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Highlights 

 

 Two new catalysts Pd3Sn/TiO2 and Pd3Sn/ZnO were prepared via a one-pot procedure and the 

crystal structure of the catalytically active compound Pd3Sn was studied. 

 Pd3Sn/TiO2 and Pd3Sn/ZnO catalyse the semi-hydrogenation of an acetylene alcohol with superior 

selectivity towards olefin compared to known Pd/ZnO and Pd/TiO2 catalysts. 

 Full reaction profiles show that Pd3Sn/TiO2 and Pd3Sn/ZnO have well over 95% selectivity 

towards olefins at conversions of 90%. 

 The catalysts can be used by the fine chemical industry to create high purity precursors in, for 

example, the synthesis of vitamins A and E. 
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Abstract 

The two catalysts Pd3Sn/TiO2 and Pd3Sn/ZnO were prepared via a one-pot procedure based on the 

“polyol method” with the addition of a capping agent (polyvinylpyrrolidone) to control the particle size 

distribution. The same procedure was used to prepare Pd/TiO2 and Pd/ZnO for comparison. All four 

catalysts showed high activity and selectivity for the selective hydrogenation of 2-methyl-3-butyn-2-ol 

(MBY) to 2-methyl-3-buten-2-ol (MBE) in the liquid phase under identical conditions. However, 

Pd3Sn/TiO2 and Pd3Sn/ZnO show selectivities to alkene significantly higher than that of the Pd catalysts. 

Specifically, the selectivity increases from 96.4% to 97.4% on TiO2 support, and 96.2% to 97.6% on ZnO 

support, at 90% conversion. Transition electron microscopy shows nanoparticles evenly dispersed on the 

support, with mean particle sizes as low as 4.1 (±0.8) nm when Sn is incorporated into the catalyst. 

Unsupported Pd3Sn was prepared using the same method and characterised by powder X-Ray diffraction 

followed by the Rietveld refinement. Pd3Sn was found to be single-phase and isostructural to Pd metal 

with a face centred cubic unit cell. 

Keywords: Alkyne, alkene, bimetallic, catalysis, palladium, selective hydrogenation, acetylene.  
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1. Introduction 

Highly selective, active and environmentally-friendly catalysts are of prime importance for many areas of 

chemistry. In particular, the production of fragrances, pharmaceuticals, vitamins and agrochemicals relies 

on catalysts developed more than 60 years ago and requires significant improvement in terms of both 

environmental footprint and performance. An example of these catalytic reactions is selective 

hydrogenation, which involves, for example, the hydrogenation of a carbon-carbon triple bond to a double 

bond (semi-hydrogenation), avoiding over-hydrogenation to a single bond. Semi-hydrogenation is one of 

the critical steps in the synthesis of vitamins A and E, the fragrance compound linalool and other 

important compounds [1]. 

The semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY) to 2-methyl-3-buten-2-ol (MBE) (Figure 1) is 

an important starting reaction in industry [2]
 
and is widely used as a model substrate to screen for activity 

and selectivity of catalyst materials in semihydrogenation reactions [3,4]. 

Palladium-based catalysts in semi-hydrogenation reactions are active and more selective than other 

platinum-group metals [5], but their selectivity towards alkene products is still limited due to over-

hydrogenation to alkanes and other side reactions such as dimerization and oligomerization reactions [6]. 

To overcome this, a co-metal is often added to Pd to increase the selectivity. The co-metal can be added 

to the Pd catalyst as a surface poison, as is the case in the widely used Lindlar catalyst[7], in which 

Pd/CaCO3 is modified by the addition of Pb. However, the use of lead for catalyst modification is subject 

to increasing environmental and product poisoning concerns [8]. 

 

 

Figure 1. Reaction scheme of the hydrogenation of MBY to MBA. (MBY = 2-methyl-3-butyn-2-ol, MBE = 2-methyl-3-

butene-2-ol and MBA = 2-methylbutan-2-ol.) For a selective semi-hydrogenation, steps (b) and (c) should be avoided. 

 

Alternatively, a second metal (co-metal) can be incorporated to form a Pd-M alloy, which can take the 

form of core-shell, or a random or ordered alloy, depending on the synthetic procedure employed [9]. The 
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crystal structure of any resulting compounds formed between the two metals is often overlooked but can 

be very important. For example, work carried out on intermetallic compounds formed between Pd and Ga 

has shown that, depending on the stoichiometry and crystal structure of the compound formed between Pd 

and Ga, drastically different selectivities are achieved in gas phase acetylene hydrogenation [10]. 

Therefore, achieving phase purity, rather than mixtures of the various active compounds present 

throughout a catalyst, can also be considered of vital importance since different compositions formed 

between two metals can have different catalytic properties. 

Many Pd-based alloy (bimetallic) materials have been tested in the literature as selective hydrogenation 

catalysts, utilising co-metals such as Ag [11,12], Au[13–15], Bi[8,16–18] , Co[19], Cu[20,21], Fe[22,23], 

Ni[23,24], Sn[25], Zn[26–29], Zr[30]. When forming an alloy with the second metal, selectivity can be 

enhanced by two main factors. Firstly, an increase in selectivity can occur due to changes in the electronic 

structure of Pd brought on by the presence of an additional metal, which can change the relative 

adsorption energies of alkyne and alkene bonds. This can result in a more favourable adsorption, and 

hence, the hydrogenation of alkyne, while disfavouring the adsorption and hydrogenation of alkene 

species [31]. Secondly, alloy formation can reduce the number and size of active site ensembles due to 

dilution of Pd [9,32]. This can inhibit secondary reactions that involve different functional groups, or 

neighbouring reactants to be adsorbed in close proximity to each other. Geometric effects should, 

however, have less impact on the semi-hydrogenation of acetylene alcohols as only one functional group 

is available for hydrogenation, although it may assist in preventing unwanted dimerisation reactions from 

taking place. 

The co-metal of interest in this work is Sn, because Sn is non-toxic and is known to form a range of 

compounds with Pd. Known Pd-Sn binary alloys include PdSn4, PdSn3, PdSn2, - and -Pd3Sn2, PdSn, 

Pd2Sn and Pd3Sn. We have focused our studies on Pd3Sn, which is isostructural to Pd and hence makes 

for a better comparison to the catalytic performance of monometallic Pd. 

Catalysts containing Pd-Sn alloys have already been used for electrooxidation [33,34], hydrogen peroxide 

synthesis [35], water denitration [36–38], and in the selective hydrogenations of unsaturated aldehydes 

[39,40], hexa- and butadienes [41–43], and gas phase acetylene [44]. In many of these reactions, high 

selectivity is achieved and attributed to the suppression of the adsorption of certain functional groups onto 

the catalyst due to the altered electronic structure, or to the formation of Pd-Sn bonds by the reduction of 

active site ensembles. The change in electronic structure of Pd on alloying with Sn has been shown by 

photoemission data to involve a valence charge transfer from Sn to Pd, and is most prominent when the 

alloys Pd2Sn or Pd3Sn are formed [45]. This charge transfer effect has also been shown to suppress the 

adsorption of C=C specifically, compared to Pd alone [40]. Furthermore, work carried out on compounds 
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such as PdGa has shown the benefit of isolated Pd sites (ensemble effect) in ordered alloys and 

intermetallic compounds in favouring the successive, stepwise hydrogenation of the acetylene bond rather 

than full hydrogenation to alkane [10,46–48]. 

However, in the current literature on Pd-Sn catalysts, there has been no attempt to achieve purity of the 

catalytically active Pd-Sn phase, hence mixtures of Pd/Sn monometallic and/or bimetallic phases are 

present in the catalyst [33,34,37–40,44]. This means that it is unclear which phases are responsible for 

any improved catalytic performance compared to monometallic Pd. 

The aim of this work was to study the Pd-Sn alloy Pd3Sn and assess the purity and crystal structure of the 

material. Furthermore, Pd3Sn/TiO2 and Pd3Sn/ZnO catalysts were prepared and showed enhancement in 

the catalytic performance compared to Pd/TiO2 and Pd/ZnO catalysts in the semi-hydrogenation of MBY. 

 

2. Experimental 

 

2.1. Materials 

The metal precursors used in the catalyst preparation were palladium(II) acetylacetonate (99 %, Aldrich) 

and tin(II) acetyl acetate (99.9%, Aldrich). Zinc oxide (99.9%, 200 mesh powder, Alfa Aesar) and 

titanium(IV) oxide, rutile phase (powder, <5 μm, ≥99.9%, Aldrich) was used as support and 

polyvinylpirrolidone (PVP) (average mol. Wt. 40’000 g mol
−1

, Sigma-Aldrich) was used as a capping 

agent. Acetone (laboratory reagent grade, Fischer Chemical), ethanediol (laboratory reagent grade, 

Fischer Chemical), n-hexane (GPR grade, VWR Chemicals) and deionised water were used as solvents 

without any pre-treatment. For the hydrogenation reactions, butan-1-ol (analytical reagent grade, Fisher 

Scientific) was used as internal standard for GC analysis. All chemicals were used as purchased. 

 

2.2. Catalyst preparation 

The method used for the preparation of the catalysts was adapted from a polyol method used by Cable 

and Shark [49] for the preparation of Pt3Sn. 

Firstly, appropriate stoichiometric amounts of the metal precursors, palladium acetylacetonoate and tin 

acetate, each in 100 mL ethylene glycol, were combined into the reaction vessel and either ZnO or TiO2 

support was added alongside PVP as capping agent (10 monomer mol% of total Pd and Sn). The amount 

of the support used was calculated to achieve 2 wt% Pd loading. The mixture was stirred under nitrogen 

gas flow at room temperature for at least 30 minutes to displace air before heating at reflux (469 K) for 1 
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hour. The mixture was cooled and the resulting brown/grey solid was obtained from the reaction mixture 

by centrifugation at 3500 rpm, washing alternately with acetone and deionised water (3 x 30 mL each) 

and dried at 353 K in air for 1 hour to yield a grey powder. The catalysts are stored in a vacuum 

desiccator until use. 

Unsupported Pd3Sn for structural characterisation was prepared using the same method with exclusion of 

the support and PVP. 

 

2.3. Catalyst characterisation 

Powder X-ray diffraction (PXRD) was carried out using a PANalytical Empyrean X-ray diffractometer 

using monochromatic Cu Kα1 radiation and line PIXcel detector, scanning in the 2θ range of 20-120°, 

step size 0.105° and step time 12000 seconds. Results were recorded using the instrument’s built-in 

software. Rietveld refinement was performed using GSAS software with the EXPGUI interface [50]. 

Samples for transmission electron microscopy (TEM) were dispersed in ethanol using an ultrasonic bath 

and a drop of dispersion was deposited onto carbon-coated copper grids. Images were obtained using a 

Gatan Ultrascan 4000 digital camera with Digital Micrograph software, attached to a Jeol 2010 TEM 

instrument running at 200 kV. Nanoparticle size distributions were obtained studying 3-5 TEM 

microphotographs obtained from different areas of the catalyst sample, measuring the diameter of a total 

of 200-400 individual nanoparticles using Gatan Digital Micrograph software. 

The total uptake of CO was measured with a Micromeritics AutoChem 2910 apparatus. Prior to a 

measurement, the catalyst was reduced in hydrogen with the following programme: flushing with helium 

at room temperature for 10 minutes, reduction in hydrogen at 573 K (10 K/min) for 120 minutes, flushing 

with helium at 573 K for 30 minutes and then returned to ambient temperature. 

Palladium and tin content of the catalysts were determined using a Perkin Elmer Optima 5300DV 

emission inductively coupled plasma (ICP) spectrometer. The samples were dissolved in the solution of 

HF/HCl/HNO3 in a 1/1/3 ratio, heated at 473 K for 10 minutes using microwave digestion system CEM 

MARS Xpress Plus, followed by the addition of the boric acid saturated aqueous solution to complex 

excess HF, and the vessels were heated again at 453 K for 10 minutes. The solutions were diluted with 

deionised water and analysed. 
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2.4. Hydrogenation reaction 

For the hydrogenation procedure, freshly-prepared catalysts (between 5 and 50 mg, depending on the 

activity of the catalyst) and a hexane solution (100 mL) containing 0.741 g (10 mmol) of butan-1-ol used 

as an internal standard were transferred into a 250 mL 3-neck round bottom flask fitted with a silicone 

rubber septum, thermometer and reflux condenser. A Schlenk line was connected through the top of the 

condenser to enable alternation between nitrogen gas, hydrogen gas, and vacuum. The contents of the 

flask were stirred at 1100 rpm and heated to 308 K. Air from the reactor and the solvent was removed 

purging the reactor 3 times with nitrogen gas - the pressure was slowly decreased until the solvent started 

to boil, and the reactor was filled with nitrogen gas quickly. Nitrogen gas was then similarly substituted 

by hydrogen gas, purging the reactor 3 times. The contents were left stirring under hydrogen atmosphere 

(ambient pressure) for approximately 30 minutes to ensure the solvent and catalyst were saturated with 

hydrogen, and that no leak was present in the system (the hydrogen consumption was measured by a 300 

mL gas burette). The reaction was started by quickly injecting 1.00 g MBY using a syringe through the 

septum. Aliquots of approximately 150 µL were taken at regular intervals with the increased sampling 

rate when the reaction approached 100% conversion (estimated using hydrogen consumption). Analysis 

of the products was performed using a Varian 430 gas chromatograph equipped with a 30 m Stabilwax® 

capillary column (Restek). A series of experiments with various stirring rates and catalyst amounts 

confirmed the absence of external mass transfer limitations, while the calculation of the Weisz-Prater 

number for the most active catalyst (0.021 and 0.13 for organic and H2 species, respectively, ≪ 6) 

demonstrated that internal mass transfer has a negligible effect on observed kinetics [51]. 

Conversion of MBY (XMBY) and selectivity to MBE (SMBE,x) at different levels of conversion were 

calculated using the Equations (1-2), where CMBY, CMBE, CMBA and Cx are the concentrations of MBY, 

MBE, MBA and the concentrations at x% MBY conversion, respectively. These formulae imply that no 

components other than MBY, MBE and MBA were obtained, which was confirmed by the carbon balance 

for all reactions of 100 ± 2%. 

     
           

                  
          (1) 

       
          

 

    
        

       
           (2) 

The activity of the catalysts was characterised per mol. of Pd (A) using the average MBY consumption 

rate in 0-80% MBY conversion interval as in Equation (3), where     
   is the MBY conversion close to 
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80% occurred during the reaction time of     
  ,     

   is the initial MBY concentration,      is the solution 

volume,      is the catalyst mass taken with Pd content of     , and     is the molar mass of Pd. 

   
        

  

    
   

     
         

        
          (3) 

Turn-over frequency (TOF) was used to characterise the average activity of the catalyst normalised per 

active site. The TOF was calculated using Equation (4), where           is the total molar CO uptake 

determined by CO chemisorption studies. 

     
        

  

    
   

     
      

         
          (4) 

 

3. Results and Discussion 

We adapted the polyol method used by Cable and Shark [49] by performing the reduction of Pd or the co-

reduction of Pd and Sn precursors in polyol with the inclusion of TiO2 or ZnO supports along with the 

capping agent PVP to control the size distribution of the Pd and Pd3Sn nanoparticles. The solvent, 

ethylene glycol, causes the co-reduction of each precursor in the presence of support and the relatively 

high boiling point (470 K) causes annealing, which induces the formation of the Pd3Sn alloy phase.  

The two supports used, TiO2 and ZnO were chosen as two common, commercially available materials 

that are well known for their use as support materials for Pd-based catalysts for hydrogenation reactions 

[4,52–56]. When supported ZnO, Pd has been shown to offer good catalytic performance in semi-

hydrogenation reactions, with selectivities towards MBE reaching around 95% for ZnO supports at 99% 

MBY conversion [55,56]. Pd nanoparticles supported on TiO2 were also reported with the selectivity in 

the range of 60-85 % [3,57,58]. 

TEM micrographs and particle size distributions of each catalyst are shown in Figure 2. Nanoparticles can 

be seen on each support material and no nanoparticles greater than 16 nm are observed. The Pd 

percentages obtained from ICP analysis show close to 2 wt% Pd in each catalyst. Therefore, the vast 

majority of the Pd used in the synthesis procedure is found in the catalyst with very little Pd lost during or 

after the synthesis. 
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Figure 2. TEM images and particle size distributions of (from left to right) Pd/TiO2, Pd3Sn/TiO2, Pd/ZnO, and Pd3Sn/ZnO. 

Pd3Sn mean particle size and size distributions (Table 1) are notably lower in Pd3Sn catalysts than Pd 

when prepared on the same support in agreement with observations made by Esmaeili et al.[44]. 

Furthermore, the particle size is lower for both Pd and Pd3Sn catalysts with ZnO support compared to 

TiO2 support. The lowest mean particle size (4.1 nm) and size distribution is observed in Pd3Sn/ZnO. 

This low particle size may have an effect on the activity of this catalyst compared to the other catalysts, 

because activity towards semi-hydrogenation has been known to increase sharply above a certain particle 

size in some cases, due to reaction with the support [59]. 

 

 

Figure 3. PXRD pattern of unsupported Pd3Sn. 
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PXRD and ICP analyses were carried out on Pd3Sn nanoparticles prepared in the absence of support in 

order to study the active component of the Pd3Sn catalysts. The PXRD pattern (Figure 3) was indexed 

using a face-centred cubic unit cell, in agreement with previous reports on Pd3Sn [60–65]. Since the 

PXRD pattern for single-phase Pd is very similar to that of Pd3Sn, the possibility of overlapping peaks 

from any pure Pd present in the material cannot be excluded using PXRD alone. However, additional 

phases, such as SnO2, Sn metal, or other Pd-Sn compounds that are often found in other works on Pd-Sn 

materials [37,38,40,44] are not detected. ICP analysis on the same material gave a Pd/Sn ratio of 2.8/1, 

which is around the lower limit of the Pd3Sn-phase solid solution reported, the composition of which 

ranges between Pd2.85Sn and Pd3.26Sn, showing a fcc unit cell (space group Fm ̅m) throughout [62]. As 

additional Sn-containing phases are not detected by PXRD, all of the Sn detected by ICP analysis must be 

incorporated within a Pd3Sn phase. In this lattice, the Pd and Sn atoms are randomly distributed on the 

same crystallographic site, hence, the material can be categorised as a random nanoalloy [9]. We have 

also studied the PXRD patterns for the supported catalysts. However, only diffraction peaks belonging to 

the support were present and it was impossible to observe any peaks corresponding to Pd or Pd3Sn due to 

low particle size (compared to the size of the particles of the support) and low percentage of Pd and Pd3Sn 

compared to the support (~ 2 wt%). 

The unit cell parameter and the Pd-Pd(Sn) distance were calculated via Rietveld refinement using the 

GSAS software with the EXPGUI interface [50] and found to be a = 3.949(3) Å, and Pd-Pd(Sn) = 

2.7926(13) Å (Rwp = 0.098; Rp = 0.074, see Supporting Information) in agreement with the Pd3Sn model 

[64].  

Recently, Yan et al. [66,67] demonstrated that mechanical strain in catalysts such as Pt/Ni/Cu thin film on 

a Ti substrate and WC on a polymeric substrate significantly affects the catalytic activity. We considered 

the possibility of a similar effect in the catalysts studied in this work, however, such an effect is unlikely, 

as our catalysts are single-phase metal or alloy nanoparticles dispersed on micro sized particles of an 

oxide support rather than heterogeneous layers. 

The CO uptake for each catalyst is shown in Table 1 and tells us how much Pd is available for 

chemisorption at the catalyst surface. Initially, the CO uptake was measured after performing a pre-

reduction treatment in which the catalysts were heated to 573 K in H2 to remove any residual PVP at the 

catalyst surface, which is known to be an important factor for CO uptake [68]. However, the CO uptakes 

were found to be very low compared to those analysed without reduction. This is most apparent when 

ZnO is used as support, which might be due to a strong metal-support interaction (SMSI) between Pd and 
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ZnO as a result of the reduction pre-treatment applied before CO uptake measurements were carried out, 

as observed by Ramos-Fernández et al. for the CO uptake of Pt/ZnO [69]. Hence, the calculations for 

TOF (turnover frequency) were done using CO chemisorption data obtained without any pre-reduction 

treatment being carried out on the catalysts. 

Table 1 Comparison of textural properties, elemental analysis and catalyst performance of Pd/TiO2, Pd3Sn/TiO2, Pd/ZnO, and 

Pd3Sn/ZnO. SMBE,90 and SMBE,100 refer to selectivity towards MBE at the onset of conversion of 90 and 100%, respectively. A is 

the average reaction rate in molMBY molPd
-1

 s
-1

. 

Catalyst Pd/TiO2 Pd3Sn/TiO2 Pd/ZnO Pd3Sn/ZnO 

SMBE,90 (%) 96.4 97.4 96.2 97.6 

SMBE,100 (%) 93.7 95.8 93.7 96.1 

Mean Pd/Pd3Sn particle size 
(nm) 

6.8 5.6 5.5 4.1 

Particle size standard 
deviation 

2.0 1.4 1.1 0.8 

ICP Pd % 1.73 1.97 1.95 1.58 

ICP Pd/Sn ratio n/a 2.9 n/a 2.8 

A (s
−1

) 0.42 0.22 0.88 0.06 

CO uptake (µmol g
−1

)
a
 10.8 2.63 0.07 0.29 

CO uptake (µmol g
−1

)
b
 16.1 10.9 3.3 4.9 

TOF (s
−1

) 4.3 3.8 49.6 1.9 
a
 Catalysts reduced at 573 K in H2. 

b
 Catalysts dried at 373 K in air. 

 

To assess their catalytic performance, the catalysts were tested in batch, liquid phase MBY hydrogenation 

reactions under identical conditions. The reaction profiles using each catalyst are shown in Figure 4. In all 

cases, the reaction proceeds by MBY, after which only MBA is produced. This reaction behaviour is 

expected for Pd-based catalysts as alkynes (MBY) are known to be preferentially adsorbed to the surface 

of Pd compared to alkene bonds (MBE) [5,6]. The relative formation of MBA compared to MBE is, 

however, notably lower at all stages of the reaction in the Pd3Sn catalysts compared to Pd catalysts on the 

same supports, indicating a lower affinity for alkene adsorption on Pd3Sn compared to Pd. 
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Figure 4. Concentrations of MBY, MBE, and MBA over time (seconds-gram of catalyst) during the semi-hydrogenation 

reaction at 308 K, 1 atm. H2 pressure, 0.12 M solution of MBY in hexane. The catalysts are: (a) Pd/TiO2, (b) Pd3Sn/TiO2, (c) 

Pd/ZnO and (d) Pd3Sn/ZnO. 

The selectivity towards MBE is measured at both 90 and 100% MBY conversion (SMBE,90 and SMBE,100 in 

Table 1) but for the purposes of discussion, only SMBE,90 is used for a more reliable comparison between 

catalysts, since the MBA production begins to accelerate slightly before 100% MBY conversion. SMBE,90 

for each catalyst is shown in Table 1. The catalysts containing Pd3Sn are ≥ 1% more selective at 90% 

MBY conversion than the corresponding Pd catalyst on the same support. The difference in SMBE,90 

between Pd/TiO2 and Pd/ZnO, and between Pd3Sn/TiO2 and Pd3Sn/ZnO is only 0.2%. Therefore in this 

case, the support cannot be considered the main factor in enhancing the selectivity, which can be 

attributed to the addition of Sn.  
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Catalytic activity normalised per mole of Pd (A) and per active site (TOF) for all catalysts is also listed in 

Table 1. Activity per mole of Pd in the Pd3Sn catalysts is lower in all cases compared to the monometallic 

Pd catalysts, probably due to dilution of Pd with Sn. When measured per active site (TOF) the TiO2-

supported catalysts are comparable with a slight decrease in TOF from 4.3 s
1

 (for Pd/TiO2) to 3.8 s
1

 

(Pd3Sn/TiO2). However, TOF for Pd/ZnO (49.6 s
1

) is an order of magnitude higher than that of any other 

catalyst, including Pd3Sn/ZnO (1.9 s
1

).  

The TOF values for the MBY hydrogenation in the range between 1 and 4 s
-1

 are typical for Pd supported 

on TiO2 [28,57], SiO2 [17] and ZnO [4] nanowire supports. The strong metal-support interactions 

observed on titania-supported catlaysts, which may increase their activity by a factor of 10, were not 

observed because we have not performed high-temperature (> 500 
o
C) reduction [53]. Interestingly, the 

notable increase in TOF for the Pd/ZnO catalysts observed in the current work was also reported 

previously to be an order of 60 s
-1

, which is in good agreement with our results [55,70]. However, 

although selectivity is enhanced, Both A and TOF are much lower for Pd3Sn catalysts compared to Pd 

when ZnO support is used. It is difficult to establish what effect the addition of a second metal has on the 

interaction between Pd and ZnO support, therefore further work is required to understand the interaction 

between Pd3Sn alloy and ZnO support, compared to that between Pd and ZnO. 

The mean particle sizes for each catalyst are also listed in Table 1 alongside the values for catalytic 

activity and selectivity. When the Pd/ZnO and Pd/TiO2 catalysts are compared, the particle size increases 

from 5.5 to 6.8 nm. SMBE,90 shows little change. However, the activity decreases dramatically. Comparison 

between Pd3Sn/ZnO and Pd3Sn/TiO2 shows that the mean particle size increases from 4.1 to 5.6 nm and 

once again SMBE,90 exhibits little change, however, in contrast to the Pd based catalysts, the activity 

dramatically increases. Therefore, no obvious correlation can be seen which relates particle size with 

catalytic performance. 

As there is no evidence of Pd/Sn ordering in the FCC lattice of Pd3Sn, with the distribution of Pd and Sn 

being random, the enhanced selectivity in Pd3Sn catalysts may not be entirely attributed to the destruction 

of Pd ensembles as some literature has suggested for other Pd-Sn catalysts [41,43,44,71]. In fact, there is 

a 3/1 = Pd/Sn ratio, therefore a large number of Pd ensembles may be intact, hence not achieving a 

substantial isolation of active sites. Instead, the enhanced selectivity may also be due to a charge transfer 

from Sn to Pd, suppressing the adsorption of the C=C bond in MBE relative to the C≡C bond in MBY as 

observed by Hammoudeh and Mahmoud in the selective hydrogenation of cinnamaldehyde [40], leading 

to very little MBE hydrogenation until almost full conversion of MBY (Figure 4). 
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4. Conclusions 

Pd/TiO2, Pd/ZnO and the novel catalysts Pd3Sn/TiO2 and Pd3Sn/ZnO were prepared with a one-pot 

synthesis based on the “polyol method” with the addition of a capping agent (PVP) to control the particle 

size distribution. All these catalysts showed high activity and selectivity in the semi-hydrogenation of 

MBY to MBE. However, the new catalysts, in which the catalytically active compound is the Pd3Sn alloy, 

are more selective by ≥ 1%, at as low as 90% conversion, compared to the Pd-only based catalysts with 

the same support. The highest selectivity towards MBE is 97.6% using Pd3Sn/ZnO. The origin of the 

enhanced selectivity in Pd3Sn based catalysts should be further explored, although a plausible explanation 

based on concomitant factors was offered.  

TEM shows nanoparticles on support with Pd3Sn showing lower mean particle size and less broad size 

distribution. PXRD analyses of unsupported Pd3Sn showed that Pd3Sn is single phase, and is isostructural 

to Pd metal with Pd and Sn atoms randomly distributed on the same crystallographic position. 
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