph models (also called rank-1 inhomogeneous
random graphs [2]), such as the random graph with specified expected degrees or Chung-Lu model [6, 7]
and the Poisson random graph or Norros-Reittu model [24]. Janson [21] shows that many of these models
are asymptotically equivalent. Even though his results do not apply to the large deviation properties of
these random graphs, all our results also apply to these other models.

We need to assume that the vertex weight sequences w = (wi)i∈[n] are sufficiently nicely behaved. Let
Un ∈ [n] denote a uniformly chosen vertex in GRGn(w) and Wn = wUn its weight. Then, the following
condition defines the asymptotic weight W and set the convergence properties of (Wn)n≥1 to W :

Condition 1.1 (Weight regularity). There exists a random variable W such that, as n→ ∞,

(a) Wn
D−→ W , where

D−→ denotes convergence in distribution;
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(b) E[Wn] =
1
n

∑
i∈[n]wi → E[W ] <∞;

(c) E[W 2
n ] =

1
n

∑
i∈[n]w

2
i → E[W 2] <∞;

Further, we assume that E[W ] > 0.

As explained in more detail in [19, Chapter 6], conditions (a)–(b) imply that the empirical degree
distribution of the random graph converges to a mixed Poisson distribution with mixing distribution W ,
i.e., the proportion of vertices with degree k is close to the probability that a Poisson random variable
with random parameter W equals k.
We note also that, by uniform integrability, Condition 1.1(c) implies (b).

Notation. Throughout this paper, given a probability measure µ we denote by Eµ the average w.r.t.
µ.

1.1.2 Annealed Ising model

Let σ = (σi)i∈[n] ∈ {−1,+1}n =: Ωn be a spin configuration. Then, for a given graph Gn = ([n], En),
where En ⊂ [n] × [n] denotes the edge set, the Ising model is defined by the following Boltzmann-Gibbs
measure

µqen (σ) =
1

Zqe
n (β,B)

exp



β

∑

(i,j)∈En

σiσj +B
∑

i∈[n]
σi



 , (1.2)

where
Zqe
n (β,B) =

∑

σ∈Ωn

exp
{
β
∑

(i,j)∈En

σiσj +B
∑

i∈[n]
σi

}

is the quenched partition function. Here β ≥ 0 is the inverse temperature and B ∈ R is the external field.
When Gn is a random graph, this is known as the random quenched Ising model [17].

To obtain the annealed model, we take expectations with respect to the random graph measure in both
the numerator and denominator of (1.2), i.e., we define the annealed Ising measure by

µann (σ) =

E

[
exp

{
β
∑

(i,j)∈En
σiσj +B

∑
i∈[n] σi

}]

Zan
n (β,B)

, (1.3)

where the annealed partition function Zan
n (β,B) is equal to

Zan
n (β,B) = E[Zqe

n (β,B)] =
∑

σ∈Ωn

E

[
exp

{
β
∑

(i,j)∈En

σiσj +B
∑

i∈[n]
σi

}]
.

1.1.3 Previous results for the annealed Ising model on the generalized random graph

In this section, we describe some important results about the annealed Ising model that have been derived
previously. An important quantity in the study of the annealed Ising model is the annealed pressure
defined by

ψan
n (β,B) =

1

n
logZan

n (β,B).

The thermodynamic limit of this quantity ψan(β,B) := limn→∞ ψan
n (β,B) is determined in the following

theorem:
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Theorem 1.2 (Annealed pressure [18]). Suppose that Condition 1.1 holds. Then for all 0 ≤ β < ∞ and
all B ∈ R,

ψan(β,B) = log 2 + α(β) + E

[
log cosh

(√
sinh(β)

E[W ]
Wz⋆(β,B) +B

)]
− z⋆(β,B)2/2, (1.4)

where α(β) = limn→∞ αn(β) with αn(β) defined in (1.19) below is given by

α(β) = 1
2(cosh(β) − 1)E[W ], (1.5)

and z⋆(β,B) is, for B 6= 0, given by the unique solution with the same sign as B of the fixed-point equation

z = E

[
tanh

(√
sinh(β)

E[W ]
Wz +B

)√
sinh(β)

E[W ]
W

]
, (1.6)

whereas for B = 0, z⋆(β, 0) = limBց0 z
⋆(β,B).

This theorem is proved in [18, Thm 1.1]. In Section 2.2 we provide an alternative expression for the
annealed pressure that is instrumental for our large deviation analysis.

In [18, Thm 1.1] it is also proved that the annealed Ising model on the generalized random graph has
a second order phase transition at a critical inverse temperature βanc given by

βanc = asinh

(
E[W ]

E[W 2]

)
. (1.7)

Denote by

Sn =
∑

i∈[n]
σi,

the total spin, and by

Man
n (β,B) = Eµan

n

(
Sn
n

)
,

the finite-volume annealed magnetization. It is show in [18, Thms. 1.2, 1.3] that a strong law of large
numbers (SLLN) and central limit theorem (CLT) holds for the total spin:

Theorem 1.3 (SLLN and CLT [18]). Suppose that Condition 1.1 (a)–(c) hold. Define the uniqueness
regime of the parameters (β,B) by

U = {(β,B) : β ≥ 0, B 6= 0 or 0 < β < βanc , B = 0} ,
and suppose that (β,B) ∈ U . Then, for all ε > 0 there exists a constant L = L(ε) > 0 such that, for all n
sufficiently large,

Pµan
n

(∣∣∣
1

n
Sn −Man

∣∣∣
)

≤ e−nL,

where

Man(β,B) = E

[
tanh

(√
sinh(β)

E[W ]
Wz⋆(β,B) +B

)]
,

being z⋆(β,B) the solution of (1.6), equals the annealed magnetization, that is limn→∞Man
n (β,B).

Furthermore,
Sn − Eµan

n
(Sn)√

n

D−→ N (0, χan), w.r.t. µann as n→ ∞,

where χan(β,B) = ∂
∂BM

an(β,B) is the annealed susceptibility and N (0, σ2) denotes a centered normal
random variable with variance σ2.
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Analogously one can define the random quenched pressure:

ψqe(β,B) = lim
n→∞

ψqe
n (β,B) = lim

n→∞
1

n
logZqe

n (β,B).

This has been determined for the GRG as well as other locally tree-like random graph models in [8, 12],
where it is also proven that ψqe(β,B) is a non-random quantity. An SLLN and CLT for the total spin
w.r.t. µqen have been obtained in [17]. In general, the quenched and annealed pressures are different, and
also the critical temperatures of the models are different. The only exception that we are aware of is the
random regular graph (see [4]). The critical temperature in the quenched setting will be denoted by βqec .

1.2 Main results

In this paper, we study the spin sum in more detail (i.e. beyond the CLT scale) and prove a large deviation
principle for Sn, as well as a weighted version that plays a crucial role in the annealed Ising model. Let
us start by recalling what a large deviation principle is. Given a sequence of random variables (Xn)n≥1

taking values in the measurable space (X ,B), with X a topological space and B a σ-field of subsets of X ,
then the large deviation principle is defined as follows:

Definition 1.4 (Large deviation principle (LDP) [10]). We say that (Xn)n≥1 satisfies an LDP with rate
function I(x) and speed n w.r.t. a probability measure (Pn)n≥1 if, for all F ∈ B,

− inf
x∈F o

I(x) ≤ lim inf
n→∞

1

n
logPn(Xn ∈ F ) ≤ lim sup

n→∞

1

n
log Pn(Xn ∈ F ) ≤ − inf

x∈F̄
I(x),

where F o denotes the interior of F and F̄ its closure.

In this definition I : X → [0,∞] is a lower semicontinuous function. Our first main result is an LDP
for the total spin in the high-temperature regime for both the random quenched and the annealed Ising
model:

Theorem 1.5 (Total spin LDPs in high-temperature regime). In the annealed Ising model, under Condi-
tion 1.1, the total spin Sn satisfies an LDP w.r.t. µann for β ≤ βanc and B ∈ R, with rate function

Ian(x) = sup
t

{x t− ψan(β,B + t)}+ ψan(β,B). (1.8)

In the random quenched Ising model, under Condition 1.1, the total spin Sn also satisfies an LDP w.r.t.
µqen for β ≤ βqec and B ∈ R, with rate function

Iqe(x) = sup
t

{x t− ψqe(β,B + t)}+ ψqe(β,B).

The proof of Theorem 1.5 is highly general, and applies to settings where the pressure is known to
exist and to be differentiable. As such, the proof is basically identical for the annealed and quenched Ising
models on GRGn(w).

For the annealed Ising model we also prove an LDP for all positive temperatures. For this, we also
introduce the total weighted spin

S(w)
n =

∑

i∈[n]
wiσi.
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Theorem 1.6 (Alternative form of the pressure and LDPs for the annealed Ising model). For all β ≥ 0
and B ∈ R, under Condition 1.1, the annealed pressure is given by

ψan(β,B) = − inf
(x1,x2)

(
I(x1, x2)−

sinh(β)

2E[W ]
x22 −Bx1 − log 2− α(β)

)
(1.9)

where
I(x1, x2) = sup

(t1,t2)
(t1x1 + t2x2 − E[log cosh(t1 +Wt2)]) .

and the couple (Sn, S
(w)
n ) satisfies an LDP w.r.t. µann with rate function

Ianβ,B(x1, x2) = I(x1, x2)−
sinh(β)

2E[W ]
x22 −Bx1 − log 2− α(β) + ψan(β,B). (1.10)

Furthermore the annealed pressure has the alternative expression

ψan(β,B) = − inf
(x1,x2)

(
I(B)(x1, x2)−

sinh(β)

2E[W ]
x22 − log coshB − log 2− α(β)

)
, (1.11)

where
I(B)(x1, x2) = sup

(t1,t2)
(t1x1 + t2x2 − E[log cosh(B + t1 +Wt2)]) + log coshB,

and also with the alternative expression of the rate function given by

Ian(B)

β,B (x1, x2) = I(B)(x1, x2)−
sinh(β)

2E[W ]
x22 − log coshB − log 2− α(β) + ψan(β,B). (1.12)

Naturally, in the high-temperature setting, the large deviation rate functions in (1.8) and (1.10) (or
(1.12)) coincide after the application of a contraction principle. Combining Theorem 1.2 and Theorem
1.6 we see that the annealed pressure is either given by the optimization of a real function (as in (1.4))
or it can be expressed as the solution of a two-dimensional variational problem (as in (1.9) or (1.11)). In
Section 2.2 we shall prove Theorem 1.2 starting from Theorem 1.6, thus obtaining that the expressions
for the annealed pressure do coincide.

We next discuss the LDP for the total number of edges in the annealed Ising model on GRGn(w):

Theorem 1.7 (LDPs for the edges in the annealed Ising model). Suppose that Condition 1.1 holds. For
all β ≥ 0 and B ∈ R, the total number of edges |En| satisfies an LDP w.r.t. µann with rate function that is
the Legendre transform of the function which is explicitly computed in (3.18) below. Further, the number
of edges under the annealed Ising model on GRGn(w) satisfies

1

n
|En| P−→ 1

2
z⋆(β,B)2 +

1

2
cosh(β)E[W ]. (1.13)

We continue by investigating the limiting distribution of the degrees of vertices. Our main result is as
follows:

Theorem 1.8 (Degrees in the annealed Ising model). Suppose that Condition 1.1 holds. For all β ≥ 0
and B ∈ R, the moment generating function of the degree Dj of vertex j under µann satisfies

Eµan
n

[
etDj

]
= (1 + o(1))ecosh(β)wj(e

t−1)
cosh

(
z⋆(β,B)etwj

√
sinh(β)
E[W ] +B

)

cosh
(
z⋆(β,B)wj

√
sinh(β)
E[W ] +B

) . (1.14)
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Consequently, the degree DU of a uniformly chosen vertex satisfies

lim
n→∞

Eµan
n

[
etDU

]
= E

[
ecosh(β)W (et−1)

cosh
(
z⋆(β,B)etW

√
sinh(β)
E[W ] +B

)

cosh
(
z⋆(β,B)W

√
sinh(β)
E[W ] +B

)
]
. (1.15)

In the above, z⋆(β,B) is the solution to (1.6).

We remark that in (1.15) we both take the average w.r.t. the annealed measure µann as well as with
the uniform vertex U ∈ [n].

Remark 1.9 (Degree distribution annealed Ising model). We can restate (1.15) as

1

n

∑

v∈[n]
Eµan

n

[
etDv

]
→ E

[
ecosh(β)W (et−1)

cosh
(
z⋆(β,B)etW

√
sinh(β)
E[W ] +B

)

cosh
(
z⋆(β,B)W

√
sinh(β)
E[W ] +B

)
]
. (1.16)

In (1.14), we see that the moment generating function of a vertex having weight w is close to

ecosh(β)w(et−1)
cosh

(
z⋆(β,B)etw

√
sinh(β)
E[W ] +B

)

cosh
(
z⋆(β,B)w

√
sinh(β)
E[W ] +B

) .

We recognize ecosh(β)w(et−1) as the moment generating function of a Poisson random variable with mean
cosh(β)w, which is multiplied by another function. However, this factor does not turn out to be a moment
generating function.

By setting a(β) =
√

sinh(β)
E[W ] for the sake of notation, we can rewrite the product of the second and third

factors in the r.h.s. of (1.14) as

e(wj+B)a(β)z⋆ewj(cosh(β)+a(β)z⋆)(et−1) + e−(wj+B)a(β)z⋆ewj(cosh(β)−a(β)z⋆)(et−1)

2 cosh
(
(wj +B) a(β)z⋆

) .

This shows that the limiting moment generating function of Dj is a mixed Poisson random variables with
parameters wj(cosh(β) + Y a(β)z⋆), where

P(Y = 1) = 1− P(Y = −1) =
e(wj+B)a(β)z⋆

2 cosh
(
(wj +B) a(β)z⋆

) ,

provided wj(cosh(β) ± a(β)z⋆) are both positive. We lack a more detailed interpretation of the above two
realizations.

Let us next relate Theorem 1.8 to Theorem 1.7. We can use (1.15) to show that, as in (1.13),

Eµan
n

[ 1
n
|En|

]
→ 1

2
z⋆(β,B)2 +

1

2
cosh(β)E[W ].

Indeed, note that

Eµan
n

[ 1
n
|En|

]
= 1

2Eµan
n
[DU ] =

1

2

d

dt
Eµan

n

[
etDU

]∣∣∣
t=0

.
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Here, in the middle formula, we again take the average w.r.t. both µann as well as the uniform vertex
U ∈ [n]. Convergence of the moment-generating function implies convergence of all moments, so that

lim
n→∞

Eµan
n

[ 1
n
|En|

]
=

1

2

d

dt
E

[
ecosh(β)W (et−1)

cosh
(
z⋆(β,B)etW

√
sinh(β)
E[W ] +B

)

cosh
(
z⋆(β,B)W

√
sinh(β)
E[W ] +B

)
]∣∣∣

t=0

=
1

2
cosh(β)E[W ] +

1

2
z⋆(β,B)E

[
W

√
sinh(β)

E[W ]
tanh

(
z⋆(β,B)W

√
sinh(β)

E[W ]
+B

)]

=
1

2
cosh(β)E[W ] +

1

2
z⋆(β,B)2, (1.17)

as required, where we have made use of (1.6) in the last step. Thus, for (1.13), it suffices to prove that
1
n |En| is concentrated.

In the next theorem, we extend Theorem 1.8 to several vertices:

Theorem 1.10 (Degrees of m vertices in the annealed Ising model). Suppose that Condition 1.1 holds.
For all β ≥ 0 and B ∈ R and m ∈ N, the moment generating function of the degrees (D1,D2, . . . ,Dm)
under µann satisfies

Eµan
n

[
e
∑m

i=1 tiDi

]
=

m∏

i=1

ecosh(β)wi(eti−1)
m∏

i=1

cosh
(
z⋆(β,B)etiwi

√
sinh(β)
E[W ] +B

)

cosh
(
z⋆(β,B)wi

√
sinh(β)
E[W ] +B

) (1 + o(1)).

Theorem 1.10 implies that the degrees of different vertices under the annealed measure are approxi-
mately independent.

1.3 Discussion

In this section, we discuss our results and state some further conjectures.

Random-quenched LDP. For the random-quenched model we only obtain an LDP in the high-
temperature regime. The difficulty in this analysis is that the rate function is non-convex at low temper-
ature. This means that the usual technique relying on the Gärtner-Ellis theorem, by taking the Legendre
transform of the cumulant generating function, does not work. The cumulant generating function can
easily be expressed in terms of the difference of the pressure for different values of the external field B.
However, this Legendre transform is the convex envelope of the cumulant generating function. This raises
the question how to do this for all inverse temperatures β.

Averaged-quenched LDP. The averaged quenched measure is defined as E
[
µqen (σ)

]
(recall (1.2)). Here,

even in the high-temperature regime, we are in trouble since the averaged quenched cumulant generating
function is not a difference of pressures. Independently of the explicit computation, an interesting question
is whether it is possible to relate the random-quenched and the averaged-quenched large deviation rate
functions.
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Large deviations of random graph quantities. As already mentioned in the introduction, if one is
interested only in graph quantities, then the effect of the annealing amounts to changing the graph law
from P (the law of of GRGn(w)) to a new law Pβ,B depending on the two parameters β and B. Evidently
limβ→0,B→0 Pβ,B = P. We know that under the law P a uniform degree has an asymptotic mixed Poisson
distribution with mixing distribution W . From formula (1.15) we see that in zero external field B = 0,
the moment generating function of a uniform degree changes in two ways: firstly, in the high-temperature
regime, the mixing distribution changes to W cosh(β) (since z⋆(β, 0) = 0 there); secondly, in the low-
temperature region a new effect appears due to the non-zero value of z⋆(β, 0). It would be of interest
to invert the moment generating function (1.15) and thus explicitly characterize the distribution of a
uniform degree at low temperatures. This can be done once we know that cosh(β)− sinh(β)z⋆(β, 0)/E[W ]
is non-negative (see Remark 1.9), but we do not know this to be true in general. Also, as of yet, we have
no interpretation for this novel mixed Poisson distribution for the degrees. It might also be interesting to
investigate other properties of the random graph under the annealed Ising model. An example would be
the distribution of triangles, for which the positive dependence of edges enforced by the annealed Ising
model might have a pronounced effect. A further interesting problem is to identify the large deviation
rate function in a joint LDP for both the spin as well as the total number of edges.

Organisation of this paper. We start in Section 1.4 by describing an enlightening computation that
is at the heart of our analysis. In Section 2, we derive the LDP for the total spin and the total weighted
spin. In Section 3, we investigate the large deviation properties, as well as the weak convergence, of the
number of edges in the annealed Ising model, thus quantifying the statement that under the annealed
Ising model, there are more edges in the graph than for the typical graph. In Section 4, we investigate
the degree distribution under the annealed Ising model. Finally in the Appendix we re-derive the LDP
for the total spin by combinatorial arguments.

1.4 Preliminaries: an enlightening computation

Our large deviations results are obtained from exact expressions for moment generating functions of spin
or of edge variables under the annealed GRGn(w) measure. Such exact expressions follow from the
observation (already contained in [18, Sec. 2.1]) that the annealed GRGn(w) measure can be identified as
an inhomogeneous Ising model on the complete graph, which is called the rank-1 inhomogeneous Curie-
Weiss model in [18]. In this paper, we will extend such computations significantly, for example by also
including the edge statuses. We can write the numerator in the definition (1.3) of µann as

E

[
exp

{
β
∑

(i,j)∈En

σiσj +B
∑

i∈[n]
σi

}]
= E

[
exp

{
β

∑

1≤i<j≤n

Iijσiσj +B
∑

i∈[n]
σi

}]

= eB
∑

i∈[n] σi
∏

i<j

E

[
eβIijσiσj

]

= eB
∑

i∈[n] σi
∏

i<j

[
eβσiσjpij + 1− pij

]
,

where we have used the independence of the edges in the second equality. Define

βij =
1

2
log

1 + pij(e
β − 1)

1 + pij(e−β − 1)
, and Cij =

1 + pij(cosh(β)− 1)

cosh(βij)
. (1.18)

Then, we can write
eβσiσjpij + 1− pij = Cije

βijσiσj .

9



Hence, also using the symmetry βij = βji,

E

[
exp

{
β
∑

(i,j)∈En

σiσj +B
∑

i∈[n]
σi

}]
= Gn(β) e

1
2

∑
i,j∈[n] βijσiσj+B

∑
i∈[n] σi ,

where

Gn(β) =

( ∏

1≤i<j≤n

Cij

)(∏

i∈[n]
e−βii/2

)

and βii is defined as in (1.18) with pii = w2
i /(ℓn + w2

i ). Defining

αn(β) =
1

n
logGn(β) (1.19)

one has

E

[
exp

{
β
∑

(i,j)∈En

σiσj +B
∑

i∈[n]
σi

}]
= enαn(β)e

1
2

∑
i,j∈[n] βijσiσj+B

∑
i∈[n] σi .

We observe that the quantity e
1
2

∑
i,j∈[n] βijσiσj+B

∑
i∈[n] σi can be regarded as the Hamiltonian of an inho-

mogeneous Curie-Weiss model with couplings given by (βij)ij . Thus, the annealed Ising model on the
GRGn(w) is equivalent to such inhomogeneous model, see [18, 11]. Moreover, since βij is close to factor-
izing into a contribution due to i and to j, one can prove [18, 11] that:

E

[
exp

{
β
∑

(i,j)∈En

σiσj +B
∑

i∈[n]
σi

}]
= enαn(β)e

1
2

sinh(β)
ℓn

(
∑

i wiσi)
2
+B

∑
i∈[n] σi+o(n). (1.20)

This computation shows that, in the large n-limit, the annealed measure µann at inverse temperature β is
close to the Boltzmann-Gibbs measure µICW

n of the rank-1 inhomogeneous Curie-Weiss model at inverse
temperature β̃ = sinh(β)

µICW
n (σ) =

exp(H ICW
n (σ))

Z ICW
n (β̃, B)

(1.21)

with Hamiltonian

H ICW
n (σ) =

1

2

β̃

ℓn

(
∑

i

wiσi

)2

+B
∑

i∈[n]
σi (1.22)

and normalizing partition function

Z ICW
n (β̃, B) =

∑

σ∈Ωn

eB
∑

i∈[n] σie
1
2

β̃
ℓn
(
∑

i∈[n] wiσi)
2

. (1.23)

The above analysis can be simply extended to moment generating functions involving (some of) the edge
variables (Iij)1≤i<j≤n, as these can be incorporated into the exponential term and the expectation w.r.t.
them can then again be taken. Of course, in such settings, the connection to the rank-1 inhomogeneous
Curie-Weiss model is changed as well, and a large part of our paper deals precisely with the description
of such changes, as well as their effects.
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2 LDP for the total spin

2.1 LDP in the high-temperature regime

We first prove the LDP in the high-temperature regime for the annealed Ising model using the Gärtner-Ellis
theorem.

Proof of Theorem 1.5. To apply the Gärtner-Ellis theorem we need the thermodynamic limit of the cu-
mulant generating function of Sn w.r.t. µann , given by

c(t) = lim
n→∞

1

n
logEµan

n
[exp (tSn)].

Observe that

Eµan
n
[exp (tSn)] =

Zan
n (β,B + t)

Zan
n (β,B)

.

Hence,

c(t) = lim
n→∞

1

n
log

Zan
n (β,B + t)

Zan
n (β,B)

= ψan(β,B + t)− ψan(β,B),

where the existence of the limit follows from Theorem 1.2. We know that, for B 6= 0,

d

dB
ψan(β,B) =Man(β,B).

For β ≤ βanc ,
lim
Bց0

Man(β,B) = lim
Bր0

Man(β,B) = 0,

so that c(t) is differentiable in t. Hence, it follows from the Gärtner-Ellis theorem [10, Thm. 2.3.6] that
Sn satisfies an LDP with rate function given by the Legendre transform of c(t) which is given by (1.8).
The proof for the random quenched Ising model is analogous.

Let us now elaborate on the interpretation of the above results. The stationarity condition for (1.8) is

x =Man(β,B + t), (2.1)

which defines a function ť = ť(x;β,B) such that

Ian(x) = x ť(x;β,B) − ψan(β,B + ť(x;β,B)) + ψan(β,B).

Given (β,B), the total spin per particle will concentrate around its typical value Man(β,B) coinciding
with the magnetization. To observe the atypical value x the field must be changed from B to B+ t, where
t is determined by requiring that x is the magnetization Man(β,B + t). Note that we have not made use
of any specifics about the graph sequence, or whether we are in the annealed or quenched setting. Hence,
the above holds for Ising models on any graph sequence, as long as the appropriate thermodynamic limit
of the pressure exists.

For β > βanc ,
m+ := lim

Bց0
Man(β,B) > 0 > lim

Bր0
Man(β,B) = −m+,

and hence c(t) is not differentiable for t = −B and the Gärtner-Ellis theorem can no longer be applied.
Since the spontaneous magnetization is not zero, it is not possible to find a t such that (2.1) holds for
−m+ < x < m+. Therefore, the Legendre transform (1.8) has a flat piece. By the Gärtner-Ellis theorem,
this Legendre transform still gives a lower bound on the rate function, but it is only an upper bound for
so-called exposed points of the Legendre transform, i.e., for x outside this flat piece. In fact, we show that
the Legendre transform in general does not give the correct rate function, since the Legendre transform of
the pressure is convex and we show that the rate function in the low temperature regime in general is not.
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2.2 LDPs for the total spin and weighted spin

In this section we prove Theorem 1.6 and then we deduce from it a new proof of Theorem 1.2 (thus by a
method different from that of [18]). Following Ellis’ approach [15], we can compute the annealed pressure

ψan(β,B) and the large deviation function of Yn(σ) := (mn(σ),m
(w)
n (σ)) ≡ (Sn(σ)

n , S
(w)
n (σ)
n ) w.r.t. the

annealed measure µann , starting from the LDP of (mn,m
(w)
n ) w.r.t. the product measure

Pn =
N⊗

i=1

(
1

2
δ−1 +

1

2
δ+1

)
. (2.2)

The large deviations of Yn = (mn,m
(w)
n ) w.r.t. Pn can easily be obtained by applying the Gärtner-Ellis

theorem.

Proof of Theorem 1.6. Let t = (t1, t2) and compute

EPn [exp(n t ·Yn)] = EPn [exp(t1Sn + t2S
(w)
n )] = EPn [Πi∈[n] exp(t1 + wit2)σi] = Πi∈[n] cosh(t1 + wit2),

where EPn denotes average w.r.t. Pn. Thus, the cumulant generating function of the vector Yn =
(mn,m

(w)
n ) w.r.t. Pn equals

cn(t) =
1

n
logEPn [expn(t ·Yn)] =

1

n

∑

i∈[n]
log cosh(t1 + wit2) = E[log cosh(t1 +Wnt2)],

here E represents the average w.r.t. the uniformly chosen vertex Wn. Since | log cosh(t1 + Wnt2)| ≤
|t1 +Wnt2| ≤ |t1|+Wn|t2| it follows from Condition 1.1(b) and the dominated convergence theorem that

c(t) := lim
n→∞

cn(t) = E[log cosh(t1 +Wt2)],

with W limiting weight of the graph. By the Gärtner-Ellis theorem, we conclude that Yn has a large
deviation principle with rate function

I(x1, x2) = sup
(t1,t2)

(t1x1 + t2x2 − E[log cosh(t1 +Wt2)]) .

We have

I(x1, x2) =

{
t⋆1x1 + t⋆2x2 − E[log cosh(t⋆1 +Wt⋆2)], if |x1| < 1, |x2| < E[W ],
+∞, otherwise,

where t⋆1 = t⋆1(x1, x2) and t⋆2 = t⋆2(x1, x2) are given by the stationarity condition

{
x1 = E[tanh(t1 +Wt2)],
x2 = E[W tanh(t1 +Wt2)],

(2.3)

for |x1| < 1, |x2| < E[W ].
For any function f : Ωn → R we can write

∑

σ∈Ωn

f(σ) = 2n
∫

Ωn

f(σ)dPn(σ).
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Hence, also using (1.20),

Zan
n (β,B) = 2nenαn

∫

Ωn

e
1
2

sinh(β)
nE[Wn](

∑
i wiσi)

2
+B

∑
i∈[n] σi+o(n)

dPn(σ)

= 2nenαn

∫

Ωn

e
n
2

sinh(β)
E[Wn]

(m
(w)
n )2+nBmn+o(n)

dPn(σ)

and, similarly,

µann (·) = 2nenαn

Zan
n (β,B)

∫

Ωn

(·) e
n
2

sinh(β)
E[Wn]

(m
(w)
n )2+nBmn+o(n)

dPn(σ).

Then, by applying Varadhan’s lemma [16, Thm. II.7.1],

ψan(β,B) = lim
n→∞

1

n
Zan
n (β,B) = log(2) + α(β) + sup

(x1,x2)

[
sinh(β)

2E[W ]
x22 +Bx1 − I(x1, x2)

]

which is equivalent to (1.9), and the rate function of (mn,m
(w)
n ) w.r.t. the annealed measure is [16,

Thm. II.7.2]

Ianβ,B(x1, x2) = I(x1, x2)−
sinh(β)

2E[W ]
x22 −Bx1 − log(2)− α(β) + ψan(β,B).

This shows that indeed (Sn, S
(w)
n ) satisfies an LDP w.r.t. µann with rate function given by (1.10). By

applying the contraction principle, we obtain the rate functions Ianβ,B of mn and Jan
β,B of m(w)

n as

Ianβ,B(x1) = inf
x2

Ianβ,B(x1, x2), Jan
β,B(x2) = inf

x1

Ianβ,B(x1, x2). (2.4)

In a similar way, we can also immediately obtain an LDP by incorporating the magnetic field in the a
priori measure on the spins. For this, define

P (B)
n =

n⊗

i=1

(
e−B

eB + e−B
δ−1 +

eB

eB + e−B
δ+1

)
.

Then

E
P

(B)
n

[exp(n t ·Yn)] = E
P

(B)
n

[
∏

i∈[n]
exp(t1 + wit2)σi] =

∏

i∈[n]

cosh(t1 + wit2)

cosh(B)
,

where E
P

(B)
n

denotes average w.r.t. P (B)
n . Hence, the cumulant generating function is given by

c(B)
n (t) = E[log cosh(B + t1 +Wnt2)]− log coshB,

(with E the average w.r.t. the uniformly chosen vertex Wn) which, as in the previous case, converges to

c(B)(t) = E[log cosh(B + t1 +Wt2)]− log coshB.

We can apply the Gärtner-Ellis theorem to obtain that (mn,m
(w)
n ) satisfies an LDP w.r.t. P (B)

n with rate
function

I(B)(x1, x2) = sup
t1,t2

(t1x1 + t2x2 − E[log cosh(B + t1 +Wt2)]) + log coshB. (2.5)

The stationarity conditions are given by
{
x1 = E[tanh(B + t1 +Wt2)],
x2 = E[W tanh(B + t1 +Wt2)].

(2.6)
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Note that ∑

σ∈Ωn

f(σ)eB
∑

i∈[n] σi = (2 coshB)n
∫

Ωn

f(σ)dP (B)
n (σ).

Hence,

µann (·) = (2 coshB)nenαn

Zan
n (β,B)

∫

Ωn

(·) e
n
2

sinh(β)
E[Wn]

(m
(w)
n )2+o(n)

dP (B)
n (σ) (2.7)

where

Zan
n (β,B) = (2 coshB)nenαn

∫

Ωn

e
n
2

sinh(β)
E[Wn]

(m
(w)
n )2+o(n)

dP (B)
n (σ).

As above, it immediately follows that (mn,m
(w)
n ) satisfies an LDP w.r.t. the annealed measure with rate

function

Ian(B)

β,B (x1, x2) = I(B)(x1, x2)−
sinh(β)

2E[W ]
x22 − log coshB − log 2− α(β) + ψan(β,B),

where the pressure is given by

ψan(β,B) = sup
x1,x2

(
sinh(β)

2E[W ]
x22 − I(B)(x1, x2)

)
+ log coshB + log 2 + α(β). (2.8)

This proves that also (1.12) is a rate function for the LDP of (Sn, S
(w)
n ). The uniqueness of the large

deviation function [16, Thm. II.3.2] implies that (1.12) and (1.10) coincide.

We can rewrite the pressure in (2.8) to prove Theorem 1.2:

Proof of Theorem 1.2. Note that (2.8) is equivalent to

ψan(β,B) = sup
x2

(
sinh(β)

2E[W ]
x22 − inf

x1

I(B)(x1, x2)

)
+ log coshB + log 2 + α(β), (2.9)

where it should be noted that, by the contraction principle, infx1 I
(B)(x1, x2) is equal to the rate function

I(w) for the LDP of m(w)
n w.r.t. P (B)

n . Setting t1 = 0 in the above computations, this can be proved to be

I(w)(x) = sup
t

(tx− E[log cosh(B +Wt)]) + log coshB, (2.10)

so that

ψan(β,B) = sup
x2

(
sinh(β)

2E[W ]
x22 − I(w)(x2)

)
+ log coshB + log 2 + α(β). (2.11)

The supremum in (2.10) is attained for t satisfying

x = E[W tanh(B +Wt)] =: f(t).

Since f(t) is strictly increasing, its inverse f−1 is well defined. Hence,

I(w)(x) = f−1(x)x− E[log cosh(B +Wf−1(x))] + log coshB,

and

d

dx

(
sinh(β)

2E[W ]
x2 − I(w)(x)

)
=

sinh(β)

E[W ]
x− f−1(x)−

(
x− E[W tanh(B +Wf−1(x))]

) d

dx
f−1(x)

=
sinh(β)

E[W ]
x− f−1(x).
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Hence, the supremum in (2.11) for x satisfying f−1(x) = sinh(β)
E[W ] x, or equivalently,

x = f

(
sinh(β)

E[W ]
x

)
= E

[
W tanh

(
B +

sinh(β)

E[W ]
Wx

)]
. (2.12)

For any solution x⋆ of (2.12),

F (x⋆) :=
sinh(β)

2E[W ]
x⋆2 − I(w)(x⋆) + log coshB + log 2 + α(β)

= −sinh(β)

2E[W ]
x⋆2 + E[log cosh(B +

sinh(β)

2E[W ]
Wx⋆)] + log 2 + α(β).

For B > 0, f(t) is an increasing, bounded and concave function for t ≥ 0 with f(0) > 0, and hence
there is a unique positive solution x+ to (2.12). For any negative solution to (2.12), x− say,

F (x−) < F (−x−) ≤ F (x+),

since x+ is the unique positive local maximum. An analogous argument holds for B < 0. Hence,

ψan(β,B) = −sinh(β)

2E[W ]
x⋆2 + E[log cosh(B +

sinh(β)

2E[W ]
Wx⋆)] + log 2 + α(β),

where x⋆ is the unique solution to (2.12) with the same sign as B. The value for B = 0 follows from
Lipschitz continuity. This is equivalent to the formulation in (1.4) by making a change of variables

z⋆ =
√

sinh(β)
E[W ] x

⋆.

3 LDP for the number of edges: proof of Theorem 1.7

So far we have considered large deviations of the total spin. We now consider observables that depend
only on the graph and investigate their large deviation properties w.r.t. the annealed Ising measure. Such
an analysis sheds light on what graph structures optimize the Ising Hamiltonian.

3.1 Strategy of the proof

In this section, we investigate the large deviation properties for the number of edges |En| =
∑

i<j Iij under
the annealed Ising model on the generalized random graph, where we recall that (Iij)1≤i<j≤n denote the
independent Bernoulli indicators of the event that the edge ij is present in the graph, which occurs with
probability pij in (1.1). We aim to apply the Gärtner-Ellis theorem, for which we need to compute the
generating function of |En| w.r.t. the annealed measure µann given by

Eµan
n

[
et|En|

]
=

E

[∑
σ e

∑
i<j Iij(t+βσiσj)+B

∑
i∈[n] σi

]

E

[∑
σ e

∑
i<j Iij(βσiσj)+B

∑
i∈[n] σi

] . (3.1)

For later purposes, we will generalize the above computation and, introducing the variables tij , instead
compute the generating function of the Bernoulli indicators (Iij)ij defined for t = (tij)ij ∈ R

n(n−1)/2

Rβ,B,n(t) := Eµan
n

[
e
∑

1≤i<j≤n tijIij
]
=

E

[∑
σ e

∑
i<j Iij(tij+βσiσj)+B

∑
i∈[n] σi

]

E

[∑
σ e

∑
i<j Iij(βσiσj)+B

∑
i∈[n] σi

] . (3.2)
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This can be carried out in a similar way as in [18]. Let us focus on the numerator in the previous display,
which we denote by An(t, β,B), so that

Rβ,B,n(t) =
An(t, β,B)

An(0, β,B)
. (3.3)

We have

An(t, β,B) =
∑

σ∈Ωn

eB
∑

i∈[n] σi
E

[
e
∑

i<j Iij(tij+βσiσj)
]

=
∑

σ∈Ωn

eB
∑

i∈[n] σi
∏

i<j

E
[
eIij(tij+βσiσj)

]

=
∑

σ∈Ωn

eB
∑

i∈[n] σi
∏

i<j

(
etij+βσiσjpij + (1− pij)

)
.

We rewrite
etij+βσiσjpij + (1− pij) = Cij(tij)e

βij(tij )σiσj ,

where βij(tij) and Cij(tij) are chosen such that

etij−βpij + (1− pij) = Cij(tij)e
−βij(tij) and etij+βpij + (1− pij) = Cij(tij)e

βij(tij ).

From the above system, we get

βij(tij) =
1

2
log

etij+βpij + (1− pij)

etij−βpij + (1− pij)
, Cij(tij) =

etijpij cosh(β) + (1− pij)

cosh (βij(tij))
. (3.4)

By symmetry βij(tij) = βji(tij). Furthermore, defining tji = tij for 1 ≤ i < j ≤ n and

βii(tii) =
1

2
log

etii+βpii + (1− pii)

etii−βpii + (1− pii)
with pii = w2

i /(ℓn + w2
i ) (3.5)

we obtain

An(t, β,B) = Gn(t, β)
∑

σ∈Ωn

eB
∑

i∈[n] σie
1
2

∑
i,j∈[n] βij(tij)σiσj , (3.6)

where
Gn(t, β) =

∏

1≤i<j≤n

Cij(tij)
∏

1≤i≤n

e−βii(tii)/2. (3.7)

The equations (3.3) and (3.6) give us an explicit formula for the moment generating function of the edge
variables (Iij)ij in the annealed GRGn(w) that will prove useful throughout the remainder of this paper.

3.2 Moment generating function for the number of edges

Since the moment generating function for the number of edges in (3.1) can be obtained from Rβ,B,n(t) in
(3.2) by choosing tij = t for all 1 ≤ i < j ≤ n, we continue by studying the asymptotics of An(t, β,B) for
such case, which we denote as An(t, β,B). By a Taylor expansion of x 7→ log(1 + x),

βij(t) =
1

2
log
(
1 + pij(e

t+β − 1)
)
− 1

2
log
(
1 + pij(e

t−β − 1)
)

=
1

2
pij(e

t+β − 1)− 1

2
pij(e

t−β − 1) +O(p2ij(e
t+β − 1)2) +O(p2ij(e

t−β − 1)2)

= et sinh(β)pij +O(p2ij(e
t±β − 1)2), (3.8)
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therefore

An(t, β,B) = Gn(t, β)
∑

σ∈Ωn

eB
∑

i∈[n] σi exp
{1
2
et sinh(β)

∑

i,j∈[n]
pijσiσj +O(

∑

i,j∈[n]
p2ij(e

t±β − 1)2)
}
.

For any fixed t, the term O(
∑

i,j∈[n] p
2
ij(e

t±β − 1)2) can be controlled by using pij ≤ wiwj

ℓn
and Condition

1.1(c), which implies that

∣∣∣
∑

i,j∈[n]
p2ij

∣∣∣ ≤
∑

i,j∈[n]

(wiwj

ℓn

)2
=

(∑
i∈[n]w

2
i

ℓn

)2

= o(n),

and then,

An(t, β,B) = Gn(t, β)e
o(n)

∑

σ∈Ωn

eB
∑

i∈[n] σi exp
{1
2
et sinh(β)

∑

i,j∈[n]
pijσiσj

}
.

We can proceed further and write

An(t, β,B) = Gn(t, β)e
o(n)

∑

σ∈Ωn

eB
∑

i∈[n] σie
1
2
et sinh(β)

∑
i,j∈[n]

wiwj
ℓn

σiσj

= Gn(t, β)e
o(n)

∑

σ∈Ωn

eB
∑

i∈[n] σie
1
2

et sinh(β)
ℓn

(
∑

i∈[n] wiσi)
2

,

where we have also used that, under Condition 1.1(c),

∑

i∈[n]

w2
i

ℓn
= o(n),

∑

i,j∈[n]
[
wiwj

ℓn
− pij] =

∑

i,j∈[n]

w2
iw

2
j

ℓn(ℓn + wiwj)
= o(n).

Recalling the definition of the partition function of the Inhomogeneous Curie-Weiss model we can thus
rewrite

An(t, β,B) = Gn(t, β)e
o(n) Z ICW

n (et sinh(β), B) ,

while the denominator in (3.1) equals

An(0, β,B) = Gn(0, β)e
o(n) Z ICW

n (sinh(β), B).

Therefore, the annealed cumulant generating function of the number of the edges is

ϕβ,B,n(t) :=
1

n
logEµan

n

[
et|En|]

=
1

n
logZ ICW

n (et sinh(β), B)− 1

n
logZ ICW

n (sinh(β), B) +
1

n
log

Gn(t, β)

Gn(0, β)
+ o(1). (3.9)

In order to apply the Gärtner-Ellis theorem, we need to compute the limit of ϕβ,B,n(t). We can deal with
the first and second term in the r.h.s. of (3.9) by using the results obtained in [18], in which the limit
pressure of the Inhomogeneous Curie-Weiss model has been computed. Indeed, from [18]

ψICW(sinh(β), B) := lim
n→∞

1

n
logZ ICW

n (sinh(β), B)

= log 2 +
[
E log cosh

(√sinh(β)

E [W ]
Wz⋆(β,B) +B

)]
− z⋆(β,B)2

2
(3.10)
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with z⋆(β,B) defined in Theorem 1.2. Similarly

ψICW(et sinh(β), B) := lim
n→∞

1

n
log
(
Z ICW
n

(
et sinh(β), B

))

= log 2 +
[
E log cosh

(√et sinh(β)

E [W ]
Wz⋆(t, β,B) +B

)]
− z⋆(t, β,B)2

2
. (3.11)

with z⋆(t, β,B) be the unique fixed point with the same sign as B of the equation

z = E

[
tanh

(√et sinh(β)

E[W ]
Wz +B

)√et sinh(β)

E[W ]
W
]
. (3.12)

Next, we have to deal with the third term in (3.9) which, recalling (3.7) and (3.4), we write explicitly as

1

n
log

Gn(t, β)

Gn(0, β)
=

1

n

∑

i<j

log

(
etpij cosh(β) + 1− pij
pij cosh(β) + 1− pij

)
+

1

n

∑

i<j

log

(
cosh(βij(0))

cosh(βij(t))

)
+

1

n

∑

i∈[n]

(
βii(0) − βii(t)

2

)
.

(3.13)

We start by computing the first term in the r.h.s. of the previous display, then we show that the remaining
terms give a vanishing contribution in the limit. We start by recalling that, on the basis of the Weight
Regularity Condition 1.1(a) and (c), ℓn = n(E[W ] + o(1)) = O(n) and

∑
1≤i<j≤n p

2
ij = O(n−1). Thus, we

write the first term in (3.13) as

1

n

∑

i<j

log

(
etpij cosh(β) + 1− pij
pij cosh(β) + 1− pij

)
=

1

n

∑

i<j

log

(
1 +

(et − 1)pij cosh(β)

1 + pij(cosh(β)− 1)

)

=
1

n

∑

i<j

log
(
1 + (et − 1)pij cosh(β) +O(p2ij)

)
= (et − 1) cosh(β)

1

n

∑

i<j

pij +O(n−1),

where the Taylor expansions of 1/(1 + x) and log(1 + x) have been used. Therefore,

lim
n→∞

1

n

∑

i<j

log

(
etpij cosh(β) + 1− pij
pij cosh(β) + 1− pij

)
=

1

2
(et − 1) cosh(β)E[W ], (3.14)

since 1
n

∑
i<j pij → 1

2E[W ]. By (3.8) and a Taylor expansion

log

(
cosh(βij(0))

cosh(βij(t))

)
= O(p2ij).

Then, by Weight Regularity Condition 1.1(c) and pij ≤ wiwj/ℓn,

1

n

∑

i<j

log

(
cosh(βij(0))

cosh(βij(t))

)
=

1

n

∑

i<j

O(p2ij) = O(n−1). (3.15)

Furthermore
1

n

∑

i∈[n]

(
βii(0) − βii(t)

2

)
=

1

n

∑

i∈[n]
O(pii) = O(n−1), (3.16)

where the definition of βii(t) in (3.5) has been used. Combining (3.13) with the estimates in (3.14), (3.15),
(3.16) leads to

lim
n→∞

1

n
log

Gn(t, β)

Gn(0, β)
=

1

2
(et − 1) cosh(β)E[W ]. (3.17)
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Considering the limit n→ ∞ in (3.9) and using (3.17), (3.11) and (3.10) , finally gives us

ϕβ,B(t) := lim
n→∞

ϕβ,B,n(t) = E

[
log cosh

(√et sinh(β)

E [W ]
Wz⋆(t, β,B) +B

)]

− E

[
log cosh

(√sinh(β)

E [W ]
Wz⋆(β,B) +B

)]
+

1

2

(
z⋆(β,B)2 − z⋆(t, β,B)2

)

+
1

2
(et − 1) cosh(β)E[W ]. (3.18)

3.3 Conclusion of the proof

With (3.18) in hand, we are finally ready to prove Theorem 1.7. Equation (3.18) identifies the infinite-
volume limit of the cumulant generating function of the number of edges. By the Gärtner-Ellis theorem,
this also identifies the rate function as its Legendre transform, provided that t 7→ ϕβ,B(t) is differentiable.
We compute the derivative of t 7→ ϕβ,B(t) in (3.18) explicitly as

d

dt
ϕβ,B(t) = E

[
tanh

(√et sinh(β)

E [W ]
Wz⋆(t, β,B) +B

)√et sinh(β)

E [W ]
W
]
×
(1
2
z⋆(t, β,B) +

d

dt
z⋆(t, β,B)

)

− z⋆(t, β,B)
d

dt
z⋆(t, β,B) +

1

2
et cosh(β)E[W ]. (3.19)

Since z⋆(t, β,B) is the fixed point for the ICW with β̃ = et sinh(β), which is an analytic function of t,
it holds that z⋆(t, β,B) is analytic in t for B 6= 0 and hence d

dtz
⋆(t, β,B) exists. By (3.12), the first

expectation equals z⋆(t, β,B), so that the two terms containing the factors d
dtz

⋆(t, β,B) cancel, and

d

dt
ϕβ,B(t) =

1

2
z⋆(t, β,B)2 +

1

2
et cosh(β)E[W ]. (3.20)

For B = 0, d
dtz

⋆(t, β,B) might not exist in the critical point et sinh(β) = β̃c. However, since the specific
heat is finite, both the left and right derivative exist. Therefore, the above argument can be repeated for
the left and right derivative, which both give the r.h.s. of (3.20), so that this equation is also true for
B = 0.

This shows that t 7→ ϕβ,B(t) is differentiable and it concludes the proof of the main statement in
Theorem 1.7 about the large deviations function for the number of edges in the annealed GRGn(w).
Formula (1.13) for the expected number of edges is immediately obtained by evaluating (3.20) in t = 0.

Finally, we note that by the LDP derived in the previous section, and the fact that the limiting rate
function is strictly convex (this can be seen by noting that both terms on the r.h.s. of (3.20) are strictly
increasing) the rate function has a unique minimum, which immediately shows that |En|/n is concentrated
around its mean, which has already been derived in (1.17) as well as in (3.20).

Remark 3.1 (Moment generating function of total degree for GRGn(w)). At zero magnetic field B = 0
and infinite temperature β = 0, the annealed average of any function of the graph coincides with the average
with respect to the law of the graph. Then, ϕ0,0,n(t) is the cumulant generating function of the number of
edges of the GRGn(w). In this case, (3.18) gives

ϕ0,0(t) =
1

2
(et − 1)E[W ], (3.21)

because z⋆(0, 0) = 0, which can also be seen by direct computation.
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4 Degree distribution under annealed measure: proof of Theorem 1.8

Given (Di)i∈[n], the degree sequence of the GRGn(w) we want to compute its moment generating function
with respect to the annealed measure µann , i.e.,

gβ,B,n(s) = Eµan
n

[
e
∑

i∈[n] siDi

]
,

for s = (s1, s2, . . . , sn) ∈ R
n. Since Di =

∑
j 6=i Iij, where (Iij)1≤i<j≤n are the independent Bernoulli

variables with parameters pij representing the indicator that the edge ij exists and Iji = Iij, we can write∑
i∈[n] siDi =

∑
i<j Iij(si + sj), then recalling (3.2) we have

gβ,B,n(s) = Rn,β,B(t(s)) (4.1)

where we define tij(s) := si + sj for 1 ≤ i < j ≤ n. Furthermore, by (3.3),

gβ,B,n(s) =
An(t(s), β,B)

An(0, β,B)
, (4.2)

where we recall that An(t, β,B) was defined in (3.6). This is the starting point of our analysis. In Section
4.1 we simplify the expression for the moment generating function of the degrees by using the mapping
of the annealed Ising measure to the rank-1 inhomogeneous Curie-Weiss model. We then investigate the
degree of a fixed vertex under the annealed Ising model in section 4.2 and we consider finitely many degrees
in section 4.3.

4.1 Moment generating function of the degrees

We start by rewriting the generating function of the degree gβ,B,n(s). To this aim, due to (4.2), we need
to rewrite An(t(s), β,B). This can be done using again the Hubbard-Stratonovich identity. Introducing
the standard Gaussian variable Z, we will show that we can extend the arguments in [18] to show that

An(t(s), β,B) = Gn(t(s), β) 2
n e−κ(t)

EZ

[
exp

{ n∑

i=1

log cosh (an(β)e
siwiZ +B)

}
]
(1 + o(1)), (4.3)

where an(β) =
√

sinh(β)
ℓn

, κ(t) is some appropriate constant and EZ denotes the expectation w.r.t. the
Gaussian variable Z. This boils down to proving convergence of the moment generating function, which
requires sharp asymptotics for An(t(s), β,B), while in [18], it sufficed to study the logarithmic asymptotics.

To see (4.3), we define the s-dependent rank-1 inhomogeneous Curie-Weiss model measure as

µICW
n,s (σ) =

1

Z ICW
n,s (sinh(β), B)

e
1
2

∑
i,j sinh(β)e

si esj
wiwj
ℓn

σiσj+B
∑

i∈[n] σi ,

with Z ICW
n,s (sinh(β), B) the appropriate partition function. Then, using (3.6), we can follow [11, (4.64)] to

obtain that
An(t(s), β,B) = Gn(t(s), β)Z

ICW
n,s (sinh(β), B)EµICW

n,s

[
eFn(s)

]
, (4.4)

where now

Fn(s) =
1

2

∑

i,j

[
βij(si + sj)− esi+sj sinh(β)

wiwj

ℓn

]
σiσj ,
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and we have adapted notation from En in [11, (4.64)] to Fn here to avoid confusion with the total number
of edges. To further simplify (4.4), we observe that, following the proof of [11, Lemma 4.1], one has

Z ICW
n,s (sinh(β), B) = 2nEZ

[
exp

{ n∑

i=1

log cosh (an(β)e
siwiZ +B)

}
]
.

Further, under Condition 1.1(a)–(c), we can follow the proof of [11, Lemma 4.7] to identify the limit of

EµICW
n,s

[
eFn(s)

]
, as formulated in the next lemma:

Lemma 4.1 (Asymptotics correction term). Define Wn(s) = wUe
sU , where U ∈ [n] is a uniform vertex.

Assume that s is such that Wn(s)
D−→W (s) and E[Wn(s)

2] → E[W (s)2]. Then, there exists κ(s) ≥ 0 such
that

lim
n→∞

EµICW
n,s

[
eFn(s)

]
= e−κ(s).

In particular, κ(s) = κ(0) when s = (s1, . . . , sn) only contains finitely many non-zero coordinates.

Proof of Lemma 4.1. We follow the proof of [11, Lemma 4.7] to obtain that

Fn(s) = −1

2
sinh(β) cosh(β)

(∑

i∈[n]
esiσi

w2
i

ℓn

)2
+ o(1).

Due to the negativity of this term, Lemma 4.1 follows when we prove that, for some barκ(s),

∑

i∈[n]
esiσi

w2
i

ℓn

P−→ κ̄(s), (4.5)

and then Lemma 4.1 follows with κ(s) = 1
2(κ̄(s))

2 sinh(β) cosh(β). We proceed to prove (4.5), which, in
turn, is equivalent to proving that as n→ ∞

EµICW
n,s

[
er

∑
i∈[n] e

siσi
w2
i

ℓn

]
→ erκ̄(s).

Following [18, (4.71)] we start by applying again the Hubbard-Stratonovich identity that gives

EµICW
n,s

[
er

∑
i∈[n] e

siσi
w2
i

ℓn

]
=

∑
σ∈Ωn

EZ

[
exp

{∑
i

(
r
ℓn
esiw2

i +
√

sinh(β)
ℓn

esiwiZ +B
)
σi

}]

∑
σ∈Ωn

EZ

[
exp

{∑
i

(√
sinh(β)

ℓn
esiwiZ +B

)
σi

}] .

The sum over the spins can now be performed yielding

EµICW
n,s

[
er

∑
i∈[n] e

siσi
w2
i

ℓn

]
=

EZ

[
exp

{∑
i log cosh

(
r
ℓn
esiw2

i +
√

sinh(β)
ℓn

esiwiZ +B
)}]

EZ

[
exp

{∑
i log cosh

(√
sinh(β)

ℓn
esiwiZ +B

)}] .

By introducing the random variables Wn(s) = wUe
sU , where U ∈ [n] is a uniform vertex, the previous

expression can be rewritten as

EµICW
n,s

[
er

∑
i∈[n] e

siσi
w2
i

ℓn

]
=

∫
R
exp

{
− z2/2 + nE

[
log cosh

(
r
ℓn
W 2

n(s/2) +
√

sinh(β)
ℓn

Wn(s)z +B
)]}

dz

∫
R
exp

{
− z2/2 + nE

[
log cosh

(√
sinh(β)

ℓn
Wn(s)z +B

)]}
dz

.
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We do a change of variables replacing z√
n

by z, so that

EµICW
n,s

[
er

∑
i∈[n] e

siσi
w2
i

ℓn

]
=

∫
R
exp

{
− nz2/2 + nE

[
log cosh

(
r
ℓn
W 2

n(s/2) +
√

sinh(β)
E[Wn]

Wn(s)z +B
)]}

dz

∫
R
exp

{
− nz2/2 + nE

[
log cosh

(√
sinh(β)
E[Wn]

Wn(s)z +B
)]}

dz
.

Assuming that Wn(s)
D−→ W (s) for some limiting distribution, as well as E[Wn(s)

2] → E[W (s)2] (which
in fact is a condition on s), an application of the Laplace method yields

EµICW
n,s

[
er

∑
i∈[n] e

siσi
w2
i

ℓn

]
= exp

[
rE
[
tanh

(√sinh(β)

E[W ]
W (s)z⋆(s, β,B) +B

)W ( s2)
2

E[W ]

]]
(1 + o(1))

where z⋆(s, β,B) is the solution with the same sign as B of

z = E

[
tanh

(√sinh(β)

E[W ]
W (s)z +B

)√sinh(β)

E[W ]
W (s)

]
.

All in all, the previous computation shows that (4.5) holds with

κ̄(s) = E

[
tanh

(√sinh(β)

E[W ]
W (s)z⋆(s, β,B)

)W ( s2)
2

E[W ]

]
.

When s only has a finite number of non-zero coordinates, it holds that Wn(s)
D−→ W and E[Wn(s)

2] →
E[W 2], so that κ̄(s) = κ̄(0), as required.

Armed with (4.3), we recall (4.2) and thus conclude that the moment generating function of the degrees
is given by

gβ,B,n(s) = (1 + o(1))eκ(0)−κ(s)Gn(t(s), β)EZ [exp
∑n

i=1 log cosh (an(β)e
siwiZ +B)]

Gn(0, β)EZ [exp
∑n

i=1 log cosh (an(β)wiZ +B)]
, (4.6)

with

an(β) =

√
sinh(β)

ℓn
= O

(
n−

1
2

)
.

4.2 Degree of a fixed vertex: proof of Theorem 1.8

We want to study the distribution of the degree of a fixed vertex. With no loss of generality we can fix,
for instance, vertex i = 1. Thus, we choose s = s1 with s1 = (s, 0, . . . , 0), and write

exp

[
n∑

i=1

log cosh (an(β)e
siwiZ +B)

]
=

cosh(an(β)e
sw1Z +B)

cosh(an(β)w1Z +B)
exp

[
n∑

i=1

log cosh (an(β)wiZ +B)

]
.

Defining

hn(Z;β,B) := exp

{
n∑

i=1

log cosh (an(β)wiZ +B)

}
= exp {nEWn [log cosh (an(β)WnZ +B)]} , (4.7)
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where EWn is the average w.r.t. Wn = wU being U an uniformly chosen vertex in [n], we can introduce
the probability measure on R by

γβ,B,n(·) :=
EZ [ · hn(Z;β,B)]

EZ [hn(Z;β,B)]
,

and write (4.6) as

gβ,B,n(s1) = (1 + o(1))
Gn(t(s1), β)

Gn(0, β)
Eγβ,B,n

(
cosh (an(β)e

sw1Z +B)

cosh (an(β)w1Z +B)

)
, (4.8)

since, by Lemma 4.1, κ(t) = κ(0).

Now, under the measure γβ,B,n, Z/
√
n

P−→ z⋆(β,B), which can be seen by performing a Laplace method
on the integral

EZ [ · hn(Z;β,B)] =

∫ +∞

−∞
· exp

[
n∑

i=1

log cosh (an(β)wiZ +B)

]
e−z2/2 dz√

2π
.

In fact, that is precisely the interpretation that z⋆(β,B) in Theorem 1.2 has. As a result,

Eγβ,B,n

(
cosh (an(β)e

sw1Z +B)

cosh (an(β)w1Z +B)

)
→

cosh
(
z⋆(β,B)esw1

√
sinh(β)
E[W ] +B

)

cosh
(
z⋆(β,B)w1

√
sinh(β)
E[W ] +B

) .

Thus,

Eµan
n

[
esD1

]
= (1 + o(1))

Gn(t(s1), β)

Gn(0, β)

cosh
(
z⋆(β,B)esw1

√
sinh(β)
E[W ] +B

)

cosh
(
z⋆(β,B)w1

√
sinh(β)
E[W ] +B

) (4.9)

and we are left with the problem of studying the limit of Gn(t(s1), β)/Gn(0, β). We have

Gn(t(s1), β)

Gn(0, β)
=

∏
j>1C1j(s) e

−β11(2s)/2 · ∏1<i<j Cij(0)
∏

i>1 e
−βii(0)/2

∏
j>1C1j(0) e−β11(0)/2 · ∏1<i<j Cij(0)

∏
i>1 e

−βii(0)/2
=
∏

j>1

(
C1j(s)

C1j(0)

)
· e

−β11(2s)/2

e−β11(0)/2
,

(4.10)
where (3.7) has been used. From the definition of Cij(s)’s, we get

∏

j>1

(
C1j(s)

C1j(0)

)
=
∏

j>1

es cosh(β)p1j + 1− p1j
cosh(β)p1j + 1− p1j

·
∏

j>1

cosh(β1j(0))

cosh(β1j(s))
. (4.11)

Putting pij = wiwj/(ℓn + wiwj), the first term in the l.h.s. is rewritten as

∏

j>1

es cosh(β)p1j + 1− p1j
cosh(β)p1j + 1− p1j

=
∏

j>1

ℓn + es cosh(β)w1wj

ℓn + cosh(β)w1wj
= ecosh(β)w1(es−1)(1 + o(1))

as n→ ∞. Next, we consider the second factor in the r.h.s. of (4.11). Arguing as in the previous section
for equation (3.15),

∑

1<j

log

(
cosh(βij(0))

cosh(βij(s))

)
=
∑

1<j

O(p21j) ≤ w2
1

∑

1<j

w2
j

ℓ2n
= o(1), (4.12)
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since maxj∈[n]wj = o(n). Taking the exponential of the previous relation, we obtain

∏

j>1

cosh(β1j(0))

cosh(β1j(s))
= 1 + o(1),

as n → ∞. Finally, since βij(s) = o(1) as n → ∞ (since pij → 0 in the same limit), the second factor in
the r.h.s. of (4.10) is 1 + o(1). This proves that

Gn(t(s1), β)

Gn(0, β)
= ecosh(β)w1(es−1)(1 + o(1)).

and from (4.9), we finally obtain

Eµan
n

[
esD1

]
= (1 + o(1))ecosh(β)w1(es−1)

cosh
(
z⋆(β,B)esw1

√
sinh(β)
E[W ] +B

)

cosh
(
z⋆(β,B)w1

√
sinh(β)
E[W ] +B

) ,

as required.

4.3 Degree of a fixed number of vertices: proof of Theorem 1.10

We can generalize the previous computation by considering the degrees (D1,D2, . . . ,Dm), with m ∈ [n]
fixed. The generating function of this random vector can be obtained by plugging s = sm with sm =
(s1, s2, . . . , sm, 0, . . . , 0) into (4.6). By the same arguments of the previous section, we obtain

gβ,B,n(sm) = (1 + o(1))
Gn(t(sm), β)

Gn(0, β)
Eγβ,B,n

(
m∏

i=1

cosh (an(β)e
siwiZ +B)

cosh (an(β)wiZ +B)

)
, (4.13)

with

Eγβ,B,n

(
m∏

i=1

cosh (an(β)e
siwiZ +B)

cosh (an(β)wiZ +B)

)
→

m∏

i=1

cosh
(
z⋆(β,B)esiwi

√
sinh(β)
E[W ] +B

)

cosh
(
z⋆(β,B)wi

√
sinh(β)
E[W ] +B

) (4.14)

as n → ∞. Now we have to study the limit of Gn(t(sm), β)/Gn(0m, β). From the definition of Gn(t, β)
given in (3.7) and recalling that tij(s) = si + sj,

Gn(t(sm), β)

Gn(0, β)
=

∏

1≤i<j≤m

(
Cij(si + sj)

Cij(0)

)
·
∏

1≤i≤m
j>m

(
Cij(si)

Cij(0)

)
·

m∏

i=1

(
e−βii(2si)/2

e−βii(0)/2

)
. (4.15)

We analyze the three factors separately:

• First and third factors of (4.15). By the definition of Cij(tij),

∏

1≤i<j≤m

(
Cij(si + sj)

Cij(0)

)
=

∏

1≤i<j≤m

esiesj cosh(β)pij + 1− pij
cosh(β)pij + 1− pij

·
∏

1≤i<j≤m

cosh(βij(0))

cosh(βij(si + sj))
, (4.16)

where, by definition of pij,

∏

1≤i<j≤m

esiesj cosh(β)pij + 1− pij
cosh(β)pij + 1− pij

=
∏

1≤i<j≤m

ℓn + esiesj cosh(β)wiwj

ℓn + cosh(β)wiwj
.
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We show that this factor is 1 + o(1). Indeed, following [19], we expand log(1 + x) obtaining:

log
∏

1≤i<j≤m

ℓn + esiesj cosh(β)wiwj

ℓn + cosh(β)wiwj
=

cosh(β)

ℓn

∑

1≤i<j≤m

wiwj(e
siesj − 1)

cosh(β)

ℓ2n
O(

∑

1≤i<j≤m

w2
iw

2
j )

= O(n−1),

since ℓn = O(n) and m is fixed. The second term in the r.h.s. of (4.16) and the third factor of (4.15)
converge to 1. Thus we have shown that that the first and third factors of (4.15) are 1 + o(1).

• Second factor of (4.15). For any fixed 1 ≤ i ≤ m,

∏

j>m

(
Cij(si)

Cij(0)

)
=
∏

j>m

ℓn + esi cosh(β)wiwj

ℓn + cosh(β)wiwj
·
∏

j>m

cosh(βij(0))

cosh(βij(si))
.

The second factor in the r.h.s. of the previous display can be treated as in (4.12), showing that it
is 1 + o(1), while the first factor is close to the generating function of Di in a GRG with vertex set
{i,m+1, . . . , n} and weight of vertex i given by cosh(β)wi. We can deal with this term as we have already
done, that is,

log
∏

j>m

ℓn + esi cosh(β)wiwj

ℓn + cosh(β)wiwj
= cosh(β)wi(e

si − 1)
1

ℓn

∑

j>m

wj +
cosh(β)

ℓ2n
O(
∑

j>m

w2
j ).

Since m is fixed 1
ℓn

∑
j>mwj = 1 + o(1), and 1

ℓ2n
O(
∑

j>mw
2
j ) = o(1), for sufficiently fast decay of wi’s.

Then,
∏

j>m

ℓn + esi cosh(β)wiwj

ℓn + cosh(β)wiwj
= ecosh(β)wi(esi−1)(1 + o(1)),

and the second factor in (4.15) is
∏m

i=1 e
cosh(β)wi(esi−1)(1 + o(1)). Thus we conclude that

Gn(t(sm), β)

Gn(0, β)
=

m∏

i=1

ecosh(β)wi(e
si−1)(1 + o(1)).

Going back to (4.13), we finally obtain that

Eµan
n

[
e
∑m

i=1 siDi

]
=

m∏

i=1

ecosh(β)wi(esi−1)
m∏

i=1

cosh
(
z⋆(β,B)esiwi

√
sinh(β)
E[W ] +B

)

cosh
(
z⋆(β,B)wi

√
sinh(β)
E[W ] +B

) (1 + o(1)),

as required.

A Appendix: LDP for the total spin using combinatorial arguments

In this appendix, we obtain the large deviation function of the total spin in the rank-1 inhomogeneous
Curie-Weiss model (and thus in the annealed Ising model) by employing direct combinatorial arguments.
We will restrict to the finite-type setting in which, roughly, there is a finite set of values for wi’s. More
precisely, we define this setting as follows:
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Condition A.1 (Finite-type setting). The vertex weight sequences w = (wi)i∈[n] satisfy the following
conditions:

(a) There exists a K ∈ N and a set of positive numbers A = {a1, a2, . . . , aK}, with a1 < a2 < . . . < aK ,
such that wi ∈ A for all i ∈ [n];

(b) Denoting by n̂k(n) the number of weights (wi)i∈[n] such that wi = ak, then the following limits exist

lim
n→∞

n̂k(n)

n
= pk , k = 1, . . . ,K,

(obviously p = (p1, . . . , pK) is a probability vector). We define also p̂k(n) := n̂k(n)
n and ek(n) :=

p̂k(n)− pk.

Hereafter, for the sake of notation we drop n from the notation of n̂k(n), p̂k(n), ek(n).

In this finite-type setting, the previous Condition A.1 is equivalent to Condition 1.1 in which Wn is
the uniformly chosen weight with

E[Wn] =

K∑

k=1

akp̂k , E[W 2
n ] =

K∑

k=1

a2kp̂k ,

and W is the limit weight assuming values ak with probability pk, so that

E[W ] =

K∑

k=1

akpk , E[W 2] =

K∑

k=1

a2kpk . (A.1)

Assuming Condition A.1, we consider the Hamiltonian (1.22) and defining

mn =
1

n

∑

i∈[n]
σi, m(w)

n =
1

n

∑

i∈[n]
wiσi, (A.2)

we rewrite
H ICW

n (σ) = β̃
n

2E[W ]
(m(w)

n )2 + nB mn . (A.3)

In the theorem below, we write ⌊x⌋ for the integer part of x > 0.

Theorem A.2 (LDPs for the total spin in the finite-type ICW model). In the inhomogeneous Curie-Weiss
model defined by (1.22), and assuming the finite-type setting in Condition A.1, the total spin Sn satisfies
that for m ∈ (−1, 1), with A =

[
1
2(1 +m) a1,

1
2(1 +m) aK

]
,

lim
n→∞

1

n
log PµICW

n
(Sn = ⌊mn⌋) =− inf

x∈A

[
− β̃
2
E[W ]− 2β̃

E[W ]
x2 + 2β̃x−Bm+ Im(x) + ψICW(β̃, B)

]
,

(A.4)

where ψICW(β̃, B) is the pressure of the model and where

Im(x) = E

[
eλ1W+λ2

1 + eλ1W+λ2
log

(
eλ1W+λ2

1 + eλ1W+λ2

)
+

1

1 + eλ1W+λ2
log

(
1

1 + eλ1W+λ2

)]
, (A.5)
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with λ1 = λ1(x,m), λ2 = λ2(x,m) defined implicitly by





E

[
eλ1W+λ2

1 + eλ1W+λ2

]
= 1 +m

2 ,

E

[
W eλ1W+λ2

1 + eλ1W+λ2

]
= x.

(A.6)

Remark A.3. The expression for the large deviation rate function of the total spin in the Theorem A.2
coincides with the one that is obtained from Theorem 1.6 by application of the contraction principle and
the relation between the annealed Ising model and the inhomogeneous Curie-Weiss model. Indeed, recalling
that the annealed measure µann at inverse temperature β is close to the Boltzmann-Gibbs measure µICW

n of
the inhomogeneous Curie-Weiss model at inverse temperature β̃ = sinh(β) (in the sense of equation (2.7))
and by using ψICW(β̃, B) = −α(β)+ψan(β,B), one finds that the large deviation function of the total spin
in the inhomogeneous Curie-Weiss model obtained from (2.4) reads

I(m) = inf
x2

[
I(m,x2)−

β̃

2E[W ]
x22 −Bm− log(2) + ψICW(β̃, B)

]
(A.7)

To see that (A.7) is equal to the r.h.s of (A.4) one employs the substitution x2 = 2x−E(W ). In doing so
clearly the energetic contribution are equal since

− β̃

2E[W ]
x22 = − β̃

2
E[W ]− 2β̃

E[W ]
x2 + 2β̃x

It remains to prove that
I(m,x2)− log(2) = Im(x)

This can be shown by changing the spin variables σi to the variables yi =
1
2(σi + 1) and introducing

Ŝn =
∑

i∈[n]
yi, Ŝ(w)

n =
∑

i∈[n]
wiyi.

Observe that
Sn = 2Ŝn − n, S(w)

n = 2Ŝ(w)
n − nE[Wn],

so that we can write

EPn [exp(t1Sn + t2S
(w)
n )] = exp(−n(t1 + t2E[Wn]))EPn [exp(2t1Ŝn + 2t2Ŝ

(w)
n )].

Since

EPn [exp(2t1Ŝn + 2t2Ŝ
(w)
n )] = EPn [Πi∈[n] exp(2t1 + 2wit2)yi] =

1

2n
Πi∈[n](1 + e2(t1+wit2)),

we obtain that the moment generating function of (Sn, S
(w)
n ) w.r.t. the product measure (2.2) can be ex-

pressed as
cn(t) = − log 2− (t1 + t2E[Wn]) + E[log(1 + e2(t1+Wnt2))].

Thus, arguing as in the proof of Theorem 1.6, we obtain that the limit of cn(t) exists and equals

c(t) = − log 2− (t1 + t2E[W ]) + E[log(1 + e2(t1+Wt2))].
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By applying the Gärtner-Ellis theorem we get the expression for the rate function

I(x1, x2) = sup
(t1,t2)

(
t1x1 + t2x2 + log 2 + (t1 + t2E[W ])− E[log(1 + e2(t1+Wt2))]

)
.

The stationarity conditions read as




E

[
e2(t1+Wt2)

1 + e2(t1+Wt2)

]
= 1 + x1

2 ,

E

[
W e2(t1+Wt2)

1 + e2(t1+Wt2)

]
=

E[W ] + x2
2 .

(A.8)

Since x1 represents the magnetization m and x2 represents the weighted magnetization m(w), and using
again the substitution x = (x2 + E(W ))/2 we obtain that (A.8) is identical to (A.6) provided that λ1 is
identified with 2t2 and λ2 with 2t1.

Proof of Theorem A.2. Given a configuration σ, we denote by n+ and n− the number of its positive resp.
negative spins. We can group the spins in σ according to either mn or n+, since these quantities are
related by n+ = n(1 +mn)/2. We can also identify each configuration of spins σ with the set I+ ⊂ [n] of
vertices in which σi = 1, obviously the cardinality of this set is |I+| = n+.

Given any I+ ⊂ [n], we define

qk =
1

n
#{i ∈ I+ | wi = ak}, k = 1, . . . ,K (A.9)

to be the frequency of type ak in I+. Then

|I+| = n+ = n

K∑

k=1

qk (A.10)

and

r(w)
n :=

1

n

∑

i∈I+
wi =

K∑

k=1

akqk ≡ a · q. (A.11)

Moreover, given n, we define the set

Qn :=

{(
ℓ1
n
, . . . ,

ℓK
n

)
| ℓk ∈ N, ℓk ≤ n̂k(n), k = 1, . . . ,K

}

of the possible frequency vectors q = (q1, q2, . . . , qK).

Exponential estimate for the conditional probability of q = (q1, q2, . . . , qK). We start by counting
the number of sets I+ with ⌊n(1 + m)/2⌋ elements and a given q = (q1, q2, . . . , qK) ∈ Qn that satisfies
the condition n

∑K
k=1 qk = ⌊n(1+m

2 )⌋ = |I+| = n+. For any k = 1, . . . ,K, in [n] there are np̂k sites
corresponding to ak, and we choose nqk out of them to form I+. On the other hand, there are

( n
n+

)
≡(

n
⌊n(1+m)/2⌋

)
possible ways to form a set I+ with n+ elements. Thus, the conditional distribution of

q = (q1, q2, . . . , qK) given m is multi-hypergeometric, i.e.,

Pn(q1, q2, . . . , qK | m) =

K∏

k=1

(
np̂k
nqk

)

(
n

⌊n(1+m
2 )⌋

) 1l{q∈Dn,
∑K

k=1 qk=
1
n⌊n( 1+m

2 )⌋}. (A.12)
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The asymptotic behavior of this probability as n → ∞, can be obtained by using the Stirling’s approxi-
mation n! = e−nnn

√
2πn(1 + o(1)) to estimate of the binomial coefficient as

(
nb

na

)
= en[b log b−a log a−(b−a) log(b−a)] ·

√
b(1 + o(1))√

a
√
b− a

√
2πn

,

where 0 < a < b. Then, generalizing the previous formula to a set of variables ak < bk, k = 1, . . . ,K, we
obtain

K∏

k=1

(
nbk
nak

)
= Cn(ak, bk)(1 + o(1)), (A.13)

where

Cn(a, b) := c1 (2πn)
−K/2 exp

(
n

K∑

k=1

[bk log bk − ak log ak − (bk − ak) log(bk − ak)]

)
(A.14)

with c1 =
∏K

k=1

√
bk

ak(bk−ak)
and the function is defined on the set

{(a1, . . . , aK , b1, . . . , bK) ∈ R
2K | 0 < ak < bk, k = 1, . . . ,K}.

We now compute the asymptotics of the numerator in (A.12). Recalling that p̂k = pk + ek and Taylor
expanding the sum in (A.14) and c1 as a function of bk’s, we obtain

K∏

k=1

(
n(pk + ek)

nqk

)
=Cn(q, p) [1 +

K∑

k=1

c(1)k ek +

K∑

k=1

O(e2k)] (A.15)

× exp

(
n

K∑

k=1

c(2)k ek(1 +O(ek))

)
(1 + o(1)),

for some constants c(1)k and c(2)k . The second factor in the r.h.s. comes from the substitution pk → pk + ek
in the factor c1 of (A.14), and the third form the sum in the same equation. From Condition A.1 we have
that these terms are both (1 + o(1)). Then, we conclude that the numerator in (A.12) is

K∏

k=1

(
np̂k
nqk

)
= Cn(q, p)(1 + o(1)). (A.16)

We can deal with the denominator in (A.12) in a similar fashion, obtaining:
(

n

⌊n(1+m
2 )⌋

)
= c2 sn(2πn)

− 1
2 exp

(
n

[
−1 +m

2
log(

1 +m

2
)− 1−m

2
log(

1−m

2
)

])
(1 + o(1)), (A.17)

with c2 = 2√
1−m2

and sn = sn(m) = exp[(n1+m
2 − ⌊n1+m

2 ⌋) log(1−m2

4 )]. By plugging this estimate and

(A.13) in (A.12), we finally obtain that

Pn(q1, q2, . . . , qK | m) =
c1
c2
sn (2πn)

1−K
2 eng(q,m)(1 + o(1)), (A.18)

with

g(q,m) =





h(q,m), if qk ≤ pk,
∑

k qk = 1
n⌊n(1+m

2 )⌋,

−∞, otherwise,
(A.19)

and

h(q,m) =
1 +m

2
log(

1 +m

2
)+

1−m

2
log(

1−m

2
)+

K∑

k=1

[pk log pk−qk log qk−(pk−qk) log(pk−qk)]. (A.20)
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Exponential estimate for the conditional probability of r
(w)
n . Let use introduce

An(m) =

{
q1a1 + · · ·+ qKaK | q ∈ Qn,

∑

k

qk =
1

n

⌊
n

(
1 +m

2

)⌋}
,

which are the sets of values of r
(w)
n = 1

n

∑
i∈I+ wi corresponding to subsets I+ ⊂ [n] with ⌊n(1 +m)/2⌋

elements.
We have that

1

2
(1 +m) a1 −

ρn(m)

n
≤ inf An(m), supAn(m) ≤ 1

2
(1 +m) aK − ρn(m)

n
, (A.21)

with ρn(m) = n(1 +m)/2 − ⌊n(1 +m)/2⌋. Obviously ρn(m)
n = O(n−1), since 0 ≤ ρn(m) < 1. Moreover,

by (A.21) and the fact that inf An(m) ≥ a1
∑

k qk and supAn(m) ≤ aK
∑

k qk,

inf An(m) → 1

2
(1 +m) a1, supAn(m) → 1

2
(1 +m) aK (A.22)

as n→ ∞. The previous remark imply that r
(w)
n is close to some x ∈

[
1
2(1 +m) a1,

1
2(1 +m) aK

]
for large

n. Therefore, we claim that

lim
n→∞

1

n
log Pπn



∑

i∈I+
wi = nx

∣∣∣∣ |I+| = ⌊n(1 +m)/2⌋


 =





Sm(x), x ∈
[
1
2(1 +m) a1,

1
2(1 +m) aK

]
,

−∞, otherwise,
(A.23)

where Sm(x) has to be computed. To this end, we observe now that the probability in (A.23) can be
written as

Pπn



∑

i∈I+
wi = nx

∣∣∣∣ |I+| = ⌊n(1 +m)/2⌋


 =

∑

q∈Qn
a·q=x

Pn(q1, q2, . . . , qK | m),

where the sum is extended to those k-tuples q ∈ Qn for which the event
∑

i∈I+ wi = nx is realized. In
the previous sum the term that corresponds to the larger value of the exponent g(q,m) in (A.18) controls
the behavior in the limit, the remaining terms being sub-leading. The quantity depending on m in the
definition of h(q,m), see (A.20), is negative and the sum on k is positive, while h(q,m) is negative in the
range defined in the first line of (A.19). Thus, defining

h̃(q1, q2, . . . , qK) =
K∑

k=1

[pk log pk − qk log qk − (pk − qk) log(pk − qk)],

we have to find
Sn = sup

a·q=x,
∑

k qk= 1
n ⌊n(m+1)/2⌋

h̃(q1, q2, . . . , qK).

In the previous equation the notation Sn emphasizes the fact that due to the constraints, the sup depends
on n. As a consequence, the optimization point q⋆ = (q⋆1 , . . . , q

⋆
k) will depend on n. In order to find q⋆ we

introduce the multipliers λ1 and λ2 conjugate to x and m, and write the Lagrangian function as

L(q1, q2, . . . , qK ;λ1, λ2) = h̃(q1, q2, . . . , qK) + λ1(
K∑

k=1

akqk − x) + λ2(
∑

k

qk − m̃n),
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where we set

m̃n :=
1

n
⌊n(m+ 1)/2⌋ = 1 +m

2
− ρn(m)

n
=

1 +m

2
+O(n−1).

By imposing that ∂L/∂qk = 0, k = 1, . . . ,K, we obtain that the stationarity point q⋆(n) = (q⋆1(n), . . . , q
⋆
k(n))

of the function h̃ satisfies

q⋆k(n) =
pke

λ1(n)ak+λ2(n)

1 + eλ1(n)ak+λ2(n)
, k = 1, . . . ,K,

with λ1(n) = λ1(x, m̃n), λ2(n) = λ2(x, m̃n). By introducing the notation

uk(n) =
q⋆k(n)

pk
=

eλ1(n)ak+λ2(n)

1 + eλ1(n)ak+λ2(n)
,

we write

Sn = h̃(q⋆1(n), q
⋆
2(n), . . . , q

⋆
K(n)) = −

K∑

k=1

pk[uk(n) log uk(n) + (1− uk(n)) log(1− uk(n))]

= E

[
eλ1(n)W+λ2(n)

1 + eλ1(n)W+λ2(n)
log

(
eλ1(n)W+λ2(n)

1 + eλ1(n)W+λ2(n)

)
+

1

1 + eλ1(n)W+λ2(n)
log

(
1

1 + eλ1(n)W+λ2(n)

)]
.

(A.24)

The relation between the multipliers λ1, λ2 and the parameters x, m̃n can be made explicit by recalling
that, since the probability vector (p1, . . . , pK) is the distribution of W , from (A.11) we have

x =

K∑

k=1

akpk
eλ1(n)ak+λ2(n)

1 + eλ1(n)ak+λ2(n)
= E

[
W

eλ1(n)W+λ2(n)

1 + eλ1(n)W+λ2(n)

]
, (A.25)

and, from (A.10),

m̃n =
1 +m

2
+O(n−1) =

K∑

k=1

pk
eλ1(n)ak+λ2(n)

1 + eλ1(n)ak+λ2(n)
= E

[
eλ1(n)W+λ2(n)

1 + eλ1(n)W+λ2(n)

]
, (A.26)

where (A.11) and (A.10) have been used. By taking the limit of (A.25) and (A.26) as n→ ∞, we see that
λ1(n) and λ2(n) converge to λ1 and λ2 that solve

x =
K∑

k=1

akpk
eλ1ak+λ2

1 + eλ1ak+λ2
= E

[
W

eλ1W+λ2

1 + eλ1W+λ2

]
,

and

1 +m

2
=

K∑

k=1

pk
eλ1ak+λ2

1 + eλ1ak+λ2
= E

[
eλ1W+λ2

1 + eλ1W+λ2

]
,

that is (A.6). From this fact it follows that in the same limit n→ ∞,

q⋆k(n) → q⋆k =
pke

λ1ak+λ2

1 + eλ1ak+λ2
and uk(n) → uk =

eλ1ak+λ2

1 + eλ1ak+λ2

and, thus,

Sn → S := E

[
eλ1W+λ2

1 + eλ1W+λ2
log

(
eλ1W+λ2

1 + eλ1W+λ2

)
+

1

1 + eλ1W+λ2
log

(
1

1 + eλ1W+λ2

)]
(A.27)
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Then, from (A.18), (A.20), and the previous display, we obtain the limit in (A.23) with

Sm(x) =
1 +m

2
log(

1 +m

2
) +

1−m

2
log(

1−m

2
)

+ E

[
eλ1W+λ2

1 + eλ1W+λ2
log

(
eλ1W+λ2

1 + eλ1W+λ2

)
+

1

1 + eλ1W+λ2
log

(
1

1 + eλ1W+λ2

)]
. (A.28)

Moment generating function of the Hamiltonian H ICW
n (σ). Our next step to compute the cumulant

generating function of the Hamiltonian (A.3) that we rewrite as a function of

r(w)
n =

1

n

∑

i∈I+
wi,

for which we have proven (A.23). In this way we obtain

H ICW
n (r(w)

n ,mn) = n

[
2β̃

E[W ]
(r(w)

n )2 − 2β̃
E[Wn]

E[W ]
r(w)
n +

β̃

2

E[Wn]
2

E[W ]
+Bmn

]
.

Now, writing E[Wn] = E[W ] + ǫn and defining

hICW
n (r(w)

n ,mn) :=
2β̃

E[W ]
(r(w)

n )2 − 2β̃r(w)
n +

β̃

2
E[W ] +Bmn,

we have

H ICW
n (r(w)

n ,mn) = nhICW
n (r(w)

n ,mn) + n ǫn

[
− 2β̃

E[W ]
r(w)
n + β̃ +

β̃

2E[W ]
ǫn

]
.

Since Condition A.1 implies that ǫn = o(1) the last addend in the previous display is o(n). Now we can
finally write the cumulant generating function and apply Varadhan’s lemma to compute

lim
n→∞

1

n
logEπn

[
eH

ICW
n (r

(w)
n ,mn) | mn = m

]
= lim

n→∞
1

n
logEπn

[
en [hICW

n (r
(w)
n ,mn)+o(1)] | mn = m

]

=
β̃

2
E[W ] +Bm+ sup

x∈A

[
2β̃

E[W ]
x2 − 2β̃x− Sm(x)

]
, (A.29)

where the large deviation property (A.23) has been used and A =
[
1
2 (1 +m) a1,

1
2(1 +m) aK

]
. We can

now move to the final step.

Asymptotic behavior of PµICW
n

(mn = m). Let us observe that, since the conditional average on the
left hand side to the previous display is computed with respect to the uniform measure πn(σ) = 2−n on
the spins σ,

Eπn

[
eH

ICW
n (σ)|mn = m

]
=

∑
σ 1l{mn(σ)=m}e

HICW
n (σ)πn(σ)

Pπn(mn = m)
=

2−n Z ICW
n

Pπn(mn = m)
PµICW

n
(mn = m),

with Z ICW
n =

∑
σ e

HICW
n (σ), the partition function of the ICW model. Thus,

1

n
logPµICW

n
(mn = m) =

1

n
logEπn

[
eH

ICW
n (σ)|mn = m

]
+

1

n
logPπn(mn = m)− 1

n
logZ ICW

n + log 2.
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Since Pπn(mn = m) = 2−n
(

n
n( 1+m

2
)

)
, by (A.17),

lim
n→∞

1

n
log Pπn(mn = m) = − log 2− 1 +m

2
log(

1 +m

2
)− 1−m

2
log(

1−m

2
),

and

lim
n→∞

1

n
logZ ICW

n = ψICW(β̃, B),

is the pressure of the Inhomogeneous Curie-Weiss model [11]. Thus, by (A.29),

lim
n→∞

1

n
logPµICW

n
(mn = m) =

β̃

2
E[W ] +Bm+ sup

x∈A

[
2β̃

E[W ]
x2 − 2β̃x− Sm(x)

]
− ψICW(β̃, B)

− 1 +m

2
log(

1 +m

2
)− 1−m

2
log(

1−m

2
),

from which, recalling (A.28), we obtain (A.4) and (A.5).

Acknowledgments. SD has been supported by the Deutsche Forschungsgemeinschaft (DFG) via RTG 2131 High-

dimensional Phenomena in Probability – Fluctuations and Discontinuity. We acknowledge financial support from

the Italian Research Funding Agency (MIUR) through FIRB project “Stochastic processes in interacting particle

systems: duality, metastability and their applications”, grant n. RBFR10N90W. The work of RvdH is supported

in part by the Netherlands Organisation for Scientific Research (NWO) through VICI grant 639.033.806 and the

Gravitation Networks grant 024.002.003. C. Giberti and C. Giardinà acknowledge financial supports from “Fondo

di Ateneo per la Ricerca 2015” and “Fondo di Ateneo per la Ricerca 2016”, Università di Modena e Reggio Emilia.

References

[1] B. Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, Cambridge, second edition, (2001).

[2] B. Bollobás, S. Janson, and O. Riordan. The phase transition in inhomogeneous random
graphs. Random Structures Algorithms, 31(1):3–122, (2007).

[3] T. Britton, M. Deijfen, and A. Martin-Löf. Generating simple random graphs with pre-
scribed degree distribution. J. Stat. Phys., 124(6):1377–1397, (2006).

[4] V. Can. Annealed limit theorems for the Ising model on random regular graphs. Available at arXiv:
1701.08639 [math.PR], Preprint (2017).

[5] V. Can. Critical behavior of the annealed Ising model on random regular graphs. Available at
arXiv: 1701.08628 [math.PR], Preprint (2017).

[6] F. Chung and L. Lu. Connected components in random graphs with given expected degree
sequences. Ann. Comb., 6(2):125–145, (2002).

[7] F. Chung and L. Lu. Complex graphs and networks, volume 107 of CBMS Regional Confer-
ence Series in Mathematics. Published for the Conference Board of the Mathematical Sciences,
Washington, DC, (2006).

[8] A. Dembo and A. Montanari. Ising models on locally tree-like graphs. Annals of Applied
Probability, 20, 565–592, (2010).

33



[9] A. Dembo and A. Montanari. Gibbs measures and phase transitions on sparse random graphs.
Braz. J. Probab. Stat., 24(2):137–211, (2010).

[10] A. Dembo and O. Zeitoni. Large Deviations Techniques and Applications. Springer, (2009).

[11] S. Dommers, C. Giardinà, C. Giberti, R. v. d. Hofstad, and M. Prioriello. Ising critical
behavior of inhomogeneous Curie-Weiss models and annealed random graphs. Comm. Math. Phys.,
348(1):221–263, (2016).

[12] S. Dommers, C. Giardinà and R. van der Hofstad. Ising models on power-law random
graphs. Journal of Statistical Physics, 141(4), 638–660, (2010).

[13] S. Dommers, C. Giardinà, and R. van der Hofstad. Ising critical exponents on random trees
and graphs. Comm. Math. Phys., 328(1):355–395, (2014).

[14] S. Dorogovtsev, A. Goltsev, and J. Mendes. Critical phenomena in complex networks.
Reviews of Modern Physics, 80(4):1275–1335, (2008).

[15] R.S. Ellis. The theory of large deviations: from Boltzmann’s 1877 calculation to equilibrium macro
states in 2D turbulence. Physica D, 133: 106–136 (1999).

[16] R.S. Ellis. Entropy, Large Deviations and Statistical Mechanics. Springer, (2006).

[17] C. Giardinà, C. Giberti, R. van der Hofstad and M.L. Prioriello. Quenched central limit
theorems for the Ising model on random graphs. Journal of Statistical Physics, 160: 1623–1657,
(2015).

[18] C. Giardinà, C. Giberti, R. van der Hofstad and M.L. Prioriello. Annealed central limit
theorems for the Ising model on random graphs. ALEA, Latin American Journal of Probability and
Mathematical Statistics, 13: 121–161, (2016).

[19] R. van der Hofstad. Random graphs and complex networks. Vol. 1. Cambridge Series in Statistical
and Probabilistic Mathematics, Cambridge University Press, Cambridge, (2017).

[20] R. van der Hofstad. Stochastic processes on random graphs. Lecture notes for Saint-Flour
Summer School 2017. In preparation (2018+).

[21] S. Janson. Asymptotic equivalence and contiguity of some random graphs. Random Structures
Algorithms, 36(1):26–45, (2010).

[22] S. Janson, T. Łuczak, and A. Rucinski. Random graphs. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley-Interscience, New York, (2000).

[23] M. Leone, A. Vázquez, A. Vespignani, and R. Zecchina. Ferromagnetic ordering in graphs
with arbitrary degree distribution. The European Physical Journal B-Condensed Matter and Complex
Systems, 28(2):191–197, (2002).

[24] I. Norros and H. Reittu. On a conditionally Poissonian graph process. Adv. in Appl. Probab.,
38(1):59–75, (2006).

34


	1 Introduction and main results
	1.1 The annealed Ising model on generalized random graphs
	1.1.1 Generalized random graph
	1.1.2 Annealed Ising model
	1.1.3 Previous results for the annealed Ising model on the generalized random graph

	1.2 Main results
	1.3 Discussion
	1.4 Preliminaries: an enlightening computation

	2 LDP for the total spin
	2.1 LDP in the high-temperature regime
	2.2 LDPs for the total spin and weighted spin

	3 LDP for the number of edges: proof of Theorem 1.7
	3.1 Strategy of the proof
	3.2 Moment generating function for the number of edges
	3.3 Conclusion of the proof

	4 Degree distribution under annealed measure: proof of Theorem 1.8
	4.1 Moment generating function of the degrees
	4.2 Degree of a fixed vertex: proof of Theorem 1.8
	4.3 Degree of a fixed number of vertices: proof of Theorem 1.10

	A Appendix: LDP for the total spin using combinatorial arguments

