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Abstract: This article presents the in-flight demonstration of a new integrated
aircraft communications system combining legacy and future radio technologies. This
system, developed and validated under real environmental conditions during flight
trials, integrates all the aeronautical service domains within a common IPv6-based
aeronautical network. The flight trials were held within the framework of the
European SANDRA project at Oberpfaffenhofen, Germany, in June 2013. The
presented outcomes emphasize the flexibility and scalability of the developed
network and demonstrate the seamless service coverage of the given architecture

across different airspace domains’.
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1. Introduction

Aeronautical communications are currently facing a continuous increase in capacity demand.
This ceaseless request for more communication capacity is because of the constant growth in the
number of passengers and, thus, aircrafts, which are expected to double by 2035 [1] and the
introduction of new aeronautical communication services with high data volume demand. The latter
comprise, among others, new operational safety critical services, such as 4D-trajectory and nonsafety
critical services like wireless in-cabin connectivity for passengers. To cope with this high demand in
communications capacity, part of the ongoing research aims at developing new concepts and
technologies for future aeronautical communications (like the European SESAR Joint Undertaking
program [2] and the FAA Next Generation Air Transportation System (NextGen) [3]) with a strong
emphasis on the development of new link technologies, such as the terrestrial L-band Digital
Aeronautical Communications System (L-DACS) link [4] and the European Space Agency (ESA) lIris

program [5].

The introduction of new digital communication links is of paramount importance in the
aeronautical sector as the existing Air Traffic Management (ATM) communication infrastructure
already operates close to its maximum capacity [6]. Although the new systems will eventually replace
the legacy communication systems, there will be a lengthy period in which an aircraft will be fitted
with all of the systems for global interoperability. Hence, there is a need to integrate legacy and
future data links into one large seamless aeronautical network to serve future communication

demand.

The design, development, and validation of such a seamless network correspond to the focus
of the European-funded research project SANDRA (Seamless Aeronautical Networking through
integration of Data links Radios and Antennas) [7], which integrates different communication links
(legacy and future data links) and networks (such as ATN/OSI or ATN/IPS) with all the aeronautical

service domains (ATS, AOC/AAC, and APC) in a safe, high-performance, and cost effective way



through IPv6 as the unification point. The development of the entire corresponding ground network
infrastructure is also part of the SANDRA architecture. The validation of the latter was realized by
performing flight trials on the airport of Oberpfaffenhofen, close to Munich, Germany [8]. This paper
gives an overview of the outcomes of the first SANDRA flight trials with a strong emphasis on the
seamless handovers that were carried out between legacy and future data links, namely, VDL2,
BGAN, and the newly developed AeroMACS [9], thus proving the flexibility and scalability of the
SANDRA network. The seamless service coverage aspect of the SANDRA architecture was

demonstrated by the successful test of various applications in all aeronautical service domains.

The rest of the article is organized as follows. The SANDRA concept is introduced, followed by
the details of the overall system setup and the most relevant components. The flight trials and the

main results regarding handovers, network technologies, and used applications are presented.
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2. The SANDRA Concept

The vision of SANDRA is the integration of aeronautical communications systems by using
well-proved industry standards to enable a cost-efficient global provision of distributed services.
SANDRA system is considered as a “system of systems” addressing four levels of integration: service,

network, radio, and antenna.
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Figure 1. SANDRA flight trial network architecture.

With respect to the communications network, SANDRA spans across two segments—the
aircraft and ground segments, as shown in Figure 1. The aircraft segment for the flight trials contains
the main functional components: the integrated router (IR); the integrated modular radio (IMR); and
the antennas consisting of a satellite L-band antenna (BGAN), a VHF-band antenna, and a C-band

antenna for AeroMACS. Details about the SANDRA ground network are given in the following section.

3. System Setup

The system setup of the SANDRA flight trials is composed of two major segments: the

airborne segment and the ground infrastructure.



3.1 Airborne Segment

The SANDRA airborne system was integrated in an Airbus A320 as displayed in Figure 2.
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Figure 2. SANDRA airborne system installed in an A320 including the experimental antennas.

As for the data links, three different radio technologies were integrated in the aircraft: BGAN,
VDL2, and AeroMACS. The aircraft was already equipped with a BGAN and a VHF antenna (used to
test VDL2), which were located on top, at the rear of the fuselage, and in the middle, below the
fuselage, respectively. The AeroMACS C-band antenna was especially mounted on top of the fuselage
for the SANDRA flight trials. The inline figures of Figure 2 show the positions of the BGAN, VHF, and

AeroMACS antennas on the fuselage of the aircraft.

To be integrated in the aircraft, the SANDRA airborne system was divided into four separate
racks containing different pieces of equipment as illustrated in Figure 2. The distribution of
equipment within the racks was based on the different functionalities, whereas the locations of the

racks within the cabin were defined based on the positions of the antennas on the aircraft’s fuselage.




The racks were organized as follows. The first rack contained the integrated router and the
connectivity to the different end-user systems. The second rack was equipped with the two
integrated modular radio processing platforms, thus representing the link between the IR and the
different RF equipment (one IMR used as redundancy backup, cf. IMR-PC2 in Figure A.). The third
rack was fitted with the RF units for the VDL2 and AeroMACS data links. Finally, the RF components
that handle the BGAN satellite link were located in the fourth rack at the rear of the cabin. To
maximally reduce the antenna cable losses, the third and fourth racks were placed in the cabin right

below the respective antennas.

3.2 Ground Infrastructure

The core part of the SANDRA ground infrastructure was located at Oberpfaffenhofen,
Germany. It is composed of all the IP-based networking components, such as the access router and
the home agent. The home agent includes functionalities like IPsec (IPv6) to provide authentication
and integrity and the NEMO protocol [10] to guarantee mobility to the airborne terminal.
Furthermore, the home agent provides global reachability accessing the mobile node via the home
address during handover from/to AeroMACS to/from BGAN when attachment point changes from one
access network to another. The IPsec integrates an IPv6-over-IPv4 transition mechanism, entitled
NeXT [11]. The access router also provides the router advertisement messages (ICMPv6) required by
NEMO on the integrated router. This message is part of the neighbor discovery protocol (NDP, RFC
4861). The SANDRA network provides connectivity not only to the different ground-end systems but
also to the ATN, the Internet, and the Public Switched Telephone Network (PSTN, for passenger
communication). It enables ATS (communication with air traffic control (ATC)) and AOC services
(business communication of the airline) as well as APC (e.g., for Internet access and mobile

telephony) and airline nonoperational services (AAC).



For the ground infrastructure of the data links two different base stations were specifically
installed for the SANDRA flight trials: a VHF ground station (VGS) and an AeroMACS base station. The
latter was installed on top of a hangar building overlooking the Oberpfaffenhofen Airport.
Connectivity between this base station and the SANDRA laboratory was established via a VLAN. The
antenna used for the AeroMACS base station was a directional antenna (90°) with a focus on the
aircraft’s parking position. Furthermore, car tests were carried out at the Oberpfaffenhofen Airport
to estimate the received signal level from the AeroMACS base station. A C-band antenna was
mounted on the roof of a research vehicle. The signal level could be estimated on the runway, taxiing

path, and parking position of the aircraft using a spectrum analyzer.

Finally, for the ATN/OSI ground infrastructure, a VGS for VDL2 was installed on the roof of
the SANDRA laboratory close to the airfield, although the ATN/OSI ground-end system was located at
Montreal, Canada, and connected to the SANDRA laboratory via a wide area network (WAN). The
satellite connection was made over the BGAN satellite network. Further insights on the SANDRA

ground infrastructure and the overall SANDRA test bed can be found in [12].

The SANDRA flight trials occurred from 24 to 26 of June 2013 at the Oberpfaffenhofen
Airport (EDMO), Germany. This airport consists of one single runway. The parking position of the

aircraft was in direct line-of-sight (LOS) with the AeroMACS base station and the VGS.

4. Results of Flight Trials

4.1 Description of Flight Sorties

Six sorties were made in 3 days with the D-ATRA aircraft at a rate of two flights per day. The
focus of the first day was mainly to evaluate the correctness of data transmission over the air for
each of the three data links. Once the links were operational, the flight trials of the second and third

days aimed at validating the SANDRA concept by performing a set of scenarios that were previously



identified. To do so, various applications ranging from ATS over AOC, AAC, and APC services were

tested onboard the aircraft.

On average, each sortie lasted roughly 90 minutes including taxiing, take-off, and landing
phases. The scenarios were performed onboard during the 45 minutes of cruise. For each sortie, the
aircraft was flew over the Oberpfaffenhofen Airport and continued its route until the VHF connection
was lost and turned around to fly back over the airport. Once out of the VHF coverage, the system
seamlessly switched over to BGAN / L-Band with no loss of traffic in the scenario under test. This

allowed testing the seamless functionality of the SANDRA concept.

4.2 Seamless Aeronautical Networking Analysis

4.2.1 Seamless Layer 3 Handover

Whenever a change of traffic routing policy involving two different data links occurred, a
handover was performed. During the flight trials, handovers were performed between all the three
link technologies in both directions (e.g., BGAN to VDL2 and VDL2 to BGAN) and also between some
combinations of different quality of service contexts within the same technology (BGAN background
to BGAN streaming). Additionally, the handovers were classified depending on the triggering
condition. One type of handover was the “IMR triggered handover,” initiated by the integrated
modular radio when the aircraft was moving (or was already) out of coverage of one of the available
links. The other type, the “IR triggered handover,” was a handover caused by an automatic or manual
change of the routing on the integrated router based on a policy (e.g., changing to a newly available

and preferred link).

To test the “IMR triggered handover,” an AeroMACS context was open while the aircraft was
in the parking position. Once set, traffic was generated from the end systems to put some load on

the link. Then, the IMR was told that the aircraft was changing from a “standing” position to “en



route.” Because AeroMACS is not available while the aircraft is cruising, the IMR initiated the
procedure to open a new BGAN context and notified the IR of the upcoming change. Figure 3(a)

shows the handover and how traffic is sent over the BGAN again after the handover is completed.

An “IR triggered handover” can be observed in Figure 3(b). Initially, all traffic is sent over a
BGAN background context. Although this best-effort type of service is good enough for applications
like browsing or e-mailing, it is not suitable for jitter-sensitive applications like voice-over-IP (VolP).
Therefore, a manual change of policy routing was performed. Instead of interrupting the traffic on
the request, the traffic is routed through the new context only after this was completely established,
thereby avoiding an interruption of the communication. The VolP call members did not notice any
loss of communication, and in fact, no packets were lost during the handover, and only one packet

suffered reordering.

It should be noted that the “IMR triggered handover” is performed when a link-in-use
unexpectedly goes down. The communication is temporarily interrupted while the connection with
the new link is established. “IR triggered handovers” are carried out while the link is still active,

opening a context with a different link and modifying the routing only when new link is operational.

After disabling AeroMACS data link (step (1) in Figure 3(a)) the content request by the IMR
from the BGAN network takes around 30sec. Now, the care-of-address can be provided towards the
IR. Then, IR can initiate establishment of the IP connectivity with the ground (NeXT, NEMO, and

policy routing update). Improvements in all these handover procedures can be seen here.
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4.2.2 Seamless Layer 2 Handover

The IMR, which represents the data link and physical layer of the OSI stack, consists of the
different radio protocol stacks (AeroMACS, VDL2, and BGAN), includes an adaptation layer called
joint radio resource manager (JRRM) that is responsible for managing and controlling the underlying

radios in a uniform and consistent manner, and provides a single interface to the network layer (cf.

Figure A).
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Figure A. Principle architecture of the IMR.
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To increase the assurance of the IMR, there are two JRRMs running simultaneously with one
on each IMR processing platform, IMR-PC1 and IMR-PC2, respectively. At any time, there is only one
JRRM acting as the master and is in charge of all the processing, whereas the slave JRRM keeps on
synchronizing with the master. Different time recordings for the hot swap process (when the master
JRRM was terminated and the slave JRRM was swapped as the new master) could be done during the
flight trials. The data-tunnel switch time indicates the time window in which data cannot be
transmitted. This time varied between 170 and 184 ms. The overall switch time is the period starting
from when the slave JRRM detects a failure of the master until all submodules complete the
switching process. Here, the maximum recorded time was 286 ms, and the minimum time was 180
ms. Because of the multi-core and multi-threading programming techniques, there is not much

difference between the time required for processing single or multiple data tunnels.

When the radio stacks were running on the same processing platform with the new master
JRRM, it took slightly longer time for the switch process to complete because the computing
resources were shared between the JRRM and radio stacks. Similarly, the data tunnel traffic load

affected the switching time: the heavier the user traffic, the longer the switching time.

Figure 4 shows the time required for session establishment from randomly selected BGAN
and AeroMACS sessions during the flight trial. The session establishment time is the overall time
taken from the reception of the session open request until the data tunnel is completely ready for
data transmission. To express the processing time required by the JRRM more precisely, the
processing time in the JRRM only measures the time used within the JRRM modules by excluding the
layer-two processing time of radio stacks, such as ranging, registration, or attachment time. The
minimum session establishment time observed was 3.02 s when the satellite terminal had already
been registered and attached to the network before the session open request. The maximum time
observed was 22 s when a fresh network registration and attachment was to be done to setup and
activate the packet data protocol (PDP) context for the open request. On the other hand,

establishment of the AeroMACS session is quicker; it takes less than 1 s to complete a data



connection with the ground station. However, processing time used for session establishment within
the JRRM for BGAN and that for AeroMACS have the same order of magnitude despite the big overall
difference in their end-to-end connection establishment owing to the fact that JRRM treats all the

waveforms equally and in a uniform way.
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Figure 4. Session establishment time.

4.2.3 ATN/OSI over IP-SNDCF

The use of IP subnetwork dependent convergence function (SNDCF) enables the ATN/OSI
upper layers and network (CLNP-IDRP) protocols to be conveyed over the IP protocol. This allows IP-
based networks to be used for providing the underlying ATN subnetwork links between the ATN-
routing entities. It was decided to experiment on the use of IP-SNDCF on the aircraft (whereas today
it is only used on ground) and thus on a mobile system. The objective was to assess if the ATN/OSI
CLNP packets could be conveyed over VDL2 (as done today) and over the SANDRA broadband radio-
IP links in a seamless way. The advantage of a mobile IP-SNDCF is that avionics and ground stations
can implement a single (or multiple but standardized) SNDCF for all mobile communication

technologies instead of having different interfaces for each technology, which is the case at present.



A prototype mobile IP-SNDCF module was developed and integrated on existing ground
architecture and on the aircraft, cf. Figure B. This allowed demonstrating end-to-end ATN/OSI

communications over VDL2 and SANDRA mobile IP implementation over BGAN and AeroMACS [13].

Aircraft Segment Ground Segment

AIRCRAFT ATM STACK GROUND ATH STACK

CM/ICPILC CMICPDLE
oSl D&l
UPPER LAYERS MOBILE IF AIR-GROUND UPPER LAYERS
ROUTER

IS SME CLMP ICRP IS SME CLNP IDRP cLNE
VDL2 SMIDCF MOBILE |7 SNDCF MOBILE 1P SNDCF IP SNDCF IP SNDCF

VEIE 1P 1P 1P

IP NETWORK

IP NETWORK

(7]
IPSEC Owver
BGAM &
AeroMACS

GROUND-BIS
ROUTER
VDLE AIR-GROUND
ROUTER Eegs
IS SME CLNP IDRP ISEsME | cve | DRe
VL2 SNDCF IP SNDCF IP SNDCF
VEXE 1P 1P

VDL MODE 2 I
I NETWORK

Figure B. Principle architecture of ATN/OSI over mobile IP-SNDCF.

4.3 Aeronautical Service Coverage

Table 1 reveals the different applications that were successfully tested on ground and in the
cruising phase to validate the SANDRA concept. As can be seen in Table 1, applications from all the
different aeronautical service domains were tested during the flight trials, thereby emphasizing the

seamless service coverage of SANDRA. As to the airborne end-system, most of the applications were




tested using a notebook or tablet directly connected to the integrated router either via an Ethernet
cable or via in-cabin wireless local access network. Their counterparts on the ground had various
locations, such as the SANDRA laboratory or the different internet servers. In the following section,
various applications of different service domains concerning safety relevant data, such as voice
communication in the cockpit, airline operations services, and cabin communications, are

highlighted.



Table 1. List of applications tested during the SANDRA flight trials.

Application Domain Airborne Ground end- Ground
system
end-system end-system
location
AMBEATC10B VolP ATS VolP HW VolP HW SANDRA lab
CPDLC ATN/OSI apps. ATS CcMU ATN ES Montreal
Notebook
Generic CPDLC tool ATS Notebook Notebook SANDRA lab
Electronic flight AOC Notebook Server(s) Internet
information bulletin
Web chart application AOC Notebook Server(s) Internet
Web flight planning AOC Notebook Server(s) Internet
application
Electronic flight folder AOC Notebook Notebook, SANDRA lab
Flightstrips AAC Notebook Notebook SANDRA lab
Generic AAC Notebook Notebook SANDRA lab
arrival/departure
manager
Telemedicine AAC Telemedicine Telemedicine Internet
tablet server
VolP call APC VolP VolP Handset Internet
mobile
Web browser APC Tablet Web server Internet
Email APC Tablet Email Server Internet
Skype™ APC Tablet Skype™ Internet




4.3.1 AMBEATC10B VolP

The AMBEATC10B VolP is an experimental hardware voice-over-IP appliance based on the
AMBE ATC 10B vocoder circuit board. This is currently the only digital vocoder certified for air traffic
control. The circuit board is integrated with a micro-controller and installed in a rack-mountable case
with a push-to-talk button. The micro controller board runs a customized version of the Linux
operating system that reads/writes voice samples from the vocoder board and sends/receives them
over the SANDRA network using the user datagram protocol (UDP)/IPv6. Both the airborne and the

ground appliances were equipped with commercially available ATC headsets.

The quality of service delivered by the SANDRA network for VolP applications was evaluated
using the AMBEATC10B VolP appliance according to ITU recommendation P.80 “Methods for
Subjective Determination of Transmission Quality.” ITU P.80 defines a conversation opinion test. Two
subjects engage in a set of previously arranged domain-specific conversations and rate them
according to a defined scale. In addition, the subjects were interviewed to better understand the
rating. In the case of the SANDRA evaluation, the conversations were constructed from the air traffic
control simulation speech corpus [14]. Each conversation comprised six ATC phrases exchanged by
the subjects. After the conversation, each subject was asked to provide an opinion on the
transmission quality (excellent = 5, ..., bad = 1) and to indicate any difficulties in understanding the

conversation partner (yes = 1, no = 0).

The SANDRA evaluation composed of four different speakers and 65 conversations (i.e., 390
phrases exchanged) was limited by the flight time and the number of personnel available in the
aircraft. The participants were familiar with the transmission quality offered by the DSB-AM systems.
The subjective rating of the voice quality should therefore be understood as relative to the

established ATC voice systems.

Four of the 65 conversations were interrupted by reconfigurations of the data links.

Handovers from the AeroMACS link to the satellite link were seamless and generally not noticed by



the conversing subjects. However, the smaller round-trip delay of the AeroMACS system when
compared with the satellite link was perceived. The users noticed occasional packet loss on the
satellite link by missing the syllables in the conversations, but it was not perceived as a great

problem.

The mean score over all the conversations was 4.33 (excellent = 5, good = 4) on the airborne
side and 3.93 (fair = 3) on the groundside. The perceived lower audio quality of the ground users can
be explained by the background noise in the aircraft that was included in the transmission. On the
aircraft, the background noise was attenuated by the headsets, providing the airborne user with a

clear reproduction of the ground signal recorded in a quiet room.

4.3.2 CPDLC ATN/OSI Application

For the controller—pilot data link communications (CPDLC) ATN/OSI application, the ground-
end system was located in Montreal, Canada. During the in-flight test of this application, a
connection between the VGS on the ground and Montreal was established over the ATN/OSI ground
network. The transmission of CPDLC messages was made over the VDL2 link. When the handover
with BGAN (or AeroMACS) occurred, an IP connection through the SANDRA ground network was
established between the airborne and the ground-end system in Montreal. The path for CPDLC
messages switched thus from the ATN/OSI ground network to the IP-based SANDRA ground network.
Figure 5(a) gives an example of the CPDLC request exchanged every 10 s during the first test on the

26" of June. One can notice that the LACK was generally received in 1 s (in IP over AeroMACS).

Context management (CM)/CPDLC messages were routed seamlessly over one medium or
the other, without any impact on the upper layers. During the flight tests, the IP path (BGAN or
AeroMACS) was given priority, and whenever both the VDL2 and the IP paths were available at the
same time, traffic was automatically routed over the IP path. When the IP path became unavailable,

traffic fell back to using the VDL2 path.



4.3.3 Airline Operational Services

Two applications that pertain to the operational service domain of an airliner are described
in this section. These applications were integrated and tested during the flight trials. The first
application aims at providing the crewmembers with the current changes that are taking place in the
airspace and in airports with reference to the scope of a particular flight. The application receives
basic flight details from a user and then requests for all the relevant notice to airmen (NoTAM)
messages from a central server. The output data are presented in the ICAO format. The second
application emulates a Web service for both basic flight planning and submission of the flight plan
request to the state ATM authority. Along with the other features, this application provides a digital
map with details of the current aeronautical situation, automated route selection, and numerous

flight plan checks.

A dedicated route, that is, UUDD (Domodedovo, Moscow) = EDDM (Munich), was first
selected for such software tests as depicted in Figure 5(b). The corresponding flight plan was
successfully created and submitted. Then, a positive response (approval) was received from the ATM
service. Finally, all necessary NoTAMs regarding the chosen flight were requested and received. All
communications of both applications took place during the taxiing and cruise phases. Despite some
loss of packets and the consequent repeated requests in the TCP/IP stack (which was not seen at the

application level), the software managed to communicate with the ground successfully.
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4.3.4 Cabin Applications

Furthermore, real-life passenger-cabin applications were tested while in flight. This involved
a number of passenger scenarios including surfing the Internet and sending and receiving emails
through their Internet portal. With the aid of smart phones, those in the air demonstrated social
media posting and messaging as well as Skype™ video and audio calls all through the SANDRA radios.
A patient monitoring unit was also demonstrated successfully for the use of the crew, whereby a
crewmember and a doctor on the ground can simultaneously monitor the vital signs of a passenger
while in constant audio communication through the SANDRA radio system. As part of the
demonstration the unit’s blood pressure monitor and pulse monitor were attached to one of the test
engineers in flight. Patient monitoring units provides additional medical support to the cabin crew

when it is needed most.

4.3.5 Performance of Applications over Future Data Link

Finally, through a closer look of the new integrated AeroMACS nonlegacy data link, it was
observed that the end-to-end connectivity was affected not only by AeroMACS but also by all other
networking systems (integrated router, integrated modular radio, access router, home agent, etc.).
This was verified using the internet control message protocol (ICMP) pings that measured the
following delays: minimum delay = 33.314 ms, maximum delay = 265.054 ms, average delay = 76.823

ms, standard deviation = 32.172 ms, and a packet loss rate measurement of below 0.5%.

Different applications successfully tested using AeroMACS connectivity are as follows:

-AMBE ATC VolP, both over non-real-time and real-time profiles, with an average of 27 kbps

throughput during voice transmission;

-ATN/OSI over IP-SNDCF traffic, with an average throughput of 0.5 kbps with peaks of 2.5

kbps; and



-electronic flight folder file transfer protocol (FTP) traffic, with forward link traffic peak close

to 1 Mbps, and an average traffic of below 300 kbps.

5. Conclusions

In this paper, the outcomes of the flight trial of a new integrated aircraft communications
system were presented. Developed within the framework of the SANDRA project, this system was
integrated in an Airbus A320 and tested in real flight conditions in June 2013 at the

Oberpfaffenhofen Airport, Germany.

During these flight trials, the two key features of the SANDRA concept were demonstrated.
On the one hand, the seamless service coverage of the SANDRA architecture across different airspace
domains was shown. By keeping IPv6 as the unification point, it was proven that this system

integrates a full range of aeronautical applications (ATS, AOC/AAC, and APC).

The second key feature of the SANDRA concept that was demonstrated during the flight trials
was its global interoperability between legacy (VDL2 and BGAN) and future data links (AeroMACS).
This was realized by performing, first, a handover on the ground between VDL2 and AeroMACS data
links and, second, a handover while flying between the VDL2 and the BGAN satellite links (for both
cases, handovers were performed in both directions). Transparent to the end-user, these handovers
have proven the interoperable and scalable aspects of the SANDRA network, which can switch

reciprocally between legacy (non-IP) and future (IP) data links.
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