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Abstract

This study investigates the optimum geometry foximam efficiency of a hybrid
PV-TE uni-couple using Finite Element Method. COMSKultiphysics is used to solve the
3-Dimensional heat transfer equations considetiegnoelectric materials with temperature
dependent properties. Two types of thermoelectiement geometry area ratios are
considered for the rangé.5 <R, <2 and 0.5 <Rs; <2 . Nine different geometric
configurations are analysed for two different P\lsceEffects of thermoelectric generator
(TEG) geometric parameters, solar irradiation amdcentration ratio on the hybrid system
efficiency are presented. The results show thaytaidh PV-TE system will perform better
with symmetrical TEG geometry\Rf = Rs = 1) if a PV temperature coefficient of 0.004/K
(Cell B) is used. This is different from the optimugeometry for a TEG only system.
However, the optimum geometry of the TEG in a hylsiystem will be the same as that of a
TEG only system (dissymmetrical i.B, = Rg # 1) if a PV temperature coefficient of
0.001/K (Cell A) is used. The overall efficiencydaE temperature difference show a
decreasing trend as thermoelectric element lengthasiea increase respectively no matter
the configuration or temperature coefficient valised. Results obtained from this research

would influence hybrid PV-TE system design for atitay maximum conversion efficiency.

Keywords: PV-TE, Finite Element Method, TE AreaiBaGeometry, Efficiency
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1. Introduction

Alternative energy conversion methods have receiwvenleased research attention
because of environmental challenges such as; gledrahing, increasing energy demand and
diminishing oil sources [1-3]. Asides the fact tha¢se fossil fuel sources are limited, some
other disadvantages include; creation of noise arbaust gases, need for constant
maintenance and repairs particularly for continuopsration [4,5]. Therefore, renewable
energy sources like Photovoltaic (PV) technologgrofinique advantages such as; noiseless
operation, low maintenance and zero pollution [Bje decrease of PV efficiency due to
increasing cell temperature is the main shortconohghe PV technology [7]. The best
efficiency result obtained from a monocrystalliniecsn cell is about 18% [8]. This value is
quite low therefore, the efficiency of the PV aadleds to increase significantly to increase its
comparative advantage over conventional energycesuand to encourage a wider adoption
of the technology globally.

Photovoltaic cells utilize only part of the solgestrum. Therefore, the infrared part of
the sunlight which is not used by the PV cell hegtghe cell and consequently, reduces the
efficiency of the PV cell. Therefore, combining ¥ Bell which utilizes the visible and ultra-
violet part of the sunlight with a Thermoelectrid) module which utilizes the infrared part
of the sunlight would enable the utilization of thdl solar spectrum [9]. The efficient
combination of the PV and TE generators would dtutsta significant breakthrough in solar
energy utilization [10]. Research in the field ofohid PV-TE has accelerated faster than
other hybrid PV technologies [11]. A thermoelectgenerator (TEG) is a solid state device
which can convert heat directly into electricity the Seebeck effect [12]. Therefore, the
TEG attached to a PV performs a dual function aliog the PV cell and generating extra

electrical energy from the waste heat of the PV, cel
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Research in the field of hybrid PV-TE has gaineehtgr attention recently and different
methods have been used to investigate the perf@enainthe hybrid system. Van Sark [13]
presented an idealized model for a hybrid PV-TEtesysand suggested that efficiency
enhancement of about 50% could be achieved witldé¢velopment of new TE materials. Ju
et al. [14] presented a spectrum splitting hybrid HE system using numerical modelling
and observed that the cut-off wavelength of theridybystem is mainly determined by the
band gap of the solar cell. Park et al. [15] ingeded a hybrid PV-TE system using a
lossless coupling approach to improve the effiggeoicthe PV device in the hybrid system
by 30%. Zhu et al. [16] used optimized thermal nggmaent techniques on a thermal
concentrated hybrid PV-TE system which achieved pgiciency of 23% during outdoor
testing. Bjark et al. [17] used an analytical madedletermine the performance of hybrid PV-
TE systems using different type of PV cells andnfibuhat the overall efficiency of the
hybrid system can be lower than that of the PV @ystem. However, Lamba et al. [18]
developed a theoretical model for analysing théoperance of a concentrated PV-TEG and
found that the hybrid system’s power output anciefficy increased by 13.26% and 13.37%
respectively in comparison with those of PV onlgteyn. Furthermore, Yin et al. [19] also
developed a theoretical model for obtaining the-dag performance of a hybrid PV-TE
system and observed a peak efficiency of 16.65%adulition, Wu et al. [20] presented a
theoretical model for determining the performantglazed/unglazed hybrid PV-TE systems
using nanofluid heat sink. The authors observetirthnofluid provides a better performance
than water. Likewise, Soltani et al. [21] obsertledt nanofluid cooling enabled the highest
power and efficiency improvements (54.29% and 3.3%%pectively) in a hybrid PV-TE
system in which five different cooling methods wereestigated. To reduce the temperature
fluctuations in a hybrid PV-TE system, Zhang et{22] developed a novel hybrid system in

which the number of TE generator cooled by watarlccde adjusted by controlling the
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cycles of water in the cooling blocks. In additimnthis, Cui et al. [23] introduced a phase
change material (PCM) into a PV-TE system to miggeemperature fluctuations in the
system and observed improved performance. Furthermdahmoudinezhad et al. [24]
studied the transient response of a hybrid CPV-V&esn and found that the thermal
response of the TEG helps stabilize the temperdlucéuation in the hybrid system when
solar radiation changes rapidly.

Finite Element Method (FEM) has been applied toittvestigation of hybrid PV-TE
system performance in the past. Kiflemariam e{28] used this method to perform a 2-D
simulation of a hybrid PV-TE system and found thagher concentration ratio results in
higher power production from the TEG module. Bet¢ral. [26] also used this method along
with experimental approach to investigate the perémce of a PV-TE system and obtained a
maximum efficiency of 32% for concentration raid@00. More recently, Teffah et al. [27]
used this method to investigate the efficiency ofiydrid system consisting of a triple
junction solar cell (TISC), a thermoelectric coqBEC) and a TEG. Furthermore, Li et al.
[28] also used finite element method to optimise geometry of the thermoelectric element
footprint for maximum power generation in a PV-TE.

Recently, the incorporation of heat pipes into ybPV-TE systems have been
investigated. Makki et al. [29] investigated a hpgte based PV-TEG hybrid system and
suggested that the system is better used in s@wgigns with high operating temperature and
low wind speeds. However, temperature independextenmal properties were used in the
research. Furthermore, Li et al. [30] presentedeehPV-TE system based on a flat plate
micro-channel heat pipe.

Considering the TEG geometry, Li et al. [31] staldibe influence of geometric size on
the performance of hybrid PV-TE systems and fourad the overall efficiency increases as

cross-sectional area increases. Furthermore, Hashiral. [32] developed a model to
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determine the optimal geometry of thermoelectrivices in a hybrid PV-TE system. The
authors argued that the dimension of the TEG iylaitt system has a significant influence
on the overall power output of the system. Li ef2B] investigated the optimal geometry of
the TEG element in a hybrid PV-TE uni-couple forxmaum efficiency. The authors found
that the hybrid system’s maximum power output osamhen the ratio of area of n- and p-
type (AVA,) is symmetrical unlike in the case of a TEG onjfgtem. In addition, Kossyvakis
et al. [34] advised the use of thermoelectric deviwith shorter thermoelectric elements to
obtain improved hybrid PV-TE system performance nvhaperated under sufficient
illumination. The authors suggested that this alless material to be consumed and reduce
system cost. These suggestions are in agreemdnf35it

The optimized geometry of a TEG only system has leegensively studied in the past
[36,37]. However, it is important to find the optim geometry of the TEG when used in a
hybrid PV-TE system. While previous works discusabdve have considered the influence
of the thermoelectric elements area ratig/fp) on the efficiency of the hybrid system, to
the best of our knowledge, there is no study onrifieence of the cross sectional area ratio
of each thermoelectric element{/Ac) on the efficiency of the hybrid PV-TE systemy#,
is the area ratio of the n-type and p-type therewiat elements while XAc is the area ratio
of the thermoelectric element hot and cold junaidn addition, some of the previous works
have used constant thermoelectric material pragsertHowever, the n- and p-type TE
material properties are not the same in real apptinos and they also depend on temperature
[33]. In fact, the power output and efficiency of T&G is affected by the temperature
dependency of the thermoelectric material proper{@8]. Thus, it is imperative that
temperature dependent thermoelectric material ptiege are used to avoid errors.

Furthermore, temperature coefficient affects thiciehcy of the PV only system [39].



124  However, there is limited research on its effectlos geometry and efficiency of the hybrid
125 PV-TE system.

126 Therefore, this research investigates the optimaangetry for maximum efficiency in a
127  hybrid PV-TE uni-couple. The advantage of using the-couple PV-TE model is that
128 computational time can be significantly reduced levistill achieving accurate results from
129  which significant optimization activities can berrvad out. In order to find this optimum
130 geometry, the two thermoelectric element geometea aatios are studied for the range
131 0.5<R, <2 and0.5 < Rs < 2. This range is used to investigate the performasfcthe
132 hybrid PV-TE system because ease of fabricatidghethermoelectric element is considered.
133  Presently, most thermoelectric elements are reatangor square in shape and the
134  rectangular shape corresponds to the condiilgr=1 in this study. The other two
135  conditions,R4 = 0.5 and 2 modify the shape of the thermoelectric elemerd antrapezoidal
136  shape which can also be fabricated. The goal 8nalate equivalent models which can be
137 fabricated easily. The rande5 < Rg < 2 controls the cross-sectional area of the
138 thermoelectric elements (n-type and p-type). Atbe, chosen range can be fabricated with
139  ease therefore, it is used in the simulations.

140 In addition, the investigation is carried out attoh@d load condition and temperature
141  dependent thermoelectric material properties ared.usNonlinearity of thermoelectric
142  material properties used in modelling necessittitesise of computation techniques such as
143  FEM software. The hybrid system is modelled in Bweinsion using COMSOL Multiphysics
144  software and finite element method is used to sahe heat transfer equations. Finite
145 Element Method (FEM) is used because of its Muitgats simulation capability. Due to
146  recent advancement in its Multiphysics simulatiapability, the finite element method has
147  become an attractive method to simulate thermaeedevices. Furthermore, FEM allows

148 Thomson effects and temperature dependent propestighermoelectric materials to be
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easily coupled into the governing equations [4@m8 of the advantages of using finite
element method are; it provides a user-friendlgriiaice for model construction and results
can be easily visualized. In addition, it providesreased simulation result accuracy [41].
The main advantage of this FEM software is thad]ldws the coupling of different physical

models. Also, it allows detailed investigation te tarried out to facilitate accurate design
decision making because of its capability to alloptimization efforts to be carried out.

Furthermore, the effect of PV temperature coefficien the hybrid system maximum

efficiency is studied for the three different gedneeconfigurations considered.

The remaining part of this paper is organised #eviis; Section 2 provides a detailed
description of the different geometrical configimas used in the modelling and assumptions
taken. Section 3 describes the mathematical modet land the modelling parameters
utilized. Section 4 describes the results obtaiard analysis of the results. Finally, the

conclusions drawn from this study are presentegkiction 5.

2. Geometry Description

The schematic diagrams of the different geometfethe hybrid system simulated are
shown in Fig. 1, Fig. 2 and Fig. 3 correspondinghi range.5 < R, < 2 and0.5 < R <
2. The system consists of a solar concentrator, Bdube, tedlar, and TEG module. The PV
module is a Silicon cell and the TEG module cossadft Bismuth Telluride thermoelectric
elements which are connected electrically in seaies thermally in parallel. Solar radiation
passes through the solar concentrator and it is itheinged on the PV surface. Part of the
solar radiation is converted to electricity dirgddly the PV module, some other part is lost to
the environment by radiation and convection (thérlosses) while the remaining heat is
transferred to the TEG module through heat condncirhe TEG hot side is attached to the

bottom of the PV module and the TEG cold side tschied to a cooling base which is placed
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in ice water to take away the extra energy. Theegfthere is a temperature difference
between the hot and cold sides of the TEG andraligtis generated by Seebeck effect. The
following assumptions have been taken:

1. Only steady state conditions are considered.

2. The cold side of the TEG is maintained at a congeanperature of 273K.

3. Heat transfer occurs only in one dimension.

4. Two conversion efficiencies of PV (Cell A and C8l are considered (10% and

15%) for the two temperature coefficients usedDK0* and 0.004K}) respectively

and they change with temperature.

2.1 Geometric Configurations

The cross-sectional area of the different leg gdonese of the thermoelectric
generator in the hybrid system considered is shoviig. 4. Fig. 4a shows the leg geometry
whenR, = 0.5, Fig. 4b shows the leg geometry when= 1 and Fig. 4c shows the leg

geometry whem, = 2.

The nine different geometric configurations anatyare shown in Fig. 1, Fig. 2 and
Fig. 3. The geometric configurations whep= 0.5 are shown in Fig. 1. For this case, Fig.
la, Fig. 1b, Fig. 1c show the configurations wRgn= 0.5, R = 1 andRgs = 2 respectively.
Furthermore, the geometric configurations wikgn= 1 are shown in Fig. 2. The
configurations whe®s = 0.5, R¢ = 1 andRs = 2 are shown in Fig. 2a, Fig. 2b and Fig. 2c
respectively for this case. Finally, Fig. 3 sholws ieometric configurations whé&yp = 2.
For this case, Fig. 3a, Fig. 3b, Fig. 3c show thafigurations wheRs = 0.5, R¢ = 1 and

Rs = 2 respectively.
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3. Model Description
3.1 TEG Module

The mathematical equations corresponding to theyésgnetries shown in Fig. 4 are
[42]:
Alx) = AHL;ACx + Ac 1)
where A. is the cross sectional area of the bottom sidaéethermoelectric element adg
is that of the top sidd. is the height of the thermoelectric element. Tfoeee the area ratio

can be defined a®, = Ay/A. . The cross-sectional area of the thermoelectement can

be expressed as:

A(x) = A 14222 (2= 2] )

Ra+1\L 2
whereA, is the cross-sectional area of the uniform thetewec element.

The heat transfer rate through the leg along xvisrgby:
0= —kA()Z (3)
Assuming steady heating condition and isolatedslegaces, equation (3) can be re-written

as

5 L dx _ Ty
Q J, -k Jp, aT (4)

Substituting equation (2) into equation (4) andq@®ning integration

ﬂ Rp-1
2k L (RA+1)

In(R4)

Q= (Ty — T¢) (5)

The total thermal conductance of the thermoeleajeoerator considering the two legs

shown in Fig. 1, Fig. 2 and Fig. 3 is given as

2 ey
L \R 1
K =2(k, + ky) = (;:) (6)
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wherek, andk, are the thermal conductivities of the p-type antglpe legs respectively.

Also, considering the two legs the total electriemlistance of the thermoelectric generator is

1 1 1 O- +O-TL
R = (34 50) sy (R = i In(R) @
p n ZT(RAH) UPG”T(RAH)

wheread, andg,, are the electrical conductivities of the p-type antype legs respectively.

FurthermoreRg is the area ratio of the n-type and p-type thetewtec element and
can be expressed aBs = A, /A, .
whereA,, is the cross-sectional area of the n-type therewbet element and,, is the cross-

sectional area of the p-type thermoelectric element

3.2 PV Module
The following boundary conditions are applied te 8V module and are used to describe the

FEM model.

External heat flux: This is applied at the uppefae of the PV cell and can be expressed as
qo = CGapyApy — EpyApy )
The power output of the PV cell per square meter lma expressed as a function of solar

irradiation and temperature as shown

Epy = CGApynpy[1 — @ (Tpy — 298)] 9)

Convective heat flux: This is considered at the anppurface of the PV cell due to the

temperature difference between the upper surfagehenambient. It can be expressed as

qd1 = hamp (Tamb - TPV) (10)

10
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Diffuse surface: The heat transfer due to radia@brthe surface of the PV cell can be
expressed as

az = €0, (Tgmp — Tpy) (11)
whereg,, is Stefan-Boltzmann’s constant.

The last boundary condition is applied at the loserface of the hybrid system. The cold
side of the system is placed in ice water to maintaat a constant temperature of 273K and
this can be expressed as

T, =T, = 273K (12)

3.3 Overall System Performance
The performance of the hybrid PV-TE system is mesbin terms of its overall electrical

output and efficiency.

The total power output of the PV-TE system is then ©f the power outputs of PV and TEG
and can be expressed as

Ppy_1g = Ppy + Prg = EpyApy + Prg (13)

The overall efficiency of the hybrid PV-TE systeande expressed as

_ Ppy_te _ EpyApy+PrEg
Npy-TE = = (14)
CGApy CGApy

3.4 Modelling Parameters

Different geometric parameters and material progerare used in modelling the
hybrid PV-TE system. The Seebeck coefficient, Eieat conductivity and Thermal
conductivity of the Bismuth Telluride (Bies) thermoelectric material used are temperature
dependent and linearly extrapolated using the emstin Table 1 [43]. The remaining

11
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material properties used are listed in Table 2 evitie geometric parameters used for

modelling the hybrid PV-TE system are shown in &zl

The PV efficiency at standard test conditions i%X0r a PV cell with temperature
coefficient of 0.001 K (Cell A). While, the PV efficiency at standargteondition is 15%

for a PV cell with temperature coefficient of 0.004 (Cell B).

4. Results and Discussion

The different geometrical configurations investeghire shown in Fig. 1, Fig. 2 and
Fig. 3. COMSOL Multiphysics software is used to Igsa the performance of each of these
geometrical configurations. Different temperatunel aoltage distributions are obtained for
each geometrical configuration as the load resist#®y ) attached to the TEG is changed to
find its optimum value for maximum hybrid systemwss output and efficiency. The
optimum load resistance for a TEG only system ffedint from that of a TEG in a hybrid
system [44]. The temperature and voltage distrinsti corresponding to the maximum
efficiency obtained are shown in Fig. 5, Fig. 6 &ig. 7 forR, = 0.5, R, = 1 andR, = 2
respectively. These figures all correspond to teeavherRs = 1 andgp, = 0.001/K (Cell
A). Furthermore, temperature coefficient affects thmperature and voltage distributions in
all the geometrical configurations investigatedg.Fba, Fig. 6a, and Fig. 7a show the
temperature distributions f&, = 0.5, R, = 1 andR, = 2 respectively. While Fig. 5b, Fig.

6b and Fig. 7b show the voltage distributions Rgr= 0.5, R, = 1 andR, = 2 respectively.

4.1 Geometry Area Ratios

The geometry of the thermoelectric elements intaidyPV-TE system influence the
overall performance of the system which is measuréerms of its overall power output and
conversion efficiency. Therefore, the two geomaiga ratios which completely describe the

12
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geometry of thermoelectric elements in a hybrid F/system are studied for the range to
0.5 <R, <2 and0.5 < Ry <2 and optimized to obtain the maximum efficienaynirthe
hybrid system. In addition, the geometry area sadi@ investigated for the two different PV
temperature coefficient values considered andekelts obtained are shown in Fig. 8 and

Fig. 9.

It can be seen clearly from Fig. 8 and Fig. 9 thatmaximum hybrid PV-TE system
efficiency depends greatly on the geometry of therrmoelectric elements in the hybrid
system. Furthermore, it can be seen that the tetyercoefficient value plays an important
role in determining the optimum geometry for thétg PV-TE system and consequently the
maximum efficiency obtainable. The cross-sectiarah ratio of the thermoelectric element
hot and cold junctionsR(, = Ay /A;) and the area ratio of the n-and p-type thermastect
elementsRs = A,/A,) are the two geometry area ratios analysed.

Fig. 8 shows that whe@,, = 0.001/K (Cell A), the optimum geometry for the
thermoelectric element in the hybrid PV-TE systendissymmetrical i.eRy; = Rg # 1. In
essence, the optimum geometry of the TEG in theithdystem is the same as its geometry
in a TEG only system because the temperature casffivalue of the PV is too low to affect
its geometry in the hybrid system. Rezania et4B] pnd Al-Merbati et al. [42] found the
optimum geometry of the thermoelectric elements anTEG only system to be
dissymmetrical. Furthermore, it can be seen thatafbthe values oRs considered, the
minimum efficiency all occur wheR, = 1. In addition, efficiency increase can be observed
for Ry = R = 0.5 and R4, = Ry = 2 thus, implying that the optimum geometry of the
thermoelectric element in a hybrid system to obthie@ maximum overall efficiency is

dissymmetrical. Although, the efficiency improvertemight not be very significant now,

13
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the combination of several thermoelectric devicesdries would lead to a more significant
overall efficiency improvement.

Fig. 9 shows an opposite trend to results from Bidecause the PV temperature
coefficient has been increased to 0.004/K (CellMythermore, it is clear that the percentage
increase in hybrid system efficiency values obtaifeg the different geometry area ratios in
Fig. 9 is lower than those obtained in Fig. 8. Tikibecause the efficiency of the hybrid PV-
TE system decreases as the PV temperature coeffiziereases [19]. In addition, the
optimum geometry of the TEG in the hybrid systenmsysnmetrical for this temperature
coefficient value (0.004/K). Furthermore, it can ®een from Fig. 9 that the maximum
efficiency occurs wheR, = 1 for all the values oRg considered. Therefore, it can be
concluded that when a high temperature coefficiahte is used, the optimum geometry of
the TEG in a hybrid system is different from itoogeetry in a TEG only system. This is a
very important finding that will help researcherscarately choose the PV temperature

coefficient value and geometrical configuratiorbeoused for obtaining maximum efficiency.

4.2 Geometric Parameters

The thermoelectric element geometric parameters aadHeight and Area can affect
the maximum efficiency of the hybrid system. Furthere, these geometric parameters also
affect the temperature difference across the theleotric device and consequently, the
power output from these devices. The effects ofeéhgeometric parameters on the overall
hybrid system efficiency and TE temperature diffiees are shown in Fig. 10, Fig. 11, Fig.
12, Fig. 13, Fig. 14 and Fig. 15 f015 < R, <2 ,Rg = 1, ¢py = 0.001/K (Cell A) and

@py = 0.004/K (Cell B).
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4.2.1 Case AR, = 0.5)

It can be seen from Fig. 10a and Fig. 10b thatoerall efficiency of the hybrid
system shows a decreasing trend as the thermoelel@ment height increases. In addition,
it is clear that the PV temperature coefficientueahffects the steepness of the efficiency
deep as thermoelectric element height increaseseldre, shorter thermoelectric elements
should be used to obtain improved hybrid PV-TEca&ficy. Furthermore, it can be seen
from both Fig. 10a and Fig. 10b that the overdiciEncy of the hybrid system increases as
the cross-sectional area of the thermoelectric efnncreases. This is true no matter the
temperature coefficient value used thus, therenis@imum thermoelectric element height
and area which gives the maximum hybrid systentieficy. In addition, it can be seen from
Fig. 10b that the efficiency of the hybrid systeon $ome thermoelectric element height and
area is lower in comparison with the standard iefficy of the PV cell (15%). This can also
be observed from Fig. 10a where the standard effayi of the PV cell (10%) is greater than
that of the hybrid system for some thermoelectieenent height and area. This implies that it
is very important to find the optimum geometry tbe thermoelectric element in the hybrid
PV-TE system if high overall efficiency is desired.

Fig. 11 shows the variation of the TE temperatufeer@nce with thermoelectric
element area and height. It can be seen that thpetature difference decreases as the
thermoelectric element area increases. This isrésalt for both temperature coefficient
values considered. Furthermore, it can be seerilteaemperature difference increases as the
thermoelectric element height increases and arradases however, it gets saturated at some
point and the increase is no longer significaneréfore, determining the optimum geometry
of the thermoelectric elements in the hybrid PV$ystem would help reduce the amount of

material consumed and reduce system cost.
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4.2.2 Case BR, = 1)

Fig. 12 shows the variation of overall systemagdincy with thermoelectric element
height and area. It can be seen from Fig. 12b tthathybrid system efficiency shows a
decreasing trend as the thermoelectric elemenhh@igreases and an increasing trend as the
thermoelectric element area increases whgh= 0.004/K. However, Fig. 12a shows that
whengp, = 0.001/K, the overall efficiency initially increases befodecreasing as the
thermoelectric element height increases for sonm@ioethermoelectric element area. This
implies that maximum hybrid system efficiency caa bbtained using some specific
geometry parameters.

As observed in Fig. 11, Fig. 13 shows a similart@fperature difference decreasing
trend as TE area increases. This is the resultbfih temperature coefficient values

considered.

4.2.3 Case QR, = 2)

The variation of overall hybrid system efficienttiwithermoelectric element height
and area is shown in Fig. 14a and Fig. 14b for berthperature coefficient values considered
respectively. Furthermore, the variation of TE temapure difference with TE area for
@py = 0.001/K andgp, = 0.004/K have the same trend and values and is shown irl&ig
In addition, it can be seen from Fig. 14a thatakerall efficiency values obtained for this
Case C are slightly higher than those obtainecCtse A (Fig. 10a). Therefore, the optimum
geometry for a thermoelectric element in a hybAd THE system wherpp, = 0.001/K is

R, = 2. However, the optimum geometry whep, = 0.004/K isR, = 1.
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4.3 Irradiation

The solar irradiance value and concentration rdéi@rmine the amount of heat flux
at the surface of the PV cell and consequentlyptrérmance of the hybrid PV-TE system.
The effect of solar irradiance and concentratidio ran the performance of the hybrid system
is investigated whed;; = 14mm?, Lz = 5mm, R, = Rg = 1 andgp, = 0.004/K (Cell
B). These conditions are chosen because they pmrothe optimum hybrid system
performance based on the findings presented eafiee hybrid photovoltaic-thermoelectric
system will operate in an optimized state usinge¢heonditions because maximum efficiency
will be obtained.

Fig. 16 shows the variation of PV-TE efficiencythwisolar irradiance for the
temperature coefficient value considered. It carséen that the hybrid system efficiency
shows a decreasing trend as solar irradiance ipesealhis is because the PV module
temperature increases with increase in solar mragi and this affects the overall efficiency
of the hybrid system. Therefore, the efficiencyveuof the hybrid PV-TE system will follow

the same trend as that of the PV system.

Fig. 17a and Fig. 17b show the variation of PV afs power outputs with solar
irradiance at different concentration ratio respety. It can be seen clearly that PV power
output increases linearly with solar irradiance dtirthe concentration ratio considered. The
same is not completely the case with the TEG paugrut although it also increases as solar
irradiance and concentration ratio increase. Itaan be concluded that high power outputs
can be obtained from both the PV and TEG when higlues of solar irradiance and
concentration ratio are used. The power outputhef TEG increases as solar irradiance
increases due to the increase in the module temperahich leads to higher temperature

difference across the module as shown in Fig. vlddition, it can also be seen from Fig.
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17b that the TEG power output increases with area®e in concentration ratio and this is

due to an increased heat flux supplied to the TEGAute.

The variation of power outputs from the PV, TEG aRW-TE systems with
concentration ratio whe@ = 1000 W /m? is shown in Fig. 18. It is obvious that the PV
provides the greater percentage of the total hysyglem power output. The contribution of
the TEG is very small compared to that of the P¥eims of power output however, the TE
also helps to cool the PV thus, increasing the-dgan of the PV system. When more
thermoelectric modules are used, the power output the TEG would be much greater than

those shown in Fig. 18 because only a uni-couplevisstigated in this research.

The variation of temperature of PV system with solaadiance at different
concentration ratio is shown in Fig. 19. It candsen clearly that the temperature at the
surface of the PV cell varies linearly with solaradiance for all the concentration ratio
investigated. It is generally known that high tenapere in the PV system results in low
efficiency thus, it is important to carefully codsr which solar irradiance value and
concentration ratio would be used. Furthermore, Eap shows that low concentration ratio
could produce the highest efficiency whep, = 0.004/K and this is due to the low PV

temperatures corresponding to such low concentrasito which is shown in Fig. 19.

5. Conclusion

The optimum geometry of a thermoelectric elemen& ihybrid PV-TE system has
been investigated in this research using finitenelet method. The 3-D numerical model for
the different thermoelectric element geometrieestigated was built for the hybrid PV-TE

system and it was accurately meshed into sma#llletirons to increase the accuracy of the
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results obtained. COMSOL Multiphysics was useddlgesthe FEM equations and determine
the optimum geometry for the thermoelectric elemienta hybrid PV-TE system. Two
geometry area ratios which completely describegigmmetry of the thermoelectric element
was investigated for the ran@& < R, < 2 and0.5 < Rg < 2. Ra is the cross-sectional area
ratio of the thermoelectric element hot and colacjions (A/Ac) while Rs is the area ratio
of the n- and p-type thermoelectric elementgA4).

Nine different geometric configurations were anatydor two different PV cells.
Temperature dependent TE material properties weseel 0 ensure accurate results were
obtained. The temperature and voltage distributionthe hybrid system for the different
geometric configurations considered were preseriibd.results obtained show that the PV
temperature coefficient value affects the geomaty efficiency of the hybrid system. It was
found that the hybrid PV-TE system performs bettgth symmetrical TEG geometry
(R4 = Rs = 1) if a PV temperature coefficient of 0.004/K (CBll is used. This is different
from the optimum geometry for a TEG only systemwldwoer, the optimum geometry of the
TEG in a hybrid system will be the same as tha 0FEG only system (dissymmetrical i.e.
R, = Rs # 1) if a PV temperature coefficient of 0.001/K (CAllis used.

Geometric parameters such as thermoelectric eleheght and area were found to
influence the performance of the hybrid PV-TE systén general, thermoelectric element
with shorter heights and higher cross sectionaa ateould be used to obtain maximum
hybrid system efficiency. One constant thing obsdrwas that overall efficiency and TE
temperature difference show a decreasing trendhesnbelectric element length and area
increases for all the geometric configuration ardperature coefficient values considered.

The effects of solar irradiation and concentratratio on the performance of the
hybrid system were also analysed. It was found liat concentration ratio produce high

overall hybrid system efficiency whep,, = 0.004/K and this is due to the low PV
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temperatures corresponding to such low concentraiio. Furthermore, it was found that
the PV provides the greater percentage of the toyhrid system power output. The
contribution of the TEG was very small comparethit of the PV in terms of power output.
In addition, it can be concluded that high powetpats can be obtained from both the PV
and TEG when high values of solar irradiance anttentration ratio are used. In summary,
it was found that the hybrid system efficiency skdva decreasing trend as solar irradiance

increased whep,, = 0.004/K.
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Nomenclature

A

hamb

Area, nf

Concentration ratio

Specific heat capacity/(kg -

K)

Power output of PV per square
meter, W/m

Solar irradiance, W/fn

Convective heat transfer
coefficient on outer surface,
W/(m?-K)

Thermal conductivityW /(m -

K)

Greek Symbols

a

®

Nre f

26

Absorptivity

PV temperature coefficient, K

Efficiency

Efficiency of PV cell under

standard test conditions

Emissivity

Electrical conductivity, S/m




626

627

628

629

630

631

632

633

634

635

636

AT

Height, m

Power output, W

Heat flux, W/nf
Cross-sectional area ratio of TE
hot and cold junctions

Load resistance on TE®,
Area ratio of n- and p-type TE
modules

Seebeck coefficient of TE
module, V/K

Temperature, K

Temperature difference, K
AT =Ty =T,

Wind velocity, m/s

Subscripts

Abbreviations

P

amb

C

n

PV

TE

Density, kgn®

Ambient

Cold side

Hot side

n-type

p-type

Photovoltaic

Thermoelectric
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Figure captions

Fig. 1. Schematic diagrams of a PV-TE with different legmetries forR, = 0.5 and a)
Rg = 0.5b)Rs = 1 C)Rs = 2.

Fig. 2. Schematic diagrams of a PV-TE with different legmetries forR, = 1 and a)

Rs =0.5b)Rs =1 C)Rg = 2.

Fig. 3. Schematic diagrams of a PV-TE with different legmetries forR, = 2 and a)

Rg = 0.5b)Rs = 1 C)Rs = 2.

Fig. 4. Different leg geometric configurations for®) = 0.5b)R, =1 c) R, = 2.

Fig. 5. PV-TE 3-dimensional a) Temperature and b) Voltagg&idutions forR, = 0.5.

Fig. 6. PV-TE 3-dimensional a) Temperature and b) Voltag&itdutions forR, = 1.

Fig. 7. PV-TE 3-dimensional a) Temperature and b) Voltag#&itdutions forR, = 2.

Fig. 8. Overall PV-TE efficiency vs geometry area ratios@ell A.

Fig. 9. Overall PV-TE efficiency vs geometry area ratiosG@ell B.

Fig. 10. Hybrid system efficiency vs thermoelectric elemiegight forR, = 0.5 and a) Cell
A b) Cell B.

Fig. 11. Thermoelectric temperature difference vs thermaetearea forR, = 0.5 and both
PV cells (Cell A and Cell B).

Fig. 12. Hybrid system efficiency vs thermoelectric elemlesight forR, = 1 and a) Cell A

b) Cell B.
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Fig. 13. Thermoelectric temperature difference vs thermaetearea forR, = 1 and both

PV cells (Cell A and Cell B).

Fig. 14. Hybrid system efficiency vs thermoelectric elemiegight forR, = 2 and a) Cell A
b) Cell B.

Fig. 15. Thermoelectric temperature difference vs thermaetearea forR, = 2 and both

PV cells (Cell A and Cell B).

Fig. 16. Hybrid system efficiency vs solar irradiance andeamntration ratio.

Fig. 17. Variation of a) PV and b) TEG power outputs witthesarradiance and concentration
ratio.

Fig. 18. Variation of PV, TEG and PV-TE power outputs wittincentration ratio.

Fig. 19. Variation of PV surface temperature with solardreaace and concentration ratio for

Cell B.
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Tablelist
Table 1. Temperature dependent material properties (Tmpégature in K) [43].
Table 2. Material properties [18,20,27].

Table 3. Parameters used in hybrid PV-TE model.
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716 Fig. 1. Schematic diagrams of a PV-TE with different legmetries forR, = 0.5 and a)
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722 Fig. 2. Schematic diagrams of a PV-TE with different legmetries forR, = 1 and a)
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728 Fig. 3. Schematic diagrams of a PV-TE with different legmetries forR, = 2 and a)
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b) RI{6)=0.022 Surface: Electric potential (V)
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740 Fig. 5. PV-TE 3-dimensional a) Temperature and b) Voltag&itutions forR, = 0.5.
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b) RI{3)=0.01 Surface: Electric potential (V)
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Fig. 6. PV-TE 3-dimensional a) Temperature and b) Voltag&itdutions forR, = 1.

a) RI(6)=0.022 Surface: Temperature (K)

b) RI{6)=0.022 Surface: Electric potential (V)

Fig. 7. PV-TE 3-dimensional a) Temperature and b) Voltag#&idutions fork, = 2.
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759 Fig. 11. Thermoelectric temperature difference vs thermadetearea forR, = 0.5 and both

760 PV cells (Cell A and Cell B).
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764  Fig. 12. Hybrid system efficiency vs thermoelectric elemiesight forR, = 1 and a) Cell A
765 b) Cell B.
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768 Fig. 13. Thermoelectric temperature difference vs thermdetearea forR, = 1 and both
769 PV cells (Cell A and Cell B).
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Table 1. Temperature dependent material properties (Tmpégature in K) [43].

p-type n-type

Electrical

conductivity,

o [S/m]

Seebeck

coefficient,

S[V/K]

Thermal

conductivity,

k[W/(m-

K)]

(0.015601732% — 15.708052T + (0.01057143T — 10.16048T +

4466.38095) 107 3113.714229k 10

(-0.003638095T + 2.74380952T (0.00153073%T — 1.08058874T -

— 296.214286X 10° 28.338095)x 10°

0.0000361558T — 0.026351342T 0.0000334545T — 0.023350303T +

+ 6.22162 5.606333

Table 2. Material properties [18,20,27].

Heat Density,  Seebeck Electrical Thermal
capacity, p [kg/m®  coefficient,S conductivity, conductivity,
Cp [I/(kgK)] [VIK] o [S/m] k [W/(mK)]
Alumina 900 3900 - - 27
Bi,Te; (p- 154 7700 +S(T) Tablel o(T) Tablel k(T) Table1
n types)
Copper 385 8960 - 58100000 401
Silicon 700 2329 - - 148
(PV)
Tedlar 1090 1780 - - 0.2
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799

Table 3. Parameters used in hybrid PV-TE model.

Parameters Symbol Value References
Absorptivity of PV A py 0.9 [18]
Ambient Tomp 298 K [20]
temperature

Area of PV Apy 0.0001 [31]
Area of TE element Arg 0.000014 [33]
Concentration ratio c 5 [33]
Emissivity of PV Epy 0.8 [33]
Heat transfer Ramb 5 Wm*K™ [14]
coefficient

Height of TE L 0.005 m [33]
element

Solar irradiation G 1000 W/nt [20]
Thickness of copper H,, 0.0001 M [33]
Thickness of PV Hpy 0.0003 m [18]
Thickness of tedlar Hieq 0.000175 m [18]
Wind velocity Uy, 1m/s [33]
PV Cell A efficiency Npv 10% [32]
at standard test

conditions (STC)

Cell A temperature Opy 0.001 K* [32]
coefficient

PV Cell B efficiency Npv 15% [46]

at standard test
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conditions (STC)
Cell B temperature

coefficient

Ppy

0.004 K*

[46]

800

801
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Nine geometric configurations and two different solar cells were analysed.
Two thermoel ectric element geometric area ratios were presented.
Performance of the hybrid system with different factors was anal ysed.

Finite element method was used to solve the 3-dimensional heat transfer equations.



