Supporting information for:

The thermal behaviour of benzoic acid : isonicotinamide binary co-crystals

Asma Buanz,¹ Timothy J. Prior,² Jonathan C. Burley,³ Bahijja Tolulope Raimi-Abraham,¹ Richard Telford,⁴ Michael Hart,⁵ Colin C. Seaton,⁴ Philip J. Davies,⁶ Ian J. Scowen,⁷ Simon Gaisford^{1*} and Gareth R. Williams^{1*}

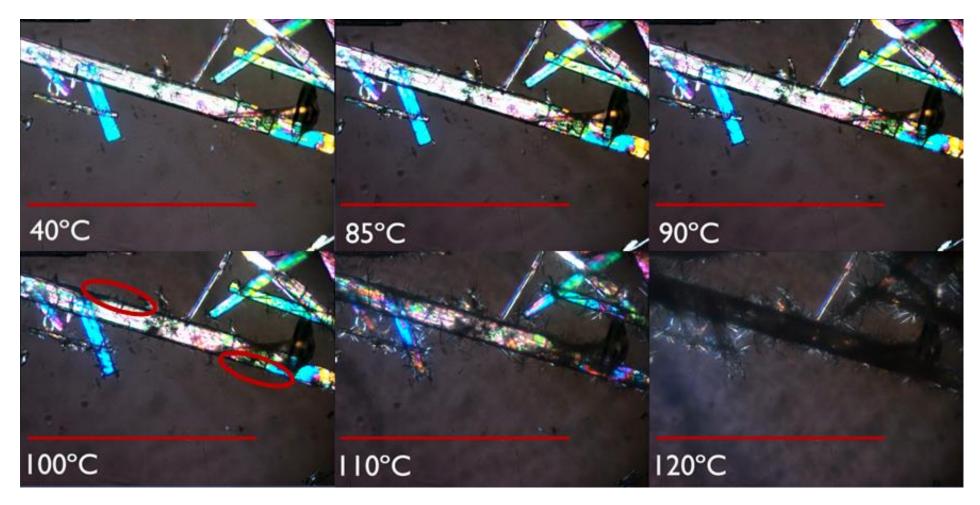
- UCL School of Pharmacy, University College London, 29 39 Brunswick Square, London, WC1N 1AX, UK.
- 2. Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
- 3. Laboratory of Biophysics and Surface Analysis, Boots Science Building, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
- 4. School of Chemistry and Forensic Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK.
- 5. Diamond Light Source, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK.
- 6. TA Instruments, 730 -740 Centennial Court, Centennial Park, Elstree, WD6 3SZ, UK.
- 7. School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.

* Authors for correspondence. Email: <u>s.gaisford@ucl.ac.uk</u> (SG); <u>g.williams@ucl.ac.uk</u> (GRW). Tel: +44 (0) 20 7753 5853 (SG); +44 (0) 207 753 5868 (GRW).

using a C-centred cell in C2/c with and β = 96.917° in accordance with the literature. ¹						
т/°С	a / Å	b/Å	c / Å	β/°	V / ų	
-100 ^a	22.379(4)	5.1507(8)	20.540(3)	96.927(2)	2350.3(5)	
30	22.850(4)	5.1963(10)	20.559(7)	96.593(13)	2425.0(4)	
60	23.029(4)	5.1916(10)	20.506(6)	96.314(16)	2436.8(4)	
100	23.143(4)	5.2172(11)	20.437(6)	96.332(16)	2452.6(4)	
150	23.315(6)	5.2209(11)	20.453(7)	96.31(2)	2474.7(4)	
161	23.373(5)	5.2255(11)	20.431(6)	96.276(18)	2480.5(4)	
166	23.376(6)	5.2194(14)	20.471(8)	96.26(2)	2482.7(5)	

Table S1: Unit cell parameters calculated for BA:isoNCT at various temperatures. LeBail fits were performed using a C-centred cell in C2/c with and β = 96.917° in accordance with the literature.¹

^a Data from ref ¹


Table S2: Unit cell parameters calculated for BA₂:isoNCT at various temperatures. LeBail fits were performed using a primitive cell with $\alpha = 80.165^\circ$, $\beta = 79.963^\circ$ and $\gamma = 89.973^\circ$ in accordance with the literature.² Very limited changes in α , β , and γ are not reported here.

Т	°∕ °C	a / Å	b/Å	c / Å	V / ų
-53ª		10.032(4)	12.661(6)	14.354(6)	1768.1
32		10.841(4)	12.755(4)	14.587(5)	1965.9(7)
60		10.828(4)	12.753(4)	14.692(6)	1976.8(7)
100		10.845(5)	12.748(4)	14.860(5)	1997.3(7)
140		10.873(4)	12.743(4)	15.027(5)	2019.8(7)
150 ^b		10.875(4)	12.745(4)	15.052(5)	2023.7(7)
150 ^c	Phase 1	10.870(3)	12.788(2)	15.052(2)	2032.7(6)
	Phase 2	10.717(5)	12.753(2)	14.981(4)	1988.5(9)

^a Values from ref ²

^b The results of fitting the pattern with a single phase

^c The outcomes of a two-phase fit to the data collected at 150 °C.

Figure S1: HSM data collected under crossed-polar conditions during the heating of BA₂:isoNCT at 5 °C min-1. The red bar in each image represents 1 µm. The rings in the 100 °C image highlight the needle-shaped crystals which are present on the surface of the large columnar crystals. This image is an enlargement of Figure 2 from the main manuscript.

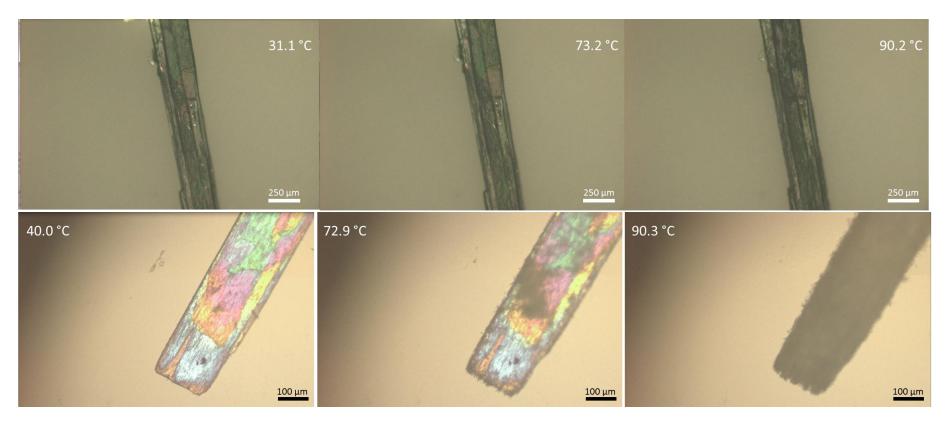
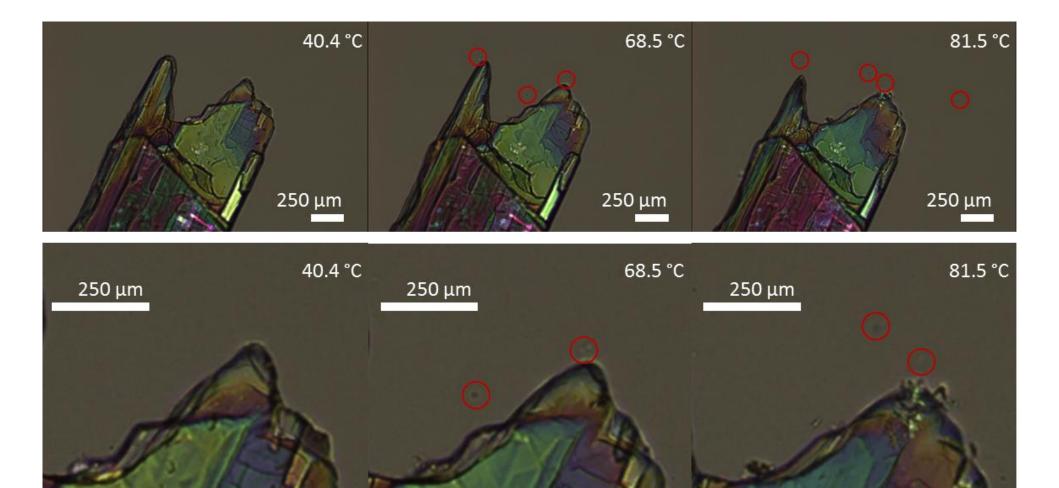
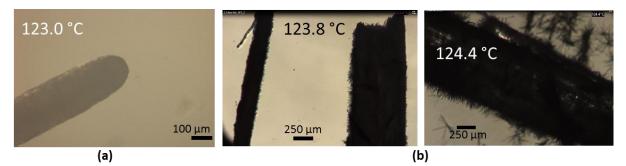
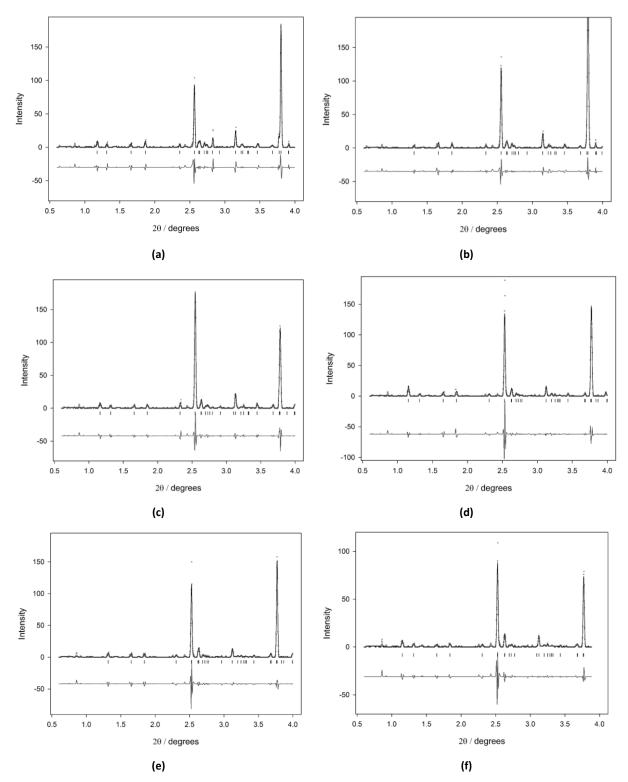
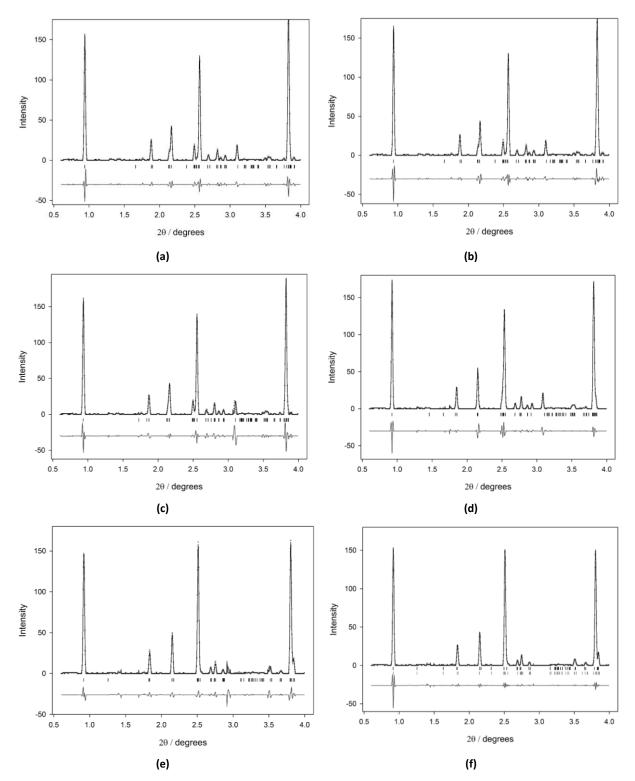
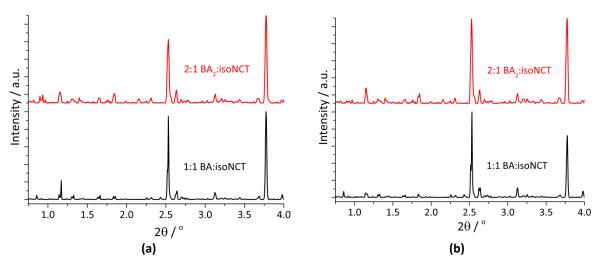


Figure S2: Hot stage microscopy data recorded at different heating rates on crystals of BA2: isoNCT. Top: heating at 10 °C min⁻¹; bottom: heating at 2 °C min⁻¹


Figure S3: HSM data recorded on a crystal of BA2: isoNCT immersed in oil. Gas bubbles are circled in red. The bottom row shows enlargements of the top.


Figure S4: HSM data recorded on crystals of BA₂:isoNCT at T > 122 °C (the melting point of BA). Data were obtained at (a) 2 and (b) 10 °C min⁻¹.

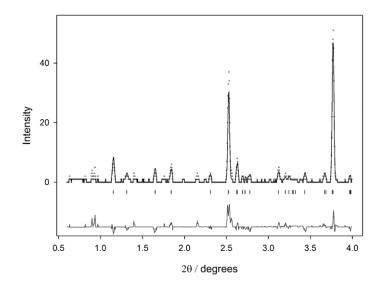

Figure S5: Partial Rietveld fits to the X-ray diffraction data collected on the 1:1 BA:isoNCT co-crystal (a) 30; (b) 60; (c) 100; (d) 150; (e) 161; and, (f) 166 °C. Dots show the observed data, and tick marks the calculated reflections; the upper line is the fit to the data, and the lower line is the difference. A 3-term cosine Fourier series was used to fit the background. The unit cell parameters were refined. A single Gaussian peak shape, and a single U_{iso} for all the non-H atoms, were employed. The initial data were background-subtracted to remove a large amorphous background arising due to the glassy C vessel used for heating, and thus the background is constant in these patterns.

Figure S6: Partial Rietveld fits to the X-ray diffraction data collected on the 2:1 BA:isoNCT co-crystal (a) 30; (b) 32; (c) 60; (d) 100; (e) 140; and, (f) 150 °C. Dots show the observed data, and tick marks the calculated reflections; the upper line is the fit to the data, and the lower line is the difference. A 3-term cosine Fourier series was used to fit the background. The unit cell parameters were refined. A single Gaussian peak shape, and a single U_{iso} for all the non-H atoms, were employed. Note that in (f) there are two sets of tick marks, corresponding to two different phases (see main text). The initial data were background-subtracted to remove a large amorphous background arising due to the glassy C vessel used for heating, and thus the background is constant in these patterns.

Figure S7: The XRD patterns obtained when the 2:1 and 1:1 co-crystals are heated to **(a)** 161 and **(b)** 166 °C. To facilitate comparisons, the intensities of the reflections in each pattern have been normalised to the most intense reflection.

Figure S8: Partial Rietveld fit to the X-ray diffraction data collected at 161 °C from the 2:1 BA₂:isoNCT cocrystal. Dots show the observed data, the upper line is the fit to the data, and the lower line is the difference. A 3-term cosine Fourier series was used to fit the background. The unit cell parameters were refined. A single Gaussian peak shape, and a single U_{iso} for all the non-H atoms, were employed.

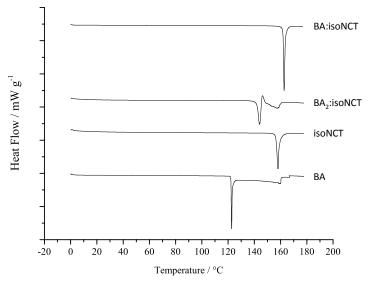


Figure S9: DSC data for the raw materials and co-crystals. Data were collected at heating rates of 10 °C min⁻¹.

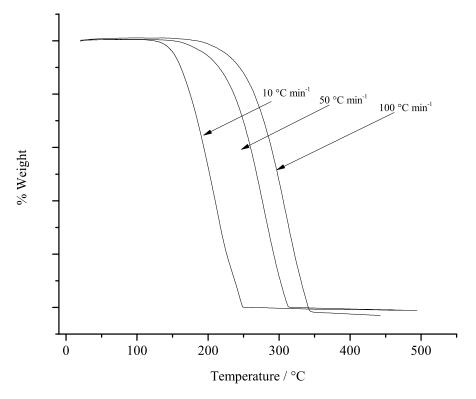


Figure S10: Weight loss as a function of temperature for BA2: isoNCT at different heating rates.

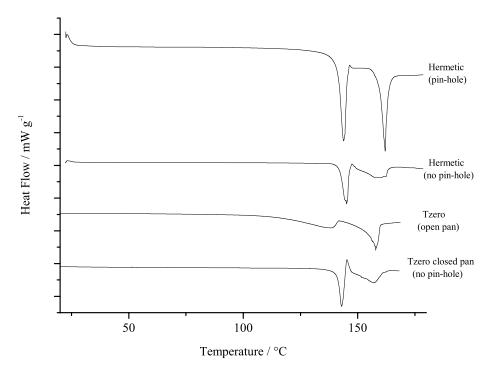


Figure S11: DSC thermograms of BA₂:isoNCT co-crystals heated in different pan types at 10°C min⁻¹.

References

- (1) Aakeröy, C. B.; Beatty, A. M.; Helfrich, B. A. Angew. Chem. Int. Ed. Engl. 2001, 40, 3240-3242.
- (2) Seaton, C. C.; Parkin, A.; Wilson, C. C.; Blagden, N. *Cryst. Growth Des.* **2009**, *9*, 47-56.